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ABSTRACT Technical debt, the long-term impact of decisions made to achieve a short-term benefit, has a
unique impact on a project schedule. Technical debt does not impact the ability to complete the task on which
it is incurred but rather impacts successor tasks causing unplanned schedule delays or budget increases. The
impact of technical debt is uncertain and therefore must be modeled probabilistically. When unaccounted
for and unmanaged, technical debt can build up in the project with increasing impact, eventually forcing
forward progress to stop while the technical debt is remedied. Traditional project scheduling methods allow
for uncertain task durations but do not provide explicit means of modeling the impacts of technical debt.
Instead, they assume that each task is unaffected by the completion status of its predecessors and its duration
is only dependent upon the initial estimates. This research addresses this gap by providing a novel model of
the impact of technical debt on the project schedule through estimating the dynamics of value creation in the
presence of technical debt. Equations are developed for estimating the probabilistic impacts of technical debt
on the generation of earned value. These equations are then inverted and used to calculate task duration in
the presence of technical debt and included in a Monte Carlo analysis. Comparisons are made to an existing
Monte Carlo schedule analysis and technical debt impacts are explored.

INDEX TERMS Earned value,Monte Carlo, schedule analysis, technical debt, leading indicators of schedule
performance, schedule risk assessment.

I. INTRODUCTION
Project managers traditionally handle uncertainty by includ-
ing cost and schedule margin in their project plans [1]. These
margins can be used to mitigate the impact of rework and
technical debt within a project. Love defines rework as the
‘‘unnecessary effort of re-doing a process or activity that
was incorrectly implemented the first time’’ [2]. Kleinwaks,
Batchelor, & Bradley define technical debt as ‘‘a metaphor
reflecting technical compromises that can yield short-term
benefit but may hurt the long-term health of a system’’ [3].
Within the context of a project, technical debt occurs when
decisions made in the completion of one task negatively
impact the ability to complete successor tasks on time and
on budget. The impact of technical debt is not certain: the
compromises made on one task may or may not impact
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a successor task [4] and the compromises may proliferate
throughout the system and cause significant issues [5].Within
this article, technical debt is distinguished from rework by
asserting that rework is the result of the poor execution of
defined processes and methods and technical debt is the
result of shortcuts taken in the requirements development,
design, and/or implementation in order to achieve a short-
term benefit. Rework requires the repeated execution of
existing process and unplanned iterations of existing tasks.
Technical debt does not typically require the redoing of a
specific task but instead technical debt makes completing
successor tasksmore complicated, costly, or time-consuming.
If technical debt is not accounted for in project schedul-
ing, then successor task duration may increase unexpectedly,
resulting in late completion of tasks compared to stakeholder
expectations. However, traditional schedule analysis tech-
niques do not model changes in successor task durations
based on the fidelity of predecessor task completions. This
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article provides a novel mechanism to address this gap and
enable more realistic schedule assessments.

Properly assessing project schedules requires the ability
to proactively predict risks associated with both technical
debt and rework [6]. Monte Carlo simulation is often used
to assign probabilistic durations to tasks, assuming that the
task will be completed within the bounds of the assigned
distribution. However, these simulations can overlook the
costs associated with changes to the schedule [1] as a result
of technical debt or rework [7].

Several authors have investigated the use of design struc-
ture matrices (DSM) to predict the impact of design iterations
on project schedule [8], [9], [10], [11]. These techniques can
be used to assess the probability of rework occurring within
a project and the extensions to schedule that occur. However,
they do not model the potential for technical debt. Ma, et al.
[8] extend DSMs to include a probability of rework and its
impact on future tasks in the context of design iterations.
However, in many projects, iterations are not planned – the
successor tasks must be extended or changed to address the
shortcomings of the predecessor tasks. Furthermore, while
modeling rework can account for project extensions, it is
not the same as modeling technical debt. Rework results in
repeated execution of the same tasks. Technical debt may
result in longer durations of successor tasks and the poten-
tial need for unplanned effort to remove the debt from the
system.

Maheswari and Varghese [11] provide a method to use
DSMs to determine a project schedule accounting for over-
lapping tasks. By assessing the necessary condition of task
overlap in a project, they demonstrate that tasks do not
always abide by strict finish-to-start schedule relationships.
However, their work assumes a fixed value of the overlap
time and does not provide a mechanism to calculate when
a task reaches that level of completion. Additionally, they
assume that the work completes perfectly until the overlap
time is reached without considering technical debt’s task to
task dependencies.

From this review, it is clear that additional techniques to
handle the presence of technical debt within a project sched-
ule are required. Failure to model technical debt can result
in overly optimistic schedule estimates due to the failure
to account for the cascading impact of technical debt inter-
est. The technical debt incurred on one task can compound,
impacting multiple successor tasks, resulting in significant
delays and cost increases to the project.

In this article, we extend existing project schedule analy-
sis methods to include technical debt analysis. The impact
of technical debt incurred on one task on successor tasks
is modeled through earned value computations. The earned
value equations are inverted to estimate the duration of suc-
cessor tasks subject to technical debt from their predecessors.
With these equations, the impact of technical debt is then
included in a Monte Carlo schedule analysis and the results
compared to a traditional Monte Carlo schedule analysis.
Various impacts of technical debt are explored by altering the

parameters in the analysis. This article answers the following
research question:
How can technical debt be accounted for within project

scheduling activities?
By answering this research question, this article presents

a mathematical model that can be used by project managers
and schedulers in Monte Carlo schedule analysis techniques.
This model uses the technical debt formulation to compute
increased duration of successor tasks, thereby providing a
more realistic schedule analysis.

The rest of this article is structured as follows: first,
overview of related work is provided. Next, the method used
to account for technical debt within a schedule is described
and is followed by an example application of the method
within Monte Carlo schedule analysis. Finally, the results are
discussed and opportunities for future work are presented.

II. RELATED WORK
Earned value management expresses the project progress in
terms of value created, where value is expressed in monetary
terms. The creation of value is then used to predict both
the project cost at completion and the schedule at comple-
tion through linear extrapolation of the current state [12].
While EVM is traditionally effective in cost management,
its schedule management component is usually considered
insufficient, especially since the schedule is expressed in cost
parameters [13]. These weaknesses led to the development
of earned schedule (ES) techniques [14]. ES techniques have
been shown to be more accurate in predicting the schedule at
completion [15] and can be more easily understood, as they
measure the earned schedule in units of time (and not cost).
Both EVM and ES use the same planned value and earned
value curves, which take the form of an ‘S-curve’, shown
in Figure 1. The planned value is based on the baselined
project development plan, while the earned value is based
on measured project progress. EVM techniques measure the
difference between the two curves in the vertical direction
while ES techniques measure the difference between the two
curves in the horizontal direction.

FIGURE 1. Planned and earned value ‘s-curves’.
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Warburton [16] formulated (1) to (4) to represent planned
value (PV) and earned value (EV) curves. Lowercase letters
represent the instantaneous value and capital letters represent
the cumulative value. Note that (4) in [16] contains an error
where the negative sign on the first exponential was excluded.
That error has been corrected in (4) in this article. The vari-
ables used in these equations are defined in Table 1.

pv (t) =
Nt
T 2 e

−t2

2T2 (1)

PV (t) =

∫ t

o
pv (s) ds = N

[
1 − e

−t2

2T2

]
(2)

ev (t) =

{
(1 − r) pv (t) , t ≤ τ

(1 − r) pv (t) + r ∗ pv (t − τ) , t > τ

ev (t) =


(1 − r)

Nt
T 2 e

−t2

2T2 , t ≤ τ

(1 − r)
Nt
T 2 e

−t2

2T2 + r
Nt
T 2 e

−(t−τ )2

2T2 , t > τ

(3)

EV (t) =


EV1 (t) =

∫ t

0
ev (s) ds, t ≤ τ

EV2 (t) = EV1 (τ ) +

∫ t

τ

ev (s) ds, t > τ

EV (t) =


(1 − r)N

[
1 − e

−t2

2T2

]
, t ≤ τ

N − N (1 − r) e
−t2

2T2 − rNe
−(t−τ)2

2T2 , t > τ

(4)

TABLE 1. Variables used in earned value equations.

Equation 1 defines the instantaneous planned value func-
tion. This equation models a project where the planned value
achieved at each point in time, for example, work accom-
plished each day, initially increases until time T , which is
the time at which the maximum instantaneous planned value
is reached. After this point, the contributions to planned
value in each time period steadily decrease. The cumulative
planned value is calculated using (2). This equation, the
integral of (1), produces the traditional S-curve, as shown
in Figure 1. Equation 3 calculates the instantaneous earned
value by assuming that a fraction of the tasks, r , are late by a
time τ , thereby delaying the accumulation of value. Equation
4 computes the cumulative earned value as the integral of the
instantaneous earned value [16].

This related research forms the basis of the process for
accounting for technical debt in the schedule analysis. Build-
ing off of the equations for earned value, the time at which
a task reaches the necessary conditions for the successor
task to start can be established. The r and τ parameters
allow for the modeling of delays introduced into a task from
its predecessor tasks, a key component of technical debt.
Attaching these equations to a Monte Carlo analysis allows
for the modeling of the probabilistic aspects of technical debt
interest.

III. ACCOUNTING FOR TECHNICAL DEBT
IN SCHEDULE ANALYSIS
Accounting for technical debt in schedule analysis starts with
understanding how to measure task completion. Technical
debt occurs when technical compromises are made in the
execution of a task in order to achieve a short-term bene-
fit [3]. The technical compromises may impact the scope
of the task, resulting in reduced performance relative to
its objectives, or in the quality of the task, resulting in
lower maintainability, upgradability, sustainability, and other
-ilities. These compromises may then impact the ability to
complete future tasks on time, on budget, or to their per-
formance specifications [17]. For example, technical debt is
incurred when the documentation associated with a system
component is reduced (technical compromise) to release on
time (short-term benefit). The lack of documentation may
make integration and testing of the component more time
consuming and more costly (long-term impact). Kleinwaks,
Batchelor, and Bradley conducted a survey on the presence of
technical debt within systems engineering, concluding that,
although the terminology of technical debt is not well used
within systems engineering, the impacts of technical debt are
substantial [17].
The size of the impact of technical debt, referred to as the

interest amount within software engineering [4], is uncertain
and dependent upon both the technical compromise and the
interconnectedness of the task within the system context. The
occurrence of the interest, defined as the interest probability
[4], is uncertain – if no changes need to be made to the
component carrying the technical debt, then no interest needs
to be paid. Technical debt may remain hidden in a system
and linger for extended periods of time, compounding the
interest amount and resulting in more complicated, or even
impossible, design changes.

A. UTILITY AS VALUE
When modeling project value for schedule analysis, the use
of a monetary metric as the project value can confuse value
and utility.While project duration ultimately relates to project
cost, the ability of one task to begin work is not related to
how much profit that predecessor task generates. Therefore,
this article assumes that a value function can be formulated in
terms other than financial terms [18]. Specifically, this article
models value as the utility of a task to its successor tasks,
where utility is measured as the completion percentage of the
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predecessor task. A successor task may be able to begin work
when a predecessor task is not complete (has a utility of less
than one (1)), an implementation of the start-start relationship
[12] of traditional project scheduling techniques. The value
function is modeled as an S-curve, a relationship that has
been shown to hold for task duration as well as cost [13] and
which enables the time at which the task reaches a specified
utility (value) to be found. Therefore, the start time of the
successor tasks can be determined, leading to the calculation
of the overall project duration.

B. MODELING EARNED VALUE FROM MULTIPLE
PREDECESSORS
Modeling technical debt impacts requires the ability to deter-
mine both the interest amount and the interest probability
and to account for their impacts on the value creation of
a specific task. Since the interest could come from any of
the predecessor tasks, it is necessary to determine the con-
tributions to the value of a task that is derived from each
of its predecessors. Adopting an S-curve formulation of the
value function, modifications to Warburton’s equations can
be made to calculate the earned value contributions from each
predecessor task in turn. As written, Warburton’s equations
assume that the earned value is contributed evenly frommulti-
ple predecessor tasks. TheNparameter is used to represent the
number of predecessor tasks, which changes themagnitude of
the overall planned and earned value, but only in aggregation.
Each predecessor task contributes the same portion of the
value. This model is appropriate for planned value, which
assumes perfect schedules. However, earned value, which
attempts to model the actual value creation schedule, must
account for the individual impacts of predecessor tasks on
the earned value of the successor task. Equations 5 and 6
show the updated equations for earned value accounting for
the impacts of the predecessors.N becomes a scaling variable
applied evenly to all the predecessor tasks.

ev (t) =

n∑
i=0

{
(1 − ri) αipvi (t) , t ≤ τi

(1 − ri) αipvi (t) + riαipvi (t − τi) , t > τi

ev (t)=
∑n

i=0


(1 − ri)

αiNt
T 2 e

−t2

2T2 , t ≤ τi

(1 − ri)
αiNt
T 2 e

−t2

2T2 + ri
αiNt
T 2 e

−(t−τi)
2

2T2 , t > τi

(5)

EV (t) =

∑n

i=0


EV1i (t) =

∫ t

0
evi (s) ds, t ≤ τi

EV2i (t) = EV1i (τ ) +

∫ t

τi

evi (s) ds, t > τi

EV (t) =

n∑
i=0



(1 − ri) αiN
[
1 − e

−t2

2T2

]
,

t ≤ τi

αiN − αiN (1 − ri) e
−t2

2T2 − riαiNe
−(t−τi)

2

2T2 ,

t > τi

(6)

In (5) and (6), it is assumed that each predecessor task inde-
pendently impacts a portion of the successor’s task earned
value. This portion is controlled by the α variable, which
is the percentage of the successor task’s earned value that
is impacted by predecessor task i. The α variables are con-
strained to add up to one, as shown in (7).∑n

i=0
αi = 1 (7)

α0 is the percentage of the successor task’s earned value
that is not impacted by any predecessor and can be calculated
using (8).

α0 = 1 −

∑n

i=1
αi (8)

Figure 2 depicts the contribution of multiple predecessors
to the earned value of a successor task. In Case 1, each
predecessor contributes equally to the earned value of Task D.
In Case 2, the individual contributions are not equal, resulting
in different values of α. Changing the values of r and τ for
each predecessor task will change the overall earned value
based on the values of α, which is discussed in the next
section.

C. TECHNICAL DEBT AND EARNED VALUE
Warburton’s equations can be used to model the impacts
of technical debt interest on the system by redefining the
variables r and τ . Warburton defines r as the percentage
of activities that require rework. Within the multiple pre-
decessor and technical debt context, r is redefined as the
percentage of the predecessor task’s impact on the successor
task that is subject to a delay. This relationship is shown in

FIGURE 2. Multiple predecessor contribution to earned value.
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Figure 3. In this figure, αA = 0.25: task A impacts 25%
of the earned value of task D. rA = 0.25 and therefore
25% of task A’s impact on task D is subject to techni-
cal debt interest from task A. Combined, 6.25% of task
D is subject to delays due to technical debt interest from
task A.

FIGURE 3. Definition of r parameter in the context of multiple
predecessors and technical debt.

The definition of τ is unchanged from Warburton – it
is a measure of the delay introduced to the system due to
technical debt interest. It measures how much longer a task
takes to complete based on the technical debt introduced
by a predecessor task. The impact of changing r and τ is
shown in Figure 4. Increasing r shifts the earned value curve
to the right along the time axis but does not significantly
change the slope – it changes the time at which the value
is accumulated but not the rate. Changing τ changes the
slope of the earned value curve thereby affecting the rate of
value accumulation along with the time at which the value is
earned.

In terms of technical debt, r and τ , when combined, rep-
resent the interest amount. The interest probability can be
modeled through the specification of probability distributions
for r and τ and the use of Monte Carlo analysis. The impact
of r and τ and the relationship to technical debt is best
understood through an example.

Williams [7] defines a schedule for the development of
a test aircraft, including the expected duration for each of
the tasks. This schedule will be used throughout the rest
of this article as an example project. Williams provides a
relevant example to technical debt through the discussion
of the third management action in his aircraft example: if
avionics production is delayed, then a temporary avionics
kit may be installed in production aircraft. The technical
compromise is to use a non-fully functional avionics kit to
achieve the short-term benefit of meeting the task schedule.
The long-term impact is the lack of fully functional air-
craft and the potential for rework to retrofit the avionics kit.
In Williams’ example, 28% of the aircraft had the temporary
kit installed, so r = 0.28. Williams does not provide the
timeline to produce additional kits, but it is fair to estimate
that it would be the same as the avionics production task and
range between 12-18months. Therefore, τ could be estimated

FIGURE 4. Effect of changing r and τ on earned value.

through a distribution that produces values in the range of 12-
18 months. rand τ would then be applied to the earned value
equation for the aircraft assembly along with an estimate of
the alpha value – the portion of the aircraft assembly affected
by the avionics.

D. COMPOUNDING TECHNICAL DEBT INTEREST
One of the most pernicious qualities of technical debt is that
the interest compounds. Technical debt may impact multiple
successor tasks, may not appear until several successor tasks
have completed, and it may grow in impact as it affects
more tasks [5]. To model the compounding of technical debt
interest, it is necessary to consider all the predecessor tasks as
having some contribution to the earned value of the successor
task. If direct predecessor tasks are the only ones considered,
then there is a chance that the technical debt contribution
is underestimated. For example, consider the development
of a software interface with three tasks: development of the
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interface control document (ICD), writing the software code,
and integrating the software interface. An ICD may contain
documentation debt [19], which includes the under specifi-
cation of the interfaces. The software developer can take the
ICD and perfectly implement it as written, and may not be
aware that the interfaces were underspecified. It is not until
the next task, the integration of the interface, that the technical
debt in the ICD will appear, even though the ICD is not a
direct predecessor of the integration task.

To model the compounding of technical debt interest, it is
necessary to specify the α, r , and τ values for each possible
predecessor for every task. Figure 5 shows an example of
how to specify the values using two design structure matrices
(DSM), based on the aircraft project provided in Williams
[7]. The dependency matrix, on the left of Figure 5, indicates
the direct predecessor (value of 1) and indirect predecessor
relationships (value of 2). The alpha matrix, on the right
side of Figure 5, indicates the value of alpha for the rela-
tionships. These matrices are read like other DSMs, where
a value in a cell indicates that the column contributes to
the row. The dependencies of task 5, interim avionics, are
found by reading down the column. This task has one imme-
diate successor (task 7, assemble d/b aircraft) and several
secondary successors. The value of alpha for the immediate
successor is 0.1. To maintain the constraint identified in
(7), the summation of the values in the rows of the alpha
matrix must equal one (1). Similar DSMs could be created for
r and τ .

FIGURE 5. Specification of compounding technical debt.

From these matrices, it can become clear which tasks may
have larger impacts throughout the system. For example,
summing the columns in the α matrix will provide a total
of the impact percentage of a specific task. Larger values
will have higher potential for compounding technical debt
interest.

FIGURE 6. Stages of earned value S-curve.

E. CALCULATING TIME AT WHICH EARNED
VALUE IS REACHED
Equation 6 models the earned value, in the presence of tech-
nical debt and multiple predecessors, as a function of time.
Therefore, if this equation could be solved for t , then the
time at which a specified earned value is reached could be
analytically determined. However, this equation is a transcen-
dental equation and is not analytically solvable, especially in
the presence of an unknown number of predecessor tasks.
Numerical techniques could be used; however, they do not
lend themselves to easy application.

Examining the shape of the S-curve reveals that there are
four distinct sections [20]:

• Stage 1: value accumulation starts out slowly, usually as
the project is ramping up

• Stage 2: value accumulates rapidly as more resources are
put into the project and work is delivered

• Stage 3: value accumulation slows down as the bulk of
the work is completed and resource loading starts to
reduce

• Stage 4: additional value accumulation is minimal as
tasks are finalized and the project is concluded

These stages are shown in Figure 6.
Between each of these stages, the concavity of the S-curve

changes direction. A piece-wise linear function can be used
to approximate the curve, with a separate line for each of
the four sections [20]. Determining this piecewise function
requires identifying the transition points between the changes
in concavity.

The changes in concavity of the function are found by tak-
ing the derivatives of the function and setting those derivatives
to zero. The derivatives of the earned value function are not
directly solvable, due to the presence of multiple exponentials
and the unknown number of predecessor tasks. However, the
planned value function only contains a single exponential
and does not depend on the number of predecessor tasks and
therefore the transition points on the planned value curve can
be found.

Figure 7 plots the cumulative planned value (PV), instan-
taneous planned value (pv), and the derivative of the
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instantaneous planned value ( dpdt ). The solid black lines repre-
sent the transition points on the PV curve. The three transition
points, G1, G2, and G3, can be found by applying successive
derivatives of the pv curve.

FIGURE 7. Concavity changes indicating transition points between growth
stages in planned value.

The first transition point to be found is G2 – the transition
from stage 2 to stage 3 [21]. As seen in Figure 7, this transition
point occurs where the concavity of pv changes. Candidates
for changes in concavity are found by finding the roots of
the second derivative of a function. Equation 9 shows the
second derivative of the pv function. Therefore, G2 is found
by solving (9) for t, which is shown in (10).1 Only the positive
roots are considered in this analysis.

d2pv(t)
dt2

=
N
T 6 te

−t2

2T2
(
t2 − 3T 2

)
(9)

G2 = ±
√
3T (10)

Transition points G1 and G3 occur when the concavity
of dp

dt changes, as shown in Figure 7. Therefore, the second
derivative of dp

dt , which is the third derivative of pv, needs to
be found and solved. Equation 11 shows the third derivative of
pv, and the solution is shown in (12). Again, only the positive
roots are used in this analysis.

d3pv(t)
dt3

=
N
T 8 e

−t2

2T2
(
t4 − 6t2T 2

+ 3T 4
)

(11)

G1 = ±

√
−

(√
6 − 3

)
T 2,G3 = ±

√(√
6
)
T 2 + 3T 2

(12)

With the transition points known, the piecewise linear
equation for the planned value (LPV) can be found, as shown
in (13).

m1 =
PV (G1)

G1

m2 =
PV (G2) − PV (G1)

G2 − G1

1Derivatives and solutions were checked using the Online Equation
Solver from Wolfram Alpha, available at https://www.wolframalpha.
com/calculators/equation-solver-calculator/

FIGURE 8. Linearized planned and earned value curves using the same
transition points.

m3 =
PV (G3) − PV (G2)

G3 − G2

m4 =
1 − PV (G3)

1 − G3

LPV(t) =


m1 ∗ t, t ≤ G1

m2 ∗ (t − G1) + PV (G1) ,G1 < t ≤ G2

m3 ∗ (t − G2) + PV (G2) ,G2 < t ≤ G3

m4 ∗ (t − G3) + PV (G3) ,G3 < t ≤ 1

(13)

Equation 13 can be easily solved for t to determine the
time at which a specific planned value occurs. Following the
same process to linearize the earned value equations results
in unsolvable derivative equations due to the combination of
multiple exponentials and the unknown number of predeces-
sor tasks. A possible solution is to use the transition points
found in the planned value curve as the transition points of
the earned value curve. The reuse of these points will induce
error in the time dimension of the linearization, which needs
to be characterized. The resulting linearization of planned
value and earned value is shown in Figure 8. In this case, the
linearized earned value plot underestimates the earned value
in the stage 4 and overestimates the earned value in stage 1.

With the transition points set, the linearized earned value
equations can be determined and then solved for t , as shown
in (14) and (15), where V is the desired earned value. The
impact of multiple predecessors is included in the lineariza-
tion by using the complete earned value (EV) equation (6) at
each of the transition points.

m1 =
EV (G1)

G1

m2 =
EV (G2) − EV (G1)

G2 − G1

m3 =
EV (G3) − EV (G2)

G3 − G2

m4 =
EV(1) − EV (G3)

1 − G3
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LEV(t) =


m1 ∗ t, t ≤ G1

m2 ∗ (t − G1) + EV (G1) ,G1 < t ≤ G2

m3 ∗ (t − G2) + EV (G2) ,G2 < t ≤ G3

m4 ∗ (t − G3) + EV (G3) ,G3 < t ≤ 1

(14)

t =



V
m1

,V ≤ EV (G1)

(V − EV (G1))

m2
+ G1,EV (G1)<V ≤EV (G2)

(V − EV (G2))

m3
+ G2,EV (G2)<V ≤EV (G3)

(V − EV (G3))

m4
+ G3,EV (G3) < V ≤ 1

(15)

t represents the time at which the task reaches a particu-
lar earned value. Successor tasks may be able to start at t ,
however, the task is not necessarily complete at this point
in time. The time of task completion is found by calculating
when the earned value equals the total planned value for the
task. The total planned value is input into (15) as V and then
the task completion time is found. The difference between the
task completion time and the original planned duration is the
penalty on the task due to technical debt.

With (15), it is now possible to determine the time at
which a task earns a particular value and the time at which
it will finish in the presence of technical debt from multiple
predecessors. The algorithm is as follows:

1. Set the values of α, r, and τ for each predecessor task
2. Based on the value of T for the task, determine the

transition points G1, G2, and G3 using equations
3. Calculated the earned value at each transition point for

each predecessor task using (6)
4. Given the desired earned value V , calculate t from (15)

An accuracy assessment of this method is provided in the
appendix.

IV. APPLICATION TO MONTE CARLO
SCHEDULE ANALYSIS
The prior analysis shows how to calculate the time at which a
task reaches a desired earned value in the presence of techni-
cal debt. AMonte Carlo analysis can be used to determine the
most likely duration of the entire project, accounting for tech-
nical debt along the way. Table 1 shows the parameters used
in the analysis and recommended random and static variables.
The random variables are assigned probability distributions,
such as normal or triangular distributions and the accompa-
nying distribution parameters are set as static variables. Static
variables are held constant through each trial of the Monte
Carlo analysis while random variables are resampled and
changed with each Monte Carlo trial. Variables either apply
to a singular task, such as the independent duration, or to a
pair of tasks, such as r and U .
With the task duration, D, expressed as a random vari-

able, it becomes simpler to express the time parameters

TABLE 2. Recommended random and static variables for monte carlo
analysis.

(T , t , and τ ) as percentages of the task duration, forcing them
to have values between zero (0) and one (1). Setting the value
of N to one (1) treats each task as a single activity. Then,
the calculated earned value is the percentage of the planned
value and the utilityU is expressed as a percentage of planned
value. This convention allows all the parameters in the Monte
Carlo analysis, with the exception of the task duration to be
on the same scale, from 0 to 1. It also enables automatic
adjustments of the technical debt delay based on the duration
of the task. τ is expressed as the percentage of the successor
task duration and therefore adjusts with the random selection
of the task duration in the Monte Carlo analysis. The actual
task duration is found by multiplying the time at which the
utility threshold is reached by the duration. This method is
shown in the following example.

Williams [7] performed a Monte Carlo analysis for a new
airplane development project, including modeling manage-
ment actions. The tasks, their sequence, and the parameters
for the distributions of the task durations are shown in
Figure 9. This analysis will serve as a test case for the method
presented in this article, including updating the analysis to
account for technical debt.

Williams assessed the project duration, found by deter-
mining the completion time of the ‘Ready to assemble’ task,
in two cases: the baseline case which only uses the distribu-
tion of the durations and a case that represents the application
ofmanagement actions that cause impacts to subsequent tasks
such as ‘‘downstream quality issues’’ [7]. These impacts can
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FIGURE 9. Project tasks, durations, and sequence, adapted from [7].

be interpreted as technical debt. Table 2 compares the mean
duration of the project and the 90% point (the time at which
90%of theMonte Carlo trials show completion of the project)
provided byWilliams with those calculated using the method
presented in this article. The parameters used in this method
are also provided for each case. Since planned value curves
for each task were not provided by Williams, the value of
T used for all tasks was iteratively determined by running
the algorithm with different values until results comparable
to Williams was achieved. In cases where the planned value
curves of each task are known, T would be determined as the
point of maximum instantaneous planned value as defined by
Warburton [16].

As can be seen in Table 2, the new method provides
answers that are similar to those provided by Williams.
Of note is that a custom distribution for duration had to be
applied to account for the management actions associated
with expediting the engine development to better map to
the method used by Williams. The closeness of the results
lends confidence to the baseline algorithms presented in this
article.

A. IMPLEMENTATION
The equations described in the previous sections can be
implemented as part of a Monte Carlo schedule analysis.
The algorithm requries the user to specify the task duration
and technical debt parameters. Static variables, as defined in
Table 1, have their specific values defined. Random variables,

as defined in Table 1, have the parameters of their associated
probability distributions set. For this algorithm, it is assumed
that the sequence of tasks is known. The algorithm is defined
as follows:
1. Define the sequence of tasks and establish the

predecessor-successor relationships
2. Define the parameters α, T , and U
3. Define the distribution parameters for D, r , and τ

4. For each trial in the Monte Carlo anlaysis:
a. Randomly set all values of D, r , and τ using the

supplied distributions
b. For each task:

i. Determine the earned value at the transition
points using (6)

ii. For all predecessors:
1. Calculate tu,the time at which the earned value

threshold, U , is reached using (15). This value
will be between zero and one

2. Calculate the actual task duration, td, by mul-
tiplying tu times D

3. Calculate the predecessor end time as prede-
cessor start time plus tu

4. Set the task start time to the maximum prede-
cessor end time

c. Determine the completion time as the end time of
the last task

5. Average the results of the Monte Carlo analysis to pro-
duce the results
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TABLE 3. Comparison of results with [7].

V. DISCUSSION
Using the same example project provided in [7], the impact of
technical debt and increased parallelism on the project sched-
ule can be assessed by rerunning the Monte Carlo analysis
for conditions assessing both technical debt and increased
parallelism. Starting with the baseline analysis case, two
different technical debt conditions were run: low technical
debt and high technical debt. In the high technical debt case,
the technical debt is assumed to affect a higher portion of
the successor task and with a larger impact – both r and
τ are higher. The distributions used are listed in Table 3.
The values for alpha were set using the values shown in
Figure 5. The increased parallelism case sets the values for
U to 0.9 for all task dependencies, indicating that a task

can start once all of its predecessors have reached at least
90% of their earned value. Figure 10 shows the cumulative
distribution function for each of the cases. Note that it is
possible to calculate durations that are of extreme length due
to the probabilistic analysis. Outliers were defined as total
project durations above 200 months and these outliers were
removed from the results.

A. IMPACT OF INCREASED PARALLELISM
ON PROJECT SCHEDULE
The third column and the second through fourth rows in
Table 3 show the impact of assuming that tasks can start
when their predecessors reach at least 90% of their value.
Evaluating the start time of successor tasks based on the
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TABLE 4. Technical debt and increased parallelism impacts on the
airplane project.

accumulation of value can significantly decrease the sub-
sequent start time of each task and therefore decrease the
overall project duration. Conceptually, this conclusion fol-
lows from the evaluation of an earned value curve, such
as shown in Figure 1, where accumulating the last 10% of
the project value can take over 20% of the time. This last
10% of value often does not add value to the successor
tasks, and therefore, by starting earlier, the entire project can
be accelerated. For example, a software interface between
two separate components is typically defined by an interface
control document (ICD). To start developing the software
interface, it is necessary to have the majority of the ICD com-
plete, but the final version, which may include non-technical
aspects such as formatting and obtaining signatures, is not
required.

FIGURE 10. Cumulative probabilities of completing the aircraft project
under various technical debt and parallelism assumptions.

B. IMPACT OF TECHNICAL DEBT ON PROJECT SCHEDULE
The third and fourth rows in Table 3 show the impact of tech-
nical debt on the project. In both cases, the mean duration of
the project increased when technical debt is assumed to occur
on each task. In the ‘high technical debt’ case increasing the
parallelization is not sufficient to bring the schedule back
to the original baseline. These results model the impact that
technical debt can have on a schedule and highlight one of
the deficiencies of traditional Monte Carlo schedule analysis.
Every task carries some risk of creating technical debt for
its successor tasks, either through design or implementation
deficiencies or through a change in the context of the system.
Traditional methods add margin for the duration of impacted
tasks without actually assessing the downstream impacts.
The method presented in this article allows for the project
manager to assess both increases in task duration and different
levels of impact through setting the distribution and technical
debt parameters. By varying these assumptions on individual
tasks, the project manager can determine which tasks carry
the largest risk associated with technical debt. Evaluating
these risks allows a project manager to determine the likeli-
hood that a task moves onto the critical path due to technical
debt.

C. IMPACT OF COMPOUNDING TECHNICAL
DEBT INTEREST
The last row of Table 3 shows the impact of compound-
ing technical debt interest. In this scenario, the tasks all
demonstrate low technical debt, except for the engine design
task. The engine design task is modeled as completing with
exceptionally high technical debt, resulting in high values
of r and τ . In the second column of Table 3, it is assumed
that the technical debt interest does not compound, and that
the technical debt accrued in the engine design task only
affects its direct successor. In the third column of Table 3
the technical debt from the engine design task affects all
of the possible successors. The results show that compound-
ing the technical debt interest causes increased delays to
the project: a 3.5% increase in mean project duration and
a 4.2% increase in the 90% point. Figure 11 shows the
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FIGURE 11. Effect of compounding interest on task duration and end
time.

average duration and completion time for each task in the
low technical debt case with no parallelism, the low technical
debt case with a high technical debt engine design and no
compounding interest, and the compounding interest case.
The taskwith high technical debt, engine design, does not suf-
fer from significant delays. The technical debt of the engine
design impacts the d/b engine manufacture task and the
engine development task directly. In the compounding case,
additional delays are seen in the engine production, assem-
ble d/b aircraft, and engine/frame trials since the additional
dependencies on the technical debt from the engine design are
modeled.

D. QUANTIFYING TECHNICAL DEBT INTEREST
As defined in (6), this method allows for the quantification
of technical debt interest. The technical debt interest amount
is represented by r and τ and the interest probability is
represented through the distribution parameters selected for
the Monte Carlo analysis. For each task, the interest amount
can be evaluated by assessing the delay in task completion
due to the technical debt of the task predecessors. Using the
normalized parameter representation, the task is complete
when the earned value reaches a value of one (1). This time,
tc, can be found by calculating t using (15), with V = 1. The
interest amount, iA, is expressed as a percentage of the task
duration and is calculated using (16):

iA = tc − 1 (16)

iA can be multiplied by the task value to convert it to
the value units. If this value is also tracked through the
Monte Carlo analysis, then the results of the analysis can
be used to predict the expected value of the technical debt
interest. Figure 12 shows the cumulative probability of the
interest amount for the ‘engine/frame flight trials’ task for
the low technical debt with no parallelism, the high technical
debt with no parallelism, and the compounding interest cases
found in Table 3. This task depends on several other tasks
with both primary and secondary dependencies, as seen in
Figure 9.
The low technical debt case has a small standard deviation

and does not compound the interest; therefore, the predicted
interest amount is relatively static. The compounding interest

FIGURE 12. Interest amount for ‘engine/frame flight trials’.

case, which propagates the effects of a single task with large
technical debt, incurs close to the same level of interest as
the high technical debt case, where all tasks carry technical
debt. This result highlights how technical debt can permeate
through the system – a single task can cause cascading delays
throughout the rest of the project.

E. COMPARISON TO EXISTING METHODS
Using the equations and processes defined in this article, it is
possible tomodel increases to the durations of successor tasks
based on technical debt introduced in predecessor tasks. This
technique is important to schedule analysis as it highlights
which tasks need more effective process control methods to
prevent the entire project from being delayed.

Compared to existing methods of Monte Carlo schedule
analysis, the method presented in this article adds additional
capability to evaluate technical debt and its impacts. This
method leverages the existing approaches and adjust the dura-
tion calculation for each task based on the technical debt
parameters. While requiring a larger upfront investment of
effort to determine the parameters, the method adds minimal
runtime to the analysis, yet produces leading indicators for
the project manager.

VI. LIMITATIONS AND FUTURE WORK
While providing a novel approach to including technical
debt contributions in a Monte Carlo schedule analysis, this
work is not without its limitations, which can be explored
through future efforts. This work assumes that the technical
debt parameters remain constant between predecessor and
successor task pairs. However, it is likely that the potential
impact of technical debt could change based on the state of
the predecessor task. This dynamic model could be imple-
mented in future versions of the algorithm. The linearization
of the earned value equations introduce error into the analysis,
as shown in Appendix A. These equations can be refined and
better solutions found to reduce the error. Finally, the major
limitation in the work is reliability of the input parameters
and estimates. In any schedule analysis, the output is only
as good as the original estimates. The same principle holds
with this approach – the overall fidelity of the assessment
is based on the accuracy of the input task durations and
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technical debt parameters. Future work can explore relation-
ships between different task types to established guidelines
for the parameters to be used. Additional future work includes
verification and validation of the method through application
to real project development. These applications will reveal
the success of the method in predicting technical debt impacts
and the cost-benefit tradeoff of early introduction of technical
debt reduction efforts.

VII. CONCLUSION
Monte Carlo schedule analysis provides a probabilistic esti-
mate of the duration for completing a project. However,
traditional techniques do not consider the impact of the qual-
ity of each task on the ability to complete the successor
task on schedule. They also tend to assume finish-to-start
relationships, which do not accurately represent task sequenc-
ing, especially in high level schedules. This article provides
a novel method to assess the technical debt of each task
and its impact on successors by modeling technical debt
contributions and impacts on successor tasks. It also allows
for the modeling of relationships where a task starts once its
predecessor reaches a specified percentage of its final value.
This combination allows for more accurate schedule model-
ing early in projects based on real world conditions and for the
inclusion of technical debt effects. By estimating technical
debt impacts on successor tasks, the project manager has the
ability to evaluate leading indicators of future delays. Leading
indicators provide project managers with time to implement
corrective actions, such as increased quality control, while the
cost to do so is low. Regularly updating the schedule analysis
based on the evaluated technical debt of tasks in progress
can identify the risk of delays to future tasks, and therefore
the entire project. Identification of these risks enable project
managers to introduce proper mitigation strategies before the
risks become issues.

APPENDIX A
ACCURACY ASSESSMENT
Given the piecewise nature of the linearization function, it is
beneficial to look at the accuracy in each of the four sections.
An exhaustive analysis was done examining the linearized
earned value functions for values of T , r , and τ for the
single predecessor case. All three parameters were varied
from 0.1 to 0.9 in steps of 0.1. For all cases, N = 1 to
enable consistent scaling. The maximum absolute error and
the maximum percent error were calculated for each of the
four linearization stages for each combination of input param-
eters. The maximum and average values found are shown in
Table 4, showing that while the percent errors are large in
some cases, the absolute errors are of similar magnitudes for
each case. Therefore, the linearization can be considered a
valid approximation to the true function.

The earned value function itself is piecewise, changing
equations when t = τ . Therefore, rows have been added
to Table 4 showing the results for the cases where t ≤ τ

and where t > τ . The largest percent error values are for

TABLE 5. Accuracy assessment of earned value linearization.

stage 1. This section of the linearization curve applies when
the calculated earned values are small which can lead to
large discrepancies in percent error. The magnitude of the
absolute error, while higher that the other sections, is still
in the same general range. Figure 13 plots the maximum
and average percent errors for each analyzed value of T, r,
and τ . From these plots, it can be clearly seen that large
values of r (center plots) consistently lead to higher error
values, while the largest values of the other parameters do
not exhibit consistent behavior. Therefore, it can be inferred
that the r parameter drives the errors when it gets large. The
impact of r is to shift the earned value plot to the right.
Large values decrease the similarity that was assumed when
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FIGURE 13. Maximum and average percent error of linearization of
earned value sliced by T, r, and τ .

reusing the inflection points from the planned value curve.
Figure 13 shows that the linearization accuracy is within 10%
on average for the final three linearization stages when T, r ,
and τ are all less than or equal to 0.5. Note that values of zero
in the plot indicate cases that were not realized. For example,
high values of T did not enter the limited growth phase in the
cases tested.

Although the linearization produces some areas of large
percent error, these errors are low in absolute magnitude.
Additionally, these errors are likely to be smaller than any
errors introduced through the initial estimation of the task
duration. Therefore, it can be concluded that the linearization
does not cause a significant impact on the overall accuracy of
the schedule assessment.

The transition points in the linearization are controlled by
the value of T . T changes as the shape of the planned value
curve changes and therefore the transition points will change.
As seen in the first column of Figure 13, the percent error in
the analysis is relatively constant across different values of T ,
expect for the first and last stage. Therefore, values of T that
produce longer first or last stages would produce additional
errors.

APPENDIX B
COMPUTATION ENVIRONMENT
The Monte Carlo analysis in this article was conducted using
Python 3.9.7 scripts executed within the Spyder integrated
development environment (version 5.1.5). The software was
executed on a Dell Vostro 15 7510 computer running 64-bit
Windows 11 Pro with a dual 2.30 GHz 11th Gen Intel® Core
™ i7-11800H processor and 16.0 GB of RAM. All cases in
this article were executed for 1000 trials and the execution
time was between 2.3 and 2.6 seconds.
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