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ABSTRACT This paper introduces EngineFaultDB, a novel dataset capturing the intricacies of automotive
engine diagnostics. Centered around the widely represented C14NE spark ignition engine, data was collected
under controlled laboratory conditions, simulating various operational states, including normal and specific
fault scenarios. Utilizing tools such as an NGA 6000 gas analyzer and a USB 6008 data acquisition
card from National Instruments, we were able to monitor and capture a comprehensive range of engine
parameters, from throttle position and fuel consumption to exhaust gas emissions. Our dataset, comprising
55,999 meticulously curated entries across 14 distinct variables, provides a holistic picture of engine
behavior, making it an invaluable resource for automotive researchers and practitioners. For evaluation,
several classifiers, including logistic regression, decision trees, random forests, support vector machines,
k-nearest neighbors, and a feed-forward neural network, were trained on this dataset. Their performance,
under standard configurations and a simple neural network architecture, offers foundational benchmarks for
future explorations. Results underscore the dataset’s potential in fostering advanced diagnostic algorithms.
As a testament to our commitment to open research, EngineFaultDB is freely available for academic use.
Future work involves expanding the dataset’s diversity, exploring deeper neural architectures, and integrating
real-world automotive conditions.

INDEX TERMS Engine fault, automotive engine, spark ignition engine, fault classification, machine
learning, deep learning.

I. INTRODUCTION
Engine malfunction in automobiles is not only a pressing
safety concern but also bears significant environmental
consequences. As motor vehicles remain a dominant mode
of transportation globally, their role in air pollution is
undeniable [1], [2], [3]. Particularly, engine faults can lead
to escalated emissions of harmful pollutants such as carbon
monoxide, hydrocarbons, and carbon dioxide [4], [5].

These amplified emissions further intensify climate change
and pose health risks. Alongside the environmental concerns,
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engine malfunctions can incur high repair costs, unexpected
downtime, and in dire scenarios, severe accidents [6].
Therefore, the early and precise detection of motor faults
stands paramount.

Traditional techniques for diagnosing motor faults have
predominantly revolved around manual inspections, com-
plemented by specialized diagnostic tools [7]. While effec-
tive, these methods are often labor-intensive, expensive,
and occasionally prone to human errors [8]. The surge
of advancements in machine learning (ML) and deep
learning (DL) has ushered in a new era, with automated
solutions for fault detection and classification emerging as
potent alternatives. These cutting-edge techniques promise
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swift, economically efficient, and exceptionally accurate
diagnosis, even for intricate systems with a multitude of
variables [9], [10].

However, the lack of comprehensive and well-structured
datasets hampers the optimization ofML andDL applications
in fault detection [11], [12]. Addressing this pivotal gap, this
paper unveils EngineFaultDB, a meticulously crafted dataset,
amalgamating data from laboratory-controlled experiments
and real-world diagnostics, honed for automotive engine fault
classification. This dataset, rich in its composition, consists
of 55,999 entries spanning across 14 distinct variables,
capturing both standard operational metrics and specific fault
conditions.

Coupled with the introduction of EngineFaultDB, this
work embarks on a detailed baseline analysis employing a
spectrum ofML andDL algorithms, spotlighting the dataset’s
versatility. This rigorous evaluation not only establishes
preliminary benchmarks for the dataset but also illuminates
its prowess across various analytical paradigms. Our assess-
ment, which includes a simple yet effective three-layer neural
network configuration, further accentuates the depth and
utility of EngineFaultDB.

Amidst an ongoing digital transformation, the automotive
industry stands at the crossroads of change. In this milieu,
EngineFaultDB serves as a beacon for the research commu-
nity, manufacturers, service technicians, and end-users alike.
This dataset fosters a seamless transition from conventional
diagnostic paradigms to the realm of advanced analytics,
reinforcing its tangible real-world implications.

EngineFaultDB emerges as an invaluable asset for the
scientific cohort delving into automotive diagnostics. With
its extensive and diverse dataset, it facilitates profound
insights, catalyzing innovations in fault detection techniques.
This foundational groundwork beckons further exploration,
paving the way for real-time diagnostic systems and antici-
patory maintenance solutions.

II. DATASET DESCRIPTION
A. DATASET ACQUISITION
1) TOOLS AND EQUIPMENT
The cornerstone of our data collection efforts is the utilization
of a C14NE spark ignition engine, which is housed within
the vehicle shown in Fig. 1, chosen for its representation of
a typical automotive powerplant. This engine, as outlined in
Table 1, offers key specifications that align with real-world

TABLE 1. Test engine specifications.

FIGURE 1. Car and test engine used for fault data acquisition.

automotive spark ignition engines, ensuring the relevance
and applicability of our dataset. This test engine serves as
the heart of our experimental setup, allowing us to simulate
various operating conditions and capture a broad range of
engine fault scenarios.

To assess the concentration of harmful emissions in the
exhaust gases of the vehicle under study, we employed
an NGA 6000 gas analyzer. This analyzer, illustrated in
Fig. 2, boasts a valid calibration certificate and employs
the non-dispersive infrared absorption (NDIR) method for
measuring carbon monoxide (CO), hydrocarbons (HC), and
carbon dioxide (CO2). Additionally, it utilizes electrochemi-
cal cells for the measurement of oxygen (O2) and nitrogen
oxides (NOx). The specifications of the gas analyzer are
meticulously detailed in Table 2.

FIGURE 2. Gas analyzer device.

TABLE 2. Gas analyzer specifications.
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Facilitating seamless data collection is the USB 6008 data
acquisition card (DAQ) fromNational Instruments, portrayed
in Fig. 3. This DAQ card, outlined in Table 3, offers a robust
platform for interfacing with various sensors and capturing
data with exceptional accuracy. The USB 6008 DAQ card
acts as the bridge between our experimental setup and data
processing system, ensuring the precision and integrity of the
collected data.

FIGURE 3. USB 6008 device.

TABLE 3. USB 6008 data acquisition card specifications.

2) EXPERIMENTAL DESIGN AND METHODOLOGY
Data acquisition in this study was carried out using a
methodology based on the design of experiments and the
response surface technique. The primary objective was to
assess and record the behavior of the car engine under
various operating conditions, including normal conditions
and specific faults. All the setup and experimental procedures
were meticulously assembled and conducted in a university
laboratory setting, shown in Fig. 4. This controlled envi-
ronment ensured precision in data collection and allowed
for the replication of specific conditions, thus enhancing the
reliability and validity of the findings.

The faults include rich mixture, lean mixture, and low volt-
age, each characterized by distinct variations in parameters as
outlined in Table 4. It is essential to note that measurements
were taken when the sensors were in the appropriate state
for accurate data acquisition. In instances where inconsistent
or erroneous measurements occurred, they were rigorously
screened and excluded from the dataset.

To induce the mentioned faults, controlled adjust-
ments were made to the relevant parameters as outlined
above. During each experiment, relevant variables were

FIGURE 4. Laboratory setup used for engine testing and data collection.

TABLE 4. Types of fault addressed and their specific conditions.

comprehensively monitored and recorded to capture the
intricate nuances of the engine’s response to these induced
faults.

Once the experimental design was defined, the response
surface technique was applied to explore the intricate
relationships between the input factors and the engine’s
responses, including performance parameters and emissions.
This approach provided a holistic understanding of how
changes in these factors affect the engine’s behavior under
different fault conditions.

In addition to studying the engine’s response to fault con-
ditions, we conducted experiments under standard operating
conditions. This allowed us to make a detailed comparison
between how the engine performed under typical conditions
and how it behaved during the induced fault scenarios. The
methodology for the dataset formation is graphically depicted
in Fig. 5.

This methodology, founded on the principles of experi-
mental design and the use of the response surface technique,
facilitated precise and systematic data collection. It played
a crucial role in constructing a comprehensive dataset. This
dataset, comprised of meticulously gathered information,
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FIGURE 5. Methodology used for the EngineFaultDB formation.

offered valuable insights into the characterization of car
engine behavior under different conditions, especially in the
context of identifying and documenting engine failures.

B. ATTRIBUTES & VARIABLES
EngineFaultDB stands out as a comprehensive assembly
of automotive engine diagnostics, featuring 55,999 meticu-
lously curated entries. The essence of this dataset is captured
through its 14 distinct variables, each pinpointing specific
metrics andmeasurements that are imperative for interpreting
engine performance and potential malfunctions. Herein,
we detail the specific attributes that constitute this dataset:

• Manifold Absolute Pressure (MAP): A measure of
the pressure within the intake manifold, crucial for the
engine’s electronic control system to regulate fuel injec-
tion and ignition timing, measured in kilopascals (kPa).

• Throttle Position Sensor (TPS): Provides information
about the position of the throttle, influencing fuel
injection, ignition timing, and other engine parameters.
It is measured as a percentage.

• Force: Represents the engine’s torque or rotational
force. It is measured in newtons (N).

• Power: Quantifies the rate at which work is done or
energy is transferred in the engine. It is measured in
kilowatts (kW).

• Revolutions PerMinute (RPM): Indicates the engine’s
speed, detailing howmany times the engine’s crankshaft
rotates per minute.

• Fuel consumption l/h: Illustrates the engine’s fuel
consumption rate.

• Fuel consumption l/100km: Relays the engine’s fuel
efficiency over a given distance.

• Speed (km/h): The vehicle’s travel speed.
• Carbon monoxide (CO): CO concentration in the
exhaust gases. It is measured as a percentage.

• Hydrocarbons (HC): Concentration of unburnt hydro-
carbons in the exhaust. It is measured in parts per
million (ppm).

• Carbon dioxide (CO2): CO2 concentration in the
exhaust, indicative of combustion efficiency. It is
measured as a percentage.

• Oxygen (O2): Oxygen amount in the exhaust, offering
insights into the combustion process. It is measured as a
percentage.

• Lambda: The air-fuel equivalence ratio.
• Air-Fuel Ratio (AFR): Ratio of air to fuel in the
combustion chambers.

All variables within the dataset are numerical. Metrics
such as RPM and fuel consumption are continuous, while
certain variables like the engine fault classifications fall into
discrete categories: 0 (no fault), 1 (fault type 1), 2 (fault
type 2), and 3 (fault type 3). Notably, the latter serves as
the target variable. The units adopted for these metrics align
with standard automotive diagnostic conventions, with RPM
denoting engine speed, L/H and L/100KM measuring fuel
consumption, and other variables reflecting standard units for
their respective gas concentrations.

III. EXPLORATORY DATA ANALYSIS
A. DATASET DISTRIBUTION
The dataset contains a total of 55,999 entries, classified into
four categories representing different fault types. A closer
look at the distribution of data points across these fault types
reveals nuanced patterns, as shown in Fig. 6. Specifically:

FIGURE 6. Distribution of fault types in EngineFaultDB.

• No fault (0): 16,000 entries, which account for approx-
imately 28.57% of the dataset. This suggests that just
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over a quarter of the data represents normal engine
operation without any discernible malfunctions.

• Fault type 1: 10,998 entries, representing about 19.64%
of the total dataset. This is the least prevalent fault
type, suggesting its rarity or specific conditions for
occurrence.

• Fault type 2: 15,000 entries, making up 26.79% of the
dataset. It holds a prevalence slightly above fault type 1,
but less than the no-fault category.

• Fault type 3: 14,001 entries, equating to approximately
25% of the dataset. This suggests that it’s relatively
common, albeit marginally rarer than fault type 2.

The dataset exhibits a reasonably balanced distribution,
with no single fault type overwhelmingly dominating. Such
balance is critical, as it ensures that machine learning or
deep learning models trained on this data don’t develop a
bias towards a particular class due to over-representation.
Nevertheless, there exists a mild disparity between fault
type 1 and the other categories, which researchers should
remain cognizant of. While this might pose a minor
imbalance, it’s also a reflection of real-world scenarios where
some faults may be rarer than others.

Given the near-balanced distribution, the dataset stands
well-poised for robust model development. Algorithms are
likely to have enough data points across categories to discern
intricate patterns specific to each fault type. However, for
those aiming to achieve the highest classification accuracy,
techniques such as oversampling the underrepresented fault
type 1 or employing weighted loss functions can be
considered to further fine-tune the models.

In essence, the EngineFaultDB dataset, with its balanced
fault types, furnishes an optimal foundation for researchers
and engineers to sculpt, assess, and hone diagnostic algo-
rithms, ensuring adaptability across diverse engine fault
scenarios.

B. DESCRIPTIVE STATISTICS
The descriptive statistics, shown in Table 5, of the Engine-
FaultDB dataset offers a comprehensive picture of engine
behavior and emission characteristics.

The MAP shows considerable variability. The mean of
1.83 kPa, in juxtaposition with the maximum of 4.55 kPa,
suggests that the dataset captures not only typical engine
operating conditions but also scenarios of heightened load or
possible engine stress.

The variation TPS readings is noteworthy. A higher stan-
dard deviation relative to its mean emphasizes that throttle
positions varied widely during data collection. This variation
can hint at the inclusion of diverse driving behaviors, from
idling to aggressive accelerations, encompassing a broad
spectrum of engine demands.

Force and Power, two interrelated metrics, offer a peek
into the engine’s performance spectrum. The vast difference
between the minimum and maximum values in both param-
eters indicates that the dataset comprises instances from

low-load conditions, perhaps idling or running at steady low
speeds, to peak performance scenarios.

RPM metrics underscore the inclusion of different gear
ratios and engine speeds, which is crucial for a dataset meant
for diagnostics. Engines exhibit different behaviors across the
RPM range, so this spread ensures the dataset’s versatility.

The fuel consumption metrics, especially the l/100Km
readings, which have a wide range, reinforce the dataset’s
comprehensiveness. Lower readings indicate highway-like
efficient driving conditions, while higher values suggest
urban or city driving with frequent stops and starts, which
are less fuel-efficient.

Emissions data, including CO, HC, and CO2, provides
insight into the combustion efficiency and potential faults in
the engine or exhaust system. The high variability in HC,
for instance, suggests that the dataset has captured conditions
from efficient combustion to potential misfires or incomplete
burns.

The Lambda and AFRmetrics are pivotal in understanding
combustion dynamics. Lambda values close to 1 or AFR
values near the stoichiometric point (around 14.7 for gasoline
engines) indicate optimal combustion. The variability in these
readings implies that the dataset includes a mix of optimal
and sub-optimal combustion scenarios, essential for training
diagnostic models to recognize both standard and faulty
conditions.

Overall, the statistics reveal a dataset that captures the
depth and breadth of engine behaviors, from diverse driving
conditions to potential malfunction scenarios. This richness
ensures that models trained on this data will be robust
and versatile, equipped to handle real-world automotive
challenges.

C. CORRELATION ANALYSIS
Moving forward, Fig. 7 provides a heatmap detailing the
correlation coefficients among the various attributes of our
dataset. The heatmap was created using Python and the
libraries Matplotlib and Seaborn to visualize the Pearson
correlation coefficients between the attributes in the dataset.
The shades of red signify strong positive correlations, while
the deeper blues indicate strong negative relationships. The
closer the shade is to white, the weaker or nonexistent the
correlation between the paired attributes.

Starting with MAP, it shows strong positive correlations
with TPS and Force, with coefficients around 0.88. This
consistent relation implies that as the throttle opens, both the
intake manifold pressure and the force exerted by the engine
increase concurrently.

Force and Power also display a pronounced positive rela-
tionship. Their correlation coefficient of approximately 0.62
suggests that as the engine delivers more force, there’s
a corresponding increase in its power output, albeit the
correlation isn’t as strong as one might expect.

Diving into combustion metrics, Lambda and AFR show
an almost perfect correlation of 1.00. This perfectly linear
relationship reflects their intertwined nature in combustion
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TABLE 5. Descriptive statistics of the dataset variables.

FIGURE 7. Heat map of the correlation of EngineFaultDb variables.

dynamics. Lambda’s values directly influence AFR readings,
making them crucial in understanding and diagnosing
combustion efficiency and potential engine irregularities.

The RPM metric demonstrates moderate correlations with
several other parameters. Its association with Power stands
out with a coefficient of around 0.40, emphasizing that
engine speed has a role in influencing its power delivery.
Additionally, the speed of the vehicle has a 1.00 correlation

with RPM, suggesting a direct proportional relationship
between the two.

Fuel consumption metrics present interesting correla-
tions. While consumption l/h maintains a correlation of
approximately 0.70 with MAP, its counterpart, consumption
l/100Km, has a correlation of 0.74 with the same variable,
suggesting that both metrics, though related, might be
influenced differently by intake pressures.
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In the domain of emissions, the relationship between CO2
and O2 remains robust, with a correlation coefficient of
about 0.85. This emphasizes their reciprocal nature: higher
O2 levels might result in increased CO2 emissions due to
efficient combustion. HC, on the other hand, don’t show
strong correlations with most other parameters, pointing to
its unpredictable nature in the emissions.

In summary, the correlation heatmap presents a nuanced
perspective on the interplay among various engine param-
eters. This comprehensive view aids in deepening our
understanding of engine performance, emissions interactions,
and the potential implications of faults, thereby equipping
researchers and technicians with valuable insights to address
engine anomalies effectively.

D. BOX PLOT ANALYSIS
Box plots, as depicted in Fig. 8, offer a visually informative
method to explore data distribution and can be particularly
useful in understanding the behavior of various engine
parameters across different fault types. They efficiently
depict the central tendency, spread, and potential outliers in
the data.

First, we have the MAP (Mean Arterial Pressure) in the
four types of failures. Fault type 0 (no fault) exhibits a wide
dispersion with a median close to 1.5 kPa, demonstrating
higher variability in MAP readings under normal conditions.
For fault type 1, the distribution ofMAP is more concentrated
around 1.5 kPa, indicating consistency in the readings.

Fault type 2 presents a median above 1.5 kPa, with
occasions where unusually low and high MAP readings are
recorded, as indicated by the outliers. Lastly, fault type 3
shows a median similar to fault type 2, with occasional
increases in the readings. Faults 2 and 3 exhibit less
dispersion in their measurements compared to faults 0 and 1.

Transitioning to the TPS, fault type 0 (no fault) has a
slightly wider interquartile range than the others, suggesting
varied throttle positions during normal operation. Fault type 1
is depicted with a lower median TPS value, potentially
indicating a throttle position pattern associated with this
specific fault. Both fault types 2 and 3 show a compact
interquartile range. It is important to note that all fault types
present outliers, with type 0 having the furthest outliers,
suggesting occasionally anomalous throttle readings even
when normal conditions are present.

Shifting our attention to the Force, interestingly, in all
faults, the median is particularly low, close to 100N,
suggesting that under all studied conditions the engines
operate without exerting excessive force. Faults 0, 1, and 3
exhibit little dispersion in the measurements, as the spread of
their boxes is compact, especially faults 2 and 3. Fault 1 shows
greater variability in the upper data due to the extent of the
whisker. Additionally, faults 0, 2, and 3 display outliers at the
upper end.

Transitioning to Power, a similar pattern to that observed
with Force emerges. Fault type 1 exhibits greater dispersion
in its measurements, fault 0 appears more compact than

fault type 1, and faults 2 and 3 display the most compact
interquartile ranges. Additionally, fault type 1 shows more
variability in its upper end. Outliers are visible in fault 0, and
there is a higher presence of these in faults 2 and 3, extending
up to almost 35 kW. The medians of faults 2 and 3 are close
to 5 kW, while those of faults 0 and 1 are below 2.5 kW.

Turning our attention to RPM, the fault-free scenario (0)
presents a centralized RPM distribution with a median
hovering around 2000 RPM, much like fault type 1.
Faults 2 and 3 exhibit medians close to 2500 RPM. The
distribution of measurements for fault type 2 displays the
highest degree of dispersion among all, while the distribution
for fault type 1 appears notably more compact. Moreover,
this fault exhibits the lowest variability of all, as indicated
by its interquartile ranges, particularly the upper whisker,
being relatively short. Additionally, there are notably distant
outliers observed in faults 0 and 1.

Transitioning to the consumption l/h, the fault-free sce-
nario (0) demonstrates contained consumption, with the
majority of values hovering within the range of 3 to 5 l/h, rep-
resenting typical consumption rates under normal conditions.
The median in this fault scenario is close to 4 l/h. Fault type 1
exhibits a median close to 3 l/h, indicating that this particular
fault might lead to the engine consuming less fuel per hour,
possibly due to inefficiencies or disruptions in the combustion
process. Additionally, this fault exhibits the highest degree
of dispersion in its measurements, as well as variability and
outliers in the upper quartile.

Fault type 2 presents a median above 4 l/h, very similar to
what is observed in fault type 3. In fact, fault types 2 and 3
display nearly identical graphs, differing only in the median
value. Both faults exhibit compact interquartile ranges
and outliers above the upper whisker. This suggests that
fault types 2 and 3 have a very similar pattern of fuel
consumption in l/h, which presents a challenge for precise
classification.

Delving into fuel consumption in l/100Km, the non-fault
scenario (0) establishes a benchmark, where most vehicles
average fuel consumption between 7 and 12 l/100Km.
In fact, the graph for this scenario appears to be perfectly
symmetrical. Fault type 1 exhibits a wider interquartile range
than the previous fault and a median close to 8 l/100Km.
Furthermore, this fault displays the highest variability in the
upper whisker.

Faults 2 and 3 prove to be very similar once again, as seen
in fuel consumption in l/h. Both have a median just below
8 l/100Km, they have the most compact interquartile range,
and the highest number of outliers over the upper whisker.
Additionally, it’s clear that there is no symmetry as the
medians are very close to the third quartile.

Moving on to Speed, in the no-fault scenario (0), most
vehicles appear to travel at an average speed ranging between
35 and 60 km/h, indicating regular, everyday driving. For
fault type 1, the median is close to the no-fault scenario,
around 40 km/h. Furthermore, this fault exhibits a more
compact interquartile range. One commonality between these
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FIGURE 8. Comparative box plots of variables for each fault type.
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two faults is the presence of outliers above the upper whisker,
with fault type 1 having the highest number of them.

As for fault type 2, it displays a median close to 60 km/h.
Moreover, it has the widest interquartile range among all
faults. This wide distribution signifies the varied impact of
the fault type on speed, possibly indicating sporadic issues
that occasionally restrict the vehicle’s speed. Fault type 3 also
shows amedian close to 60 km/h, but the interquartile range is
more compact. Additionally, faults 2 and 3 appear to exhibit
a similar trend in terms of data variability, as evidenced by
their whiskers.

Transitioning to the CO emissions, for vehicles with
no detected faults (0), CO emissions remain relatively
low, typically below 3%. This represents a standard or
reference scenario in which vehicles emit COwithin expected
levels, ensuring environmental compliance. Fault type 1
exhibits significantly elevated CO emission levels, with an
interquartile range between 1 and 7%, approximately. This
marked increase suggests that vehicles with this particular
fault type may have malfunctioning exhaust systems or issues
with fuel combustion, leading to higher carbon monoxide
emissions.

Contrastingly, fault type 2 displays considerably low
emissions, implying that this fault type may not be directly
related to exhaust or combustion inefficiencies. Fault type 3
shows the same behavior. Once again, it is observed that
faults 2 and 3 have nearly identical interquartile ranges and
medians. Additionally, they are the only faults that exhibit
outliers above the upper whisker. This indicates that, once
more, these two faults are similar and present a challenge for
classification.

Turning our attention to the HC emissions, vehicles with
no detected faults (0) emit relatively low levels of HC, with
most values clustering below 250 ppm, and a narrow spread
suggesting consistent performance among these vehicles.
Fault type 1 shows slightly elevated HC emissions, with
a broader interquartile range. However, it is the fault that
exhibits the farthest outliers, nearly reaching 1000 ppm,
indicating a severe malfunction in that particular instance.

Moving on to the next faults, once again, it is observed that
fault types 2 and 3 have very similar measurements. Both
have a median below 200 ppm and a compact interquartile
range. Additionally, they have outliers below the lower
whisker, technically within the same range and location.
It is important to note that, overall, all four fault types
have compact interquartile ranges, and their whiskers are not
excessively long.

Shifting our focus to the CO2 emissions, for vehicles with
no detected faults (0), CO2 emissions are relatively con-
sistent, with the majority of values centered around 13.5%,
and a noticeable degree of symmetry. However, there are
outliers below the lower whisker. Fault type 1 exhibits
a wide interquartile range without symmetry, along with
similarly long whiskers. The median for this fault type is also
above 13.5%.

For faults 2 and 3, once again, they display a compact
and symmetrical interquartile range, nearly identical, as well
as similar medians and whiskers. However, in this case,
differences are observed in the outliers. Fault type 2 appears
to have a higher number of outliers, both at the lower and
upper ends, than any other category.

Observing the O2 emissions, for vehicles with no detected
faults (0), the interquartile range extends from approximately
0.4 to 0.8%. The median for this fault, as well as for all fault
types, is around 0.5%. The data dispersion for fault type 1
is the second widest of all and lacks symmetry. In other
words, there is a wide interquartile range, indicating that this
particular fault might be associated with a higher percentage
of oxygen in the exhaust.

Fault type 2 displays a slightly more compact interquartile
range compared to fault type 1. The most notable difference
is observed in the upper whisker, which reaches much higher
values than that of fault type 1. Fault type 3 has the most
compact interquartile range of all, but it also exhibits outliers
above the upper whisker. Interestingly, unlike what was
observed with CO and CO2 emissions, fault types 2 and 3 are
not identical.

Regarding the Lambda values, fault type 0 demonstrates
a median close to 0.95. This group exhibits a relatively con-
sistent dataset, as evidenced by a symmetrical interquartile
range. However, there are some outliers both below and above
the whiskers, suggesting occasional deviations. For vehicles
categorized under fault type 1, the Lambda median is slightly
above fault type 0. This group has a somewhat broader
data spread compared to fault type 0, indicating greater
variability. Interestingly, there are no significant outliers for
this category.

On the other hand, vehicles in fault type 2 have their
Lambda value median close to 1. The data distribution for this
category is quite symmetrical above and below this median,
suggesting a balanced dataset for this fault type. Additionally,
it has a significant number of outliers, especially below the
lower whisker. As for fault type 3, once again the graph
is almost identical to fault type 2, only slightly shifted
downwards. Furthermore, it appears to have a slightly smaller
number of outliers than fault type 2 but still more than
faults 0 and 1.

Shifting our focus to the AFR values, vehicles with fault
type 0 exhibit an AFR distribution with a median slightly
above 14. The spread indicates a relatively consistent AFR
around this median, although there are outliers suggesting
that some vehicles may occasionally operate outside the
typical range. For vehicles with fault type 1, the AFR median
appears to be slightly above 14. The distribution is much
more dispersed, the most dispersed of all, given the wide
interquartile range and lack of symmetry.

Fault types 2 and 3 once again present similar patterns,
as both the interquartile range, median, and whisker lengths
are similar. Themedians are close to 14.5, and both fault types
exhibit a significant number of outliers at both the lower and
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upper extremes. It is also important to note that these two fault
types have the most compact distributions of all.

The analysis of box plots for various performance metrics
in vehicles with different fault types provides valuable
insights into their behavior. Firstly, it is evident that
each fault type exhibits unique characteristics, leading to
diverse impacts on vehicle performance. This highlights the
importance of accurate fault diagnosis to address specific
issues effectively.

Interestingly, some fault types, such as 2 and 3, demon-
strate strikingly similar patterns across different metrics. This
suggests potential correlations between these fault types or
similar underlying causes that affect vehicle behavior. Further
investigation is warranted to explore these relationships and
their implications.

In conclusion, the box plot analysis provides com-
prehensive insights into the behavior of different fault
types in vehicles, offering valuable information for fault
diagnosis, performance optimization, and emissions control
in the automotive industry. Further research and targeted
strategies are essential to address the unique characteristics
and challenges posed by each fault type. The analysis
of box plots for various performance metrics in vehicles
with different fault types provides valuable insights into
their behavior. Firstly, it is evident that each fault type
exhibits unique characteristics, leading to diverse impacts
on vehicle performance. This underscores the importance
of precise fault classification to effectively address specific
issues. Notably, fault types 1 and 2, while distinct in
their effects, did not exhibit any unusual or unexpected
behaviors. Their distinct differences were well-defined and
easily distinguishable.

Interestingly, fault types 2 and 3 demonstrate strikingly
similar patterns across different metrics. This suggests
potential correlations between these fault types or similar
underlying causes that affect vehicle behavior. Further
investigation is warranted to explore these relationships and
their implications.

In conclusion, the box plot analysis provides compre-
hensive insights into the behavior of different fault types
in vehicles, offering valuable information for fault classi-
fication, performance optimization, and emissions control
in the automotive industry. Further research and targeted
strategies are essential to address the unique characteristics
and challenges posed by each fault type.

IV. CLASSIFICATION
A. DATA PREPROCESSING
An integral part of any data-driven research, especially when
employing machine learning or deep learning techniques,
is data preprocessing. The quality and manner in which the
data is prepared can significantly impact the performance of
classification algorithms. For our dataset, the preprocessing
steps were straightforward yet crucial for the subsequent
stages of our analysis.

Considering that our dataset is free from missing values,
the primary focus during preprocessing was on scaling
the data. Features with different scales can influence the
model performance, particularly for algorithms that rely
on distances or gradients. To ensure uniformity and to
prevent any feature from disproportionately influencing the
classifiers, we employed the Min-Max Scaler. This technique
rescales each feature to a specified range, typically [0,1],
maintaining the structure and relationships within the data.
The formula for Min-Max scaling is:

Xscaled =
X − Xmin

Xmax − Xmin

where Xscaled is the rescaled feature, X is the original feature
value, and Xmin and Xmax are the minimum and maximum
values of the feature, respectively.

By utilizing the Min-Max Scaler, we ensured that all
features in our dataset had equivalent influence on the
classification models, paving the way for robust and unbiased
baseline results.

B. CLASSIFIERS
1) LOGISTIC REGRESSION
Logistic regression (LR) is one of the most straightforward
yet powerful algorithms for binary and multi-class classifi-
cation problems. The model estimates the probability that
a given instance belongs to a particular class by applying a
logistic function to a linear combination of features [13]. The
logistic function ensures that the output falls between 0 and 1,
making it interpretable as a probability.

The simplicity of LR makes it highly interpretable and
easy to implement, thus serving as an excellent baseline
model. However, it might underperform when dealing with
non-linearly separable data or complex relationships between
features.

2) DECISION TREE CLASSIFIER
The Decision tree (DT) classifier is another supervised
learning algorithm used primarily for classification tasks.
It works by recursively splitting the dataset based on the
value of the selected features, thus constructing a tree-like
model of decisions [14]. The algorithm uses metrics such as
Gini impurity or information gain to select the feature that
produces the most significant separation of classes at each
node [15].

The strength of DTs lies in their simplicity and inter-
pretability. The final model can be visualized as a tree,
making it easy to understand and explain. However, DTs are
highly susceptible to overfitting, especially when the tree is
deep, capturing noise in the training data [16].

3) RANDOM FOREST
Random forest (RF) is an ensemble learning method, offering
a more robust model by combining multiple DTs. The
fundamental idea is to build numerous trees during training
and to take the mode of their outputs for classification [13].
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RF is particularly effective because it tends to correct
the overfitting problem of DTs. The algorithm’s inherent
randomness makes it robust and flexible, capable of handling
both categorical and numerical features efficiently [17].

4) SUPPORT VECTOR CLASSIFIER
Support Vector Classifier (SVC) is a supervised machine
learning algorithm that belongs to the family of Support
Vector Machines (SVMs). The primary objective of SVC is
to find a hyperplane that effectively segregates the data points
of different classes in a high-dimensional feature space [18].
The hyperplane is chosen such that it maximizes the margin
between the classes. The margin is the distance between
the closest data points (or support vectors) of the different
classes [19].
Advantages of using SVC include its effectiveness in

high-dimensional spaces and its robustness against overfit-
ting, especially in cases where the number of dimensions
exceeds the number of samples [20]. However, the algorithm
may require careful hyperparameter tuning and can be
computationally intensive for larger datasets.

5) K-NEAREST NEIGHBORS
K-Nearest Neighbors (KNN) is a non-parametric, lazy
learning algorithm. Its purpose is to use a database in which
the data points are separated into several classes to predict
the classification of a new sample point. To classify the
new point, it looks at the k nearest labeled data points
(neighbors) and assigns the label by a majority vote [13].
Since KNN stores the entire dataset, it’s called a lazy learner,
it doesn’t learn an explicit mapping from the input space to
the output space during the training phase but instead waits
until classification is required to compute the output [21].

One of the primary advantages of KNN is its simplicity
and its ability to adapt easily to changes since there’s no
explicit training phase. It often performs surprisingly well
with sufficient data. However, its performance deteriorates
with an increase in the dimensionality of data [22]. Moreover,
as the dataset grows, both the space and time complexity can
become prohibitive, making preprocessing and dimensional-
ity reduction steps essential.

6) NAIVE BAYES
Naive Bayes (NB) is a probabilistic machine learning
classifier based on Bayes’ theorem, with an assumption of
independence among predictors. In simple terms, it calculates
the probability of a particular event based on prior knowledge
of conditions related to the event [23]. It’s called ‘naive’
because it assumes that each input feature is independent
of the others, which is a naive assumption in real-world
scenarios [23], [24].

Naive Bayes is simple, efficient, and scalable, making it
ideal for high-dimensional data. While great for text tasks
like spam detection, its performance can falter with irrelevant
features, as it assumes independent feature contribution.

7) FEED-FORWARD NEURAL NETWORK
Feed-forward neural network is a type of artificial neural
networks that consist of an input layer, hidden layers, and
an output layer [25]. One of the primary advantages of using
feed-forward neural networks is their ability to approximate
any continuous function, given a sufficient number of neurons
in the hidden layers [25], [26]. This property, known as
the universal approximation theorem, makes them highly
versatile for a wide range of tasks.

On the downside, the training process involves back-
propagation and gradient descent algorithms, which can
sometimes be computationally expensive [27]. Moreover,
the choice of activation functions, learning rate, and other
hyperparameters can significantly impact the network’s
performance, requiring rigorous experimentation for optimal
results. The feed-forward neural network is highly flexible
and capable of learning complex mappings from inputs to
outputs [28].

C. PERFORMANCE METRICS
1) ACCURACY
It is a commonly used metric for classification problems,
offering a straightforward way to measure the overall
effectiveness of a model [29]. Mathematically, accuracy is
defined as shown in Equation 1, where TP represents the
number of true positives, TN represents the number of true
negatives, FP represents the number of false positives, and
FN represents the number of false negatives.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Higher values of accuracy are generally desirable as they
indicate a higher proportion of correct classifications. How-
ever, it’s essential to note that accuracy can be misleading in
cases of imbalanced datasets.

2) PRECISION
It is a popular metric often employed to ensure the reliability
of positive classifications. Mathematically, precision is
defined as per Equation 2, where TP is the number of true
positives and FP is the number of false positives. Higher
values of precision indicate fewer false positives, making it a
crucial metric when the focus is on reducing incorrect positive
classifications [30].

Precision =
TP

TP + FP
(2)

3) RECALL
It is especially crucial in contexts where missing out on a
true positive is considerably more problematic than getting
a false positive. Mathematically, recall is defined as shown in
Equation 3. Here, TP represents the number of true positives,
which are the instances correctly identified as the positive
class. FN stands for false negatives, which are the instances
that belong to the positive class but are incorrectly classified
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as negative [31].

recall =
TP

TP + FN
(3)

Higher values of recall are desirable, as this indicates
that the model has a lower rate of false negatives. However,
achieving a high recall often comes at the cost of more false
positives, which is why it is essential to consider it alongside
precision [30].

4) F1-SCORE
It serves as a balanced measure between precision and
recall [30]. It is particularly useful when we have an imbal-
anced dataset and when we need a single metric to consider
both False Positives and False Negatives. Mathematically, the
F1-score is defined as in Equation 4. It takes into account both
the precision and the recall values to compute the score.

F1-score = 2 ×
Precision × Recall
Precision + Recall

(4)

A higher F1-score is usually desirable as it indicates a
balanced model that takes both False Positives and False
Negatives into account [31].

D. WORKFLOW
Initial stages of the workflow were dedicated to data
preprocessing. Given our dataset’s completeness, the primary
step was to scale the features using the Min-Max Scaler. This
ensured uniformity across all attributes, making them suitable
for classification without any particular feature dominating
due to its scale.

Post-preprocessing, the dataset was partitioned into train-
ing and testing sets using an 80-20 split. This allocation
means 80% of the data was reserved for training the
classifiers, while the remaining 20%was set aside for testing.

With the data aptly segregated, the training set was
employed to educate our classifiers. It’s essential to note that
most classifiers were invoked in their standard configura-
tions. This approach adheres to our goal of establishing foun-
dational benchmarks without venturing into hyperparameter
optimizations. However, for the feed-forward neural network,
which lacks a universally accepted standard configuration
for its layers, we chose a straightforward three-layered
architecture.

Moreover, given the absence of a standard configuration
for the hidden layer in feed-forward neural networks, we uti-
lized an approach from the scientific literature, specifically
the rule proposed by Piramuthu et al. [32]. This rule stipulates
that the number of neurons in the hidden layer will be
0.5(Ni + No), where Ni denotes the number of neurons in
the input layer, and No represents the number of neurons
in the output layer. Our rationale for this approach is the
absence of a standard, prompting us to explore foundational
configurations from the scientific community.

Therefore, the network consists of an input layer con-
taining 14 neurons (aligned with the number of input

features) utilizing a ReLU activation function. The output
layer consists of 4 neurons, representing our classification
categories and employing the softmax activation function
for multi-class categorization. In between, there is a hidden
layer with 9 neurons (0.5(14 + 4)), also utilizing the
ReLU activation function. Training of the network was
executed using the Adam optimizer and a sparse categorical
crossentropy loss function, with batches of 16, over a span of
10 epochs. The graphical representation of the neural network
used can be seen in Fig. 9.

FIGURE 9. Neural network used for classification.

Once trained, each classifier was subjected to performance
evaluation on the testing set. A suite of metrics, including
accuracy, precision, recall, and F1-score, was utilized to
provide a well-rounded perspective on each classifier’s
performance concerning EngineFaultDB.

Upon obtaining the evaluation metrics, a thorough anal-
ysis was undertaken to understand the behavior of each
classifier in relation to the novel EngineFaultDB. This step
was imperative to ascertain the strengths, weaknesses, and
peculiarities of each classifier when confronted with the
new dataset, providing insights into how the dataset may
influence classification outcomes. Theworkflow followed for
the classification can be seen in Fig. 10.

FIGURE 10. Workflow used for fault classification.

E. RESULTS
Table 6 presents the performance metrics of the classification
models on the training set of our dataset. From this table,
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several notable observations can be made. First, DT and RF
have achieved perfect scores across all metrics, indicating a
complete fit to the training data. While this might initially
seem positive, there’s a concern for potential overfitting,
where the model could be too closely tailored to the training
data, possibly reducing its generalizability on unseen data.

The KNN model also exhibits a strong performance,
with accuracy, precision, recall, and F1-score all sur-
passing 0.84. This suggests that the feature space might
have well-segregated clusters that the KNN algorithm can
leverage. NB has the lowest performance among the models,
particularly in precision and F1-score. This might be
attributed to the assumptions that Naive Bayes makes about
the data, such as the independence between features, which
might not hold true in this dataset.

LR y SVC have moderately acceptable scores, with
LR performing below SVC. Given that these are linear
models, it couldmean that the relationships between variables
in the dataset might be non-linear or more complex than what
these models can capture.

Lastly, the neural network exhibited a commendable
performance across all metrics, specifically ranking as
the second-best overall. Intriguingly, the neural network
consistently scored 0.748 across all metrics, showcasing its
stable and reliable performance in this particular evaluation.

TABLE 6. Performance of classification models on training.

Moving forward, Table 7 showcases the performance the
classification models evaluated on the testing set of our
dataset. Several key insights can be drawn from this table.

LR has maintained a consistent performance from training
to testing, suggesting a stable model without significant
overfitting. However, its moderate scores indicate that there’s
room for potential improvement or that the data’s structure
might be too intricate for a linear classifier.

The performance of DT has shown a drop from a perfect
score during training to 0.750 in testing. This decline
confirms the earlier suspicion of overfitting during training.
A similar pattern is observed for RF, albeit with a slightly
lower performance drop, underlining the importance of
ensemble methods in mitigating overfitting to some extent.

SVC and KNN both show a performance in the mid-0.74 to
0.75 range. KNN, based on the metrics, exhibits the best
performance in testing. However, there is a noticeable drop in
performance compared to what was seen in training, which
may indicate overfitting. Moving on to the next, although
SVC shows a slight drop in scores from training to testing, the

TABLE 7. Performance of classification models on testing.

minimal decline indicates consistent performance. NB con-
tinues to be the weakest performer, reinforcing the notion that
its foundational assumptions might not be the best fit for this
dataset’s structure.

The neural network model demonstrates the best balance
of performance between training and testing sets. Its scores
on both the training and testing sets consistently hover
around 0.748, showcasing remarkable consistency in its
performance. The consistent performance of the neural
network model can be attributed to its ability to effectively
model the complexities and nuances present in the dataset.

The results from various classifiers, as showcased in
Tables 6 and 7, provide comprehensive insights into the pro-
posed dataset’s characteristics. There are several significant
observations and inferences that can be made.

The disparity in performance across different classifiers
suggests that the dataset is multifaceted and captures a rich
variety of information. For instance, the more tempered
performance of LR could imply that the relationships among
features in the dataset are not straightforwardly linear. This
non-linearity can be perceived as a strength since real-
world data, especially in complex domains such as engine
diagnostics, often exhibit non-linear patterns.

The challenges faced by NB further shed light on the
dataset. Given that NB assumes feature independence, its
less-than-stellar results might indicate that the features in the
dataset are interconnected, capturing complex relationships
and dependencies. This interdependence is a sign of a
dataset that encapsulates the multifarious dynamics of engine
performance and faults.

However, the impeccable training results from DT and RF
might hint at a different aspect of the dataset. Their capacity
to perfectly fit the training data suggests that the dataset might
have subsets of data that are uniquely distinct. On the flip side,
the drop in their testing performance could indicate that some
of these unique data points may not generalize well across all
scenarios, highlighting areas where the dataset might benefit
from further diversification.

The performance of the feed-forward neural network on
our dataset underscores its complexity and depth. Neural
networks excel at capturing intricate, non-linear relation-
ships, and the commendable results indicate that our dataset
embodies such patterns. Moreover, the modest difference
between training and testing scores for the neural network
suggests our dataset’s robustness against overfitting.
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FIGURE 11. Confusion matrices for each classifier employed.

Now, turning our attention to Fig. 11, we can observe the
confusion matrices of the models during the testing phase.
Regarding LR, this model shows some misclassifications
across all fault types. Notably, there’s a considerable con-
fusion between faults 2 and 3. However, fault 0 predictions
appear relatively strong, with only a minor portion being
misclassified as fault 1.

DT displays an impeccable classification for faults 0
and 1 but struggles slightly with differentiating between
faults 2 and 3, as evidenced by the off-diagonal values
in the corresponding rows and columns. Similarly, the RF
perfectly classifies fault 0 and fault 1, with misclassifications
for faults 2 and 3. The confusion between these two latter
faults is slightly bigger compared to the DT, showing that
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ensemble methods might not always guarantee improved
class differentiation.

Regarding SVC, like RF, showcases flawless predictions
for faults 0 and 1. Faults 2 and 3, however, have some over-
lap, although the misclassifications are relatively balanced
between the two. KNN echoes the patterns observed in SVC
and RF. It perfectly identifies faults 0 and 1 and shows limited
misclassifications between faults 2 and 3.

NB displays the most diverse confusion across all fault
types. While it maintains a reasonable classification rate
for fault 0, it struggles considerably with the other faults,
especially fault 2, which is spread across all predictions. The
neural network demonstrates commendable classification
capabilities. Faults 0 and 1 are classified with high accuracy.
There is some confusion between faults 2 and 3, but themodel
seems to handle these better than most of the other classifiers,
specially with fault type 2.

Overall, these findings accentuate the dataset’s potential
for facilitating advanced diagnostic models, reflecting its rich
content and reliable structure.

Furthermore, in the majority of classifiers, the balanced
performance metrics across precision, recall, and F1-score
emphasize the dataset’s well-distributed nature. This bal-
anced distribution is promising, as it means that the dataset
does not heavily favor one class over another, making it a
valuable resource for developing unbiased diagnostic tools.

In sum, the proposed dataset’s depth and complexity are
evident from the classifier results. It captures a wide array
of intricate relationships and patterns, making it a promising
tool for research and applications in engine diagnostics. It’s
worth noting that the challenges posed by faults 2 and 3
are apparent, presenting a clear hurdle for both models
and researchers due to their complexity. While the dataset
has showcased substantial potential, like any robust dataset,
it also highlights areas for continuous improvement and
refinement.

V. CONCLUSION AND FUTURE WORKS
In this research, we have meticulously presented and scru-
tinized a pioneering dataset pertaining to automotive engine
performance parameters. The foundation of our dataset lies
in the thorough utilization of a C14NE spark ignition engine,
incorporated within a representative vehicle. The choice of
this engine, backed by its key specifications, assured the
dataset’s relevance to real-world automotive engines.

The data acquisition tools played an instrumental role in
the quality and depth of our dataset. Instruments such as the
NGA 6000 gas analyzer and the USB 6008 data acquisition
card ensured that data captured was of high precision
and encompassed a broad range of engine parameters.
The comprehensive methodology founded on principles of
experimental design and the response surface technique
was pivotal in the data collection process. This structured
approach enabled us to simulate and capture various engine
conditions, encompassing normal operation and specific
induced faults.

Our dataset, christened EngineFaultDB, consists of
55,999 entries, spanning 14 distinct attributes. Each variable
within this dataset offers unique insights into engine behavior,
performance, and potential malfunction indicators. The
array of variables illuminates the intricate workings of an
automotive engine and provides invaluable information for
diagnostics and fault detection.

The classification results obtained from this dataset
provide both validation for its applicability and insights into
areas for potential model refinement. While the decision
tree and random forest models achieved exemplary training
performance, it is evident that the real-world variability and
nuances of engine operations could be better captured. This
is further substantiated by the neural network model’s per-
formance, highlighting that our dataset possesses underlying
complexities and patterns that require more sophisticated
modeling techniques.

In essence, our EngineFaultDB stands as a testament to the
intricate processes of automotive engine operations, bridging
the gap between theory and real-world applications. This
research not only offers a detailed dataset for academic and
industrial pursuits but also sets the stage for future studies
in automotive diagnostics, fault detection, and engine per-
formance optimization. Additionally, in our commitment to
the academic and industrial communities, the EngineFaultDB
dataset has been made available for unrestricted access at a
GitHub repository.1

We plan to expand our research to curate similar datasets
for different contexts, such as diesel engines. We also aim
to enrich these datasets with a wider array of fault types
and additional variables such as vibration metrics. Such
enhancement of the datasets will significantly contribute
to the academic and practical understanding of engine
diagnostics and maintenance.

The insights garnered from our present research open
several avenues for future exploration. One significant
area lies in the realm of machine learning and artificial
intelligence. Given the intricate patterns and underlying
complexities of our dataset, as evidenced by the neural
network model’s performance, future endeavors could delve
deeper into advanced deep learning techniques. Neural
architectures like Convolutional Neural Networks (CNNs) or
Recurrent Neural Networks (RNNs) might be explored to
harness the full potential of EngineFaultDB, possibly leading
to more accurate fault detection and predictive maintenance
models.

Furthermore, as connected and autonomous vehicles
become more prevalent, integrating the findings from our
dataset into real-time diagnostic systems could be a ground-
breaking advancement. This would entail the development
of lightweight, efficient algorithms capable of running
on embedded systems within vehicles, offering offering
real-time fault diagnosis and potentially preemptive solutions
to drivers or autonomous vehicle systems.

1https://github.com/Leo-Thomas/EngineFaultDB
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Lastly, collaborations with industry partners could lead to
the practical application of our findings. By working hand in
hand with automotive manufacturers and service providers,
the insights from EngineFaultDB could be translated into
tangible improvements in vehicle reliability, efficiency, and
safety.
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