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ABSTRACT Reducing the risks of wildfire ignition has become a major concern for many electric utilities.
In recent years, they have relied on Public Safety Power Shutoff (PSPS) programs to de-energize select
power lines to prevent wildfire risks. A cost-effective solution for the power distribution system expansion
planning in regions with increased wildfire risk could be achieved by jointly combining new distribution lines
and energy storage systems (ESSs) while taking into account the overhead distribution lines availability
given the increasing number of PSPS events. This paper proposes a two-stage stochastic optimization
approach for the expansion planning of a power distribution system under wildfire risk with a compliance
check on unbalanced power flow and system operation limits. The resulting model is a mixed-integer linear
programming (MILP) optimization problem. The proposed model is validated on a modified version of the
IEEE 13-node system and the IEEE 123-node system. Simulation experiments and sensitivity analysis are
performed to validate the effectiveness of the proposed formulation using different High Fire-Threat District
(HFTD) Tier Zones based on real-world data from electric utilities in California.

INDEX TERMS Energy storage systems (ESSs), power system planning, unbalanced distribution systems,
wildfires.

NOMENCLATURE
INDICES AND SETS
�i Set of lines connected to node i.
φ ∈ 8i Phases of node i.
ξ ∈ 4 Set of scenarios.
L Set of distribution lines.
LE Set of existing distribution lines.
s ∈ S Representative periods of the year.
i, j, k ∈ I Index of nodes.

VARIABLES
Pshed,φ

i Active power shed at node i and phase
φ.

PG Three-phase active power from the
substation.

Si,j = Pi,j + jQi,j Three-phase complex power flow
from node i to j.

The associate editor coordinating the review of this manuscript and

approving it for publication was Salvatore Favuzza .

Wi Three-phase voltagemagnitude square vector
at node i.

pφ
Gi

φ Real power dispatch of DGs at node i, for
phase φ ∈ 8i.

Pφ
Li + jQφ

Li Complex power demand at node i, for phase
φ ∈ 8i.

ui,j Line availability.
wi,j Binary variable, wi,j = 1 if the line is built,

wi,j = 0 otherwise.
βi Number of ESS at node i.
Eφ
bi Energy stored in ESS at node i and phase φ.

Pφ
bi Active power of ESS at node i and phase φ.

Pφ
ci Active charging power of ESS at node i and

phase φ.
Pφ
di Active discharging power of ESS at node i

and phase φ.
Qφ
bi Reactive power of ESS at node i and

phase φ.
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CONSTANTS
1t Time step.
κi Energy price at node i.
κESS Investment cost of an ESS module.
Zi,j Phase-impedance matrix of a line, from node

i to j.
πξ Probability of realizing scenario ξ .
σs Weight of the time window s.
E0 Initial energy stored in ESS.
Ki,j Investment cost of building line from node i to

j.
M Large enough positive constant.
N Number of years.
OMESS Operation and maintenance cost for an ESS

module.
Smax,φbi Maximum apparent power capacity of ESS at

node i and phase φ.
Smaxi,j Maximum apparent power capacity of the line

from node i to j.
Ts Number of hours of the representative time

window s.
vlb = 0.9 Voltage lower bound limit (in p.u.).
vub = 1.1 Voltage upper bound limit (in p.u.).
VoLL Value of lost load ($/kWh).

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
The recent increase in wildfire activity poses a danger to
the safe and reliable operation of electrical power systems
around the world. The year of 2020, in particular, was marked
by several extremely severe wildfires, setting records in the
Arctic [1], Australia [2], Brazil [3] and western United States
(U.S.) [4].

Wildfires can be naturally caused or human-induced, and
there are many studies suggesting that climate change has
been a key factor in increasing the risk and extent of wildfires
in several regions [5], [6], [7], [8], [9], [10], [11]. In the
year of 2021 alone, the National Center for Environmental
Information (NCEI) reported an estimate cost of $10.4 billion
due to wildfires across the United States [12].
Wildfires are expected to becomemore frequent and severe

in many regions [13], [14]. Therefore, energy providers
must be proactive and forward-thinking to ensure that their
operations, workforce, and long-term strategic plans are
prepared for and equipped to handle this growing external
threat [15]. In order to prevent wildfires caused by electrical
equipment, utilities in Western United States have relied on
Public Safety Power Shutoff (PSPS) events to de-energize
select transmission and distribution lines to avoid wildfires
during certain weather conditions. De-energization decisions
take into account several input parameters, including meteo-
rological conditions (e.g., humidity, temperature, and wind
speed and direction), fuel conditions (e.g., dry material
on the ground and vegetation near power lines) [16], and

FIGURE 1. CPUC High Fire-Threat District Map [18].

wildfire risk metrics (e.g., Fosberg Fire Weather Index and
Keetch-Byram Drought Index) [17].
In 2012, the California Public Utilities Commission

(CPUC) created a statewide map designed to show areas
where there is an increased risk for utility-associated
wildfires in the state of California [18]. The map is divided
into 3 Tiers: Tier 1 High Hazard Zones are zones near
communities, roads, and utility lines, and are a direct threat
to public safety, Tier 2 fire-threat areas outline areas where
there is a higher risk from utility related wildfires, and
Tier 3 fire-threat areas outline areas where there is an extreme
risk from utility-related wildfires. The map developed by
CPUC is presented in Fig. 1. By using PSPS historical data
within different HFTD zones, one can estimate the expected
frequency and duration of power line outages without the
need of modeling and correlating weather parameters, fuel
conditions, and wildfire risks metrics, which are generally
complex tasks.

To date, utility reports indicate the number and loca-
tion of customers affected by equipment de-energization.
Customers may be located in Tier 2 or Tier HFTD zones,
or outside of any zone. Since PSPSs events are mainly
concentrated in Tier 2 and Tier 3 zones, residing in or
near these zones increases the likelihood of experiencing
PSPS-related outages [19]. Vegetation contact is reported as
the highest contributor for the risk for HFTD distribution,
but equipment/facility failure is the highest contributor for
transmission and non-HFTD distribution, where over 90% of
wildfire risk comes from HFTD distribution [20].

Understanding that de-energizing customers causes not
only significant disruption but also safety risks to those
impacted, and considering both risk reduction from wildfires
and PSPSs, Pacific Gas & Electric (PG&E) stipulated a
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goal to significantly increase underground miles annually,
ramping up to 1,200 miles or more of undergrounding
per year by 2026 [20]. Although utilities are working
on different alternatives to reduce the impact of PSPSs
through microgrids, segmentation, and resiliency zones in
the short term, the long-term climate models point to a
higher probability of more frequent fire weather conditions.
Therefore, it is expected that the absolute number of PSPS
events will not change, and may even increase in future
years [20].

B. LITERATURE REVIEW
Several power distribution grid expansion planning models
have been proposed in the literature. References [21], [22],
and [23] provided comprehensive reviews and surveys of
existing works. However, themajority of suchworks assumed
normal power grid conditions and neglected the potential
impacts of high impact low-probability (HILP) events, such
as wildfires, on grid expansion decisions.

More recently, some works have incorporated the risks
and impacts of wildfires in power system operation and
planning problems. On the operation side,most of the existing
works focused on distribution network operation during a
progressive wildfire. The first work in this regard modeled
the heat transfer from an approaching wildfire and its impact
on the dynamic line rating (DLR) of a power distribution
line [24]. The work in [25] expanded the previous heat
transfer model to consider the non-steady state heat balance
equation on theDLRmodeling. Some recent works [26], [27],
[28] used the same wildfire progression model to investigate
select operation strategies, including network reconfiguration
and the deployment of distributed generation and energy
storage systems, to improve the distribution system resilience
during such events. In [29], the authors integrated the DLR
of transmission lines into the optimal power flow model to
reduce the risk of wildfire ignitions. An attacker-defender
approach for the optimal operation of a transmission network
subjected to the risks of a progressing wildfire was proposed
in [30].

On the planning side, most of the existing literature
focused on the development of short-term mathematical
models for optimal scheduling of PSPSs during wildfire
season [31], [32]. The work in [33] presented a framework
to select transmission lines to de-energize in order to balance
wildfire risk reduction, total load shedding, and fairness
considerations. The authors in [34] proposed a multi-period
optimization formulation to locate and size infrastructure
investments for the transmission system expansion problem.
The PSPSs were simultaneously chosen to minimize wildfire
ignition risk and load shedding, utilizing a weighting factor
between both objectives. Stochastic and robust transmission
expansion planning approaches considering wildfire risk
were proposed in [35] and [36], respectively.
However, the aforementioned works have neither inves-

tigated the optimal expansion planning of unbalanced

distribution systems under wildfire risk nor considered
the optimal planning of energy storage systems (ESSs) to
mitigate the impacts of PSPS events.

C. CONTRIBUTIONS
In contrast to existing works, this paper proposes a distribu-
tion system expansion planning framework considering the
presence of HFTD Zones and the expected frequency and
duration of PSPS-related outages to jointly determine new
lines to be built and the optimal sitting and sizing of ESSs.
The proposed framework is modeled as a two-stage stochastic
optimization problem considering planning decisions in the
first stage and the distribution system operation in the second
stage. The model includes an objective function to minimize
the planning costs subject to a set of constraints which include
the linearized unbalanced power flow constraints and system
operation limits, with a linear formulation for the optimal
battery charging-discharging dynamics that respects the
state-of-charge (SoC) limits without using complementary
constraints. Moreover, random moments within the wildfire
season are generated to characterize PSPS events, for the
average number of hours given the HFTD Tier Zone.

Table 1 compares the proposed work with the existing
literature on power system planning and operation under
wildfire risk. The unique contributions of this paper are
summarized as follows:

1) It presents an unbalanced distribution system expansion
planning approach under wildfire risk. The proposed
approach accounts for the possibility of lines and nodes
being unavailable in high fire-threat districts (HFTD)
during the wildfire season. Using historical data, the
method aims to balance load shedding and expansion
planning decisions, considering new overhead and
underground distribution lines, through a stochastic
optimization framework.

2) The optimal siting and sizing of ESSs are considered in
the planning decisions to mitigate the impact of PSPSs
events in distribution networks.

The rest of this paper is organized as follows. Section II
describes the mathematical formulation of the proposed
model. Section III presents relevant case studies. Finally,
Section IV presents the main conclusions and recommenda-
tions for future work.

II. MODEL DESCRIPTION
A. ASSUMPTIONS AND DECISION-MAKING FRAMEWORK
The proposed methodology for the optimal distribution
system expansion planning under wildfire risk is summarized
in Fig. 2.

Initially, historical PSPS data is collected, and potential
lines and ESS candidate nodes are chosen. Given that PSPS
is a preventive measure based on several criteria, such as
wind speed, humidity, Fire Potential Index (FPI), and others,
the historical PSPS data reflects the occurrence of high-fire
wildfire risk conditions, thus the average outage time within
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TABLE 1. Comparison of the proposed work with the existing literature.

FIGURE 2. Flowchart of the proposed methodology.

HFTD tier zones and the number of events per year, are
used to generate the scenarios to be used in the stochastic
programming model.

The first-stage decisions comprise the sum of investment
on new potential distribution lines and the cost of installing
ESSs at the selected candidate nodes. Underground lines are
assumed not to be affected by wildfires. In the second stage,
the model minimizes the cost of operating and maintaining
ESSs, the cost of energy, and the cost of shedding load at each
node considering that the overhead lines within HFTD tier
zones are not available due to wildfire risk.

B. MATHEMATICAL FORMULATION
The proposed two-stage stochastic optimization model is
presented as follows:

Minimize
χ{i,j},PG,Pshed

∑
∀wi,j∈LN

wi,j ∗ Ki,j + κESS ∗

I∑
i=1

βi

+ 365 ∗ N ∗

I∑
i=1

βi ∗ OMESS

+ N ∗

∑
∀ξ∈4

πξ

∑
∀s∈S,t

σS

Ts∑
∀t=1

(PGξ,s,t ∗ κξ,s,t+Pshedξ,s,t ∗ VoLL)

(1)

where,

Pshedξ,s,t =

∑
∀i∈I ,φ∈8

Pshed,φ
iξ,s,t

(2)

subject to:

Pφ
ij,ξ,s,t =

∑
k:j→k,∀j∈�j

Pφ
jk,ξ,s,t + Pφ

Lj,ξ,s,t

+ Pφ
bj,ξ,s,t + pφ

Gj,s,t

∀φ ∈ 8i, ∀ij, jk, ξ, s, t (3)

Qφ
ij,ξ,s,t =

∑
k:j→k,∀j∈�j

Qφ
jk,ξ,s,t + Qφ

Lj,ξ,s,t

+ Qφ
bj,ξ,s,t ∀φ ∈ 8i, ∀ij, jk, ξ, s, t

(4)

Wi,ξ,s,t −Wj,ξ,s,t ≥ 2R{α ⊙ Zi,j∗ ∗ Sij,ξ,s,t}

−M (1−wij ∗ u
ξ,t
ij ) ∀i, j, ij, ξ, s, t

(5)

Wi,ξ,s,t −Wj,ξ,s,t ≤ 2R{α ⊙ Zi,j∗ ∗ Si,j,ξ,s,t}

+M (1−wij ∗ u
ξ,t
ij ) ∀i, j, ij, ξ, s, t

(6)

(vlb)2 ≤ Wi,ξ,s,t ≤ (vub)2 ∀i, s, t (7)

−M ∗ wij ∗ u
ξ,t
ij ≤ Pij,ξ,s,t ≤ M ∗ wij ∗ u

ξ,t
ij

∀ij, ξ, s, t (8)

−M ∗ wij ∗ u
ξ,t
ij ≤ Qij,ξ,s,t ≤ M ∗ wij ∗ u

ξ,t
ij

∀i, j, ij, ξ, s, t (9)(
Pφ
ij,ξ,s,t

)2
+

(
Qφ
ij,ξ,s,t

)2
≤

(
Smax,φ
ij,ξ,s,t

)2
∀φ ∈ 8i, ∀ij, ξ, s, t (10)

Pφ
ci,ξ,s,t

≤
1
4

∗ βi ∗ E
max,φ
b

∀φ ∈ 8i, ∀i, ξ, s, t (11)

Pφ
di,ξ,s,t

≤
1
4

∗ βi ∗ E
max,φ
b

∀φ ∈ 8i, ∀i, ξ, s, t (12)

Elb ∗ βi ∗ E
max,φ
b ≤ Eφ

bi,ξ,s,t
≤ Eub ∗ βi ∗ E

max,φ
b

∀φ ∈ 8i, ∀i, ξ, s, t (13)

Pφ
bi,ξ,s,t

= Pφ
ci,ξ,s,t

− Pφ
di,ξ,s,t

∀φ ∈ 8i, ∀i, ξ, s, t (14)
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−
1
4

∗ βi ∗ E
max,φ
b ≤ Qφ

bi,ξ,s,t
≤

1
4

∗ βi ∗ E
max,φ
b

∀φ ∈ 8i, ∀i, ξ, s, t (15)

Eφ
bi,ξ,s,t+1

= Eφ
bi,ξ,s,t

+ 1t ∗ η ∗ Pφ
bi,ξ,s,t

∀φ ∈ 8i, ∀i, ξ, s, t (16)

Eφ
bi,ξ,s,0

= E0 ∀φ ∈ 8i, ∀i, ξ, s, t (17)(
Pφ
bi,ξ,s,t

)2
+

(
Qφ
bi,ξ,s,t

)2
≤

(
Smax,φ
bi,ξ,s,t

)2
∀φ ∈ 8i, ∀i, ξ, s, t (18)

0 ≤ Pshed,φ
i,ξ,s,t ≤ Pφ

Li,ξ,s,t

∀φ ∈ 8i, ∀i, ξ, s, t (19)

wi,j = 1 ∀ij ∈ LE (20)

wi,j ∈ {0, 1} ∀ij (21)

βi ∈ N0
∀i (22)

where,

α =

 1 ej∗pi/3 e−j∗π/3

e−j∗π/3 1 ej∗π/3

e−j∗π/3 ej∗π/3 1

 (23)

The objective function (1) minimizes the sum of the
investment cost in the first stage, which includes the cost
of new lines and ESSs, and the operation cost in the second
stage, which includes the operation and maintenance cost of
ESSs, the cost of energy, and the cost of load shedding at each
node.

This model adopted an unbalanced three-phase linear
branch flow method, assuming that branch power losses are
relatively smaller as compared to the branch power flow and
that the obtained feeder voltages are a good approximation of
the actual feeder voltages [37]. Constraints (3) and (4) enforce
the power balance at each node only if the line is available
(i.e., ui,j = 1). The line availability is established depending
on whether the branch is in an HFTDZone or not. Constraints
(5) and (6) calculate the voltage at every node i. The Big-M
formulation is used to guarantee that the constraints are active
only when the corresponding binary variables are equal to 1.
The procedure to determine the properM value can be found
in [38]. Constraint (7) enforces the upper and lower bonds of
the voltage in each node.

Constraints (8) and (9) enforce that there is only active
and reactive power, respectively, flowing on the potential
new lines that are built. The capacity of the transformers is
determined by their rated kVA capacity, and the capacity of
the lines by their ampacity at rated voltage. Constraint (10)
guarantees that the loading on the transformers and lines are
restrained to its Smax.
Constraints (11) to (17) are related to the operation of

the ESSs. The presented ESS operation model is obtained
from the work in [39], where new linear constraints are
proposed to optimally dispatch batteries while guaranteeing
the satisfaction of SoC constraints without having to resort

to binary variables for the charging/discharging dynamics,
thus greatly reducing the complexity of the ESSs formulation.
Constraints (11), (12), and (15) limit the ESSs active power
charging, discharging, and reactive power to 1/4 of its total
capacity per hour, respectively. Constraint (13) enforces
that the ESSs energy operates within its lower and upper
bounds. Constraint (16) presents the energy calculation of all
time steps. Constraint (17) enforces that all ESSs have the
same initial value stored. Constraint (18) guarantees that the
loading on the ESSs restrained to its Smaxbi .

The fact that the existing lines have already been built
is enforced by Constraint (20). Constraint (19) establishes
that it is not possible to shed more load than is demanded
at each node. Constraints (21) defines the variables wi,j as
binary. Constraint (22) defines the variables β i as integers
greater or equal to zero. Finally, Constraint (23) defines the
α matrix, a necessary operator to represent the diagonal and
off-diagonal contribution of Zi,j , which is used to properly
calculate the voltage drop across a line for the unbalanced
three-phase linear branch flow method [37].

Note that (10) is quadratic. Thus, a polygon-based lin-
earization method [40] is used to approximate the quadratic
terms. The radius of the polygon is presented in (24),
and the linear constraints when n = 6 can be formulated
as presented in (25)-(27). Constraint (18), which is also
quadratic, is linearized in the same manner.

Sφ,H
ij = Smax

ij

√
2π
n

sin(
2π
n
) ∀φ ∈ 8i, ∀ij (24)

Qφ
ij,ξ,s,t ≥ −

√
3

(
Pφ
ij,ξ,s,t + Sφ,H

ij

)
Qφ
ij,ξ,s,t ≤ −

√
3

(
Pφ
ij,ξ,s,t − Sφ,H

ij

)
∀φ ∈ 8i, ∀ij, ξ, s, t

(25)

−

√
3
2
Sφ,H
ij ≤ Qφ

ij,ξ,s,t ≤

√
3
2
Sφ,H
ij ∀φ ∈ 8i, ∀ij, ξ, s, t

(26)

Qφ
ij,ξ,s,t ≥

√
3

(
Pφ
ij,ξ,s,t − Sφ,H

ij

)
Qφ
ij,ξ,s,t ≤

√
3

(
Pφ
ij,ξ,s,t + Sφ,H

ij

)
∀φ ∈ 8i, ∀ij, ξ, s, t

(27)

III. CASE STUDIES
The proposed model has been applied to a modified IEEE 13-
node and IEEE-123-node system [41], on an AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx 2.10 GHz-based
processor with 8 GB of RAM using Julia along with the
Julia for Mathematical Programming (JuMP) package [42],
and Gurobi 7.0 [43]. The data for every distribution system
corridor was obtained from [41].

A. DATA AND ASSUMPTIONS
The cost of constructing overhead and underground lines
was obtained from [44], being on average $433.07, and
$2,952.76 per meter, respectively. Three scenarios with equal
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TABLE 2. Number of events and average outage time of the PSPS events,
obtained from PG&E [48].

probability were used to model the average outage time
and number of PSPS events, based on real-world data from
PG&E that reflect three distinct wildfire seasons (i.e., 2019,
2020, and 2021). The number of PSPS events per year and
the average outage time of the PSPS events considered are
presented in Table 2. Moreover, three representative days are
chosen to build the load profiles for a typical winter, summer,
and spring day. In order to get a better representation during
the wildfire season, an entire week is chosen for this period.

The cost of generation and load shedding is solved for those
windows of time, hourly based. Thus, the cost of shedding
the load and generation is multiplied by the number of
years N, and the weighting factor, σs. The planning horizon,
N, is considered to be 10 years. The hourly load data is
equal to the multiplication of peak load data and hourly
load factor curve that is presented in Fig. 3(a), Fig. 3(b),
Fig. 3(c), and Fig. 3(d), for the spring, summer, wildfire
season, and the winter, respectively, obtained from [45],
considering the Portland General Electrical (PGE) balancing
authority. The days selected are the 16th of January, April,
and July, and the week for the wildfire season was September
16th-22nd.

The energy price considered was obtained from the
California Independent System Operator (CAISO) DNCR_
LNODEBR1 node [46], in 2020, and 2021, during the same
days as the load curves were obtained. The energy price for
2019 was not available, thus 2021 data is used for 2019.

FIGURE 3. Load percent curve during the (a) spring, (b) summer,
(c) wildfire season and (d) winter, for the years of 2019, 2020, and 2021.

TABLE 3. Operational information of ESS units.

FIGURE 4. Normalized sun irradiance curve during the (a) spring,
(b) summer, (c) wildfire season, and (d) winter.

To analyze the integration of HFTD Zones on the proposed
power distribution system expansion formulation, the study
was performed considering the following assumptions:

1) The underground lines are not affected by the wildfires.
2) The new node should be supplied by a three-phase

distribution line.
3) All overhead lines that can be connected to the new

nodes are within an HFTD Tier 2 or 3.

The parameters used for the ESS were obtained from [47]
and are presented in Table 3.

The potential lines and ESS candidate nodes were selected
if they have all three phases and based on their location,
i.e., geographically close to the new node and electrically
close to or at a node that contains DG, respectively. For
both systems, photovoltaic (PV) DG was considered to be
previously installed on the system. The PVWatts model was
used to calculate the power output. The sun irradiance was
obtained from [49], and it was considered the same for all
the scenarios. The normalized (for a 1000W/m2 reference)
hourly data is presented in Fig. 4(a), Fig. 4(b), Fig. 4(c), and
Fig. 4(d), for the spring, summer, wildfire season, and the
winter, respectively.

For both distribution test systems, randommoments during
the wildfire season are generated to be considered PSPS
events.
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TABLE 4. Characteristics of potential new lines.

B. RESULTS: IEEE 13-NODE SYSTEM
The IEEE-13 node system with the newly created node and
its potential connections is presented in Fig. 5. Node 635 is
created with an unbalanced load obtained from the average
of all the other nodes in the system. The characteristics and
parameters of the potential new lines are presented in Table 4.
Table 5 presents both the DG and ESS nodes information for
the IEEE 13-node system. The DG modules have a 60kWh
capacity per phase.

By considering that no outages happened in any of the sce-
narios, the obtained optimal solution cost is $ 10,059,052.09,
and the line selected to be built is the connection between
node 671 and the new node, 635, given the lower cost of
the overhead lines in comparison with underground lines
[44]. However, when considering that overhead lines that are
within HFTD Tier zones 2 or 3 are likely to be unavailable
during certain periods of the wildfire season, the optimal
solution is highly impacted by how much it costs to shed
the load at node 635 vs the cost of undergrounding the
connection.

Without considering the possibility of ESSs, with a
VoLL = 2$/kWh, and considering the overhead lines
within HFTD Tier zones 2 or 3 unavailability during certain
periods of the wildfire season, the optimal solution cost is
$10,850,688.37, selecting the underground option to connect
the node 692 to the new node 635. However, considering

FIGURE 5. Modified IEEE 13-node system including the new node and the
potential new lines.

TABLE 5. DG nodes and ESS candidate nodes for the IEEE 13-node
system.

FIGURE 6. Time vs battery charging/discharging dynamics, SoC, and load
shedding at node 635 during the two first wildfire risk events, for the first
scenario (year 2019).

TABLE 6. Final solutions from the sensitivity analysis of the distribution
expansion problem for IEEE 13-node system.

the ESS candidate nodes presented in Fig. 5, the optimal
solution cost is reduced to $10,627,195.27, selecting the
previous branch (node 671 to node 635), and installing
three 3φ ESSs modules at node 635. During moments of
unavailability of the line between nodes 671 and 635, the
load is supplied by the three ESS modules installed at node
635. Fig. 6 presents the load shed, the ESS SOC, and the
battery charging/discharging dynamics during moments of
unavailability, for phase A.

Regardless of the presence of the ESS, there might be a
need for load shedding during wildfire risk events, depending
on the value of the VoLL. Thus, a sensitivity analysis is
performed to analyze the impact of the parameter on the final
solution.

Fig. 7 presents the effect of the VoLL parameter on the
solution’s final value. Fig. 8 presents the effect on the
average load shedding per year at node 14. The VoLL values
used are VoLL = {2, 4, 6, 8}$/kWh. The optimal cost is
normalized and related to the solution considering that no
outages happened in any of the scenarios. The final solutions
for the sensitivity analysis are presented in Table 6.

For a VoLL = {2, 4, 6}$/kWh, the overhead line
connecting the node 671 to 635 is chosen, however, when
the cost of shedding the load is equal to $8.00 per kWh, the
solution changes to an underground option, connecting the
node 692 to the node 635. Thus, the price to shed the load has
an extreme impact on the final decision.

Although for smaller values of VoLL, the optimal solution
is to jointly construct an overhead line, which will be exposed
to unavailability during certain moments of the year, and
install ESSs, the difference is less than 3% when comparing
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FIGURE 7. Sensitivity analysis on the impact of the VoLL parameter on
the solution cost for the IEEE 13-node system.

FIGURE 8. Sensitivity analysis on the impact of the VoLL parameter on
the load shedding per year for the IEEE 13-node system.

TABLE 7. Characteristics of new potential lines.

to an underground solution, which would be expected to be
available during moments of wildfire risk.

C. RESULTS: IEEE 123-NODE SYSTEM
The proposed model was also validated using the IEEE-
123 node system. Fig. 9 shows the system to be expanded
considering the newly created nodes and their potential
connections. The new nodes 125 and 126 are created with
an unbalanced load obtained from the average of all the other
nodes in the system. The characteristics and parameters of the
potential new lines are presented in Table 7. Table 8 presents
both the DG and ESS information for the modified IEEE
123-node system. The DG modules have a 60kWh capacity
per phase.

By considering that no outages happened in any of the sce-
narios, the obtained optimal solution cost is $9,754,971.61,
selecting the lowest-cost overhead options, connecting node
51 to the new node 125 and node 56 to the new node 126.

FIGURE 9. IEEE 123-node system including the new nodes 125 and 126.

TABLE 8. DG nodes and ESS candidate nodes for the IEEE 123-node
system.

Without considering the possibility of ESSs, with a
VoLL = 2$/kWh, and considering the overhead lines
within HFTD Tier zones 2 or 3 unavailability during certain
periods of the wildfire season, the optimal solution cost is
$10,578,069.23. This solution considers underground lines
to connect the nodes 65 and 125 as well as the nodes
610 and 126. However, considering the ESS candidate nodes
presented in Fig. 9, the optimal solution cost is reduced
to $10,517,574.17, selecting a combination of three ESS
modules and an overhead option for node 125 (node 51 to
125), and the underground option for the node 126. That
is, the difference is less than $61,000 (less than 0.1%
when compared to the reference) when comparing to an
underground solution, that is to be available during all
moments of wildfire risk, but the demand at nodes 99 and
100 is still completely shed.

FIGURE 10. Sensitivity analysis on the impact of the VoLL parameter on
the solution cost for the IEEE 123-node system.
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FIGURE 11. Sensitivity analysis on the impact of the VoLL parameter on
the load shedding per year for IEEE 123-node system.

TABLE 9. Final solutions from the sensitivity analysis of the distribution
expansion problem for IEEE 123-node system.

The same sensitivity analysis for the VoLL is performed for
the modified version of the IEEE 123-node system. Fig. 10
presents the effect of the VoLL parameter on the total system
cost. Fig. 11 presents the effect of the VoLL on the total
load shedding per year. The VoLL values used are VoLL =

{2, 4, 6, 8}$/kWh. The optimal cost is normalized and related
to the solution considering that no outages happened in any of
the scenarios. The final solutions for the sensitivity analysis
are presented in Table 9.

For the cases where VoLL = {2, 4}$/kWh, three ESSs are
installed only at node 125, and during wildfire risk moments
all the demand at nodes 99 and 100 is shed. Increasing
the VoLL to $6/kWh and $8/kWh, other three ESS modules
are installed at the nodes 99 and 100 totaling nine ESS
modules, reducing significantly the average of load shedding
per year. However, the decision on which distribution lines
to be constructed does not change with this parameter. Thus,
for the modified version of the IEEE 123-node system, the
integration of ESS provides an intriguing solution, proving to
be more valuable for one of the nodes even when the cost of
load shed gets 4 times the baseline value.

To analyze the impact of considering ESS on the dis-
tribution expansion planning problem, the same sensitivity
analysis is conducted comparing the final solution cost and
total load shed with and without ESSs for the IEEE 123-node
system. Without considering ESSs, the expansion decisions
are to construct underground distribution lines for both new
nodes, 125 and 116 for all VoLL values considered, that
is, constructing the distribution lines from node 65 to node
125 and from node 610 to node 126.

FIGURE 12. Sensitivity analysis on the impact of the VoLL parameter and
the presence of ESS on the solution cost for IEEE 123-node system.

FIGURE 13. Sensitivity analysis on the impact of the VoLL parameter and
the presence of ESS on the load shedding per year for IEEE 123-node
system.

Fig. 12 and Fig. 13 present effect of the VoLL parameter
on the total system cost and on the total load shedding per
year, respectively. The solution without evaluating ESSs was
more expensive for all values of VoLL considered, getting
significantly greater for larger values of VoLL, due to the fact
that the load at the nodes 98, 99, and 100 cannot be supplied
during the wildfire season. For the cases where VoLL =

{2, 4}$/kWh, the total load shed per year is around 820 kWh
less without considering ESSs when compared the solution
that jointly install 3 modules on node 125 and an overhead
line from node 51 to 125. Nevertheless, for larger values of
VoLL the investment of 3modules at node 99 and 3modules at
node 100 majorly reduces the total load shed by almost 75%,
making the alternative of ESSs on the distribution system
expansion planning very appealing.

IV. CONCLUSION
This work proposed a two-stage stochastic optimization
framework for the unbalanced distribution system expansion
and energy storage planning that takes into account the
wildfire risk. The wildfire risk representation was modeled as
the unavailability of the specific lines that are within HFDT
Tier Zones. The problem was solved for the IEEE 13-node
system and the IEEE 123-node system, using the unbalanced
linearized load flow, including a linear formulation of
the optimal battery charging-discharging dynamics, with
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a seasonal load variation and hourly price, for a horizon
of 10 years. For the IEEE 13-node system, the solution
varied as the VoLL parameter is changed, indicating the
point where is cost-beneficial to construct the underground
solution. Although the solution varied for the IEEE 123-node
system, only moments where more ESSs are decided to be
constructed were identified, proving that jointly expanding
the system with the inclusion of ESSs can be more beneficial
than undergrounding.

Future studies can be conducted to incorporate other
alternatives to investigate the mitigation of the wildfire
risk, such as line hardening, vegetation management, and
microgrid formation duringwildfire riskmoments.Moreover,
a robust optimization scheme can be developed considering a
robust set of the average, and standard deviation of the outage
time within HFTD Tier zones, without relying on historical
data for de-energization scenarios.
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