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ABSTRACT Sand boils can contribute to the liquefaction of a portion of the levee, leading to levee failure.
Accurately detecting and segmenting sand boils is crucial for effectively monitoring and maintaining levee
systems. This paper presents SandBoilNet, a fully convolutional neural network with skip connections
designed for accurate pixel-level classification or semantic segmentation of sand boils from images in levee
systems. In this study, we explore the use of transfer learning for fast training and detecting sand boils through
semantic segmentation. By utilizing a pretrained CNN model with ResNet50V2 architecture, our algorithm
effectively leverages learned features for precise detection. We hypothesize that controlled feature extraction
using a deeper pretrained CNNmodel can selectively generate the most relevant feature maps adapting to the
domain, thereby improving performance. Experimental results demonstrate that SandBoilNet outperforms
state-of-the-art semantic segmentation methods in accurately detecting sand boils, achieving a Balanced
Accuracy (BA) of 85.52%, Macro F1-score (MaF1) of 73.12%, and an Intersection over Union (IoU) of
57.43% specifically for sand boils. This proposed approach represents a novel and effective solution for
accurately detecting and segmenting sand boils from levee images toward automating the monitoring and
maintenance of levee infrastructure.

INDEX TERMS Sand boils, levee, segmentation, deep learning, u-net, transfer learning, feature extraction,
representation learning.

I. INTRODUCTION
Levees are earthen structures constructed along water bodies
that protect numerous commercial and residential properties.
They demand regular monitoring and maintenance due to
the possibility of being compromised by settling, the risk of
overtopping, flood-induced sand boils, seepages, and animal
burrowing [1]. Among them, sand boils, also known as
sand volcanoes, are one of the most common and dangerous
hazards, especially during floods, which occur when the
velocity of water flowing from the flood side to the protected
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side is sufficiently large to erode the soil and allow sand
and water to seep through the soil surface. These formations
provide evidence for the presence of weak points in a levee
[2], [3], indicating the potential for dangerous soil erosion.
Hence, it is crucial to detect them precisely to identify new
sand boils and monitor their growth for flood-fighting and
levee-monitoring purposes during floods. Currently, manual
visual inspections of levees are central to monitoring levee
systems [2]. which is laborious and costly. This research work
introduces the automatic detection of sand boils via advanced
image segmentation algorithms using images.

The advancement in deep learning, specifically the use
of convolutional neural networks (CNNs), has prompted
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the development of new image segmentation approaches
based on Deep learning (DL) [4]. These methods have
shown promising results in improving the accuracy and
efficiency of semantic segmentation models. However,
designing and training deep CNNs for each new segmentation
task from scratch can be computationally expensive and
time-consuming, especially when the training dataset is
limited. Transfer learning [5] has emerged as a promising
solution to overcome this challenge by leveraging pretrained
models on a related task to improve performance on a new
task [6]. Accordingly, this paper introduces a novel, fully
convolutional neural network by leveraging the power of
transfer learning and advanced DL techniques to locate and
segment sand boils from the images of levee systems.

This study aims to detect and segment sand boil regions
using an enhanced version of a Fully Convolutional Neural
Network [7] (FCN) as an encoder-decoder architecture. We
propose a novel transfer learning-based semantic segmen-
tation algorithm for sand boil segmentation in the levee
systems. The central hypothesis is that it is possible to use
a sizeable pretrained model without possibly increasing the
size of the model through controlled transfer learning for
semantic segmentation. Our proposed approach leverages a
pretrained model as a feature extractor, which enhances effi-
ciency and reduces the need for extensive training data. We
integrate advanced deep learning techniques into the encoder-
decoder-based architecture to address the over-fitting induced
by a pretrained model. These strategies collectively enhance
the model’s ability to capture spatial information and contex-
tual dependencies across multiple scales, leading to improved
segmentation performance. Therefore, the following are the
significant contributions of this research paper.

• Introduction of an annotated dataset of sand boil images
available for semantic segmentation tasks.

• Comparative analysis of CNN-based state-of-the-art
semantic segmentation algorithms on the proposed sand
boil image dataset.

• A proposed architectural design that features a pre-
trained model as an integrated feature extractor for
encoder blocks to improve efficiency and reduce exten-
sive training data needs.

• A proposed controlled transfer learning approach that
incorporates a pyramidal pooling channel spatial atten-
tion model and Principle Component Analysis (PCA) in
a parallel manner, followed by a residual connection for
facilitating better information flow between layers.

• An approach for fine-tuning the bottleneck layer that
makes the model robust and generalizable. Moreover,
ablation studies demonstrate that the model with this
transfer learning approach adapts to learned representa-
tion from the source dataset to align fast with the target
task.

The experimental evaluations indicate that the proposed
algorithm accurately segments sand boils and outperforms
state-of-the-art semantic segmentation algorithms. Overall,
the proposed architecture and the building blocks contribute

to the field by demonstrating the potential of deep learning
and semantic segmentation for sand boil detection in levee
systems and providing a more accurate and efficient approach
to this critical task.

II. BACKGROUND AND RESEARCH GAP
A. SEMANTIC SEGMENTATION
Semantic segmentation is a process that involves object
detection and the allocation of a semantic label or cat-
egory to each pixel of objects. Semantic segmentation
algorithms provide a detailed understanding of the context
through pixel-level analysis of the images. In recent years,
deep learning-based semantic segmentation methods have
achieved significant breakthroughs due to the progress of
large datasets, powerful computing power, and optimization
algorithms. Most state-of-the-art architectures for semantic
segmentation are based on Convolutional Neural Networks
[8] to extract a meaningful representation of objects from the
images. The existing deep learning algorithms have shown
increased accuracy in various application domains, ranging
from biomedical imaging [4], autonomous driving [4], [9],
scene understanding [4], and remote sensing operations
[10] in comparison to the traditional segmentation methods
relying on mathematical and statistical approaches and
manual feature engineering [11], [12], [13].

FCNs [7] are the foundation of modern encoder-decoder-
based successful deep learning models for semantic segmen-
tation that modify the structure of CNNs and other networks
by replacing fully connected layers with convolutional layers
to generate a segmentation mask of the same size as the
input. Another architecture, SegNet [14], is an encoder-
decoder-based architecture that uses pooling indices from the
encoder to upsample feature maps in the decoder to improve
segmentation, preserving high-resolution information. Like-
wise, PSPNet [15] uses the pretrained ResNet101 [16] as the
feature extraction layer and introduces the pyramid pooling
module on top of the encoder to integrate global contextual
information by pooling features at different scales. U-Net
[17], on the other hand, is a widely popular architecture, espe-
cially in medical image segmentation tasks with challenging
and small datasets, where overfitting is a common problem.
U-Net is an encoder-decoder architecture with connections
between corresponding encoder and decoder blocks, facili-
tating high-resolution features combined with low-resolution
contextual information. U-Net++ [18] improves on U-Net
through nested and dense skip connections that promote
deep supervision without increasing the depth of U-Net
architecture. VNet [19] is similar to U-Net, using 3D
convolutional layers, and is used for 3D volumetric image
segmentation.

Furthermore, to optimize the performance of semantic
segmentation architectures, DeepLabv2 and DeepLabv3
[20], [21] introduced the Atrous Spatial Pyramid Pooling
(ASPP) model that applies atrous convolution to gather
multi-scale information and reduces computation instead of
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using fully connected layers. Attention U-Net, proposed by
Oktay et al. in [22], is designed to help the model focus
on more relevant image regions during the segmentation
process. Attention U-Net extends the original architecture by
incorporating attention gates to enhance the model’s ability
to focus on relevant image areas during segmentation. This
approach can lead to improved performance, especially in
cases where the objects of interest are small or have a
complex background. MultiResUNet [23] extends the U-Net
architecture to more efficiently capture multi-scale features.
It features multi-resolution blocks in both the encoder and
decoder paths and employs residual connections to facilitate
the flow of gradients during training.

The state-of-the-art encoder-decoder-based architectures
have shown improved segmentation results on challenging
datasets consisting of small, irregularly shaped objects
located against complex backgrounds or with poor qual-
ity. They can capture high-level semantic information
and fine-grained details of the input images. Typically,
an encoder-decoder-based architecture has an encoder that
compresses the input image into a lower-dimensional feature
representation and a decoder that reconstructs a segmentation
map from the compressed representation. In light of sand boil
identification and segmenting different sizes against complex
backgrounds in images being our problem domain, applying
this approach is suitable to achieve successful results.

B. TRANSFER LEARNING
Transfer learning is a technique used to apply the knowledge
gained by pretrained models on a large dataset from the
source domain to adapt learning in the target domain. This
method is beneficial when dealing with limited annotated
data or when the target domain significantly differs from the
source domain. In recent years, transfer learning has been
widely employed in semantic segmentation tasks to address
the challenges of insufficient training data and enhance
models’ generalization capabilities [6].

Transfer learning techniques commonly include using
a pretrained model as a feature extraction backbone or
fine-tuning the pretrained model. Pretrained models are
deep neural networks trained on large datasets to extract
features from images. They can be considered expert feature
extractors because they have already learned to identify
compelling features in widely divergent images, which can
be helpful for other tasks, such as image segmentation. The
pretrained model learns to identify multiple image features
and stores them as learned weights in the model’s layers
[24]. At the same time, fine-tuning involves initializing the
pretrained model’s weights with the learned representations
from the source domain and updating them in the target
domain using backpropagation. This process can be achieved
by training the entire model or freezing some layers and
updating only the remaining ones. The choice between
them depends on the availability of labeled data and the
specific requirements of the target segmentation task. This

paper introduces both techniques for preparing a U-Net-like
architecture, combining feature extraction and fine-tuning
approaches with learning to segment sand boil regions in the
images.

C. LEVEE SYSTEMS AND SAND BOILS
Levee systems are embankments or walls constructed along
rivers, lakes, or other bodies of water to protect surrounding
areas from flooding. Levees are essential in reducing the
risk of the detrimental effects of flooding on human lives,
property, and infrastructure. Therefore, the timely monitoring
and maintenance of a levee system to identify and locate
several deficiencies, like cracks, sand boils, seepages, and
animal burrowing, is crucial to minimize the threats of
potential levee failure [1]. One fundamental reason that can
lead to levee failure is internal soil erosion, as indicated by
the formation of sand boils [25] around a levee system.

FIGURE 1. Illustration of a cross-sectional view of sand boil formation in
a levee system. The high water level in the river forces water to infiltrate
through a permeable sand aquifer, resulting in a sand boil on the surface
as sand and water emerge from the porous region.

Sand boils are common hazards in a levee system asso-
ciated with subsurface erosion and under seepage [25]. An
illustration of a cross-sectional view of sand boil formation
in a levee system is shown in Fig. 1. When hydraulic pressure
increases during critical high-water periods, if the seepage
velocity is sufficient to initiate and progress piping due
to erosion of soil particles, the water seeps through the
levee’s porous surface. This leads to the accumulation of sand
mixed with water into cone-shaped formations within and
around the system [25], [26], [27]. A real-world example
of a sand boil formed in a levee system is shown in Fig. 2.
The emergence of these structures implies the occurrence of
internal soil erosion, which in turn highlights potential weak
points within a flood control structure or levee. When such
erosions cause the piping (or the void) under the levee to
expand significantly, it can lead to embankment failure [3].
Hence, accurately detecting sand boils and monitoring their
growth becomes crucial for maintaining the integrity of levee
systems during floods and minimizing disaster risk.

Traditionally, sand boils are detected through visual
inspection, which involves manually investigating the levee
for water or sand eruption signs [1] through site visits.
This method is time-consuming, labor-intensive, and may
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FIGURE 2. Example of sand boil in a levee system collected by the army
corps of engineers in the new orleans district.

not detect small, camouflaged sand boils. Another technique
involves probes or coring devices inserted into the levee to
test for the presence of sand boils [26]. This method is more
accurate than just a visual inspection, but it can be expensive
and may cause further damage to the levee.

Previous research has explored the application of image
processing and computer vision techniques to automate soil
identification in order to distinguish it from plants, roots,
grains, and other objects [28], [29]. However, traditional
methods like manual inspection [1] and aerial surveys [30]
have typically been used for sand boil detection Thus far.
Although some studies have investigated soil and plant
segmentation utilizing deep learning approaches [31], [32],
the first attempt to facilitate the levee assessment by automat-
ically locating sand boils in images has been demonstrated in
[33]. In [33], the authors generated a synthetic image dataset
and introduced machine learning-based object detection
techniques that are feasible to automate the sand boil
detection process. The object detection techniques presented
in the [33] identify and locate sand boils with a bounding
box, which may not always be feasible since sand boils can
have varying sizes and complexity in terms of uneven texture
and color between sand boils and surrounding areas, which
can make it difficult to distinguish them based on visual cues
alone, requiring more sophisticated segmentation techniques
that consider the object’s underlying geometry.

D. RESEARCH GAP
Deep learning and semantic segmentation for sand boil
detection in levee systems offer several advantages over
traditional methods. First, it can achieve superior accuracy
and efficiency in identifying sand boils, especially when they
are small or difficult to notice. Second, this approach can be
applied to extensive datasets of levee images, enabling more
comprehensive and frequent monitoring of levee systems.
Third, it is more cost-effective than conventional methods,

necessitating minimal human intervention and equipment.
It also enables the possibility of identifying issues through
remote and automated means, thereby mitigating health
and safety hazards for field inspectors. Therefore, this
study aims to leverage the advantages of deep learning
and semantic segmentation techniques to overcome the
challenges associated with manually detecting sand boils in
levee systems.

Machine learning and deep learning approaches for
applications in levee system monitoring are still in their
early stages [33], [34], [35]. Especially in [33], the authors
investigated machine learning algorithms and proposed a
stacking-based algorithm for detecting sand boils from
images using a bounding box approach for object detection.
The object detection approach provides a bounding region
for sand boils and is particularly useful when the precise
boundaries of the object are not required. In contrast,
the semantic segmentation approach allows for pixel-level
identification and precise localization of the sand boil
regions, offering a distinct advantage over the traditional
bounding box approach. Therefore, this paper showcases
the feasibility of using image segmentation techniques for
sand boil detection. Although end-to-end image semantic
segmentation architectures, specifically FCNs [7] and U-Net
variants, have been successful in medical image segmentation
[36], autonomous driving [4], [9], scene understanding [4],
and remote sensing operations [10], their application in levee
monitoring systems has also gained attention in recent years
[35]. Recent studies have shown that U-Net-like architectures
have practical applications in levee crack [37] and sinkhole
[38] detection.

The U-Net architecture has a unique structure, with an
encoding path that captures spatial or contextual information
and a symmetric decoding path that enables precise localiza-
tion. This type of architecture is well-suited to problems that
require both context and precision in identifying the location
and boundary of the object. U-Net architecture and its
variants have shown remarkable performance [39] even with
limited training data, accommodating complex and irregular
object shapes, textures, and edges–characteristics shared by
faults in the levee systems, such as cracks, sand boils,
seepages, sinkholes, and animal burrowing. Since obtaining
training and evaluation data for these levee system faults
is challenging, CNN-based end-to-end image segmentation
architectures appear suitable for their detection.

The proposed method in this study addresses the feasibility
of using semantic segmentation to detect sand boils in
levee systems and presents a lightweight model. Specifically,
the proposed method uses an encoder-decoder architecture
with skip connections built from ResNet50V2-based encoder
blocks to decoder blocks. Furthermore, a lightweight seman-
tic segmentation model efficient in inference time, cost, and
compute requirements during training and deployment offers
a practical solution for accurately detecting sand boils in
resource-constrained environments, including edge devices,
low-battery-powered systems, and real-time applications.
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FIGURE 3. Proposed SandBoilNet architecture featuring an encoder-decoder design with skip connection. The architecture comprises three main building
blocks: Module A is the proposed inception module shown in Fig. 4. PPCSAttention Block is the proposed attention module displayed in Module B of
Fig. 5. PCAI Skip Connection Block, represented in Fig.6, is a skip connection incorporating multi-scale filters and a PCA-based channel-spatial attention
module.

III. PROPOSED ARCHITECTURE
The proposed architecture for the sand boil dataset utilizes an
encoder-decoder designwith a skip connection, incorporating
multi-scale filters and a PCA-based channel-spatial attention
module to achieve effective feature extraction, as shown
in Fig. 3. The key objective is to segment sand boil
regions by reducing the number of training parameters
and employing controlled transfer learning through partial
fine-tuning and feature compression techniques. We use
ResNet50V2 [40] model trained on ImageNet [41] dataset.
To enhance the model’s efficacy in selecting relevant
features for the target domain, the architecture integrates
domain adaptation via PCA feature representation in addition
to integrating improved pyramidal pooling channel-spatial
attention module. The architecture comprises three primary
building blocks, including an inception-like module, that
collectively improve the model’s performance in segmenting
sand boil regions. Fig. 6 shows the two types of PCA-
based skip connection modules used in the architecture.
Module D implements a residual connection between two
feature recalibration modules applied in parallel to the
feature map from selected layers of the ResNet50V2 model,
followed by a proposed multi-scale filters inception module
for high-dimensional feature representation. In contrast,

Module C represents low-dimensional feature representation
from the PCA layer as a residual connection to the output
of the parallel branch with attention block and inception
module. These blocks represent two different approaches to
skip connection from encoder blocks to the corresponding
decoder blocks that assist the decoder layers in recovering
the fine-grained spatial details. The decoder block in the pro-
posed architecture is simple, with the serialized application
of the proposed inception module and attention module to
the concatenated feature map of the upsampling path in the
decoder block. We discuss details on the remaining building
blocks in the subsections below.

A. LEAKYRELU INCEPTION MODULE
Inspired by the Inception family [42], we propose a
LeakyReLU inception module that improves the segmenta-
tion of sand boil appearing at different scales and orientations
by capturing features at multiple scales using different filter
sizes in parallel. As represented in Fig. 4, the LeakyReLU
inception module takes an input tensor of size [batch_size,
height, width, n_channels] along the number of channels for
the output tensor, i.e., filters. The module comprises convo-
lution operations with filters of 1 × 1, 3 × 3, and 5 × 5 to
obtain multiple-scale features. Each convolution operation is
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FIGURE 4. Module A is a multi-scale filters-based proposed inception
module using GroupNormalization for standardizing the feature map and
LeakyReLu activation to add non-linearity.

followed by group normalization and LeakyReLU activation,
forming an Initial Convolution (InitConv) Block. To capture
additional global features, max-pooling with a filter size
of 3× 3 and stride of 1 is applied on the input tensor, followed
by an InitConv block of filter size 1 × 1. All the outputs
are concatenated along the channel axis to form an output
tensor [batch_size, height, width, filters], followed by group
normalization and leaky rectified linear unit (LeakyReLU)
activation with an alpha of 0.02.

The proposed architecture uses Group Normalization (GN)
[43] with a group size equal to the total number of channels
employed in the inceptionmodule. The intuition behind using
GN is mainly because of the assumption that features within
a channel are related and meaningful enough to normalize
together and the intention of using a small batch size
during training. In this module, feature maps from different
convolutions are concatenated along the channel dimension
to form a larger feature map containing diverse features.
When applied, GN standardizes the concatenated feature map
for each channel independently but across all spatial locations
in that channel. This reduces dependency on the batch size
and internal covariate shift and helps ensure that all channels
have the same scale.

Additionally, the LeakyReLU activation function is used
in the architecture instead of ReLU activation. The ReLU
activation function can sometimes lead to dead neurons,
especially in the deeper architecture when the input is
consistently less than zero; this is also called the ‘‘dying
ReLU’’ problem. Using LeakyReLU prevents the ‘‘dying
ReLU’’ problem by allowing small negative activation
values and improving the model’s ability to learn more
complex and nuanced features [44]. The combination of
group normalization and LeakyReLU allows the model to
converge faster and achieve better performance, stability, and
robustness, especially when the batch size is small for the
sand boil dataset.

B. PYRAMIDAL POOLING CHANNEL-SPATIAL ATTENTION
MODULE
Pyramid Pooling Module (PPM) was introduced in [20] to
capture global contextual information using custom kernel
sizes of 1 × 1, 2 × 2, 3× 3, and 6 × 6 strides.
The pooling layers of varying scales applied to the input
feature map capture relationships and dependencies among
different regions of an input feature map. Likewise, Squeeze
and Excitation (SE) Block [45] and Convolutional Block
Attention Module (CBAM) [46] are two simple yet powerful
attention mechanisms that each focus on using pooling
and sigmoid layers along with elementwise addition and
multiplication operations to emphasize essential features and
suppress trivial ones in the network architecture. Inspired
by these light-weighted attention mechanisms for CNNs,
we propose a novel Pyramidal Pooling Channel-Spatial
(PPCS) Attention module in this research, shown in Fig. 5.
In this module, we developed a novel approach combining

pyramidal pooling channel attention block and spatial
attention for improved performance, as depicted in Fig. 5.
The proposed method incorporates varying kernel sizes
of 2 × 2, 4 × 4, and 8 × 8 on max-pooling layers to
focus on multi-scale spatial details. Additionally, global
max-pooling layers are utilized after each layer to acquire
channel-wise descriptors, followed by a dense layer with
ReLU activation that learn the relevant channel-wise attention
weights. Eventually, weighted features from all scales are
aggregated through element-wise addition, while sigmoid
activation is employed to represent channel-specific infor-
mation accurately. Lastly, when this refined feature map
is multiplied element-wise with the input tensor using an
attention map, highlighting the most critical channels would
be achieved, leading to enhanced overall results.

C. PCA-BASED FEATURE REPRESENTATION
Principal Component Analysis (PCA) is a widely used
dimensionality reduction technique in machine learning and
data analysis which helps to map higher dimensional feature
space into a lower dimensional while preserving the essential
features in the dataset [47]. PCA is a widely-usedmultivariate
statistical technique that identifies and extracts valuable
insights from complex datasets. In this study, we propose
that integrating PCA into our pretrained model’s feature
map will enhance its ability to adapt to new domains.
Since the pretrained layers generate a reduced feature map
shape, PCA is used to compute a new set of orthogonal
variables or principal components that represent channels
adapting to the sand boil dataset’s new domain. Therefore,
we decreased the number of channels in the output feature
map of the pretrained model to half of the input feature
map channels by selecting a subset of principal components
with the highest variances. This retained the most significant
features of the input images while reducing the channel-wise
dimensionality, which helped to reveal underlying patterns
and relationships within the batch size of data to facilitate
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FIGURE 5. Proposed Pyramidal Pooling Channel-Spatial Attention (PPCSAttention) is Module B. The module utilizes max-pooling for multi-scale spatial
details, global max-pooling layers to acquire channel-wise descriptors, and a convolution layer to capture important spatial information.

the training. As depicted in Fig. 6, our proposed architecture
incorporates a custom-built PCA Layer to facilitate this
process effectively.

The PCA layer takes the input tensor from the encoder
block with a [batch_size, height, width, n_channels] shape.
Initially, we transform this tensor into a flattened array
with dimensions of [batch_size, height*width, n_channels].
Each feature vector within this flattened array pertains
to a specific location in the original tensor and contains
characteristic values for all channels at that particular posi-
tion. This approach captures correlations between various
spatial locations and channels by performing PCA analysis
on concatenated feature vectors across all channels in the
input tensor. Generating a covariance matrix by centering
an input tensor allows the computation of eigenvalues and
eigenvectors essential for implementing the PCA technique.
PCA on the pretrained model’s feature map primarily
determines fundamental features while disregarding any extra
or redundant ones. Finally, the centered input tensor is
projected onto the highest-ranked principal components to
achieve a feature map organized by channels, considering
their relative contributions towards overall variation as
indicated by eigenvalues. The resulting feature vector is
subsequently subjected to projection onto half of the new
principal components in Module C, whereas in Module D,
the feature map is projected to all the principal components.

D. PARTIAL-FINETUNING
This paper introduces partial fine-tuning in the proposed
architecture to optimize the learned representation from
a pretrained model, ResNet50v2 [40], trained on a large
ImageNet dataset [41] (1.4 million images and 1,000
different classes). Both feature extraction and fine-tuning
are established transfer learning methodologies frequently
employed in image segmentation tasks. We hypothesize that
by using the early layers of the pretrained model to extract

FIGURE 6. Module C and Module D implement a residual connection
between spatial PCA projection of pretrained feature map and branch
with Pyramidal Pooling Channel Spatial Attention (PPCSAttention)
module followed by LeakyReLU inception block.

features and fine-tuning the last few layers, including the
bottleneck layer, the overall model will be able to learn on
the sand boil dataset while maximizing the features from its
existing knowledge base.

In the proposed architecture, all the layers except for
the last 48 layers of pretrained ResNet50v2 are fine-tuned,
while others are frozen. Lower layers of the pretrained
model, which are used as the encoders, are kept frozen for
feature extractors, whereas the later layers, which include
the bottleneck layer, are fine-tuned. The reason for partial
fine-tuning is that the lower layers of the pretrained model
are responsible for learning low-level features such as edges,
blobs, and corners. The latter layers, closer to the output layer,
allow the model to adapt to the task-specific task of sand
boil segmentation. Furthermore, partial fine-tuning reduces
the potential for overfitting, as adding more fine-tuned layers
would increase the number of training parameters in the
network [48].
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Another essential technique applied during partial
fine-tuning is using a low-value learning rate for the
optimizer so as not to cause extensive transformations on
representations associated with the fine-tuning layer [49]. In
addition to this, all the BatchNormalization (BN) layers in the
pretrained model are set non-trainable to keep layers in
inference mode. When fine-tuning on a sand boil dataset,
the data differs significantly from the original ImageNet
dataset for training the ResNet50V2 model. This causes
batch normalization statistics to be inconsistent, and unfrozen
batch normalization will lead to new parameters that do not
align with pretrained network optimization. Consequently,
freezing batch normalization during fine-tuning prevents
parameter conflicts and maintains learned features of the
pretrained models without requiring extensive training or
facing challenges due to limited data size [50].

IV. DATA AND METHODOLOGY
A. SAND BOIL DATASET
Segmenting sand boils using image segmentation presents
two significant challenges, even though sand boils exhibit
distinct round/oval shape characteristics. First, the sand
boils can be small and intricate, making them difficult to
distinguish from the surroundings, as depicted in Fig. 7 (a).
Second, various forms of noise can affect images of sand
boils, including variations in texture and color between
sand boils and their surrounding area, causing difficulties in
identifying them solely based on visual cues. The examples
shown in Fig. 7 (b), (c), and (d) indicate the second
issue. To address these issues, advanced image segmentation
algorithms must be developed to handle noisy images and
effectively identify sand boils with diverse textures and
colors.

The Army Corps of Engineers in the New Orleans District
collected a sand boil dataset as part of their levee monitoring
efforts. We selected 255 images from this collection for
our research, choosing those displaying uniquely identifiable
features concerning sand boils against various backgrounds.
These images were manually annotated using the VGG
Annotator tool [51] using an eclipse shape to identify sand
boil in the images. Then binary masks for each image were
generated from the exported JSONfilewith annotations using
a Python script. Twenty percent of images with their ground
truthwere separated as an independent test dataset. Regarding
the remaining images, there were not enough for training
a deep neural network without encountering overfitting.
To address this limitation, we applied 30 augmentation
techniques to 204 images using Albumentations package
[52]. These techniques included geometric and elastic
transformations, channel adjustments, color modifications,
and filter operations. The aim was to expand the size of
our training and validation datasets in order to enhance
their effectiveness during training. These techniques were
chosen through an iterative process that involved manual
inspection of all the augmented images. We found that

FIGURE 7. Examples from sand boil dataset. Each example (a), (b), (c),
(d), and (e) includes three images: the original image, the ground truth,
and the ground truth overlaid on the original image. Notably, in example
(a), small-sized sand boils are observed in the dried grassland area, while
in example (e), a sand boil is seen to be surrounded by sandbags, which
serve the purpose of preventing further enlargement.

some augmentation methods, such as random cropping,
normalizing, padding, and random snow, did not appear
appropriate, so they were discarded, leaving us with 30 aug-
mentations, including geometric transformations, pixel-level
modifications, channel transformations, filter operations, and
color adjustments, generating 6324 augmented images with
their ground truth. While some of these augmentations were
applied solely to the images, others were also applied to their
corresponding binary masks, provided these techniques did
not compromise the integrity of the masks.

In addition, the augmented images were enhanced by
including negative images along with corresponding black
masks. The inclusion of contextual negative images con-
tributed to more diverse background variations in the dataset,
enabling better learning for the model. The negative dataset
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includes images of levees without any faults, images of levees
with seepages, pothole samples from pothole600 [53] dataset,
images of the levee with cracks [37], and animal burrowing,
resulting in a total of 6853 training and validation images.
To ensure consistency across experiments, we divided our
overall dataset into training (74%) and validation (26%)
datasets using a shared seed value. Furthermore, all pixel
values were normalized by dividing them by 255 and resized
to dimensions of 512× 512 prior to being fed into themodels.
By employing this approach, we expanded our training
data set extensively while incorporating greater diversity.
As a result, our models exhibited improved performance in
detecting sand boils.

B. BASELINE AND EXISTING MODELS
A partial fine-tuning-based approach is utilized for the
baseline model, as illustrated in Fig. 8. The early layers
of ResNet50v2 [40] serve as feature extractors, with partial
fine-tuning applied to the layers at and beyond the bottleneck
layer. Establishing a baseline model is crucial for developing
the proposed model. It enables establishing performance
benchmarks as a reference point for measuring improvements
made by proposed models or modifications. By comparing
the proposed model with the baseline, we can determine
which modifications or enhancements lead to better segmen-
tation results on the sand boil dataset. The baseline model in
Fig. 8 has low-level features from the encoders concatenated
to the decoder layers via a direct skip connection, denoted as
None.

Furthermore, we have a sand boil dataset, eventually
informing the development of a robust segmentation model
tailored to this specific application. The selection of these
U-Net-based models is further supported by their successful
application in studies such as levee crack segmentation
[37] and sinkhole detection [38], which demonstrate their
relevance in detecting levee deficiencies.

C. METRICS AND LOSS FUNCTION
Accurately detecting and segmenting sand boils is crucial in
disaster management, and the performance of deep learning
models for this task is highly dependent on selecting appro-
priate loss functions and evaluation metrics. Consequently,
the proposed models for sand boil detection were evaluated
based on their ability to accurately locate sand boil and
compute overlap scores between the predicted and ground
truth masks. The sand boil dataset is highly imbalanced,
having approximately ten percent of sand boil pixels and
the remaining ninety percent of background pixels. In such
real-world scenarios, accuracy alone can be misleading as
it will not effectively address the performance of the model
in the minority class, as we have for the sand boil dataset.
So balanced accuracy (BA) serves well as it focuses on
the model’s true performance as presented in Equation 5.
Furthermore, metrics like Intersection over Union (IoU)
in Equation 1 and Dice Coefficient (DC) in Equation 2

measure the similarity between ground truth and predicted
segmentation mask. Furthermore, the combination of loss
functions – Binary Cross-Entropy (BCE) loss and dice loss –
provide a more comprehensive evaluation of the performance
of the sand boil detection models. Their use is considered
more appropriate than pixel accuracy and loss alone [54].

IoU =
|Ypredicted ∩ Ygt |
|Ypredicted ∪ Ygt |

(1)

Dice Coefficient (DC) =
2 · |Ypredicted ∩ Ygt |
|Ypredicted | + |Ygt |

(2)

Sensitivity (TPR) =
TP

TP+ FN
(3)

Specificity (TNR) =
TN

TN + FP
(4)

Balanced Accuracy (BA) =
Sensitivity+ Specificity

2
(5)

Macro F1 Score (MaF1) =
2 · Precision · Recall
Precision+ Recall

(6)

BCE Loss = −(Ygt · log(Yp) + (1 − Ygt )

· log(1 − Yp) (7)

BCE Dice Loss = α · BCE Loss+ β · Dice Loss

(8)

In these equations, Ypredicted represents the predicted sets
of pixels, while Ygt represents the ground truth sets of
pixels. TP, TN , FP, and FN represent true positive, true
negative, false positive, and false negative segmentation of
sand boil pixels, respectively. Yp represents the predicted
probability of the sand boil class. Equation 1 computes
the Intersection over Union (IoU) metric and measures the
overlap between the predicted and ground truth segmentation
mask. Equation 2 computes the Dice coefficient computing
the similarity between predicted and ground truth masks.

Since the goal is to classify each pixel in an image
as belonging to either the sand boil (positive) class or
background (negative) class, Equation 6 and Equation 7
compute macro F1 score and binary cross-entropy (BCE)
loss, respectively, which are commonly used in binary
segmentation tasks. The macro F1 score in Equation 6
provides a balanced measure of the average of precision
and recall over all test images, providing a harmonic mean
of precision and recall. It helps to evaluate the overall
performance of the model across all the test images. On the
other hand, the BCE loss function measures the difference
between the predicted probabilities and the actual labels of
the examples in the training data. The BCE loss is used to
train the model to accurately predict the presence or absence
of the object of interest in the image.

Similarly, Equation 5 provides an average measure of
sensitivity and specificity which represents the ability of
the model to correctly classify actual sand boil pixels and
background pixels, respectively. The loss function used in
this research is Equation 8, which computes a weighted
combination of the BCE loss and the Dice loss. Here, α = 0.5
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TABLE 1. Model statistics. TPs, NTPs, and MS (MB) represent trainable parameters, non-trainable parameters, and model size (in megabytes) for each
architecture used in the study, respectively. Similarly, TT (Hrs), IT-CPU (Sec), and IT-GPU (Sec) represent training time in hours, inference time in CPU and
GPU in seconds, respectively.

FIGURE 8. Baseline architecture with layers from pretrained ResNet50V2 model as feature extractor with either SE Block or CBAM Block or proposed
attention block followed by low parameterized LeakyRI or no attention block followed by either Conv block or LeakyRI block applied as skip connection.

and β = 0.5 are weights provided to BCE loss and dice
loss, respectively, where α + β = 1. The BCE-Dice loss
function encourages the model to segment the object while

maintaining well-defined boundaries accurately. The Dice
loss helps ensure that the model’s predictions are similar
to the ground truth mask. In contrast, the BCE loss helps
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minimize false positives and false negatives by assigning a
higher penalty to these false predictions. Using the BCE-Dice
loss can improve the accuracy of the model’s predictions and
make them more useful in practical applications.

D. EXPERIMENTAL SETUP
We built the segmentation models using Keras [55] and
trained them on a single NVIDIA A100 GPU. For evaluation
of use of computational resources, the training and inference
time in the same GPU is recorded along with the inference
performance of models in the CPU (Intel Xeon Processor
E5-2620) as well as observed in Table 1. We initialized
the convolutional layers using the He Initialization [56]
method with the same seed value to ensure consistency of
initial training parameters and training and validation datasets
across all models. This approach allowed us to effectively
train robust segmentation models for sand boil detection,
demonstrating high accuracy and generalization ability on
the independent test dataset. The training process of the
segmentation models involved minimizing a weighted BCE
Dice loss, as given in Equation 8, using an Adam optimizer.
The models were trained for a maximum of 200 epochs
with a batch size of 8 and an initial learning rate of 4e-4.
Early stopping was implemented after eight epochs to prevent
overfitting, and the learning rate decayed by 0.06 every six
epochs when the validation loss plateaued. Our primary goal
was to segment sand boils accurately. Thus, the model with
the highest Dice Coefficient (DC) on the validation dataset
was saved for evaluation on an independent test dataset.

FIGURE 9. BCE-Dice loss on validation data during training epochs for the
models. The proposed model, SandBoilNet-Low-Dim, exhibits lower
validation loss values over training epochs and smooth learning
compared to other models because of controlled transfer learning.

V. RESULTS AND ANALYSIS
This section evaluates the models quantitatively using
independent levee sand boil images and qualitatively using
the inferences generated by the models. The overall test
dataset is used for quantitative and qualitative analysis.

However, in the ablation study, the test dataset is divided
into two sections to evaluate the robustness of the models,
especially the effectiveness of attention modules. The first
dataset component contains test images in which sand boil
regions are developed in and near grassland - 30 images with
related masks. The second contains 21 test images without
grassland. In other words, we are attempting to understand the
efficacy of the models in identifying sand boil regions despite
the complex and textural backgrounds, such as muddy water,
grassland, and mixed ones.

TABLE 2. Metric results of models on levee sand boil dataset. The best
metrics results are shown in bold. The model with the highest Intersection
over Union (IoU) score is indicated in both bold and underlined.

A. QUANTITATIVE AND QUALITATIVE EVALUATION
The models trained on augmented sand boil images are
evaluated using independent test images. Table 1 presents
BA, IoU of the sand boil, and Macro F1 score for state-of-
the-art and proposed models. Fig. 10 shows the evaluation
of the proposed and the state-of-the-art models, U-Net,
Attention U-Net, and U-Net++, on independent test images.
All the models were evaluated in the same GPU where
they were trained. The validation loss graph of each model
during training epochs is plotted in Fig. 9. The loss graph
indicates that the state-of-the-art models struggle to make
accurate predictions on the validation data due to overfitting
because of larger training parameters compared to the
proposed model. It is evident from the loss chart that baseline
and proposed models implementing feature extraction and
fine-tuning have more satisfactory learning during training.
It also indicates that models that implement some degree
of transfer learning converge faster in comparison to those
trained from scratch. This suggests a preference towards
transfer learning methodologies.

The training time for the proposed model was approxi-
mately 1.79 hours on a single NVIDIA A100 GPU. Subse-
quently, in terms of inference-time computation, generating
predicted segmentation masks have an average duration
of 0.16 seconds per image with a higher average IoU at
around 57.43%. This level of performance is noteworthy,
particularly during real-world scenarios where there is a
significant disparity between positive and negative pixel
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FIGURE 10. Example inferences on test images. Qualitative visual comparison between our proposed model against state-of-the-art models. M1, M2,
M3, M4, and M5 represent trained U-Net, MultiResUNet, Attention U-Net, U-Net++, and SandBoilNet-Low-Dim, respectively.

classes in images. Fig. 10 represents the evaluation of the
proposed and the state-of-the-art models, U-Net, Attention
U-Net, and U-Net++, on independent test images. It shows
that models trained from scratch cannot learn the properties

of the sand boil and background with a small dataset and
fewer training epochs. The area sand boil regions predicted
by existing models are comparatively low compared to the
proposed model that uses controlled transfer learning. It can
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also be noted that the proposed model identifies the area and
boundary of sand boil regions even on a noisy background
which is possible through the attention module introduced in
the skip connection.

Table 2 shows a quantitative evaluation of models through
balanced accuracy (BA), IoU, DC, and Macro F1 scores for
the test dataset. The results demonstrate the superior per-
formance of the proposed model. Specifically, the proposed
model (SandBoilNet) outperforms U-Net, MultiResUNet,
AttentionU-Net, andU-Net++ by 28.97%, 33.59%, 28.87%,
and 34.60%, respectively, in terms of IoU for sand boil
segmentation. This substantial improvement can be attributed
to the fine-tuning approach employed in this research paper.
By fine-tuning the pretrained weights with the sand boil
dataset, the proposed model can adapt and specialize its
learned features to the task at hand, resulting in remarkably
better performance than the other models.

On average, the models achieve a success rate of
fifty-seven percent in locating and segmenting sand boil
regions in the levee images. However, due to similarities in
color, texture, structure, and porosity between soil and sand
boils, the models sometimes mistakenly predict soil pixels
as sand boil regions for animal burrow faults within the
levee system as shown Fig. 11a. Interestingly, SandBoilNet
demonstrated an ability to differentiate between sand boils
and seepage regions represented in Fig. 11b, which also
consist of soil and water. This distinction may be attributed
partially to the circular shape of a typical sand boil, with its
soil-like texture resembling that of animal-formed burrows.

Additionally, we evaluated the models based on the
inferences on the samples of two separate public test
datasets: Pothole600 [53], levee crack test dataset [37] and
images of levee with cases of animal burrowing. In these
evaluations, we compared the proposedmodel to state-of-the-
art models. The examples for predicting sand boils for out-of-
domain tests are illustrated in Fig. 12. Notably, potholes are
characterized by smaller, rounded shapes formed in complex
backgrounds, whereas cracks are developed in the levee
system. The test images with burrows also exhibit similar
properties as sand boils can be observed in original image 3
and 8 in Fig. 12. As a result, negative images depicting
the formation of potholes on concrete and asphalt surface,
burrows and cracks in levees were opted for during model
evaluation through inferences.

B. ABLATION STUDY
This section compares advanced deep learning (DL) tech-
niques incorporated within our proposed architecture. Our
primary objective is to verify the effectiveness of the com-
bination of building blocks. For this purpose, we evaluated
SandBoilNet-Low-Dim against four other configurations.
These included a baseline model, SandBoilNet-High-Dim
with Squeeze-and-Excitation (SE) block, and a Convolutional
Block Attention Module (CBAM) in place of the proposed
attention module and SandBoilNet-High-Dim with a feature
space same in terms of the number of channels of the

TABLE 3. Metric results of variation of the proposed model with SE block,
CBAM block, proposed attention module, without PCA, and low
dimensional representation via PCA on the levee sand boil dataset. The
best results for each metric are shown in bold. The model with the
highest Intersection over Union (IoU) score is indicated in both bold and
underlined.

pretrained layer, and SandBoilNet without PCA feature
mapping.

Table 3 illustrates the performance of these models using
Intersection over Union (IoU), TPR or Recall, and Macro
F1 score metrics as key metrics. The results indicate that
SandBoilNet-Low-Dim exhibits a superior performance of
57.43% on the independent levee sand boil dataset, thus
validating the effectiveness of the proposed architecture.
Specifically, when the feature map’s channel count is kept the
same through PCA, the resulting model, SandBoilNet-PCA-
High-Dim, impacts the models’ IoU dropping to 55.59%.
Likewise, The performance of SandBoilNet-No-PCA is
comparatively better in terms of BA and TPR, with 86.35%
and 75.30%, respectively; however, IoU is 55.50%. This
indicates that the model performs well in terms of overall
accuracy and correctly identifying sand boil pixels, but it
struggles with precise localization or segmenting them from
the background. Overall, the table shows that the model’s
PCA-based feature presentation helps the model to increase
adaptability to the sand boil dataset.

Fig. 13 and Fig. 14 display model inferences on selected
independent test images with and without grassland in
the background, respectively. It is clear from these fig-
ures that SandBoilNet, with the proposed PPCSAttention
module, demonstrates outstanding performance in locating
and segmenting sand boils, mainly when the background is
complex. This suggests that our proposed attention block
can effectively harness global information, thereby enabling
it to focus on sand boil regions even within complicated
environments. Contrarily, the inferences drawn from the
SandBoilNet incorporating the SE block and the SandBoilNet
without PCA (as presented by B3 and B4, respectively,
in Fig. 14) display a certain level of competitiveness with
the SandBoilNet featuring our proposed attention module;
however, the models encounter difficulties. These chal-
lenges become especially prominent when handling complex

VOLUME 11, 2023 126275



M. Panta et al.: Deep Learning Approach for Accurate Segmentation of Sand Boils in Levee Systems

FIGURE 11. Examples from the levee system domain. SandBoilNet-Low-Dim model failing to detect other levee-related deficiencies
such animal burrowings in (a) and seepages in (b). Each example includes six images: the original image in the first row and predicted
segmentation mask overlaid on the original image in the second row.

backgrounds and scenarios where the global context needs to
be considered.

TABLE 4. Metric results on the adopted version of SandBoilNet, where
the LeakyRI Module is included in the bottleneck layer represented by the
model and various attention modules for comparison. The best results for
each metric are highlighted in bold. The model with the highest
Intersection over Union (IoU) score is indicated in both bold and
underlined.

In line with our hypothesis, we suggest a fine-tuning
approach where only encoder layers adapted from a pre-
trained model are set false to trainable, i.e., frozen. The focus
of the fine-tuning process is solely on the bottleneck layer.
By isolating and prioritizing the fine-tuning of the bottleneck
layer, we aim tomaximize the learning potential of ourmodel.

To assess the implications of the fine-tuning proce-
dure adopted in this research paper, we integrated a
low-parameterized version of the LeakyRI Block into the bot-
tleneck layer, thereby enhancing its adaptability to datasets
from the target domain during upsampling. The first adapta-
tion of the SandBoilNet model features no attention modules
but includes two convolutional layers followed by Batch
Normalization (BN) and ReLU activation after each opera-
tion. Meanwhile, all four remaining models include attention
modules alongside the low-parameterized version of the
LeakyRI module. To obtain a low-parameterized version, the
normal convolution of the first block of 3 × 3 and 5 × 5 con-
volutions in the inception module represented in Fig. 4 is
replaced by the corresponding filter size of the depthwise
separable convolution [57] layer used as DSC layer. These
modifications help analyze the significance of parallel
convolution branches with multiple-sized filters to capture
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FIGURE 12. Examples from independent out-of-domain negative test dataset. Each example includes six images: the
original image and the predicted mask for the original image from M1-U-Net, M2-MultiResUNet, M3-Attention U-Net,
M4-U-Net++, and M5-SandBoilNet-Low-Dim, respectively overlaid on the original image.
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FIGURE 13. Example inferences on test images with grassland as background. A comparison of baseline architecture, SandBoilNet with CBAM or SE or
no PCA with proposed PPCSAttention block or best performing proposed SandBoilNet model represented by B0, B1, B2, B3, and B4, respectively.

FIGURE 14. Example inference on test images with minimal or no grassland as background. A comparison of baseline architecture, SandBoilNet with
CBAM or SE or no PCA with proposed PPCSAttention block or best performing proposed SandBoilNet model represented by B0, B1, B2, B3, and B4,
respectively.
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FIGURE 15. Example inference on overall test images. Visual comparison of the adopted version of SandBoilNet where LeakyRI Module is included in
the bottleneck layer represented by the Model along with various attention modules for comparison, represented by IM0 for Conv Block instead of
LeakyRI, IM1 with LeakyRI, IM2 with CBAM and LeakyRI, IM3 with SE and LeakyRI, and IM4 with proposed PPCSAttention and LeakyRI.

multiscale features, leading to improved performance of
models as shown in Table 4.

The utilization of various advanced techniques, including
the inception module, attention block, PCA-based feature

compression, GroupNormalization, and LeakyReLU acti-
vation function, has significantly enhanced the network
architecture’s capability to perform controlled transfer learn-
ing from a pretrained model. Additionally, fine-tuning the
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bottleneck layer on the sand boil dataset has facilitated the
acquisition of specific features related to the target domain
dataset. As depicted in Fig. 15, incorporating a simple yet
powerful, pyramidal pooling-based attention module has had
an instrumental impact in boosting the model’s ability to
learn sand boil segmentation during training. These findings
highlight the efficacy of our proposed architecture and fine-
tuning approach.

VI. CONCLUSION
This paper presents a deep neural network that uses controlled
transfer learning to locate and segment sand boil in images.
The model combines CNN with depthwise convolution
for local information extraction. At the same time, the
pyramidal pooling channel spatial attention module is used
for global contextual information extraction to segment sand
boil precisely. In addition, the proposed model, SandBoilNet,
effectively addresses the vanishing gradient problem during
training through residual connection comprising of PCA-
based transformation of feature maps from the pretrained
model and attention module. Our proposed model, Sand-
BoilNet, outperformed CNN-based state-of-the-art methods
in sand boil segmentation, confirming its suitability for
better levee system monitoring tasks. Furthermore, this work
contributes significantly to the field, showcasing the power
of deep learning techniques in solving complex real-world
problems. Code and data can be found here.
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