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ABSTRACT It is important to understand the mechanism of travel location choices, since the dynamic
individual behavior would lead to the evolution of the network. The existing location choice researches
usually based on the static and perfect information, and analyzed each step of the travel independently. This
research considers the interaction between individuals on a series of trips in the travel chain by incorporating
the spatial-temporal bounded rationality estimation. The Indifference Zone and information sharing in the
travel process are defined to explore the spatial and temporal sides. A within-day location choice model is
developed based on the spatial benefit and temporal cost. The proposed spatial-temporal bounded rationality
LSTM model is verified in five cities networks in China, and it shows the 8.65% and 20.30% improvement,
respectively, compared to the spatial bounded rationality LSTM models and perfect rationality LSTM
models. In addition, the improvement becomesmore pronouncedwhenmore alternative locations (the largest
city improve 31.65%), more serious congestion (improve 27.45%), more complex chain (improve 13.85%),
and more stable weight (improve 22.88%). The proposed dynamic decision model with bounded rationality
would provide insights for travel chain prediction in the complex urban network.

INDEX TERMS Location choice, bounded rationality, indifference zone, information sharing, within-day
travel.

I. INTRODUCTION
Dynamic location decision-making is an important part of
the travel chain, which is related to the accurate analysis of
the nature and complexity of travel activities. In the process
of travel activities, individual location decision and selection
behavior often lead to the evolution of spatial-temporal dis-
tribution characteristics of network traffic flow. It is helpful
for traffic planners and managers to make scientific traffic
organization plans and management measures by studying
individual location decision and choice behavior and clarify-
ing the influence mechanism of location choices during travel
activities.

Most existing location choices researches analyze each trip
independently, applying classical utility maximum functions
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to provide a behavioral basis for gravity, entropy, and other
spatial interaction models. It is assumed that an individ-
ual allocates a travel budget, visits the area with a specific
frequency that has spatial benefit, and maximizes the total
utility obtained from the visits. The interactive pattern of
‘instantaneous simultaneous’ location choice is achieved as
simultaneous decisions. However, when attempting to realis-
tically represent individual travel patterns, the complexity of
the model increases rapidly, and even analytical solutions are
not available. Even so, the discreteness of individual travel
choices is usually ignored, and there is a lack of consideration
of possible interactions among choices made by individuals
in a series of steps in the travel chain [1]. In addition, most
of the existing travel decision selection models focus on static
and perfect information, and few research modeled the choice
decision behavior for dynamic, bounded rationality (BR) or
perceptual heterogeneity.
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Aiming to address the gaps in the literature, this paper pro-
poses a dynamic location choices model. The spatial benefit
based on the Indifference Zone and the temporal cost based
on the information sharing are considered in the BR estima-
tion with realistic user behavior and network dynamics. It is
assumed that when travelers choose the location, the total
utility function is affected by the travel spatial benefit and
temporal cost. In particular, the following contributions are
highlighted (comprehensive literature reviews on individual
topics are provided in Section II).

(1) Dynamic decision-making under multi-step travel
chain. A few studies have recognized that individuals’
perception of the expected utility of locations may vary
dynamically, but it’s hard to measure people exhibit inertia in
their decision-making. This paper delves further into inves-
tigating the inception-to-end inertia throughout the travel
process, considering the influence of the previously vis-
ited places and the departure time. The established dynamic
decision-making model aims to capture the step-by-step pro-
gression of location selection during travel activities.

(2) Utility expression incorporating temporal ele-
ments. Current literature on location choices has primarily
focused on travelers’ learning and decision-making pro-
cesses, often employing static daily representations to sim-
plify the selection process. The decision-making process
discussed in this paper considers the aforementioned factors
as time-dependent variables and regard travel utility as spatial
benefit and temporal cost two parts.

(3) Location choice model extension with BR mech-
anism. Most of the existing research paying less attention
to analyzing the underlying mechanism of the location
choice process, the modeling of travel locations has typically
assumed perfect information or rationality, resulting in deter-
ministic within-day choices. However, the dynamics of these
systems necessitate an exploration of the deviation rates aris-
ing fromBR. This paper posits that travelers’ location choices
should be determined by two key factors: the perceived time
requirement for each alternative location and the satisfac-
tion of the time interval between departure and expected
arrival.

(4) Realistic mobility in large-scale networks. While a
few dynamic studies have been conducted in smaller net-
works, they fail to fully consider the interplay between
multiple forward and backward travel steps within a day. This
paper addresses these gaps, we employ the BR mechanism
for describing the within-day traffic dynamics in large-scale
traffic networks (e.g. the Beijing network) while capturing
realistic traffic phenomena. This is crucial for analyzing real-
world networks.

The remainder of this paper is organized as follows.
Section II offers a review of relevant literature on location
choice modelling and bounded rationality. We present the
proposed travel bounded rationality estimation in Section III.
Location choice model considering spatial-temporal bounded
rationality is described in Section IV. The dynamic models
are demonstrated on the Beijing and other five cities networks

in Section V. Finally, Section VI offers some managerial
insights and concluding remarks.

II. LITERATURE REVIEW
This section offers a comprehensive appraisal of prior
investigations pertaining to location choices and bounded
rationality, illuminating the factors and models that scholars
have diligently examined. Traditionally, prevailing location
choicemodels have rested upon the foundation of utility func-
tions, yet the perceived expected utility of a given location
is inherently dynamic, susceptible to change over time, and
influenced by the already traversed destinations. Although
numerous influencing factors have been identified, unrav-
eling the intricacies surrounding location choice remains
an arduous endeavor. Despite the extensive corpus of liter-
ature addressing travelers’ bounded rationality in location
decision-making, scant attention has been devoted to encom-
passing the multidimensionality of bounded rationality from
both spatial and temporal vantages. Hence, it is imperative
to integrate the temporal dimension within the travel utility
model, enabling a more comprehensive comprehension of the
variables shaping travelers’ decisions and fostering enhanced
precision in location choice models.

In the realm of investigating the determinants of location
choices, extant scholarly works have predominantly exam-
ined two categories of influencing factors. On one hand,
personal attributes, encompassing gender, age, familial cir-
cumstances, educational attainment, and annual household
income, have been scrutinized. On the other hand, travel
attributes, such as travel distance, purpose, mode of trans-
portation, presence of transfers, and time requirements, have
been analyzed. Huang and Levinson [2] delved into the influ-
ence of land use, road network structure, and travel axis on
location choice, leveraging GPS travel data. Clifton et al. [3]
explored pedestrian location choice behavior through indi-
vidual traveler characteristics. Malavenda et al. [4] estimated
households’ location and mobility choices inside a small-size
area. Hatami et al. [5] considered the non-linear associations
from the urban built environment. Phan et al. [6] employed
Bayesian matrix factorization to rank personal location pref-
erences, yielding user-factor and zone-factor latent matrices.

In addition to unearthing novel factors that impact location
choices, scholars have also innovated the formulation of these
factors by employing alternative utility functions. Random
utility maximization (RUM) theory and discrete choice mod-
els have been commonly employed to estimate the probability
of location choice. Lin et al. [7] used the principles of RUM
to account for the details of interactive behaviors. Notably,
some studies have incorporated the inherent characteristics of
the travel chain, acknowledging the influence of past travels
on forthcoming ones, thus conceiving location choice as a
sequential process [8]. The travel utility has been concep-
tualized as a recursive phenomenon, whereby the expected
utility function of a traffic zone j is the sum of the utility Vj
derived from directly visiting the zone and the expected utility
associated with future visits subsequent to the initial visit.
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Bekhor and Prashker [9] explored a closed-form model,
assuming a choice process that hinges on specific land use
characteristics and subsequently making more refined deci-
sions based on geographic features.

Some researchers have delved into the realm of loca-
tion choice modeling. The fundamental framework of the
traditional utility-based model lies in the multinomial logit
model (MNL). Leveraging the maximization of the con-
ditional likelihood function, the MNL model allows for
consistent parameter estimation in alternative samples, ren-
dering it widely employed in discrete choice modeling [10].
Various extensions of the model have been proposed, with
the generalized extreme value (GEV) class model and mixed
multinomial logit (MMNL) class model [11] being the most
prevalent among them. Li et al. [12] developed a random
regret minimization model for variable destination-oriented
path planning. By incorporating travel chain behavior into
simulating location choices, the expected utility of a given
place not only encompasses the anticipated utility of reaching
that particular destination but also accounts for the utility of
potentially arriving at adjacent locations.

Moreover, with the advent of novel technologies, such as
human or vehicle-mounted GPS devices, systematic track-
ing of travel movements has become feasible, resulting in
a proliferation of location choice model studies. Based on
the temporal response of travelers’ decisions, these stud-
ies can be categorized into static decisions and dynamic
decisions. Existing research in travel location choice pre-
dominantly adopts a static decision approach, treating mul-
tiple decisions made within a given timeframe as having
the same distribution. Consequently, the probability within
the location choice model remains unaffected by varying
information received over time. However, an array of research
findings has demonstrated that decision-making probabili-
ties in the domain of travel behavior may systematically
change as temporal constraints evolve. Dynamic continuous
decision-making processes can more effectively capture the
dynamic nature of decision-making choices within the travel
process. Golshani et al. [13] proposed a joint model to esti-
mate location choices in the event of unforeseen emergencies,
which directly impact spatial and temporal traffic distribution
within the network.

Simultaneously, a cohort of researchers has embraced the
concept of bounded rationality in travel decision-making,
challenging the traditional assumption that travelers consis-
tently opt for the option with the lowest perceived costs.
It becomes apparent that due to imperfect travel information
and inherent decision-making inertia, travelers do not always
select the location offering the highest travel benefit—a phe-
nomenon termed ‘‘bounded rationality’’ [14]. Each traveler
possesses unique preferences, and the suitability of a specific
location varies depending on the perceived travel time and
expected travel time [15]. Numerous global studies have
showcased instances where travelers deviate from the opti-
mal solutions concerning route selection, departure time, and
mode of transportation [16], [17], [18], [19], [20], [21].

Exploring this dynamic evolutionary process not only
facilitates the prediction of individual travel choices but
also enhances the comprehension of traffic congestion
dynamics within the transportation system [22], enabling
to leverage advanced travel information systems more
effectively. Liu et al. [23] considered the impact of benefit
changes in travel behavior and modes on flow redistribution.
Researchers such as Guo et al. [24], Lou et al. [25] contend
that the dynamic adjustment process, transitioning from a
state of non-equilibrium to equilibrium, can be viewed as
the quest for an equilibrium point. Ridwan [26] explored the
concept of bounded rationality in dynamic traffic modeling
using fuzzy system theory. Bogers et al. [27] proposed mod-
els to examine habitual behavior under uncertain risk and
the impact of advanced travel information services on route
choice. Ge and Zhou [28] put forth the bounded rational rout-
ingmodel, known as DUE (dynamic user equilibrium), which
allows for the endogenous determination of undifferentiated
intervals. Wang et al. [29] used bounded rationality (BR) to
improve Demand Responsive Transit. Nonetheless, a defini-
tive solution has yet to be provided. Han et al. [30] introduced
BR-DUE (bounded rationality dynamic user equilibrium)
selection models for route acquisition and departure time,
employing three distinct calculation methods. The con-
vergence and stability of BR user equilibrium have been
comprehensively analyzed by Yang and Huang [31], and
Ye and Yang [32].

Furthermore, there has been a growing trend in incorporat-
ing temporal factors into travel behavior models. Given the
dynamic nature of the traffic environment, wherein spatial
benefits and temporal costs undergo constant changes, trav-
elers are compelled to consult real-time traffic information
and adjust their travel choices accordingly. Stepwise models
of travel choice, categorized into within-day, day-to-day, and
doubly dynamic types, have been extensively studied. The
within-day travel choice problem examines how travelers
determine their departure time and location on a specific
day [33]. Day-to-day travel choice predominantly focuses
on how travelers adapt their travel choices based on their
cumulative travel experiences over successive days [34],
often employing static time-invariant flow representations
to describe daily travel patterns. Some scholars gradually
proposed the hybrid strategy considering temporal-spatial
information to traffic prediction [35], [36]. Building upon
the foundation of the daily travel selection problem, the
doubly dynamic travel selection problem integrates dynamic
time-varying flows to capture the evolving nature of daily
travel, incorporating adjustments to travel locations and
departure times based on accumulated experiences. In addi-
tion to formulating dynamic stepwise models, an increasing
number of studies incorporate the temporal factor as an infor-
mation attribute within the model [37], [38], [39]. These
studies facilitate the sharing of commuting traffic informa-
tion through various information-sharing platforms, such as
travel navigation apps, social media platforms, and individual
social networks [40]. Particularly noteworthy is the sharing
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of travel experiences among travelers with similar destina-
tions or travel plans. When a traveler designates their travel
experience time for a specific origin-destination (OD) pair as
shareable, all other travelers with the same OD can access
it as perceived time on the information-sharing platform.
Moreover, the impact of sharing on the overall perception
of travel times for a given OD becomes more pronounced as
the number of travelers participating in the collective sharing
increases [41]. Zhang et al. [42] further found that the number
and percentage of sharers can exert a negative impact initially,
followed by a positive impact on the perceived travel time
cost. Sophisticated spatial choice models such as TASHA and
CUSTOM have been developed, incorporating the concepts
of potential path area shrinking and the dynamics of expecta-
tion [43], [44].

III. TRAVEL BOUNDED RATIONALITY ESTIMATION
BASED ON SPATIAL BENEFIT AND TEMPORAL COST
A. ILLUSTRATIVE EXAMPLE
In the research, the utility is conceptualized as the spatial
benefit minus by the temporal cost. Thus, the objective is
to identify the location that offers the greatest benefit while
incurring the least cost. Fig. 1 demonstrates the optimization
process using a saddle as an illustrative example.

Under the conventional assumption of complete rational-
ity, the optimization would entail selecting the intersection
point of the maximum benefit (green line) and minimum
cost (red line). This optimal solution is singular, mak-
ing the optimization process challenging. However, under
the spatial-temporal BR framework proposed in this paper,
travelers consider the benefits within a certain range as
equivalent (the area between the red dotted lines). They
may then choose the intersection point with lower cost
as the optimal solution, without significantly compromising
the associated benefits. This approach makes the optimiza-
tion process easier and more aligned with actual travel
scenarios.

FIGURE 1. Dynamic locations choice based on bounded rationality.

B. BOUNDED RATIONALITY ESTIMATION OF SPATIAL
BENEFIT BASED ON INDIFFERENCE ZONE
During the travel process, travelers face cognitive limita-
tions in processing present and future information, making
it challenging for them to become strict utility maximizers or
minimizers. Furthermore, travelers exhibit behavioral inertia,
preventing them from completely disregarding locations they
have previously visited, which inevitably influences their
decision-making behaviors. Existing studies often assume
that travelers possess the ability to acquire all necessary
information and make optimal decisions, thus overlooking
the cognitive disparities among different decision-makers.
Consequently, the cognitive process of travelers is frequently
neglected in the modeling process.

In this study, spatial BR (SBR) is conceptualized as a
preference that leads to non-optimal decisions based on the
incomplete rationality resulting from limited access to partial
information. This implies that travelers allocate fewer cogni-
tive resources to familiar places and tend to prefer locations
they have already visited. To illustrate the concept of SBR,
the study area is divided into two categories of traffic zones:
explored and unexplored, as depicted in Fig. 2. Explored
traffic zones are those that the traveler has already visited
prior to the current location, while unexplored traffic zones
have not been explored by the traveler before reaching the
current location. It is important to note that the classification
of ‘‘explored’’ or ‘‘unexplored’’ in this paper is solely based
on the studied time period. If there is additional individual
knowledge beyond this period, the time scale can be adjusted
accordingly for the same analysis.

Travelers exhibit a preference for choosing explored loca-
tions due to their familiarity with traffic congestion, traffic
conditions, and available facilities in those areas, leading to
a cognitive inertia. Consequently, the perceived benefit in
explored traffic zones is higher compared to the unexplored
zones, the phenomenon referred to as ‘‘benefit dependence’’.
Therefore, when travelers explore unfamiliar locations within
the traffic network, they anticipate higher travel benefits.
If the benefit of an unexplored location does not surpass
a certain threshold relative to the explored locations, it is
considered to fall within the Indifference Zone of the travel
benefit function.

To provide further insights, it is important to consider
the extreme scenario wherein the traveler gradually becomes
acquainted with all locations during the study period. As the
traveler gains knowledge, the ‘‘benefit dependence’’ gradu-
ally diminishes until it reaches zero. The distinction between
the Indifference Zone being exceeded or not is elucidated
by (1) and (2). More comprehensive details concerning util-
ity, individual preferences, and heterogeneity across different
locations are expounded upon in Section IV.∣∣{U1,i,U2,i,U3,i, . . . ,Ui−1,i

}
max

−
{
Ui,1,Ui,2,Ui,3, . . . ,Ui,n

}
max

∣∣ ≤ δ(p,d) (1)

δ(p,d) =
∣∣{U1,i,U2,i,U3,i, . . . ,Ui−1,i

}
max

∣∣ × θindiff (2)
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FIGURE 2. Division between explored and unexplored traffic zones.

FIGURE 3. Spatial benefit based on Indifference Zone. (a) Diagram of indifference curve. (b) Equilibrium of travel utility and remaining time.

where δ(p,d) is an Indifference Zone with threshold for utility
of different dimensions; p, d are the parameters representing
different people and dates; Ui,j is the SBR benefit of place i
and j at time t; θindiff is a proportional parameter measuring
the threshold of Indifference Zone.

Therefore, the search behavior involves a balance of travel
familiarity and spatial benefit. Specifically, travel benefits
and travel familiarity can be represented by an indifference
curve as shown in Fig. 3(a). It considers the overall utility as
the sum of direct utility and dependent utility, characterized
by the following features: 1) The total utility of alternative
locations A and B within the Indifference Zone is equal.
2) The positions of the Indifference Zone vary across individ-
uals, such as AB and CD. 3) When comparing locations A, C ,
D, E , and F ,C has lower direct utility,D has lower dependent
utility, E has higher direct utility, and F has higher dependent
utility.

Based on the BR hypothesis, individuals make personal
location choices. If location B is selected and it does not
exceed the Indifference Zone of AB, location A would

be preferred. However, if location E is chosen and it
exceeds the Indifference Zone of AB, location E would be
preferred.

Conversely, the existence of the Indifference Zone for
benefits relaxes the constraint on temporal cost, leading to
more location choices with the same total benefit but lower
temporal cost, as illustrated in Fig. 3(b).

1) When the remaining time [45] is less than or equal to the
total utility combination represented by point P (the points on
lineMN and belowMN), the utility level does not exceed that
of P.

2) If the utility level is greater than or equal to the total
utility combination of P (the points on the indifference curve
and all points above MN), travelers do not have sufficient
travel time available.

3) The area above the right side of MN and below the
left side of the indifference curve represents points where
the utility level is lower than P and travelers do not have
enough travel time. These locations are commonly referred
to as ‘‘inefficient and time-consuming’’ travel choices.
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FIGURE 4. Information sharing mechanism based on temporal bounded rationality.

The width of the Indifference Zone and the threshold of BR
are directly related. A wider Indifference Zone corresponds
to a higher utility demand for visiting unexplored places
and decreases the likelihood of travelers selecting non-visited
locations.

C. BOUNDED RATIONALITY ESTIMATION OF TEMPORAL
COST BASED ON INFORMATION SHARING
When making decisions about location choices, travelers are
not only influenced by their familiarity with previously vis-
ited places but also affected by time-varying information such
as traffic congestion, which can result in increased travel costs
or reduced benefits. The mechanism of information sharing
and time perception is depicted in Fig. 4. Initially, the travel
cost or disutility is calculated within an individual traveler on
a specific day. This cost is influenced by the traveler’s own
characteristics and historical travel patterns. Additionally, the
traveler receives shared information from other individuals in
the system, with the weight of this information determined
based on its intensity and the time interval. Travelers aim
to minimize their travel costs or disutility. Subsequently, the
travel cost is disseminated to each traveler within the system
through the operation of the transportation system, facilitated
by the information sharing platform. This diffusion process
ensures that travelers are informed about the overall travel
costs in the system. It is important to note that in the study of
within-day travel, this diffusion process only impacts travel
within the same day.

In the aforementioned travel process, it considers the
time-varying information sharing process as one sharing per
step, the traveler will share their temporal cost experience
information for the dynamic step with a group of individuals
after selecting a target location in the previous step. This
group consists of individuals with the same origin and desti-
nation (OD) selection in the current step. The other members
of the groupwill utilize this shared information, multiplied by

a weight factor q, to inform their perceived cost, thereby
supplementing their own unknown time perceptions.

Let q represent the proportion of travelers in the group who
used the OD selection from the previous step. The functionQ,
specifying the form of the weight factor, may be nonlinear
and can be defined in a piecewise manner that is directly
specified or functionally fitted. By assuming Q to be mono-
tonically increasing, it reflects the reasonable assumption
that the more travelers choose the same OD selection, the
higher the reliability of the information they report. Conse-
quently, this information carries greater weight in shaping
individual opinions about the OD selection. The specific form
of the proportional function can be calculated using (3).

Q(w,p)
(
τ ∗

)
= Q

(
f(w,t) (τ ∗)

δτ

)
(3)

wherew and p are the parameters to express choice, which can
represent an alternative location or a person; τ is a temporal
step. One choice for the proportional function is Q(x) = xn,
x ∈ [0, 1], n > 0.
The parameter n can be interpreted as a simplified measure

of the intensity of interaction between travelers. Temporal
BR (TBR) can be regarded as a dynamic game, where the
process of repeated learning and decision-making by individ-
ual travelers can be further described using belief learning.
Ultimately, the stable distribution of decision-making by each
traveler will be influenced by the collective learning of all
individuals in the system. The perception of temporal cost
for the current dynamic step OD can be calculated using (4)
and (5).

s
(
λ , q

)
=

τ−1∑
n=τ−M

q(w,p) (n)λ τ−n−1 (4)

C̄(w,p) (τ ) =
1

s
(
λ , q

) τ−1∑
n=τ−M

q(w,p) (n)λ τ−n−1
· C(w,p) (n)

(5)
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where λ is the experience cost of the activity point in the
past few steps, earlier travel has less impact on the current,
so the weight in the expression is smaller; M is the number
of past steps that influenced the current decision; s is the
standardized factor.

IV. DYNAMIC CHOICE DECISION MODELING OF TRAVEL
LOCATION CONSIDERING SPATIAL-TEMPORAL
BOUNDED RATIONALITY
Travel activities arise from repeated location choices. To cap-
ture the intricacies of decision-making in travelers, the
integration of spatial-temporal bounded rationality (STBR) is
essential for dynamic location selection modeling within the
travel process. This approach simulates the decision-making
process by considering the interplay between choice pref-
erences and information perception. The following steps
outline this modeling approach:

(1) At each time step, denoted as t , the current location is
categorized as either an explored traffic zone or an unexplored
traffic zone, depending on whether it has been previously
visited.

(2) By applying the principles of spatial benefit bounded
rationality, calculate the spatial expected utility for all current
locations. Identify the locationwith themaximumutility from
both the explored and unexplored sets, respectively.

(3) Evaluate whether the maximum utility of the explored
set surpasses the Indifference Zone of the maximum utility
of the unexplored set. If it does, select the location from
the explored set; if not, select the location from the unex-
plored set.

(4) Prioritize the selection set based on utility. Employ
temporal cost bounded rationality to perceive the travel cost
time. Assess whether the expected remaining time is satisfied.
If it is, proceed to step 6); if not, proceed to step 5).

(5) Determine if the remaining locations in the standby set
are non-empty. If they are, select the next location based on
ranking and repeat step 4); if they are not, conclude the travel
chain for the current day.

(6) Advance the travel chain by t steps, arriving at the cho-
sen location and generating new spatial benefit and temporal
cost.

(7) Proceed to the next time step, t+1, and return to step 1).
In order to establish an appropriate framework for the

travel location selection model, this study employs a spe-
cialized architecture known as Long Short-Term Mem-
ory (LSTM) along with a mapping layer that incorpo-
rates the principles of BR. The optimization process is
conducted using the versatile Adaptive Moment Estima-
tion (Adam) method, enabling iterative learning to achieve
a comprehensive simulation of travelers’ decision-making
processes.

The BR mapping layer encompasses the convolution oper-
ation between BR dummy variables and the eigenvalues
derived from the preceding layer. The consideration of
BR is primarily manifested in the mapping of the ‘‘BR
dummy variable’’ onto the multiple choices available for

alternative locations. Each location is represented by a binary
dummy variable (0 or 1), indicating whether it is taken into
account during the decision-making process. The selection
matrix, which captures the influence of STBR, is seamlessly
integrated into the multi-classification model as the compo-
nent vector of random utility, described in (6). This facilitates
an exploration of the impact of BR factors on location
choices. The calculation of travel space benefit is determined
using (7), V BR

ij (x), which is based on (1). By identifying the
recommended subset that adheres to the calculations of STBR
(assigned 1), while others are assigned a value of 0, can be
obtained the BR features [xm+1. . . xm+n−1].

U∗
ij = Vij + V BR

ij
(
Uij

)
+ ε ⇒ [x1 . . . xm]

⊕ [xm+1 . . . xm+n−1] + ε (6)

Uij =



∑
α∈Aj

mα∑
β∈Bj

rβ
, i ̸= j

0, i = j

(7)

where Vij are conventional travel features [x1. . . xm] input
the deep learning network, and V BR

ij are BR features
[xm+1. . . xm+n−1] got by ‘BR dummy variable’ input the
network. Aj represents a set of positive impact factors for
location j, Bj represents a set of negative impact factors for
location j.
The network architecture in this study encompasses var-

ious components, including Flatten, Feed Forward, Tanh
& Dropout, and Softmax. These elements collectively con-
tribute to the training process conducted within the Deep
Learning network, as illustrated in Fig. 5.

Where n is the number of alternative locations within the
research scope; xi are the travel features used by the model,
and m variables are taken by the model; dropout coefficient
is calculated according to experience. The dimension of the
first full connection layer is [i+n-1,2k ], and the dimension
of the second full connection layer is [2k , n-1]. For the input
gate part of the Conv-LSTM layer, the it is calculated by (8),
and the Ct is calculated from the last state Ct−1 and the input
candidate state C∗

t by (9):

it = σBR (Wi · [ht−1, xt ] + bi) (8)

Ct = ft · Ct−1 + it · C∗
t (9)

where δBR is calculated by parameter δ(p,d) of STBR
modeling.

The Flatten operation is employed to transform the multi-
dimensional travel features into a one-dimensional format.
Subsequently, the fully connected layer is utilized to map and
characterize the feature space, aiming to minimize the impact
of irrelevant attributes on the outcomes of location choices
and enhance the overall robustness of the network. Finally, the
Softmax function is applied to present the results of travelers’
choices for alternative locations in the form of probabilities,
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FIGURE 5. Dynamic decision mechanism of location choices.

as denoted by (10).

Psoft max(y|x) =
exp

(
Wy · x

)
N∑
i=1

exp (Wi · x)

(10)

The Tanh function is utilized as the activation function in
both the LSTM gate and the FeedForward layer. The specific
form of the FeedForward operation is represented by (11)
and (12), which converts the input values into a range of
(−1, 1). This transformation, along with its derivative (0, 1),
helps mitigate the issue of gradient disappearance, ensuring
that the relationship between travel multiple choices and
influencing factors maintains a nonlinear monotonic trend.
Moreover, it enhances the fault tolerance of the STBR sim-
ulation. To address the overfitting phenomenon, Dropout is
employed, which disregards the interaction of partial travel
features. By temporarily deactivating neuron activations with
a probability p during the forward propagation of features,
Dropout reduces local dependence and enhances the general-
ization of the BR travel model. This regularization technique
promotes a more robust and adaptable framework for model-
ing STBR.

yij =

U∑
u=1

V∑
v=1

wuvxi−u+1,j−v+1 (11)

tanh(yij) =
eyij − e−yij

eyij + e−yij
(12)

where x is the characteristic value of the full connection layer,
and yij is the result after the mapping of BR dummy variables.

To address the imbalance in the number of alternative
sites within each city in the data, the FocalLoss func-
tion (13) is employed. This function assigns weights to the
loss corresponding to each location, taking into account
the difficulty of distinguishing between alternative sites.
By adjusting the loss weighting, the model can effec-
tively address the challenges posed by imbalanced data and
enhance its ability to differentiate between different location
choices.

FL (pi) = − (1 − pi)γ log (pi) (13)

where pi is the probability of selecting an alternative loca-
tion i; γ is the focusing coefficient.

To expedite the attainment of the solution set and mitigate
any performance impacts resulting from the complexity of
the alternative location set, an intelligent optimizer called
Adam is employed in the experimental phase. By leveraging
the capabilities of Adam, the model can effectively uncover
STBR factors to their fullest extent. RMSprop is utilized to
optimize the gradient direction through an adaptive learn-
ing rate and momentum approach. RMSprop allows for the
adjustment of the learning rate based on the current gradient
situation, ensuring that the learning rate is tailored to the
convergence speed of each parameter dimension. On the
other hand, the momentum method ensures that the gradient
correction speed at the current iteration is influenced not only
by the negative gradient but also by the weighted moving
average from the previous iteration. The update of param-
eters during the iteration is calculated using (14) and (15).
These optimization techniques contribute to the efficient and
effective training of the model, facilitating the exploration of
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STBR factors.

mt =
mt

1 − (β1)
t , vt =

vt
1 − (β2)

t (14)

θt = θt−1 −
mt

√
vt + ε

· lr (15)

where lr is learning rate; β1 and β2 are smoothing constants
(or decay rates), which are used to smooth m and v, respec-
tively; θ is a learnable parameter; t is the number of exercises.

To delve deeper into the structural aspects of the neu-
ral network model for BR location choices, this study will
establish several experimental groups. Firstly, a perfect ratio-
nality LSTM (PR-LSTM) model without BR will serve as
the control group. Secondly, a spatial bounded rationality
LSTM (SBR-LSTM) model will be developed, incorporating
SBR estimation. Lastly, a spatial-temporal bounded ratio-
nality LSTM (STBR-LSTM) model will be implemented,
incorporating STBR estimation.

By introducing STBR, the research dimensions are
expanded by predicting the end of within-day travel. Exist-
ing location prediction models often struggle to determine
the stopping point of travel as they require specifying the
number of predicted steps in dynamic decision-making. This
limitation stems from the fact that travelers have finite time
available to spend at a specific location while also consid-
ering the perceived cost of determining the optimal travel
time. To address this, the concept of ‘‘expected remaining
time’’ is introduced as a measure of travelers’ willingness to
continue their journey. It is calculated as the expected total
travel time minus the decision time. The model sets a predic-
tion threshold by ensuring that the temporal cost perception of
all alternative locations at the decision time does not exceed
the expected remaining time.

In this model, the expected remaining time takes into
account the heterogeneity among different individuals, con-
sidering both subjective and objective factors. Subjective
heterogeneity refers to the fact that individuals have different
thresholds for the maximum tolerable time, which influences
their decision-making process during current travel. The per-
ception of time cost meeting the expected remaining time can
be mathematically expressed as (16).

C̄(w,p) (τ ) ≤ (T(p,d) (τ ) − t) ×
[
1 + r(w,p)

(
θindiff

)]
(16)

where, T(p,d) is the expected total travel time; p, d are the
parameters representing different people and dates; r(x) is the
proportional function of expected remaining time, which is
calculated as same as q(x). θindiff is a proportional parameter
measuring time perception.

Objective heterogeneity is observed in various aspects,
including the current location within or in the vicinity of the
central business district (CBD) of the city, the size of the city
itself, the timing of departure during peak or off-peak hours,
and the complexity of the travel chain on a given day. These
objective factors contribute to the variation in individuals’
perception of time cost and further influence their decision-
making process.

V. NUMERICAL CASE STUDIES
To validate the efficacy of the proposed dynamic decision
selection model for travel location, which takes into account
STBR. GPS data derived from vehicle trajectories in cities
of varying magnitudes, including Beijing, Shanghai, Wuhan,
Shenzhen, and Hangzhou, which could test for the hetero-
geneity mentioned in Section III. These cities’ collective
ability could assess the generalizability and commonalities
of the model’s performance in large networks. It should be
noted that the administrative divisions were utilized as traffic
analysis zones, enabling to simulate and replicate the indi-
vidual decision-making behavior pertaining to travel location
choices.

A. DATA DESCRIPTION
The original dataset consists of GPS data recorded at 30-
second intervals from onboard devices. Each data entry
includes various parameters such as vehicle ID, collection
time, upload time, vehicle direction angle, instantaneous
speed, frequency of acceleration and deceleration, longitude,
latitude, administrative region, road name, and collection
status.

To effectively capture the essence of BR in travel decision-
making and mitigate the computational complexity, the
analysis is performed at the level of urban administrative
districts rather than individual GPS positions. For this study,
it is selected motor vehicle data from September 23, 2019,
encompassing 5,699 vehicles in Chaoyang, Beijing, 7,329
vehicles in Pudong New Area, Shanghai, 4,080 vehicles in
Wuchang, Wuhan, 2,465 vehicles in Gongshu, Hangzhou,
and 2,462 vehicles in Baoan, Shenzhen. Fig. 6 depicts the
origins and location choices of motor vehicle travel in these
five cities.

To thoroughly extract valuable insights from the GPS data
of vehicle driving tracks and minimize reliance on individ-
ual traveler attributes, the model places greater emphasis on
vehicle travel characteristics and alternative location char-
acteristics. These include a range of variables, as presented
in Table 1. A comprehensive analysis of travel characteristics
in the five cities is illustrated in Fig. 7.

Among these variables, the number of activity points indi-
cate travel activity. In the data, it is observed that 42.37% of
trips consisted of 2 steps, while 28.92%were 3-step trips, and
28.71% involved travel chains of at least 4 steps. Notably,
mega-cities such as Wuhan, Hangzhou, and Shenzhen exhib-
ited a higher number of steps and more active travelers
compared to super-cities like Beijing and Shanghai, where the
percentages were 19.82%, 15.82%, and 9.43%, respectively.

The departure time and arrival time provide insights
into travel peaks and concentration. Departure time peaks
between 7:00 and 9:00, accounting for 15.34% of trips,
while the highest arrival time occurs between 17:00 and
19:00, representing 15.26% of trips. Larger cities tend to
exhibit more concentrated patterns in terms of departures and
arrivals.
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FIGURE 6. Vehicle travel trajectories within the study area. (a) Chaoyang, Beijing as origin. (b) Pudong New Area, Shanghai as origin. (c) Wuchang,
Wuhan as origin. (d) Baoan, Shenzhen as origin. (e) Gongshu, Hangzhou as origin.

TABLE 1. Summary statistics of variables in model.

The total travel time within a day reflects the level
of time cost in urban travel. Considering trips within a

two-hour timeframe, larger cities demonstrate a higher per-
centage of trips exceeding 60minutes, with figures of 37.14%
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FIGURE 7. Analysis of travel characteristics in five cities. (a) Number of activity points. (b) Departure time and arrival time. (c) Total travel time
within day. (d) Proportion of stopping intervals.

FIGURE 8. Time characteristics of neural network input data. (a) Average time of each step in zones. (b) Average time of each point in zones
before and after imputation.

for Beijing and 44.94% for Shanghai. On the other hand,
smaller cities exhibit a higher proportion of trips under
45 minutes, withWuhan at 53.92% and Hangzhou at 49.39%.
Shenzhen, despite its compact urban area, shows a bal-
anced distribution of travel time due to its high built-up
density.

The proportion of stopping intervals provides an indication
of travel patterns. Specifically, 63.65% of common travel
steps have a stopping interval proportion of less than 0.3,
while 36.35% of main travel steps have a proportion greater
than 0.3. Among the five cities, the percentages for Beijing,
Shanghai, Wuhan, Shenzhen, and Hangzhou are 38.98%,
37.16%, 40.25%, 29.01%, and 28.59%, respectively.

B. MODEL PERFORMANCES
To facilitate smoother execution of the neural network, the
experimental focus is on 2-7 step travel chains. Vehicle GPS
travel data collected from Sept. 2019 to Oct. 2019 in the five
selected cities are utilized. To address the issue of imbalanced
classification in the target data, four days’ worth of data is
used to increase the number of target selections, while also
controlling the number of target selections to be below 500.
Furthermore, appropriate merging of administrative districts
is performed.

The average duration of within-day travel in the ana-
lyzed zones, obtained through data processing, is depicted
in Fig. 8(a). Themorning peak period spans from 7:00 to 9:00,
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while the evening peak period spans from 16:30 to 19:30.
Each temporal step corresponds to a 2-hour interval, and
missing values are interpolated to ensure data completeness.
The overall data, both before and after interpolation, is pre-
sented in Fig. 8(b). The expected latest travel time is set
at 20:00.

The Indifference Zone θindiff holds significant importance
when its value exceeds a certain threshold. In the bounded
rational travel behavior, it is widely acknowledged that the
threshold value should be below 10% [46]. Previous sensi-
tivity experiments have been explored the reliability of this
threshold, allowing for adjustments within a specific range.
Different threshold values had a relatively homogeneous
impact, indicating that the results were not overly sensitive to
changes in the threshold. Considering the characteristics of
the data examined in this paper, it is empirically analyzed the
threshold value using a value of 5% as an illustrative example.

In order to emphasize the impact of BR factors in the exper-
iment and enhance the robustness of the model, the control
group data was configured with a BR variable of 1 for all
locations. As for the experimental group, 5% of the data was
randomly selected to introduce noise, resulting in a BR vari-
able of 0.75 for all places. Furthermore, the weight parameter
λ for the iteration of information sharing experience was set
at 10%.

To ensure the model’s validity, this study employed a
combination of whole-chain observations and step-by-step
observations to compare the model’s predicted results with
the actual values. The accuracy of location choices for each
step in the travel chain was observed and compared. For the
end of the chain and travel time, the entire chain was observed
to calculate the error for each step based on the actual chain.

To avoid potential biases in the simulation, different char-
acteristic models were trained using the same batch of
experimental data. The models were distinguished by mod-
ifying specific parameters while keeping others consistent,
which treats the Indifference Zone portion for traffic zones,
population, and distance as identical. However, it consid-
ers the departure time of different trips, the expected end
time of today’s trip, and the Indifference Zone portion of
the travel cost at the current location as distinct. The total
number of iterations for the model was controlled within the
range of 400-450 to ensure stability and robustness of the
resulting data. The error rate, expressed as the MAPE (Mean
Absolute Percentage Error) value, was highest in the last
30 iterations.

C. MODEL ESTIMATION RESULTS
The constructed model was applied to dynamically simulate
within-day travel location decision selection in 5 cities. The
convergence process of the model is depicted in Fig. 9, and
the prediction results are summarized in Table 2. The find-
ings demonstrate that the LSTM model incorporating STBR
exhibits a faster convergence rate and lower prediction error,
as indicated in Fig. 9.

Regarding prediction accuracy, Table 2 reveals that the
SBR-LSTM model, offers limited improvements compared
to the PR-LSTM model. The reduction in prediction error
is 28.97%, 7.44%, 8.65%, 8.89%, and 4.35% for Beijing,
Shanghai, Wuhan, Shenzhen, and Hangzhou, respectively.
On the other hand, the STBR-LSTMmodel yields the greatest
improvement in prediction accuracy. The error reduction for
the respective cities is 31.65%, 33.27%, 11.87%, 17.42%,
and 7.30%. Overall, the STBR-LSTM model achieves a pre-
diction accuracy of approximately 80%, which is about 10%
higher than the SBR-LSTMmodel and more than 40% higher
than the PR-LSTM model.

TABLE 2. The influence of bounded rationality in different cities.

Through the comparison of simulation results in cities of
varying sizes and populations, it is evident that the impact of
BR becomes more pronounced as city size increases. Com-
paring the STBR-LSTM model with the SBR-LSTM model
and the PR-LSTM model, notable improvements in predic-
tion accuracy can be observed, particularly in megacities
such as Beijing (48.29% to 16.64%) and Shanghai (46.68%
to 13.41%), where the forecast error rates were reduced
by more than 30%. Major cities like Wuhan (38.22% to
26.35%) andHangzhou (62.27% to 44.85%) also experienced
an increase in prediction accuracy by 10% to 20%. In the case
of Shenzhen, where the number of sites is relatively small,
the LSTM model incorporating STBR achieved a prediction
error MAPE value of 8.36%, with a prediction accuracy
of 91.64%, which is 7.30% higher compared to the model
without considering STBR.

Analyzing the relationship between city size and prediction
results, it becomes evident that the influence of STBR is
widespread in the travel patterns of large cities. As cities
expand in size, population, and the number of alternative
locations, the impact of STBR on travelers’ location choices
becomes more prominent. Therefore, it is crucial to consider
the influence of BR in complex travel systems, as the com-
plexity of the system intensifies with urban growth.

To further validate the effectiveness and applicability of
the method, simulations were conducted to analyze location
decision selection behaviors based on travel time, travel steps,
and travel characteristics. The results of these simulations are
summarized in Table 3.

Table 3 reveals the significant improvement in prediction
accuracy when considering STBR for both peak and off-peak
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FIGURE 9. LSTM prediction result (micro-Acc, macro-MAPE). (a) Beijing. (b) Shanghai. (c) Wuhan. (d) Shenzhen. (e) Hangzhou.

travel scenarios. Specifically, the improvement effect for
off-peak travel (27.45%) is more pronounced compared to
peak travel (16.56%). This difference can be attributed to the

fact that during peak travel, despite heightened awareness
of temporal cost and a congested road network, travelers
often have limited flexibility in choosing their locations,
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TABLE 3. Simulation results of dynamic decision selection of travel
location.

resulting in a less pronounced influence of BR on decision-
making. Conversely, during off-peak travel, which encom-
passes periods with less traffic congestion, the influence
of both spatial and temporal BR becomes more prominent,
as travelers have greater freedom to optimize their location
choices and reduce travel temporal costs. This observation
validates the model’s ability to capture the interplay between
spatial and temporal factors in travel decision-making across
different scenarios.

Upon comparing simple chains (≤3 steps) and complex
chains (>3 steps), it becomes evident that BR is better suited
for location prediction in multi-point within-day travel and
path planning involving a series of places, as opposed to
simple two-point chains such as home-to-work commutes.
The inclusion of BR has minimal impact on the prediction
of simple chains (2.20% improvement). However, it signif-
icantly enhances the prediction accuracy of complex chains
(13.85% improvement). This disparity can be attributed to
the ability of BR to effectively capture the characteristics of
paths comprising multiple locations and accurately calculate
the Indifference Zone of utility between these locations. Con-
versely, for two-point travel scenarios, the introduction of BR
may introduce a certain degree of instability in the predic-
tions. In conclusion, considering the influence of STBR is
essential in multi-point travel scenarios.

By calculating the proportion of step time to the total
travel time within a day, it can be distinguished between the
main step (≥0.3) and other steps (<0.3). A larger proportion
indicates a higher level of importance for that particular step.
Based on the experimental findings, BR has a stronger impact
on the prediction of other steps (22.88% improvement), sug-
gesting that when each step of the day carries a similar
weight, travelers’ location choices are more influenced by
BR. However, when there is a clearly dominant step in terms
of importance, BR imposes constraints on the prediction of
that step (6.29% improvement), as important locations tend to
be less affected by minor variations in utility. Consequently,
it can be inferred that the prediction performance of the main
step is more pronounced, and a unilateral BRmodel struggles
to ensure the stability of prediction results.

VI. DISCUSSION AND CONCLUSION
This study delves into the dynamic influence of spatial-
temporal bounded rationality (STBR) on decision-making
in the travel process. It considers the interplay of spatial
and temporal factors in location choices, where the utility of
alternative locations is evaluated against individual Indiffer-
ence Zones in space, and the perception of remaining time
is determined through information sharing and temporal cost
perception. Two stages of bounded rationality (BR) behavior
in travel location decision-making are proposed: 1) Travel
utility is influenced by both spatial benefit and temporal
cost, with dynamic and non-completely rational perceptions
of benefit and cost. 2) After obtaining location priorities
based on utility, travelers perceive travel time and expected
remaining time, assess whether a trip is feasible, and explore
alternative locations.

By employing a deep learning model, it is incorporated
the Indifference Zone into the random utility component of
multiple location choices, leading to the development of a
within-day STBR-LSTMmodel that accounts for both spatial
benefit and temporal cost. The interplay between individual
BR decision-making and system network conditions is exam-
ined using in 5 cities’ travel network. Through an exploration
of BR impact on city size, peak and flat peak travel, simple
and complex chains, and main and other steps, the following
conclusions emerge from the numerical results:

(1) Location choices are influenced by both spatial and
temporal factors. BR influence on space is characterized by
‘‘benefit dependence,’’ as travelers prefer familiar places with
lower randomness. BR influence on time is manifested in dif-
ferentiated perception, with travelers’ perception of temporal
cost and remaining time being influenced by all travelers in
the roadway network.

(2) The Indifference Zone and information sharing play
crucial roles. A higher Indifference Zone threshold inten-
sifies travelers’ dependence on low-randomness places,
making them less inclined to explore unknown locations.
Information sharing complements cognition by smoothing
perceived changes, with time proximity increasing the weight
of shared information, thereby enhancing the efficiency
of transforming system information into individual travel
attributes.
(3) Compared to the control model (MAPEMean 41.63%),

the proposed model incorporating STBR (MAPE Mean
29.98%) exhibits significant advantages over the spatial-only
model (MAPE Mean 21.33%) across all cities. The results of
the STBRmodel demonstrate varying improvements in cities
of different sizes (Beijing 31.65%, Shanghai 33.27%, Wuhan
11.87%, Hangzhou 17.42%, Shenzhen 7.30%), during peak
(16.56%) or flat peak (27.45%) travel, simple chains (2.20%)
or complex chains (13.85%), and main steps (6.29%) or other
steps (22.88%). The influence of BR permeates travel behav-
ior, with a significant increase in travelers’ perception of BR
as the number of alternative locations grows, road congestion
worsens, location compositions become more intricate, and
within-day travel gains more stability.
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Obtaining convergence in the optimization of the travel
system across the 5 cities requires aggregating travel analysis
zones, aligning with previous research findings [41], [47].
This suggests that individual-level convergence of travel pre-
diction optimization is challenging. Imperfect expression of
BR information may contribute to this difficulty. Although
the proposed model includes components and parameters that
are not directly derivable, resulting in challenges in obtaining
theoretical performance and behavioral insights, numerical
examples and extensive sensitivity analyses demonstrate con-
sistent and stable model outputs, even in the presence of noisy
data interference and varying parameter selections.

Findings of this work will be of interest to network mod-
elers aiming to predict and quantify the network effect of
internal changes. This provides insights for urban functional
zoning planning and traffic demand management, especially
with the emerging technologies, such as adaptive traffic con-
trols, and real-time information dissemination.

For future research, the potential enhancements could
focus on the following directions: (1) Taking into account the
heterogeneous vehicle schedule, fleet size and vehicle type
are needed to optimize. (2) While considering the dynam-
ics of the threshold of BR, the more perfect expression of
BR information would lead more realistic prediction results.
(3) Use the spatial-temporal model to predict stay time, and
further coupling location and time into a complete route.

REFERENCES
[1] R. Kitamura, ‘‘Incorporating trip chaining into analysis of destination

choice,’’ Transp. Res. B, Methodol., vol. 18, no. 1, pp. 67–81, Feb. 1984,
doi: 10.1016/0191-2615(84)90007-9.

[2] A. Huang and D. Levinson, ‘‘Axis of travel: Modeling non-work desti-
nation choice with GPS data,’’ Transp. Res. C, Emerg. Technol., vol. 58,
pp. 208–223, Sep. 2015, doi: 10.1016/j.trc.2015.03.022.

[3] K. J. Clifton, P. A. Singleton, C. D. Muhs, and R. J. Schneider,
‘‘Development of destination choice models for pedestrian travel,’’
Transp. Res. A, Policy Pract., vol. 94, pp. 255–265, Dec. 2016, doi:
10.1016/j.tra.2016.09.017.

[4] G. A. Malavenda, G. Musolino, C. Rindone, and A. Vitetta, ‘‘Residen-
tial location, mobility, and travel time: A pilot study in a small-size
Italian metropolitan area,’’ J. Adv. Transp., vol. 2020, Aug. 2020,
Art. no. 8827466, doi: 10.1155/2020/8827466.

[5] F. Hatami, Md. M. Rahman, B. Nikparvar, and J.-C. Thill, ‘‘Non-linear
associations between the urban built environment and commuting modal
split: A random forest approach and SHAP evaluation,’’ IEEE Access,
vol. 11, pp. 12649–12662, 2023, doi: 10.1109/ACCESS.2023.3241627.

[6] D. T. Phan, H. L. Vu, and E. J. Miller, ‘‘A new approach to improve destina-
tion choice by ranking personal preferences,’’ Transp. Res. C, Emerg. Tech-
nol., vol. 143, Oct. 2022, Art. no. 103817, doi: 10.1016/j.trc.2022.103817.

[7] Y.-S. Lin, A. R. Srinivasan, M. Leonetti, J. Billington, and
G. Markkula, ‘‘A utility maximization model of pedestrian and driver
interactions,’’ IEEE Access, vol. 10, pp. 118888–118899, 2022, doi:
10.1109/ACCESS.2022.3213363.

[8] A. Vega and A. Reynolds-Feighan, ‘‘A methodological framework
for the study of residential location and travel-to-work mode choice
under central and suburban employment destination patterns,’’ Transp.
Res. A, Policy Pract., vol. 43, no. 4, pp. 401–419, May 2009, doi:
10.1016/j.tra.2008.11.011.

[9] S. Bekhor and J. N. Prashker, ‘‘GEV-based destination choice models
that account for unobserved similarities among alternatives,’’ Transp.
Res. B, Methodol., vol. 42, no. 3, pp. 243–262, Mar. 2008, doi:
10.1016/j.trb.2007.08.003.

[10] D. McFadden, ‘‘Modeling the choice of residential location,’’ Transp. Res.
Rec., 1977.

[11] C. R. Bhat and J. Guo, ‘‘A mixed spatially correlated logit model: For-
mulation and application to residential choice modeling,’’ Transp. Res. B,
Methodol., vol. 38, no. 2, pp. 147–168, Feb. 2004, doi: 10.1016/S0191-
2615(03)00005-5.

[12] M. Li, F. Chen, and Q. Lin, ‘‘Random regret minimization model
for variable destination-oriented path planning,’’ IEEE Access, vol. 8,
pp. 163646–163659, 2020, doi: 10.1109/ACCESS.2020.3021524.

[13] N. Golshani, R. Shabanpour, A. K. Mohammadian, J. Auld, and H. Ley,
‘‘Analysis of evacuation destination and departure time choices for no-
notice emergency events,’’ Transportmetrica A, Transp. Sci., vol. 15, no. 2,
pp. 896–914, Nov. 2019, doi: 10.1080/23249935.2018.1546778.

[14] T.-Y. Hu and H. S. Mahmassani, ‘‘Day-to-day evolution of network flows
under real-time information and reactive signal control,’’ Transp. Res. C,
Emerg. Technol., vol. 5, no. 1, pp. 51–69, Feb. 1997, doi: 10.1016/S0968-
090X(96)00026-5.

[15] J. Y. T. Wang and M. Ehrgott, ‘‘Modelling route choice behaviour in a
tolled road network with a time surplus maximisation bi-objective user
equilibrium model,’’ Transp. Res. B, Methodol., vol. 57, pp. 342–360,
Nov. 2013, doi: 10.1016/j.trb.2013.05.011.

[16] C. J. Khisty and T. Arslan, ‘‘Possibilities of steering the transporta-
tion planning process in the face of bounded rationality and unbounded
uncertainty,’’ Transp. Res. C, Emerg. Technol., vol. 13, no. 2, pp. 77–92,
Apr. 2005, doi: 10.1016/j.trc.2005.04.003.

[17] T. Lotan, ‘‘Effects of familiarity on route choice behavior in the pres-
ence of information,’’ Transp. Res. C, Emerg. Technol., vol. 5, nos. 3–4,
pp. 225–243, Aug. 1997, doi: 10.1016/S0968-090X(96)00028-9.

[18] R. Michael, ‘‘Network knowledge and route choice,’’ Ph.D. thesis, Dept.
Civil Environ. Eng., Massachusetts Inst. Technol., Cambridge, MA, USA,
2002. [Online]. Available: http://hdl.handle.net/1721.1/49797

[19] C. G. Prato and S. Bekhor, ‘‘Applying branch-and-bound technique to route
choice set generation,’’ Transp. Res. Rec., vol. 1985, no. 1, pp. 19–28,
2006.

[20] Y. Yu, K. Han, and W. Ochieng, ‘‘Day-to-day dynamic traffic assignment
with imperfect information, bounded rationality and information sharing,’’
Transp. Res. C, Emerg. Technol., vol. 114, pp. 59–83, May 2020, doi:
10.1016/j.trc.2020.02.004.

[21] X. Zhang and H. Guan, ‘‘A travel decision making model based on
nested logit model considering bounded rationality,’’ IEEE Access, vol. 8,
pp. 152465–152473, 2020, doi: 10.1109/ACCESS.2020.3014618.

[22] H. S. Mahmassani and G.-L. Chang, ‘‘On boundedly rational user equi-
librium in transportation systems,’’ Transp. Sci., vol. 21, no. 2, pp. 89–99,
May 1987, doi: 10.1287/trsc.21.2.89.

[23] B. Liu, G. Zhu, X. Li, and R. Sun, ‘‘Vulnerability assessment of the urban
rail transit network based on travel behavior analysis,’’ IEEE Access, vol. 9,
pp. 1407–1419, 2021, doi: 10.1109/ACCESS.2020.3047159.

[24] R.-Y. Guo, H. Yang, and H.-J. Huang, ‘‘Are we really solving the dynamic
traffic equilibrium problem with a departure time choice?’’ Transp. Sci.,
vol. 52, no. 3, pp. 603–620, Jun. 2018, doi: 10.1287/trsc.2017.0764.

[25] Y. Lou, Y. Yin, and S. Lawphongpanich, ‘‘Robust congestion pricing under
boundedly rational user equilibrium,’’ Transp. Res. B, Methodol., vol. 44,
no. 1, pp. 15–28, Jan. 2010, doi: 10.1016/j.trb.2009.06.004.

[26] M. Ridwan, ‘‘Fuzzy preference based traffic assignment problem,’’ Transp.
Res. C, Emerg. Technol., vol. 12, nos. 3–4, pp. 209–233, Jun. 2004, doi:
10.1016/j.trc.2004.07.003.

[27] E. A. I. Bogers, F. Viti, and S. P. Hoogendoorn, ‘‘Joint modeling of
advanced travel information service, habit, and learning impacts on route
choice by laboratory simulator experiments,’’ Transp. Res. Rec., J. Transp.
Res. Board, vol. 1926, no. 1, pp. 189–197, Jan. 2005.

[28] Y. E. Ge and X. Zhou, ‘‘An alternative definition of dynamic user optimum
on signalised road networks,’’ J. Adv. Transp., vol. 46, no. 3, pp. 236–253,
Jul. 2012, doi: 10.1002/atr.207.

[29] H. Wang, H. Guan, H. Qin, W. Li, and J. Zhu, ‘‘A slack depar-
ture strategy for demand responsive transit based on bounded ratio-
nality,’’ J. Adv. Transp., vol. 2022, May 2022, Art. no. 9693949, doi:
10.1155/2022/9693949.

[30] K. Han, W. Y. Szeto, and T. L. Friesz, ‘‘Formulation, existence, and
computation of boundedly rational dynamic user equilibrium with fixed or
endogenous user tolerance,’’ Transp. Res. B, Methodol., vol. 79, pp. 16–49,
Sep. 2015, doi: 10.1016/j.trb.2015.05.002.

[31] H. Yang and H.-J. Huang, ‘‘The multi-class, multi-criteria traffic network
equilibrium and systems optimum problem,’’ Transp. Res. B, Methodol.,
vol. 38, no. 1, pp. 1–15, Jan. 2004, doi: 10.1016/S0191-2615(02)00074-7.

VOLUME 11, 2023 125305

http://dx.doi.org/10.1016/0191-2615(84)90007-9
http://dx.doi.org/10.1016/j.trc.2015.03.022
http://dx.doi.org/10.1016/j.tra.2016.09.017
http://dx.doi.org/10.1155/2020/8827466
http://dx.doi.org/10.1109/ACCESS.2023.3241627
http://dx.doi.org/10.1016/j.trc.2022.103817
http://dx.doi.org/10.1109/ACCESS.2022.3213363
http://dx.doi.org/10.1016/j.tra.2008.11.011
http://dx.doi.org/10.1016/j.trb.2007.08.003
http://dx.doi.org/10.1016/S0191-2615(03)00005-5
http://dx.doi.org/10.1016/S0191-2615(03)00005-5
http://dx.doi.org/10.1109/ACCESS.2020.3021524
http://dx.doi.org/10.1080/23249935.2018.1546778
http://dx.doi.org/10.1016/S0968-090X(96)00026-5
http://dx.doi.org/10.1016/S0968-090X(96)00026-5
http://dx.doi.org/10.1016/j.trb.2013.05.011
http://dx.doi.org/10.1016/j.trc.2005.04.003
http://dx.doi.org/10.1016/S0968-090X(96)00028-9
http://dx.doi.org/10.1016/j.trc.2020.02.004
http://dx.doi.org/10.1109/ACCESS.2020.3014618
http://dx.doi.org/10.1287/trsc.21.2.89
http://dx.doi.org/10.1109/ACCESS.2020.3047159
http://dx.doi.org/10.1287/trsc.2017.0764
http://dx.doi.org/10.1016/j.trb.2009.06.004
http://dx.doi.org/10.1016/j.trc.2004.07.003
http://dx.doi.org/10.1002/atr.207
http://dx.doi.org/10.1155/2022/9693949
http://dx.doi.org/10.1016/j.trb.2015.05.002
http://dx.doi.org/10.1016/S0191-2615(02)00074-7


C. Dong et al.: Modeling the Dynamic Choice of Travel Locations With the Spatial-Temporal BR

[32] H. Ye and H. Yang, ‘‘Rational behavior adjustment process with bound-
edly rational user equilibrium,’’ Transp. Sci., vol. 51, no. 3, pp. 968–980,
Aug. 2017, doi: 10.1287/trsc.2016.0715.

[33] H. K. Lo and W. Y. Szeto, ‘‘A cell-based variational inequality formula-
tion of the dynamic user optimal assignment problem,’’ Transp. Res. B,
Methodol., vol. 36, no. 5, pp. 421–443, Jun. 2002, doi: 10.1016/S0191-
2615(01)00011-X.

[34] T. Iryo, ‘‘Day-to-day dynamical model incorporating an explicit descrip-
tion of individuals’ information collection behaviour,’’ Transp. Res. B,
Methodol., vol. 92, pp. 88–103, Oct. 2016, doi: 10.1016/j.trb.2016.01.009.

[35] L. Li, S. He, J. Zhang, and B. Ran, ‘‘Short-term highway traffic flow
prediction based on a hybrid strategy considering temporal–spatial infor-
mation,’’ J. Adv. Transp., vol. 50, no. 8, pp. 2029–2040, Dec. 2016, doi:
10.1002/atr.1443.

[36] N. Awan, A. Ali, F. Khan, M. Zakarya, R. Alturki, M. Kundi,
M. D. Alshehri, and M. Haleem, ‘‘Modeling dynamic spatio-temporal
correlations for urban traffic flows prediction,’’ IEEE Access, vol. 9,
pp. 26502–26511, 2021, doi: 10.1109/ACCESS.2021.3056926.

[37] L. Han, S. Ukkusuri, and K. Doan, ‘‘Complementarity formulations
for the cell transmission model based dynamic user equilibrium with
departure time choice, elastic demand and user heterogeneity,’’ Transp.
Res. B, Methodol., vol. 45, no. 10, pp. 1749–1767, Dec. 2011, doi:
10.1016/j.trb.2011.07.007.

[38] W. Y. Szeto and H. K. Lo, ‘‘A cell-based simultaneous route and departure
time choice model with elastic demand,’’ Transp. Res. B, Methodol.,
vol. 38, no. 7, pp. 593–612, Aug. 2004, doi: 10.1016/j.trb.2003.05.001.

[39] X. Huang, Y. Ye, X. Yang, and L. Xiong, ‘‘Multistep coupled graph con-
volution with temporal-attention for traffic flow prediction,’’ IEEE Access,
vol. 10, pp. 48179–48192, 2022, doi: 10.1109/ACCESS.2022.3172341.

[40] Y. Xiao and H. K. Lo, ‘‘Day-to-day departure time modeling under
social network influence,’’ Transp. Res. B, Methodol., vol. 92, pp. 54–72,
Oct. 2016, doi: 10.1016/j.trb.2016.05.006.

[41] F. Wei, N. Jia, and S. Ma, ‘‘Day-to-day traffic dynamics considering
social interaction: From individual route choice behavior to a network flow
model,’’ Transp. Res. B, Methodol., vol. 94, pp. 335–354, Dec. 2016, doi:
10.1016/j.trb.2016.10.002.

[42] C. Zhang, T.-L. Liu, H.-J. Huang, and J. Chen, ‘‘A cumulative prospect
theory approach to commuters’ day-to-day route-choice modeling with
friends’ travel information,’’ Transp. Res. C, Emerg. Technol., vol. 86,
pp. 527–548, Jan. 2018, doi: 10.1016/j.trc.2017.12.005.

[43] K. Nurul Habib, ‘‘A comprehensive utility-based system of activity-travel
scheduling options modelling (CUSTOM) for worker’s daily activity
scheduling processes,’’ Transportmetrica A, Transp. Sci., vol. 14, no. 4,
pp. 292–315, Apr. 2018, doi: 10.1080/23249935.2017.1385656.

[44] M. J. Roorda, E. J. Miller, and K. M. N. Habib, ‘‘Validation of
TASHA: A 24-h activity scheduling microsimulation model,’’ Transp.
Res. A, Policy Pract., vol. 42, no. 2, pp. 360–375, Feb. 2008, doi:
10.1016/j.tra.2007.10.004.

[45] R. Arnott, A. De Palma, and R. Lindsey, ‘‘Departure time and route choice
for the morning commute,’’ Transp. Res. B, Methodol., vol. 24, no. 3,
pp. 209–228, Jun. 1990, doi: 10.1016/0191-2615(90)90018-T.

[46] R.-Y. Guo, H. Yang, H.-J. Huang, and X. Li, ‘‘Day-to-day depar-
ture time choice under bounded rationality in the bottleneck model,’’
Transp. Res. B, Methodol., vol. 117, pp. 832–849, Nov. 2018, doi:
10.1016/j.trb.2017.08.016.

[47] W. Y. Szeto and H. K. Lo, ‘‘Dynamic traffic assignment: Properties and
extensions,’’ Transportmetrica, vol. 2, no. 1, pp. 31–52, Jan. 2006, doi:
10.1080/18128600608685654.

CHUNJIAO DONG received the Ph.D. degree
in transportation planning and management from
Beijing Jiaotong University, Beijing, China,
in 2011. She was a Postdoctoral Research Asso-
ciate with the Center for Transportation Research,
The University of Tennessee, Knoxville, TN,
USA, from 2011 to 2014, and a Research Assistant
Professor, from 2014 to 2019. She is currently a
Professor with Beijing Jiaotong University. Her
research interests include transportation planning

and management, traffic control and safety, and intelligent transportation
theory.

JIAYU BAO was born in 1998. He received the
B.S. degree from the School of Transportation
and Logistics Engineering, Wuhan University of
Technology, Wuhan, China, in 2017. He is cur-
rently pursuing the M.S. degree in transportation
planning and management with Beijing Jiaotong
University, Beijing, China. His research interests
include travel behavior analysis, and traffic control
and safety.

JING WANG was born in 1995. She received
the M.S. degree in transportation planning and
management from Beijing Jiaotong University,
Beijing, China, in 2020, where she is currently pur-
suing the Ph.D. degree in transportation planning
and management. Her research interests include
public transportation, human mobility, and data
mining and visualization.

JUNYUE WANG was born in 1999. She received
the B.S. degree in engineering from the School
of Traffic and Transportation, Beijing Jiaotong
University, Beijing, China, in 2017. She is cur-
rently pursuing the Ph.D. degree in transportation
planning and management with Beijing Jiaotong
University. Her research interests include travel
behavior and human mobility.

125306 VOLUME 11, 2023

http://dx.doi.org/10.1287/trsc.2016.0715
http://dx.doi.org/10.1016/S0191-2615(01)00011-X
http://dx.doi.org/10.1016/S0191-2615(01)00011-X
http://dx.doi.org/10.1016/j.trb.2016.01.009
http://dx.doi.org/10.1002/atr.1443
http://dx.doi.org/10.1109/ACCESS.2021.3056926
http://dx.doi.org/10.1016/j.trb.2011.07.007
http://dx.doi.org/10.1016/j.trb.2003.05.001
http://dx.doi.org/10.1109/ACCESS.2022.3172341
http://dx.doi.org/10.1016/j.trb.2016.05.006
http://dx.doi.org/10.1016/j.trb.2016.10.002
http://dx.doi.org/10.1016/j.trc.2017.12.005
http://dx.doi.org/10.1080/23249935.2017.1385656
http://dx.doi.org/10.1016/j.tra.2007.10.004
http://dx.doi.org/10.1016/0191-2615(90)90018-T
http://dx.doi.org/10.1016/j.trb.2017.08.016
http://dx.doi.org/10.1080/18128600608685654

