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ABSTRACT Based on deep neural network, elliptic partial differential equations in complex regions are
solved. Accurate and effective strategies and numerical methods for elliptic partial differential equations
are proposed by implementing deep feedforward artificial neural network, appropriate loss function solving
strategy are constructed. The solution of an elliptic partial differential equation is obtained by iteratively
learning the parameters of a neural network. Constructing a composite multi-layer radial basis function
neural network can improve the real function approximation performance and operational accuracy of the
constructed multi-layer radial basis function neural network. Use this high-precision composite multi-layer
radial basis function neural network to solve partial differential equations. By providing specific examples
of solving partial differential equations, the effectiveness of this method is tested. An improved partial
differential equation solving method based on deep neural networks (Taylor PINN) has been proposed. This
method utilizes the universal approximation theorem of deep neural networks and the function fitting ability
of Taylor’s formula to achieve a meshless numerical solution process. The numerical experimental results
on Helmholtz, Klein Gordon, and Navier Stokes equations show that Taylor PINN can well fit the mapping
relationship between the coordinates of spatiotemporal points in the computational domain and the value of
the desired function, which can provide accurate numerical prediction results. Compared with commonly
used physical information based neural network methods, Taylor PINN improves prediction accuracy by
3-20 times for different numerical problems.

INDEX TERMS Partial differential equations, numerical analysis, neural network, Taylor’s formula, loss
function.

I. INTRODUCTION
With the improvement of computing power, numerical analy-
sis is playing an increasingly important role inmany scientific
and engineering fields [1]. The underlying mathematical
models of most numerical analysis problems can be attributed
to the numerical solution of partial differential equations.

Traditional numerical methods mainly include finite dif-
ference method, finite element method and finite volume
method [2]. These methods discretize the computational
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domain into independent grid elements to obtain numerical
approximations of unknown functions. However, in order
to ensure the accuracy and effectiveness of numerical anal-
ysis, traditional methods are usually very time-consuming
and heavily rely on manual experience. On the one hand,
iteratively solving large linear/nonlinear equations requires
expensive computational overhead; on the other hand,
in order to avoid computational failure, frequent human-
machine interaction is usually required during the mesh
generation stage to distinguish and optimize the quality of
the computational mesh, in order to meet the requirements
of solver and simulation accuracy [3], [4]. As the problems
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analyzed become more and more complex, heavy interaction
and overhead limit the application efficiency of traditional
numerical methods in real-time simulation, aerodynamic
parameter design, optimization of space exploration and other
issues.

The past few decades have witnessed a revolution in deep
learning, with the development and evolution of artificial neu-
ral networks (ANNs) being one of the key elements. Machine
learning methods based on ANNs can solve some very
complex application problems in fields such as image pro-
cessing, speech recognition, and medical diagnosis. ANNs
have also been widely used in the field of mathematics
because they can effectively approximate arbitrary func-
tions [5]. AlthoughANNs have achieved impressive results in
several important application fields, there are still many ques-
tions about why and how they work effectively [6]. Research
shows that with the increase of network depth, the neural
network has a stronger ability to approach functions [7].
Therefore, the application of deep neural network (DNN) to
solving partial differential equations has received extensive
attention from many researchers [8]. Berner et al. [9] stud-
ied a new algorithm for solving high-dimensional parabolic
partial differential equations and backward stochastic differ-
ential equation. Gao et al. [10] proposed a deep Ritz method
based on deep learning to solve partial differential equation
problems through variational methods. Kidger et al. [11]
proposed a method for solving non-homogeneous par-
tial differential equations based on deep neural networks,
parameterizing the solved physical quantities and search-
ing for solutions to partial differential equations through
neural network execution time evolution, thereby proving
the rationality of using neural networks to characterize this
quantity. Huang et al. [12] proposed an invasive approach
for high-dimensional stochastic partial differential equations
Completely unsupervised and networkless deep learning
based solutions. Kien et al. [13] proposed a physical network
to optimize variational problems based on training processes.
Berg [14] and Zhang [15] et al. used Gaussian processes to
fit linear operators on the basis of machine learning methods
and further extended this method to the regression of non-
linear operators. Chen et al. [16] used PINN based methods
to solve partial differential equations in complex domains
and achieved some good results. Although PINN have many
advantages in solving partial differential equation problems,
they still have some problems. Firstly, without a theoretical
foundation to understand the scale of neural network struc-
tures and the required amount of data, it is impossible to guar-
antee that algorithms will not converge to local minima, and
their training time is slower than traditional numerical meth-
ods. Chakraborty et al. [17] developed the Physical Infor-
mation Extreme Learning Machine (PIELM), which can be
applied to time-dependent linear partial differential equation
problems. They also demonstrated that PIELM outperforms
PINNs in a series of problems. Piscopo et al. [18] proposed
a method for solving partial differential equations using arti-
ficial neural networks and adaptive configuration strategies.

Darbon et al. [19] proposed a neural network based partial
differential equation solving model suitable for irregular
boundaries. This model uses multi-layer perceptron and
radial basis function neural networks to fit complex bound-
aries, and has achieved high prediction accuracy on some
relatively simple two-dimensional and three-dimensional par-
tial differential equations. Rodriguez-Torrado et al. [20]
proposed a partial differential equation solving method based
on Long Short Term Memory (LSTM) networks for solv-
ing high-dimensional partial differential equations. However,
the above methods are only applicable to specific types
of partial differential equations and lack certain universal-
ity. Dwived et al. [21] proposed Physical Information Neural
Networks (PINN) for approximating the functions to be
solved in partial differential equations.

Traditional physical information neural networks have
low prediction accuracy in solving many physical problems
based on partial differential equations. A high-precision solu-
tion method for partial differential equations based on deep
learning networks is proposed. By constructing a solution
that connects the output of the neural network with the
required function, a meshless numerical solution process
is achieved. The numerical experimental results of Klein
Gordon equation [22], Helmholtz equation [23], and Navier
Stokes equation [24] show that Taylor PINN can accurately fit
the mapping relationship between spatiotemporal point coor-
dinates and expected functions in the computational domain,
and provide accurate numerical prediction results. Compared
with commonly used neural network methods based on phys-
ical information, Taylor PINN has improved the prediction
accuracy of different numerical problems by approximately
12 times.

II. METHOD AND PRINCIPLE
A. NEURAL NETWORKS AND THEIR STRUCTURES
First, a single hidden layer neural network is defined. Given
the d-dimensional row vector x as the input of the model, the
k-dimensional output of the neural network is in the following
form:

y = σ (xw1 + b1)w2 + b2 (1)
In the formula, w1 and w2 are sizes d × Q; b1 and b2
are bias; σ (·) is the activation function. In the deep neural
network, each hidden layer linearly processes the input vari-
ables through the weight matrix and deviation [25], then the
activation function is used for nonlinear transformation. The
nonlinear output of the previous hidden layer continues to be
the input of the next hidden layer and repeats the linear pro-
cessing of the weight matrix and the nonlinear transformation
of the activation function again. The new weight matrix and
deviation in each hidden layer constitute a new hidden layer
in the neural network [26]. The ability of neural networks to
approximate complex nonlinear functions can be improved
by adding more hidden layers or increasing the dimension of
hidden layers. Neural networks with k − 1 hidden layers can
be expressed as:

Nθ (z) = Tk ◦ σ ◦ Tk−1 ◦ . . . ◦ T1 ◦ σ ◦ T0(z) (2)
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where: T (zk−1) = wkzk−1 + bk ,wk represents the weight
matrix between k−1 to the (k−1)-th layer, zk−1 and bk repre-
sent the output and deviation vectors of the hidden layer k−1.
Nθ (z) is the output of the neural network, z0 = z represents
an input parameter σ (·) is a nonlinear activation function.
At present, the most popular activation function includes Sig-
moid, Tanh and ReLU. ReLU activation function is one of the
most widely used functions, in the form of f (z) = max (0, z).
However, the higher derivative of ReLU is 0, which limits the
applicability of this paper to deal with differential equations
composed of higher derivatives. Tanh or Sigmoid activation
function can be used for second-order or higher-order partial
differential equations. The output of the sigmoid function is
relatively flat [27], and when the input changes little, the out-
put changes little, whichmay not be flexible enough for linear
models. The Tanh activation function is antisymmetric [28],
and by allowing the output of each neuron to take values on
the interval [−1, 1]. The system bias problem caused by sig-
moid activation is overcome. In addition, compared with the
training of asymmetric activated deep neural networks [29].
The training process of anti-symmetric activated deep neural
network converges faster. In the regression problem of given
multiple training data points, this paper can use Euclidean
loss function to calibrate the weight matrix and bias, as shown
below:

J (θ; x, y) =
1
M

M∑
i=1

||yi − ŷi||2 (3)

In the formula, J represents the mean square error; x ={x1,
x2,. . . , xM} is the input vector; y ={y1, y2,. . . , yM} is the
output vector; {y1, y2,. . . , y3} are the predicted outputs of
the neural network. The model parameters can be solved
according to equation (4):

(ω∗

1, ω
∗

2, . . . , b
∗

1, b
∗

2, . . .) = argmin
(w1,··· ,b1,...)

J (θ; x, y) (4)

Use gradient descent method to optimize the model, specif-
ically, in the i-th iteration, the model parameters θ = {ω1,
ω2,. . . , b1, b2,. . . } are updated through equation (5):

θ (i+1)
= θ (i) − η(i)∇θJ (i)(θ (i); x, y) (5)

Among:

w(i+1)
k = w(i)

k − η(i)
∂

∂w(i)
k

J (θ; x, y) (6)

b(i+1)
k = b(i)k − η(i)

∂

∂b(i)k
J (θ; x, y) (7)

η (i) is the step size of the i-th iteration.
In the backpropagation process, the chain rule is used to

first calculate the gradient of the last layer, and finally the
gradient of the first layer. Some gradients of the current layer
are reused in the previous gradient calculation. This reverse
flow of information promotes the effective calculation of each
layer’s gradient in deep neural networks. Gradient descent
iterative algorithm with given learning rate η; Iterative con-
vergence criterion neural network parameters θ = 0. The
output of the neural network is y. The training set {x1, . . . , xM}
for collectingM samples did notmeet the stop criterionwhile,

with the corresponding target being yi; Calculate objective
function:

J (θ; x, y) =
1
M

M∑
i=1

||yi − ŷi||2.

B. SOLVING TAYLOR PINN FOR PARTIAL DIFFERENTIAL
EQUATIONS BASED ON DEEP NEURAL NETWORKS
In order to further improve the prediction accuracy of
Physics-Informed Neural Network, this paper proposes an
improved partial differential equation solving method based
on deep neural networks, Taylor PINN [30]. This method
also transforms the problem of solving differential equations
into an optimization problem of functions. However, unlike
traditional Physics-Informed Neural Network, Taylor PINN
incorporates a formal construction process of the function to
be solved in the prediction process, which no longer directly
uses regression models to output discrete predicted val-
ues [31]. However, connects the neural network output with
the function to be solved by constructing a solution. In this
process, how to construct the form of the solution becomes
the key after the problem is transformed [32]. Taylor’s for-
mula is a widely used method for function approximation,
and Theorem 1 is the nth order Taylor expansion theorem of
a univariate function:
Theorem 1: Assume the function f (x) is differentiable to

order n+1 in the neighborhood of x = x0, then for any point x
located in this neighborhood:

f (x) = f (x0) + f ′(x0)(x − x0)

+ · · · +
f (n)(x0)
n!

(x − x0)n + Rn(x) (8)

Among, Rn(x) is (x − x0)n higher order infinitesimal of the
remainder.

According to the above theorem [33], this article uses
a polynomial function space based on Taylor’s formula to
construct the solution form, that is, let each function to be
solved in the partial differential equation be as shown in
equation (9):

u = λ0 + λ1(λ2x + λ3t) + · · · + λk1(λk2x + λk3t)k (9)

Compared with other function spaces (such as Fourier series
or various radial basis functions), the polynomial space com-
posed of the linear weighting of the coordinates (x, t) and
their products has flexible scalability, and has relatively small
computational cost. In terms of model architecture, Taylor
PINN not only uses a fully connected layer, but also intro-
duces an input enhancement layer as an enhancement method
to expand the dimension of input point coordinates. This
enhancement layer implements a discrete linear mapping
based on spatiotemporal point coordinates ϕ(x, t), as shown
in equation (10):

ϕ : (x, t) → {(x, t), (x2, t2), sin(x, t), cos(x, t)} (10)

In addition, in the construction of loss function. Taylor PINN
introduces a static weight parameter α balance the contri-
bution of different loss terms to iterative convergence [34],
so that the neural network model can better meet each loss
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FIGURE 1. Overall structure of taylor PINN.

term during the training and optimization stage, and thus
converge to the optimal value faster. Finally, Taylor PINN’s
loss function is shown in equation (11):

Loss = MSEu + α1(MSEb +MSE1) (11)

Among them, the equation residual term MSEu is
used to constrain the neural network to satisfy Control
equation.Assuming {x iu, t

i
u}
Nu
i=1 ⊂ Rd is the time within

the computational domain Empty points, Nu is the number
of selected internal points. Equation residual term MSEu
calculation is shown in equation (12):

MSEu =
1
Nu

Nu∑
i=1

|
∂ku
∂tk

(x, t) − D[u(x, t)]|2 (12)

The condition terms MSEb and MSE1 in the Loss function
are used to approximate the optimization results of the bundle
neural network satisfy the boundary and Initial condition.
{x ib, t

i
b}
Nb
i=1 ⊂ Rd is the spatiotemporal point on each bound-

ary, and the partial differential equation. The construction
method of conditional items is shown in equations (13):

MSEb =
1
Nb

Nb∑
i=1

B[u(x, t)] − h(x, t)|2 (13)

MSE1 =
1
N1

NI∑
i=1

[
∂ lu
∂t l

(x, 0) − g(x)|2 (14)

By minimizing the Loss function Loss, Taylor PINN can uti-
lize the nerve the function. It can fit ability of the Taylor PINN
satisfies both equation terms and conditions simultaneously.
The approximate solution u to be solved θ , Namely:

u ≈ u(θ ) (15)

The approximate solution is represented by a Feedforward
neural network Any point coordinate in the domain, the
trained network model can pass through Efficient prediction
of corresponding function values through several matrix mul-
tiplication, thereby achieving End-to-end mapping of point

coordinates to physical fields. PINN based training The
practice and prediction process eliminates dependence on
computational grids, greatly improving Improved the effi-
ciency of numerical analysis.

Figure 1 shows the overall structure of Taylor PINN, which
includes an input layer, an input enhancement layer, a hidden
layer for high-dimensional function space feature learning,
and the final output layer. Among them, the input layer of
Taylor PINN takes the spatiotemporal coordinates of the
computational domain as input and propagates to a hidden
layer composed of fully connected layers after dimensionality
expansion. Forward propagation to obtain output λ . Calculate
the value of the function to be solved as a coefficient in
the solution form based on Taylor’s formula. In the training
phase, the function value obtained is used to calculate the
value of the loss function and the gradient of back propaga-
tion. In the prediction phase, this output value will be directly
used to calculate the predicted solution of the function to be
solved.

The training process of Taylor PINN is shown in figure 1.
Taylor PINN training process input: Calculate the spatiotem-
poral point coordinates within the domain. Output: The
trained Taylor PINN model.
Step1: Select spatiotemporal point coordinates from both

the computational domain and the boundary to form a training
sample set.
Step2: Build the Taylor PINN neural network and build

the loss function Loss according to the partial differential
equation to be solved [35].
Step3: Initialize network parameters.
Step4: Select spatiotemporal point coordinates from the

sample set as training samples and inputs them into
Taylor PINN.
Step5:Use the optimization algorithm to minimize the loss

function Loss, and update the optimization parameters in the
neural network.
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Step6:Repeat steps 4 and 5 until the predetermined number
of iteration rounds are completed.

C. HELMHOLTZ EQUATION
In the second test case, this paper uses Taylor PINN to solve
the two-dimensional Helmholtz equation. The equation is
widely used in the fields of acoustics, electromagnetism and
elasticity [36]. The two-dimensional Helmholtz equation is
shown in equation (16):

1u(x, y) + k2u(x, y) = q(x, y), (x, y) ∈ � (16)

The boundary conditions of the equation are shown in
equation (17):

u(x, y) = h(x, y), (x, y) ∈ ∂� (17)

Among them, 1 is a Laplace operator, and the calculation
domain � is [0, 1] × [0, 1]. When k = 1 and the source term
q (x, y) is shown in equation (18):

q(x, y) = −π2 sin(πx) sin(4πy)

− (4π )2 sin(πx) sin(4πy)

+ k2 sin(πx) sin(4πy) (18)

An analytical solution to the equation can be constructed,
as shown in equation (15):

uref = sin(πx) sin(4πy) (19)

In Taylor PINN, the loss function corresponding toHelmholtz
equation is shown in equation (20):

Loss =
1
Nu

Nu∑
i=1

|1u(x, y)+u(x, y) − q(x, y)|2

+
α1

Nb

Nu∑
i=1

|u(x, y) − h(x, y)|2 (20)

Table 1 shows the L2 errors of PINN and Taylor PINN
when the number of single layer neurons varies with a fixed
network layer of 3. From Table 2, it can be seen that as
the number of neurons increases, both network models can
achieve improved prediction accuracy [37].

TABLE 1. Effect of the number of neurons in a single-layer network on
the predictive performance of Taylor PINN.

III. EXPERIMENTS AND RESULTS
A. NUMERICAL EXAMPLES
In the process of neural network training, this paper uses mul-
tilayer perceptron, which contains two hidden layers, each
hidden layer contains 30 hidden units, and a linear output unit.
The activation function of each hidden unit is tanh =

ex−e−x
ex+e−x .

Determine the computational boundary and select the bound-
ary N training points. At the same time, arbitrarily select
M training points within the calculation area, and use two
parts of the training points (M + N ) as the training set to
learn the neural networkmodel in the TensorFlow framework.
Through training, obtain the optimal parameters of the neural
network and the approximate solution of the model. Then,
select enough points in the calculation area as the test set,
and test the approximate solution after training to verify the
accuracy of the method.

Firstly, consider the Poisson equationwithmixed boundary
conditions:

∇
2u(x, y) = e−x(x−2

+ y3 + 6y)
(x, y) ∈ �

u(0, y) = y3, u(1, y) = e−1(1 + y3)

u(x, 0) = xe−x ,
∂u
∂y

|y=1 = 3e−x

(21)

Among them, x, y ∈ [0, 1]. Take the calculation area � as a
square, randomly select M = 500 training points within �,
uniformly select N = 200 training points on partial �, and
useM andN together as the training set, as shown in Figure 2.
The analytical solution of the equation is:

u(x, y) = e−x(x + y3) (22)

FIGURE 2. Training set.

The loss function is constructed as follows:

J
→

(θ ) =
1
Nint

Nint∑
i=1

(∇2N (x, y, θ)

− e−x(x−2
+ y3 + 6y))2
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+
λ1

Ndir

Ndir∑
p=1

(N (x, y, θ) − g(x, y))2

+
λ2

Nneu

Nneu∑
q=1

(
∂N (x, y, θ)

∂y
− 3e−x)2 (23)

Among them, λ1 is 1000, λ2 is 30, select learning rate η. After
30000 iterations of training with a value of 0.001, the training
solution of the equation was obtained. Taking M = 20000
andN = 2000 as the test set, the analytical andDNN approxi-
mate solutions of the test set are shown in Figures 3 and 4.
As shown in the figure, the blue, purple, orange, and yellow
colors represent the approximate solution values.

FIGURE 3. Analytical solution.

FIGURE 4. DNN approximate solution.

Figure 5 shows the errors on the test, and it can be seen
that the error between the neural network solution and the
analytical solution is -1% - 5%, indicating an ideal effect.
As shown in the figure, the blue purple orange yellow color
in the figure represents the test error value of the approximate
solution.

For the Poisson equation, five gradient optimization algo-
rithms, Adam, SGD, Adadelta, RMSProp, Adagrad, are used

FIGURE 5. Test set error.

to process the loss function. The convergence curve of the
loss function is shown in Figure 6. The horizontal axis
represents the number of iterations of the gradient descent
algorithm, and the vertical axis represents the loss value of
the loss function. With the increase of the number of itera-
tions, the loss value gradually decreases. Among them, the
optimization effect of the Adam optimization algorithm on
the model is better than other methods, The main reason is
that this algorithm combines the advantages of the Adarad
and RMSProp algorithms. Compared to traditional gradi-
ent descent algorithms, the Adam optimization algorithm
has adaptive ability and faster computational convergence.
The SGD optimization algorithm results in similar gradient
descent curve effects to the Adam algorithm, but when the
dataset is large, the SGD algorithm has better convergence
speed and efficiency than Adam. So suitable optimization
algorithms should be selected in different situations. This
article’s calculations show that using the Adam optimization
algorithm can achieve ideal results.

The advection equation is of great significance in the
study of atmospheric motion. The motion equation, heat flux
equation, and water vapor equation all contain advection
terms. However, numerical solution methods are difficult to
obtain analytical solutions for such equations, so studying
neural networks to solve advection equations is of great prac-
tical significance.

Lu = a
∂2u
∂2x2

+ b
∂2u
∂2y2

= f (x, y)

(x, y) ∈ �

u(1, y) = sin(3π) cos(3π)
∂u
∂y

∣∣y=1 = −3π sin(3πx) sin(3π)

∂u
∂y

∣∣y=0 = 0

(24)

where: x, y ∈ [0, 1], and the mixed boundary conditions are
met, the analytical solution of the equation is:

u(x, y) = sin(3πx) cos(3πy) (25)
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FIGURE 6. Convergence of different optimization methods.

Among them, a and b are the advection coefficients. In this
problem, take a = 2 and b = 3, take the calculation area �

as a square, generate M = 500 arbitrary training points
within �, and generate N = 200 training points on partial �,
as shown in Figure 7.

FIGURE 7. Training set.

Figures 8 and 9 show the function results of the test set on
the analytical solution and DNN solution, respectively.

B. KLEIN-GORDON EQUATION
This section uses three numerical cases, Klein Gordon
equation, Helmholtz equation and Navier Stokes equat-
ion [41]. Taylor PINN’s ability to solve partial differen-
tial equations, and compare its prediction performance with

FIGURE 8. Analytical solution.

FIGURE 9. DNN approximate solution.

traditional PINN under the conditions of the same network
structure, hyperparameter and number of training iterations.
The initial learning rates used in the experiment were
all 0.001, with a decay rate of 0.9 per 1000 rounds. The
optimizer used Adam with a batch size of 128. The test-
ing platforms for the experiment are IntelCorei7-6700 and
NVIDIA Tesla P100, and the experimental environment is
TensorFlow1.15.0. The differential terms in partial differ-
ential equations are unified using the automatic differential
function in TensorFlow. The prediction accuracy of the neural
network model is measured using L2 error, and its calculation
method is shown in equation (26):

L2 − error =

∣∣uref − upred
∣∣2∣∣uref ∣∣2 (26)

Among them, uref is the reference solution of the equation to
be solved, usually represented by analytical or high-precision
numerical solutions. Unpred is a predictive solution provided
by neural networks.

In the first test case, Klein Gordon equation is used to eval-
uate the fitting ability of the proposed method. Klein Gordon
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equation is one of the basic partial differential equations in
quantum physics, solid-state physics and other fields. The
form of the one-dimensional Klein Gordon equation is shown
in equation (26):

utt + αuxx + βuγ
= q(x, t),

(x, t) ∈ � × [0,T],� = [0, 1] (27)

The boundary conditions are shown in equation (28):

u(x, t) = h(x, t), (x, t) ∈ ∂� × [0.T ] (28)

The initial conditions are as shown in equations (29)
and (30):

u(x, 0) = g1(x), x ∈ � (29)

ut (x, 0) = g2(x), x ∈ � (30)

When g1 (x) = g2 (x) = 0, α = β = 1, γ = 3.
We can construct an analytical solution of the equation as a
reference solution for neural network prediction, as shown in
equation (31):

uref (x, t) = x cos(5π t) + (xt)3 (31)

In this paper, h (x, t) and q (x, t) are obtained by using
the analytic solution, which is used to calculate the residual
and condition terms in the loss function later. For partial
differential equations (equations (29) to (31)).

In this case, this article constructs a Taylor PINN net-
work model with 3 hidden layers, with 100 neurons per
layer. In the training phase, this paper seeks the optimal
network parameters by minimizing the loss function to fit
the closed prediction solution of Klein Gordon equation.
We set the total number of training rounds to 4000, with
static weights α1 is 10. The test set consists of 10000 spa-
tiotemporal points uniformly distributed within the computa-
tional domain. The prediction accuracy (L2 error) of Taylor
PINN under different orders of Taylor formula is shown
in Figure 10.

FIGURE 10. Taylor PINN under different orders.

In this case, this article tested the impact of different net-
work sizes on the predictive performance of Taylor PINN

by changing the number of network layers and single-layer
neurons. In order to better analyze the performance results
at different scales, this article compares Taylor PINN with
PINN at the same scale. Figure 11 shows the prediction
results of Taylor PINN on the Helmholtz equation case
when the order is 3 and the number of fixed single-layer
neurons is 50.

From Figure 11, it can be seen that when the num-
ber of network layers is 3. Taylor PINN achieves the
best prediction performance, with an L2 error of 1.86E-02.
When the number of network layers continues to increase,
the prediction accuracy will actually deteriorate. However,
Taylor PINN has achieved higher prediction performance
than PINN, and the prediction accuracy can be improved
up to 12 times.

FIGURE 11. Prediction performance of Taylor PINN with different network
layers on the Helmholtz equation.

Table 2 shows the L2 errors of PINN and Taylor PINN
when the number of single layer neurons varies with a fixed
network layer of 3. From Table 2, it can be seen that as
the number of neurons increases, both network models can
achieve improved prediction accuracy.

TABLE 2. Effect of the number of neurons in a single-layer network on
the predictive performance of Taylor PINN.
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C. ABLATION EXPERIMENT AND COMPARISON
OF RESULTS
In this case, this article tested the impact of different network
sizes on the predictive performance of Taylor PINN by chang-
ing the number of network layers and single-layer neurons.
In order to better analyze the performance results at different
scales, this article compares Taylor PINN with PINN at the
same scale. Figure 12 shows the prediction results of Taylor
PINN on the Helmholtz equation case when the order is 3 and
the number of fixedmonolayer neurons is 50. FromFigure 12,
it can be seen that when the number of network layers is 3,
Taylor PINN achieves the best prediction performance, with
an L2 error of 1.86E-02. When the number of network layers
continues to increase, the prediction accuracy will actually
deteriorate. However, under different network layers, Taylor
PINN achieved higher prediction performance than PINN,
and the prediction accuracy can be improved up to 12 times.
The purple color in the figure represents the loss function
error of PNN, while the green color represents the Taylor
PINN loss function error.

FIGURE 12. Prediction performance of Taylor PINN with different network
layers on the Helmholtz equation.

To test the accuracy and speed of the method r in solv-
ing partial differential equations, a certain partial differential
equation is given, and the method used in this paper is applied
to solve the given partial differential equation. The solution
results and process time are compared with other methods to
verify the effectiveness of the method used in this paper. The
partial differential equation given is:

∇
2u =

∂2u

∂x21
+

∂2u

∂x22
= (λ 2

+ µ2) exp(λx1 + µx2) (32)

In the equation, the boundary conditions are x1 ∈ [0, 1], x2 ∈

[0, 1]:{
u = exp(λx1 + µx2), x1 = 0x2 = 1
u1 = λ exp(λx1 + µx2), x1 = 0x2 = 1

(33)

In the formula: Take λ = 2, µ = 3. The exact solution of
equation is:

ue = (x1, x2) = exp(λx1 + µx2) (34)

Under 50 training samples, the standard deviation and root
mean square error of the solution obtained by this method
at different levels were compared with the exact solution.
The comparison results are shown in Table 3. From Table 3,
it can be seen that under a fixed number of training samples,
as the number of layers increases, the standard deviation
and root mean square error of the method presented in this
paper show a gradually decreasing trend. Especially when the
method used in this paper is a 2-layer structure, the standard
deviation and root mean square error are reduced by one order
of magnitude compared to the 1-layer structure, with the most
significant decrease; Starting from the 5-layer structure, the
decrease in standard deviation and root mean square error
begins to decrease. Therefore, the 4-layer structure proposed
in this paper is used for solution and compared with other
methods.

TABLE 3. Comparison of solution accuracy for different layers of this
method.

The number of training samples is selected as 10, 20, 30,
40, 50, and the reduced basis finite element method for solv-
ing parametric partial differential equation and the method
for solving wave equation based on the AH orthogonal basis
function are used as the comparison method of the method in
this paper. In this paper is used to solve the problem, and the
standard deviation and root mean square error between the
solution results of each method and the accurate solution are
compared, as shown in Figure 13.

From Figure 13, it can be concluded that under the same
number of training samples, the standard deviation and root
mean square error of the solution results of the three meth-
ods are ranked in descending order. This indicates that the
solution accuracy is directly proportional to the number of
training samples, and the solution accuracy of this method is
improved compared to the other two comparative methods.

Implement statistics on the duration of each method’s
solving process, and compare the solving speed of each
method based on the statistical results, in order to further
test the solving effect of this method. The statistical results
are shown in Figure 14. Analyzing Figure 14, it can be
concluded that as the number of training samples increases,
the duration of obtaining high-precision solutions for each
method also increases. However, under the same number of
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FIGURE 13. Comparison of solution results of various methods.

FIGURE 14. Statistical results of solution time for each method.

training samples, the high-precision solution duration of our
method is lower than that of the other twomethods, indicating
that our method has a higher solution speed in high-precision
solving partial differential equations. Based on the results of

all the above examples, it can be seen that compared with the
two comparative methods, the proposed method has higher
solution accuracy and speed, and performs better in solving
partial differential equations. It can achieve high-precision
and efficient solutions for partial differential equations.

IV. CONCLUSION
Wepropose a Taylor PINNmethod to solve elliptic partial dif-
ferential equations in complex domains. This method uses a
completely unsupervised gradient descent algorithm for iter-
ative training, without the need to call other numerical solvers
for partial differential equations during the solution process.
Numerical examples show that under the neural network
computing framework provided in this paper, approximate
solutions of any elliptical partial differential equation can
be obtained through training in any region, and have high
accuracy. In future work, consider further research on net-
work models, such as introducing attention mechanisms into
network models to improve the accuracy of the model; The
proposed methods will also be improved and applied to more
complex physical problem scenarios to further enhance their
practicality.
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