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ABSTRACT Oscillatory circuits with real memristors have attracted a lot of interest in recent years. The
vast majority of circuits involve volatile memristors, while less explored is the use of non-volatile ones.
This paper considers a circuit composed by the interconnection of a two-terminal (one port) element, based
on the linear part of Chua’s circuit, and a non-volatile memristor obeying the Stanford model. A peculiar
feature of such a memristor is that its state displays negligible time-variations under some voltage threshold.
Exploiting this feature, the memristor is modeled below threshold as a programmable nonlinear resistor
whose resistance depends on the gap distance. Then, the first-order Harmonic Balance (HB) method is
employed to derive a procedure to select the parameters of the two-terminal element in order to generate
programmable subthreshold oscillatory behaviors, within a given range of the gap, via a supercritical Hopf
bifurcation. Finally, the dynamic behaviors of the designed circuits as well as the sensitivity of the procedure
with respect to the location of the bifurcating equilibrium point and the range of the gap are discussed and
illustrated via some application examples.

INDEX TERMS Bifurcations, Chua’s circuit, harmonic balance, memristor, stanford model.

I. INTRODUCTION
Recent years have shown an ever growing interest in develop-
ing in-memory computing schemes to tackle some problems
emerging in digital Von Neumann systems [1], [2], [3].
Among others nanoscale devices, circuits with memristors
appear to be a promising tool for implementing new in-
memory, analog and parallel (neuromorphic) computing
paradigms [4], [5], [6], [7], [8].

The theory underlying the dynamics of circuits with
ideal memristors is nowadays quite mature (see [9] and
references therein). One main limitation of ideal memristors
is that they are unable to accurately model the switch-
ing dynamics of real memristor devices implemented in
nanotechnology. On the other hand, real memristors are
usually modeled via the so called generic or extended
memristor models, that usually involve general forms of
quasi static Ohm’s law and also extended forms for the
state variable equations. Real memristors can be non-volatile,
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as it happens in the ideal case, but also volatile, a typical
example being the thermistor. Moreover, different from ideal
memristors, the real ones usually feature a voltage threshold
such that the state has almost negligible variations below
threshold, while they display rapid big variations beyond
threshold.

Several oscillatory circuits based on the negative dif-
ferential resistance (NDR) displayed by the quasi-static
nonlinear characteristic of volatile memristors have been
considered in the technical literature [10], [11], [12], [13],
[14], [15], [16]. Their operating principle is akin to that of
the Anson-Pearson electronic oscillators. A less explored and
less obvious possibility is to built up oscillators using non-
volatile memristors [17], [18]. An interesting related question
concerns the possibility to take advantage in view of the
applications of the programmability features of non-volatile
memristor devices.

Recently, it has been shown that modeling non-volatile
memristors as programmable nonlinear resistors can be
fruitfully exploited for the design of oscillatory circuits
given by the interconnection of the memristor with a
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two-terminal linear element [19], [20]. A Chua’s oscillatory
circuit with a non-volatile extended memristor obeying
Stanford model is designed in [19], showing via numerical
simulations that it is capable to generate quite different
coexisting dynamics. In [20] an oscillatory Chua’s circuit
based on a non-volatile memristive device is realized
and its rich dynamic behavior is validated experimentally.
In both contributions the design procedure relies on the
observation that the memristor state variable (the gap
distance in [19]) has almost negligible variations when its
voltage is below some threshold. This permits to model the
memristor as a nonlinear resistor whose resistance can be
programmed for instance by applying voltage pulses above
the threshold. The parameters of the two-terminal element
are selected by satisfying some conditions ensuring desired
stability properties of the equilibriun points of the memristor
circuit.

This paper considers the same circuit of [19], i.e.,
a non-volatile extended memristor obeying Stanford model
connected to a two-terminal (one port) linear time-invariant
element given by the parallel interconnection of the classic
Chua’s circuit and a linear resistor with negative conductance.
The goal is to develop a systematic procedure to design the
parameters of the two-terminal element in order to ensure
that some given equilibrium point of the circuit undergoes
a supercritical Hopf bifurcation at some given value of the
gap distance, thus generating a family of (stable) periodic
solutions within some range of the gap. The procedure is
based on the first-order Harmonic Balance (HB) method,
a well-known technique for predicting limit cycles and their
bifurcations as well as more complex behaviors (see [21] and
references therein). The first order HB method is applied to
the third-order circuit obtained by replacing the non-volatile
extended memristor obeying Stanford model with a nonlinear
resistor whose resistance depends on the gap distance, which
is assumed to be constant when the voltage is below some
given threshold. This is discussed in Section II together
with the problem formulation and a brief summary of the
HB method. The application of the HB method permits
to identify the set of the parameters of the two-terminal
element ensuring the occurrence of a supercritical Hopf
bifurcation. This is shown in Section III where for each
value of the gap a first-order Predicted Limit Cycle (PLC)
approximating the corresponding periodic solution of the
family generated by the bifurcation is determined, also
providing a quantitative measure of their distance. Based on
these results, in Section IV a systematic procedure is derived
for selecting the parameters of the two-terminal element
guaranteeing that the PLCs are close to the stable periodic
solutions generated by the Hopf bifurcation within some
given range of the gap. The dynamic behaviors displayed
by the designed two-terminal element coupled with both
the programmable nonlinear resistor and the non-volatile
extended memristor obeying Stanford model are discussed,
together with the sensitivity of the procedure with respect

FIGURE 1. Two-terminal element (black box), memristor (M) and linear
part of the classic Chua’s circuit (red box).

to the location of the equilibrium point and the value of the
gap distance at which the Hopf bifurcation occurs. Some final
conclusions end the paper in Section V.

II. MEMRISTOR CHUA’S CIRCUIT AND PROBLEM
FORMULATION
In this paper we consider the circuit of Fig. 1 where
a two-terminal (one port) linear time-invariant element is
interconnected to a memristor. The two-terminal linear
element is composed by a linear resistor (R > 0), two
capacitors (C1 > 0, C2 > 0), an inductor (L > 0), and
a linear resistor with a negative conductance −GD (GD >

0). Other topologies, employing an active memristor, can
be adopted and are available in the literature [22]. It is
worth noting that the circuit has the same structure of the
celebrated Chua’s circuit where the nonlinear resistor is
replaced by the parallel interconnection of the memristor
with the linear resistor with negative conductance. It is
assumed that the memristor is described by the Stanford
model of RRAM devices [23], [24], [25], [26]. The relation
between the current iD and the voltage vD has the following
expression

iD = I0 exp
(

−
g
g0

)
sinh

(
vD
V0

)
, (1)

where g is the gap distance, which is defined as the
average distance between the top electrode and the tip
of the (dominant) conductive filament, and I0, V0, g0 are
constant parameters whose values are reported in Table 1.
The gap distance g represents the internal state variable of
the memristor and it has a lower limit gmin and an upper
limit gmax, respectively, i.e., g ∈ [gmin, gmax]. Specifically,
gmin is reached when the tip of the conductive filament is
nearly in contact with the top electrode during the SET
process, i.e., the switching from the high-resistance state
(HRS) to the low-resistance state (LRS), while gmax is the
residual conductive filament during the RESET process, i.e.,
the switching from LRS to HRS. The values of gmin and gmax
are reported in Table 1.
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TABLE 1. Stanford model parameters.

The Stanford model is completely described by (1) and the
following two differential equations

dg
dt

= −v0

(
exp

(
−
qEag
kT

)
exp

(qa0γ
ℓkT

vD
)

− exp
(

−
qEar
kT

)
exp

(
−
qa0γ
ℓkT

vD
))

(2)

dT
dt

=
vDiD
Cth

−
T − T0
RthCth

(3)

where T is the temperature, v0, q, k , a0, ℓ, Eag, Ear , Cth, Rth,
T0 are given constants (see, e.g., [19]), and γ is a g-dependent
local field enhancement factor, given by

γ = γ0 − β

(
g
g1

)3

,

with γ0, β and g1 being fitting parameters obtained from
experimental current-voltage curves [19].

The dynamics of the circuit of Fig. 1 has been thoroughly
investigated in [19] for some given values of R, C1, C2, L,
and GD. Notably, it has been shown that the gap g remains
practically constant over time if vD satisfies

|vD(t)| ≤ VT , (4)

where VT is some given voltage threshold. As a consequence,
the memristor simply works as a programmable nonlinear
resistor, whose voltage-current characteristic (1) can be
written as

iD(vD; µ) :=I0 exp (−µ) sinh
(
vD
V0

)
, µ ∈ Iµ, (5)

where µ :=
g
g0

is the normalized gap distance and

Iµ :=

[
gmin

g0
,
gmax

g0

]
= [0.26, 6.18]. (6)

This paper deals with the problem of designing R, C1,
C2, L, and GD in order that the circuit of Fig. 1, once the
memristor is modeled by the programmable nonlinear resistor
described by (5), displays desired oscillatory behaviors for
given values of the programmable parameter µ. It is expected
that if the constraint (4) holds then these oscillations are also
exhibited when the complete memristor model (1)-(3) is used
in place of (1), i.e., (5).
The remainder of this Section is organized as follows.
In Section II-A, it is shown that the circuit can be cast as
the input-output feedback system of Fig. 2, which is usually
referred to as Lur’e system. Lur’e systems have received a lot

FIGURE 2. Lur’e system: L(s) is the transfer function of the linear system
in the forward path and n(·) is the memoryless nonlinear characteristic of
the feedback path.

of attention in the literature (see [27] and references therein),
since their structure emerges in several control problems and
it is enjoyed by many oscillatory circuits (e.g., Duffing, Van
der Pol). In Section II-B, we recall the main elements of
the general Harmonic Balance (HB) method which is a key
tool for the prediction of limit cycles and their bifurcations
as well as more complex behaviors (see [21] and references
therein), while Section II-C focuses on the first-order HB
method which is usually known as the Describing Function
(DF) technique. Finally, the problem of interest is formulated
in Section II-D.

A. LUR’E SYSTEM REPRESENTATION
OF THE MEMRISTOR CIRCUIT
Under the assumption that the gap distance is constant,
the dynamics of the circuit of Fig. 1 obeys the following
equations

C1v̇C1 (t) =
1
R

(
vC2 (t) − vC1 (t)

)
+ GDvC1 (t) − iD(t)

C2v̇C2 (t) =
1
R

(
vC1 (t) − vC2 (t)

)
+ iL(t)

Li̇L(t) = −vC2 (t),
(7)

where vC1 and vC2 are the capacitor voltages, iL is the inductor
current, and iD depends on vD and µ according to (5)-(6).
By introducing the state vector x = (x1, x2, x3)⊤ with x1 =

vC1 , x2 = vC2 , x3 = iL and observing that vD = vC1 , we can
rewrite (7) in the following state space form{

ẋ(t) = Ax(t) + Bu(t) + Ey(t)
y(t) = Cx(t),

(8)

where

A =


−

1
RC1

1
RC1

0

1
RC2

−
1
RC2

1
C2

0 −
1
L

0

 B =


1
C1
0
0

 (9)

C =
(
1 0 0

)
E =


GD
C1
0
0

 , (10)
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y = vD and

u(t) = −iD(y(t); µ). (11)

It turns out that this state space model can be represented as
the Lur’e system of Fig. 2 where y = x1 = vD, L(s) is the
input-ouput transfer function of (8) and

n(y) = iD(y; µ). (12)

It can be verified that L(s) has the following expression

L(s) =
L̄(s)

1 − GDL̄(s)
, (13)

where

L̄(s) = C(sI−A)−1B

=

1
C1

(
s2 +

1
RC2

s+
1
LC2

)
s3 +

1
R

(
1
C1

+
1
C2

)
s2 +

1
LC2

s+
1

RLC1C2

, (14)

It is worth noting that L(s) represents the impedance of the
two-terminal element of the circuit of Fig. 1 and L̄(s) is the
impedance of the linear part of the classic Chua’s circuit
(red box in Fig. 1), while the nonlinear characteristic of the
feedback path depends on the normalized gap distance µ.
It can be verified that the Lur’e system admits the following
equivalent time domain description1(

P̄(D) − GDQ̄(D)
)
y(t) + Q̄(D)n(y(t)) = 0, (15)

where Q̄(D) and P̄(D) are the numerator and denominator
polynomials of L̄(D), respectively. Summing up, under the
assumption that the gap g is constant, the circuit of Fig. 1 can
be represented as a one-parameter family of Lur’e systems
indexed by µ whose dynamics is governed by third-order
differential equations.

B. THE HARMONIC BALANCE (HB) METHOD
In the HB method the steady-state periodic output of period
T > 0 of the forward path of the Lur’e system of Fig. 2 and
the corresponding T -periodic output of the feedback path are
first expressed as

ȳ(t) =

+∞∑
k=−∞

γkejkωt (16)

and

n(ȳ(t)) =

+∞∑
k=−∞

δkejkωt , (17)

1D denotes the time-differential operator
(
i.e., Dy(t) = ẏ(t), D2y(t) =

ÿ(t) and so on).

respectively, where ω := 2π/T and

γk =
ω

2π

∫ π/ω

−π/ω

ȳ(t)e−jkωtdt, γ−k = γ ∗
k , k = 0, 1, . . .

(18)

δk =
ω

2π

∫ π/ω

−π/ω

n(ȳ(t))e−jkωtdt, δ−k = δ∗
k , k = 0, 1, . . . ,

(19)

with ∗ denoting the conjugate operator. Then, the steady-state
T -periodic output of the linear system in the forward path
generated by the input −n(ȳ(t)), which is given by

ỹ(t) =

+∞∑
k=−∞

L(jω)δkejkωt , (20)

is equated to ȳ(t) in (16) leading to the HB equations

γk + L(jkω)δk = 0, k = 0, 1, . . . , (21)

where each coefficient δk depends on γh, h = 0, 1, . . .,
according to (19). The HB equations are usually solved in an
approximate way by considering for both ȳ(t) and n(ȳ(t)) a
finite number of harmonic terms. Specifically, the N -th order
Predicted Limit Cycle (PLC) of the Lur’e system of Fig. 2 is
defined as

ȳN (t) =

N∑
k=−N

γkejkωt (22)

where ω and γk , k = 0, 1, . . . ,N solve the N -th order HB
equations

γk + L(jkω)δk (γ0, γ1, . . . , γN ) = 0, k = 0, 1, . . . ,N ,

(23)

with δk (γ0, γ1, . . . , γN ), k = 0, 1, . . . ,N , computed
according to (19) once ȳ(t) is replaced by ȳN (t). Clearly, N -
th order PLCs are only approximations of true limit cycles.
Indeed, the existence of a true limit cycle nearby the PLC
can be rigorously proven if restrictions are placed on the
feedback interconnection even in the case N = 1 (see, e.g.,
[27], [28]). These conditions basically quantify the so-called
filtering hypothesis, i.e., the gains |L(jkω)|, k = N + 1, . . .,
of the linear system in the forward path and the higher order
coefficients δk , k = N + 1, . . . generated by the nonlinearity
in the feedback path are negligible. This follows from the fact
that, since ȳN (t) solves theN -th order HB equations, ỹ(t) boils
down to

ỹ(t) = ȳN (t) +

N+1∑
k=−N−1

L(jkω)δkejkωt . (24)

A quantitative measure of the filtering hypothesis is the
so-called distortion index (see, e.g., [29]), which can be
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expressed as

DN (γ0, . . . , γN , ω)

=
∥ỹ(t)) − ȳN (t)∥2

∥y0(t)∥2

=

√√√√2
∑

+∞

k=N+1 |L(jkω)|2δ2k (γ0, . . . , γN )

γ 2
0 + 2

∑N
k=1 γ 2

k

, (25)

where ∥ · ∥2 denotes the L2-norm on the period T . Clearly,
in the limiting caseDN (γ0, . . . , γN , ω) = 0, i.e, ỹ(t) = ȳN (t),
the PLC is indeed a true limit cycle.

C. THE FIRST-ORDER HB METHOD
In the first-order HB method the PLC is expressed as

ȳ1(t) = A+ B cosωt, (26)

where A is the bias term and B > 0 is the amplitude of the
harmonic term. Since γ0 = A and γ1 = B/2, it turns out that
any first-order PLC is obtained by solving with respect to A,
B > 0, and ω > 0 the following first-order HB equations:

A+ L(0)N0(A,B)A = 0, (27)

1 + L(jω)N1(A,B) = 0, (28)

where

N0(A,B) =
1

2πA

∫ π

−π

n(A+ B cos θ ) d θ, (29)

and

N1(A,B) =
1

πB

∫ π

−π

n(A+ B cos θ) e−jθ d θ (30)

are known as the (dual-input) Describing Functions (DFs) of
the nonlinearity n(·) [30]. Accordingly, the distortion index
(25) becomes2

D1(A,B, ω) = 2

√∑
+∞

k=2 |L(jkω)|2δ2k (A,B)

2A2 + B2
. (31)

It can be verified that for sufficiently smooth functions n(·)
the DFs in the limiting case B = 0 boil down to

N0(A, 0)A = n(A)

N1(A, 0) = n′(A), (32)

with n′(y) denoting the first derivative of n(y), while the
distortion index (31) vanishes, i.e.

D1(A, 0, ω) = 0. (33)

The 0-order PLC is a constant signal

ȳ0(t) = yE , (34)

2In practice, the distortion index is approximately computed by assuming
that |L(jkω)||δk | = 0 for k ≥ Kh. Indeed, there are nonlinearities (e.g.,
polynomials) whose harmonic terms δk are exactly equal to zero for k larger
than some Kh.

which is referred to as an output equilibrium point (OEP) of
the Lur’e system of Fig. 2 and it solves the following HB
equation:

yE + L(0)n(yE ) = 0. (35)

Note that OEPs of Lur’e systems are the constant solutions
of the differential equation governing the system dynamics
(eq. (15) in our case).

The first-order HB method has been employed also to
investigate bifurcations of limit cycles in Lur’e systems (see,
e.g., [31]). In particular, Hopf bifurcations are characterized
by the solutions A = AH , B = 0 and ω = ωH of (27)-(28)
which, exploiting relations (32), reduce to{

AH + L(0)n(AH ) = 0
1 + L(jωH )n′(AH ) = 0.

(36)

Note that the first equality implies that the system has an
OEP at yE = AH , while the second one ensures that the
rational transfer function 1 + L(s)n′(AH ) has two zeroes at
s = ±jωH . If all remaining zeros have negative real part,
then it is possible to conclude that the equilibrium point at
yE = AH undergoes a Hopf bifurcation as some parameter of
the Lur’e system is varied. One way to assess the stability
character of the bifurcation resorts to investigate how the
solution of the HB equations for small values of B induced
by such a parameter variation is related to the change of the
stability properties of the bifurcating equilibrium point [32].
Specifically, if for small B the first-order PLC coexists with a
(locally) asymptotically stable (resp. unstable ) OEP, then the
Hopf bifurcation is subcritical (resp. supecritical).
Period-doubling bifurcations of limit cycles have been

investigated by modeling the emerging 2T -periodic output of
Lur’e systems as

ȳ2(t; ν) = A+ B cosωt + ν cos
(ω

2
t + ϕ

)
, (37)

where ν is a small positive coefficient and ϕ ∈ [0, 2π )
[33]. Specifically, a Predicted Period-Doubling bifurcation
(PPD) is said to occur if ȳ2(t; ν) is indeed a second-order
PLC for ν → 0. This requires to derive the second-order
HB equations, taking into account that ω/2 is now that basic
frequency, and then considering the limiting case ν = 0.
It can be shown (see, e.g., [33]) that the PLC (26) undergoes a
(first) PPD bifurcation as some parameter of the Lur’e system
is varied, if A, B, and ω solve the first-order HB equations
(27)-(28) plus the following algebraic equation:∣∣∣L−1

(
j
ω

2

)
+ F0(A,B)

∣∣∣ = |F1(A,B)|, (38)

where

F0(A,B) =
1
2π

∫ π

−π

n′(A+ B cos θ ) dθ (39)

F1(A,B) =
1
2π

∫ π

−π

n′(A+ B cos θ )e−jθ dθ. (40)
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FIGURE 3. Hopf bifurcation: maxt∈T (µ) |vD(t; µ)| (solid curve) and
maxt∈T (µ) |v0

D(t; µ)| = A(µ) + B(µ) (dashed curve) as a function of µ.

D. PROBLEM FORMULATION
We are interested in selecting the circuit parameters R, C1,
C2, L, and GD in order to ensure that the equilibrium point
defined by the constant solution vD(t) = VDE undergoes a
supercritical Hopf bifurcation at µ = µH , µH ∈ Iµ, which
generates a family of (stable) periodic solutions vD(t; µ) of
period T (µ). It is also required that the periodic solution
emerging from the Hopf bifurcation has a period T (µH ) =

2π/ωH for some given ωH .
From Section II-A we know that vD(t; µ) is the output of

the Lur’e system of Fig. 2 and, as outlined in Section II-B,
it should satisfy the general HB equations (21). Since solving
(21) is quite a difficult problem from a computational
viewpoint, we proceed by employing the first-order HB
method, thus looking for the PLCs family

v0D(t; µ)=A(µ)+B(µ) cosω(µ)t, µ ∈ [µH , µF ], (41)

for some µF ∈ Iµ. Clearly, A(µH ) = VDE , B(µH ) = 0,
ω(µH ) = ωH , with µH , ωH and VDE being given positive
constants characterizing the Hopf bifurcation.3 It is worth
noting that the constraint (4) boils down to

A(µ) + B(µ) ≤ VT , µ ∈ [µH , µF ]. (42)

Figure 3 provides a sketch of the true and approximated bifur-
cation diagrams. The former is given by the maximum values
of vD(t; µ) over the period T (µ), i.e., maxt∈T (µ) |vD(t; µ)|,
while the latter by maxt∈T (µ) |v0D(t; µ)| = A(µ) + B(µ).
The distance between the two bifurcation diagrams vanishes
at µ = µH , since at the Hopf bifurcation vD(t; µH ) =

v0D(t; µH ) = VDE , and it is generally an increasing function of
µ. This suggests that it is enough to check the accuracy of the
PLC only at µ = µF . Consequently, the circuit parameters
R, C1, C2, L, and GD can be selected in order to ensure that
the distortion index (31) is sufficiently small at µ = µF .

3The assumption VDE > 0 is not restrictive since the odd symmetry of
the Lur’e system ensures that the family of PLCs for VDE < 0 is simply
obtained by reversing the sign of A(µ) in (41).

III. PLCS CHARACTERIZATION OF THE MEMRISTOR
CHUA’S CIRCUIT
Each PLC of the family (41) must satisfy (27)-(28) where the
DFs (29) and (30) are given by

N0(A,B) =
I0
V0

exp (−µ)

sinh
(
A
V0

)
A
V0

J0

(
B
V0

)
(43)

and

N1(A,B) = 2
I0
V0

exp (−µ) cosh
(
A
V0

) J1

(
B
V0

)
B
V0

, (44)

with J0(·) and J1(·) being the modified Bessel function of
degree 0 and degree 1 [30].
Since N1(A,B) is a real function, (28) can be solved only if
the frequency ω > 0 of the PLC is such that Im[L(jω)] = 0,
and hence, taking into account (13), only if

Im[L̄(jω)] = 0. (45)

Note that the possible frequency values of the PLCs are those
at which the impedance of the linear part of the classic Chua’s
circuit is real and they do not vary with the index µ. This
implies that the PLCs family (41) satisfies (27)-(28) only if
Im[L̄(jωH )] = 0 and

ω(µ) = ωH , µ ∈ [µH , µF ]. (46)

If we set A0 := A/V0, B0 := B/V0, and

0H := Re[L̄(jωH )], (47)

then (27) and (28) can be rewritten as the real equations

GD −
1
R

=
I0
V0

exp(−µ)
sinh (A0)

A0
J0 (B0) (48)

and

GD −
1

0H
=

I0
V0

exp(−µ) cosh (A0) 2
J1 (B0)
B0

, (49)

respectively.
Clearly, (27) and (28) admit the PLCs (41) if and only

if (46) holds and (48)-(49) are satisfied by A0(µ) =

A(µ)/V0 and B0(µ) = B(µ)/V0 for all µ ∈ [µH , µF ]. The
next result provides the sought first-order PLCs family (41)
generated by the supercritical Hopf bifurcation occurring at
µ = µH .
Proposition 1: Let VDE > 0, µH > 0, and ωH > 0 be

given. Define V 0
DE := VDE /V0,

R0 : =
V0
I0

V 0
DE exp(µH )

V 0
DE cosh(V

0
DE ) − sinh(V 0

DE )
, (50)

R1 : =
V0
I0

V 0
DE exp(µH )

sinh(V 0
DE )

, (51)
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and let α be a scalar parameter such that α > 1. If the circuit
parameters R, GD, C1, C2, and L as chosen as

R ≤
α − 1
2α

R0, (52)

GD =
1
R

+
1
R1

, (53)

C1 =
1

ωHR0

√
R0
R

− 1, (54)

C2 =
α

ωHR0

√
R0
R

− 1, (55)

L =
R0
ωH

1(
R0
R

+ α

) √
R0
R

− 1

, (56)

then the equilibrium point at vD = VDE of the Lur’e system
(12)-(14) undergoes a supercritical Hopf bifurcation at µ =

µH generating a family of periodic solutions vD(t; µ) for
µ > µH whose first-order approximations v0D(t; µ) in (41)
are characterized by

A(µ) = Ā0(µ)V0, B(µ) = B̄0(µ)V0, ω(µ) = ωH , (57)

where Ā0(µ) and B̄0(µ) are implicitly defined as the unique
solution of the following equations

A0 cosh(A0)
sinh(A0)

=
B0J0(B0)
2J1(B0)

V 0
DE cosh(V

0
DE )

sinh(V 0
DE )

exp(µ − µH ) =
sinh(A0)
A0

J0(B0)
V 0
DE

sinh
(
V 0
DE

) .

(58)

Proof: See Appendix.

Remark 1: Note that α = C2/C1, which means that
C1 should be chosen smaller than C2, while (52) ensures that
R is bounded above by R0/2 for all α > 1. It is interesting
to observe that R0 and R1 depend on µH and VDE , while
only C1, C2 and L depend also on ωH . In particular, both
R0 and R1 increase with µH and decrease with VDE . Also,
from (50), (51), (52) and (72) in the proof of Proposition 1
it follows that the ratio 0H/R belongs to the interval (1, 2).
Since 0H = L̄(jωH ) and R = L̄(0), such a condition
constrains the shape of the impedance of the linear part of
the classic Chua’s circuit (red box in Fig. 1).
Remark 2: In the proof of Proposition 1 it is shown that

Ā0(µ) and B̄0(µ) are both increasingwithµ. Hence, condition
(42) is satisfied for allµ ∈ [µH , µFM ] whereµFM is such that

Ā0(µFM ) + B̄0(µFM ) =
VT
V0

. (59)

From the second equation of (58) it follows that the width of
the range [µH , µFM ] is given by

µFM −µH = log

 sinh(A0(µFM )
A0(µFM

J0(B0(µFM )
V 0
DE

sinh
(
V 0
DE

)
.

(60)

Since Ā0(µFM ) and B̄0(µFM ) are related by the first equation
of (58) which is independent of µH , it follows that the
width of [µH , µFM ] depends only on VDE . In this respect,
we observe that VDE is bounded above by VT since Ā0(µH ) =

V 0
DE and B̄0(µH ) = 0.
Proposition 1 ensures that for given VDE > 0, µH > 0,

and ωH > 0 there exists a unique PLCs family (41) whose
bias A(µ), harmonic amplitude B(µ), and frequency ω(µ) are
given by (57). Moreover, this PLC family is generated by all
the circuits with GD, C1, C2, L as in (53), (54), (55), (56),
respectively, and R and α belonging to the following region

3 =

{
α,R : α > 1, R ≤

α − 1
2α

R0

}
. (61)

Such a degree of freedom in the circuit parameters can be
exploited to choose suitable values on the basis of some
practical aspects. Most importantly, it can be used to lower
the distortion index (31) of the PLCs (41), thus making
them better approximating the true limit cycles. Indeed,
the distortion index (31) can be expressed as the following
function of µ

D(µ; α,R) := D1(Ā0(µ)V0, B̄0(µ)V0, ωH ), (62)

which depends on the values of α and R. Since B̄0(µH ) =

0 from (33) we have that D(µ; α,R) vanishes at µ = µH ,
i.e., we have D(µH ; α,R) = 0 for all (α,R) ∈ 3. According
to Section II-D, one possible choice to select α and R is to
make the distortion index at µ = µF sufficiently small, i.e.

D(µF ; α,R) ≤ ε (63)

where ε is some given positive constant.
Since the Hopf bifurcation is supercritical, the PLCs defined
by (57) are stable at least when µ is close to µH . If a
(supecritical) period-doubling bifurcation occurs at some
larger value of µ then the PLCs are no longer stable.
We can predict the occurrence of such a PPD bifurcation by
exploiting condition (38) where (39) and (40) boil down to

F0(A,B) = −
I0
V0

exp (−µ) cosh
(
A
V0

)
J0

(
B
V0

)
(64)

F1(A,B) = −
I0
V0

exp (−µ) sinh
(
A
V0

)
J1

(
B
V0

)
. (65)

Specifically, the PLCs family defined by (57) undergoes a
(first) PPD bifurcation at µ = µP if the following condition∣∣∣∣L̄−1

(
j
ωH

2

)
−GD−

I0
V0

exp (−µ) cosh (A0(µ)) J0 (B0(µ))

∣∣∣∣
−

I0
V0

exp (−µ) sinh (A0(µ)) J1 (B0(µ)) = 0, (66)

holds for µP ∈ (µH , µF ]. Note that for fixed R, GD, C1, C2,
and L the PPD is detected as a zero of a scalar function of µ

within the interval [µH , µF ].
Finally, the odd symmetry of the Lur’e system (12)-(14)
implies that Proposition 1 applies also to the equilibium point
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at vD = −VDE , VDE > 0, with the unique difference that (57)
becomes

A(µ)=−Ā0(µ)V0, B(µ)= B̄0(µ)V0, ω(µ)=ωH , (67)

where Ā0(µ) and Ā0(µ) are still the solutions of (58).

IV. DESIGN PROCEDURE AND APPLICATION EXAMPLES
In this section we first develop a procedure based on
Proposition 1 to design the circuit parameters R, GD, C1,
C2, and L. Then, some application examples are discussed
to illustrate the features of the procedure.

A. DESIGN PROCEDURE
The initial data of the procedure are the quantities charac-
terizing the sought (supercritical) Hopf bifurcation, i.e., VDE ,
µH , ωH , and the threshold VT , which delimits the memristor
voltage range where the gap remains practically constant over
time. The procedure also involves the upper bound µF of the
normalized gap interval and the quantity ε in the distortion
index inequality (63). The values of these two parameters
should be chosen in order that conditions (42) and (63) hold.
Note that, according to Remark 2, (59) provides the upper
bound µFM of µ. Since D(µ; α,R) vanishes at µ = µH ,
we have that there always exists µF satisfying (63) for any
given value of ε.

The design procedure can be summarized in the following
steps.

S1) Compute Ā0(µ) and B̄0(µ) solving the equa-
tions system (58).
S2) Compute the upper bound µFM via (59) and
pick any µF = µ0

F ≤ µFM .
S3) Compute the distortion index D(µ0

F ; α,R)
according to (31) and (62) and check if (63) is
satisfied by some α and R belonging to the region
3 in (61) with GD, C1, C2, L as in (53), (54), (55),
(56), respectively.
S4) If so the design is completed and go to step
S5); otherwise decreaseµ0

F or increase ε and repeat
step S3).
S5) Check via equation (66) if a PPD bifurcation
occurs at µ = µP, µP ∈ (µH , µ0

F ].
Some comments on the procedure are in order. First, the

structure of (58) greatly simplifies the computations in S1).
Indeed, according to the proof of Proposition 1, the first
equation admits a unique solution A0(B0) for B0 ≥ 0, while
the second one with A0 replaced by A0(B0) implicitly defines
a unique function B0 = B̄0(µ) for µ ≥ µH , which in
turn yields Ā0(µ) = A0(B0(µ)). Then, from (31) and (62)
it follows that computing D(µ0

F ; α,R) in S3) for a different
value of µ0

F does not require to evaluate again the quantities
|L(jkωH )|. Finally, if for practical realization of the circuit we
need to impose some bounds on the values ofGD,C1,C2, and
L, they can be readily incorporated in the procedure. Indeed,
these bounds simply define some sub-region 3S of 3 in (61)
where the distortion index D(µ0

F ; α,R) should be computed.

FIGURE 4. (a) A0(B0) (blue curve) and µ(B0) (red curve); (b) B0 (µ);
(c) A0 (µ): (d) A0 (µ)+ B0 (µ) (blue curve) and VT /V0 (red curve).

The procedure provides the values of the circuit parameters
GD, R, C1, C2, and L ensuring that Proposition 1 holds and
conditions (42) and (63) are satisfied. However, since the
first-order HB method is approximate in nature, the PLCs
(41) defined by (57) should be compared with the true
periodic solutions vD(t; µ) of the Lur’e system (12)-(14),
i.e. system (7). To assess that the fulfillment of (4) ensuring
that below threshold the dynamics of the gap g is indeed
negligible, some comparison should be performed also with
the dynamics displayed by the circuit of Fig. 1 once the
memristor device is modeled via (1)-(3).

B. APPLICATION EXAMPLE
To illustrate the design procedure we consider the circuit
studied in [19] where VDE = 0.35V , µH = 3.1636, ωH =

28.6 krad/s, and VT = 1V . Also, we assume ε = 0.02, while
µF is not fixed a-priori.

The solutions of the first equation of (58) are described
by a unique function A0(B0), while the second equation with
A0 = A0(B0) defines the function µ(B0). Both functions
are reported in Fig. 4-(a). As expected, µ(B0) is invertible
and hence we get the sought functions B̄0(µ) and Ā0(µ) =

A0(B0(µ)) of Fig.s 4-(b) and 4-(c), respectively. Note that
both the functions are increasing with µ.
The upper bound of µF satisfying the constraint (59)

is given by µFM = 3.586, as it can be verified from
Fig. 4-(d) which displays Ā0(µ) + B̄0(µ). We choose µ0

F =

3.5 to ensure that (42) holds with some margin.
Since from (50) we get R0 = 702.5 k�, the region 3 in

(61) boils down to

3 =

{
α,R : α > 1, R ≤

α − 1
2α

702.5 · 103
}

and it is depicted in Fig. 5. According to the practical
considerations in [19] where the ratio C2/C1 = α = 10 and
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FIGURE 5. Regions 3 (green) and 3S (red).

FIGURE 6. Circuit parameters for (α, R) ∈ 3S: (a) C1; (b) C2; (c) L; (d) GD.

R = 32000, we limit α and R to belong to the (red) rectangle
in Fig. 5, i.e.

3S = {α,R : α ∈ [8, 20], R ∈ [2000, 40000] } .

For each (α,R) ∈ 3S the values of C1, C2, L, and GD are
computed via (54), (55), (56), and (53), respectively. Figure 6
provides a graphical view of C1, C2, L, and GD as a function
of α and R. It is worth noting that C1, C2, and GD decrease
with respect to R, while L increases. Also, C1, L, and GD are
almost constant with respect to α, while C2 increases.
Then, we numerically compute the distortion index (62) at

µ = µ0
F = 3.5 by using Kh = 25 harmonics terms in (31).

Figure 7 reports the distortion index for (α,R) ∈ 3S together
with its level curves. In particular, the level curves relative to
ε = 0.02 and ε = 0.012 are highlighted in red and magenta,
respectively.

FIGURE 7. Distortion index D(µ0
F ; α, R) for (α, R) ∈ 3S , µ0

F = 3.5. The red
and magenta level curves correspond to ε = 0.02 and ε = 0.012,
respectively. The selected values of R and α are marked by ⋆.

If we choose α = 14 and R = 21500�, we get
D(µ0

F ; α,R) = 0.020 and the design procedure produces the
following circuit parameters:

R = 21500�, GD = 5.3237 · 10−5 �−1,

C1 = 0.28µF, C2 = 3.92µF, L = 93.5mH . (68)

Finally, if for these values of R, GD, C1, C2, and L we solve
the scalar equation (66) with respect to µ, we get that a (first)
PPD bifurcation is detected at µ = µP = 3.2878.
The circuit parameters (68) ensure that the Lur’e system

(12)-(14) undergoes a supercritical Hopf bifurcation at µ =

µH = 3.1636 generating a family of periodic solutionswhose
PLCs (41) are defined by (57) with Ā0(µ) and B̄0(µ) as in
Fig. 4-(c) and Fig. 4-(b), respectively. Also, the PLCs are
predicted to be stable until a (first) period doubling occurs at
µ = µP = 3.2878. Since the PLCs are only approximations
of the true periodic solutions, the dynamics of system (7) is
investigated via numerical simulations using MATLAB. The
peak-to-peak bifurcation diagrams are obtained integrating
the differential equations (7) and (1)-(3) by means of the
event-driven ODE15s routine. The results are summarized
in Fig. 8 which reports the complete bifurcation diagram
of the system4 together with the first-order approximation
given by (Ā0(µ) ± B̄0(µ))V0 (marked in red). It can be
observed that the equilibrium point at the origin undergoes
a pitchfork bifurcation at µ = 3.054 with the birth of two
stable symmetric equilibrium points which at µ = µH are
equal to VDE = ±0.35V and undergo a supercritical Hopf
bifurcation. For increasing values of µ the system displays
a sequence of period doubling bifurcations leading first to a
single-scroll attractors and then to double-scroll ones. The
true and approximated periodic solutions display quite a
similar behavior for µ ≥ µH . Note that the generated true

4The diagram is quoted via the gap distance g = µg0; the range
corresponding to [µH , µFM ] is [0.87 · 10−9, 0.98 · 10−9].
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FIGURE 8. Bifurcation diagram of system (7) and the (first-order)
approximation (A0 (g/g0)± B0 (g/g0))V0 (red curve), when VDE

= 0.35 V .
Magenta diamond and light blue disks denote pitchfork and Hopf
bifurcations, respectively; blue circles denote predicted period-doubling
bifurcations (PPDs).

periodic solutions are stable until the system undergoes a first
period-doubling bifurcation at µ = 3.294, while the PPD is
predicted to occur at µP = 3.2878.

Finally, the dynamics of the circuit in Fig. 1 with the
complete memristor model (1)-(3) and the circuit parameters
as in (68) is analyzed via numerical simulations using MAT-
LAB, obtaining the bifurcation diagram depicted in Fig. 9.
As expected, its behavior is quite similar to that of Fig. 8
since in the range of the distance gap (g ≤ 0.98 · 10−9 m)
the threshold condition (59) is satisfied. It can be observed
that the diagram still displays some odd symmetry, although
the fifth-order system is no longer symmetric. Indeed,
in the range of stable PLCs the system converges towards
one of the two stable periodic solutions, depending on
the initial conditions. As an example, Fig. 10 depicts the
trajectories obtained by programming the normalized gap
at µ = 3.273.

C. DISCUSSION
In this section we provide some insights on how the design
procedure depends on its initial data. First, we observe that
ωH influences only C1, C2, and L. Specifically, C1, C2, and
L increase for decreasing values of the frequency of the
solution generated by the Hopf bifurcation. As pointed out
in Remark 1, all the circuit parameters depend on VDE and
µH via either VT = 1 V. Figure 11 reports R0 and R1 as
function of VDE ∈ [0,VT ], VT = 1, for some fixed values
of µH . It can be observed that both R0 and R1 increase with
µH and decrease with VDE . This implies that the region 3 in
(61) of the feasible values of R and α is larger for larger µH
and smaller values of VDE .

According to (60) in Remark 2, the width of the range of
µ, for which the voltage constraint (42) holds, depends only
on VDE . Figure 12 shows that µFM − µH decreases with VDE
and it equals zero when VDE reaches the threshold VT = 1 V.
Hence, choosingVDE much smaller thanVT guarantees larger

FIGURE 9. Bifurcation diagram of the circuit of Fig. 1 with the memristor
device modeled via (1)-(3) and the (first-order) approximation
(A0 (g/g0)± B0 (g/g0))V0 (red curve), when VDE

= 0.35 V . Magenta
diamond and light blue disks denote pitchfork and Hopf bifurcations,
respectively; blue circles denote predicted period-doubling bifurcations
(PPDs).

FIGURE 10. Trajectories on the vD − vC2
plane of the circuit of Fig. 1 with

the memristor device modeled via (1)-(3), starting from initial conditions
(vD(0), vC2

(0), iL(0), g(0), T (0)) equal to (−0.01 V, 0.01 V, −1.4 · 10−9 A,
0.9 · 10−9 m, 278◦K) (black) and (0.01 V, −0.01 V, −1.4 · 10−9 A,
0.9 · 10−9 m, 278◦K) (green), respectively. Circuit parameters have been
chosen picking VDE

, α and R as in the second row of Table 2; the
normalized gap is programmed at µ = 3.273.

ranges of µ where the third-order Lur’e system (12)-(14) and
the fifth-order system with the complete memristor model
(1)-(3) are expected to display similar dynamics.

Let us now consider the influence of VDE on the distortion
index. To show this, we compute the values of µFM
corresponding to VDE = 0.27 V, VDE = 0.35 V, and
VDE = 0.5 V (see Table 2). Then, we select µ0

F = 0.9µFM
in all the three cases to compute the subregions of 3S where
the distortion index satisfies D(µ0

F ; α,R) ≤ ε with ε = 0.02.
Figure 13 reports the three subregions showing that the area
increases withVDE . Hence, it is expected that the true periodic
solutions of the Lur’e system are better approximated via the
PLCs for larger values of VDE . A similar scenario is displayed
also by the variation of the (first) PPD bifurcationwith respect
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FIGURE 11. Behavior of R0 (left) and R1 (right) as functions of VDE
, for

µH = 2.8 (blue), µH = 3.2 (red) and µH = 3.6 (orange).

FIGURE 12. Behavior of µFM
− µH as a function of VDE

.

TABLE 2. Computation of µFM
, D(µ0

F ; α, R), µP for the values of VDE
, α

and R chosen as in Figure 13.

to VDE . To show this, we compute the values of µP for
VDE = 0.27 V, VDE = 0.35 V, VDE = 0.5 V corresponding to
the values of R and α marked in the corresponding subregions
of Fig. 13. Table 2 shows that the predicted range µP −

µH of stable periodic solutions increases with VDE . This is
confirmed by comparing the bifurcation diagram of Fig. 8
with those of Fig. 14 relative to VDE = 0.27 V and VDE =

0.5 V.
On the other hand, if we increase VDE it decreases the

width µFM − µH of the range of µ where the voltage

FIGURE 13. Subregions of 3S where the distortion index satisfies
D(µ0

F ; α, R) ≤ ε with ε = 0.02, for VDE
= 0.27 (red), VDE

= 0.35 (green),
and VDE

= 0.5 (blue). The magenta triangles denote the points (α, R)
reported in Table 2.

FIGURE 14. Bifurcation diagram of system (7) and the (first-order)
approximation (A0 (µ)± B0 (µ))V0 (red curve), when VDE

= 0.27 V (top)
and VDE

= 0.5 V (bottom). Light blue disks denote Hopf bifurcations,
respectively, blue circles denote predicted period-doubling bifurcations
(PPDs).

constraint (42) holds. Hence, by increasing VDE it is expected
that the dynamic behaviors of the third-order Lur’e system
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FIGURE 15. Bifurcation diagram of the circuit of Fig. 1 with the memristor
device modeled via (1)-(3) and the (first-order) approximation
(A0 (µ)± B0 (µ))V0 (red curve), when VDE

= 0.5 V .

FIGURE 16. Trajectories on the vD − vC2
plane of the circuit of Fig. 1 with

the memristor device modeled via (1)-(3), starting from initial conditions
(vD(0), vC2

(0), iL(0), g(0), T (0)) equal to (−0.01 V, 0.01 V, −1.4 · 10−9 A,

0.94 · 10−9 m, 278◦K) (black) and (0.01 V, −0.01 V, −1.4 · 10−9 A,
0.94 · 10−9 m, 278◦K) (green), respectively. Circuit parameters have been
chosen picking VDE

, α and R as in the third row of Table 2; the
normalized gap is programmed at µ = 3.418.

(12)-(14) and the fifth-order system with the complete
memristor model (1)-(3) can display significant differences.
This is confirmed by comparing the bifurcation diagram of
the fifth-order system pertaining to the case VDE = 0.5 V,
which is reported in Fig. 15, with the one in Fig. 14 (top).
It can be observed that, differently from the case VDE =

0.35 V (see Fig. 9 and Fig. 10), the diagram of Fig. 15 shows
the presence of other dynamics even in the range of stable
PLCs. Indeed, depending on the initial conditions the system
can converge either to a periodic solution or to a single-scroll
attractor, as shown in Fig. 16. This is due to the fact that the
fifth-order systemwith the complete memristor model (1)-(3)
is no longer symmetric when µ is close µFM = 3.459. Quite
similar scenarios are obtained for larger value of VDE .

V. CONCLUSION
The paper has considered a circuit given by the intercon-
nection of the linear part of classic Chua’s circuit with a
non-volatile memristor obeying the Stanford model, whose
state variable, i.e., the gap distance, is known to display
negligible time-variations when the voltage is below some
threshold. A systematic procedure has been derived to ensure
that some given equilibrium point of the circuit undergoes
a supercritical Hopf bifurcation which generates stable
periodic solutions within a given range of the gap distance.
The procedure is based on: modeling the memristor as a
programmable nonlinear resistor whose resistance depends
on the gap distance which is assumed to be constant within
the range; employing the first-order Harmonic Balance (HB)
method to determine the set of the parameters giving rise to a
supercritical Hopf bifurcation; selecting the parameters of the
set ensuring that the Predicted Limit Cycles (PLCs) provided
by the HB method are close to the stable periodic solutions
generated by the Hopf bifurcation within the range of the gap.
Although approximate in nature, the HB method accurately
identifies Hopf bifurcations and thus the procedure permits to
effectively design the parameters of the two-terminal element
providing a family of stable periodic solutions which can be
programmed by setting the value of the gap distance. This
is illustrated via some application examples where also the
sensitivity of the procedure with respect to the location of
the equilibrium point and the range of the gap distance is
discussed.

It is believed that the procedure can be suitably extended to
cover the general case of circuits given by the interconnection
of a linear time-invariant two-terminal (one port) element
and a non-volatile memristor, under the assumption that the
memristor can be modeled as a nonlinear programmable
resistor within some voltage range.

APPENDIX
PROOF OF PROPOSITION 1
The proof proceeds by showing the following points: 1) the
equilibrium point vD = VDE undergoes a Hopf bifurcation
at µ = µH for α > 1, R satisfying (52), and GD, C1, C2,
L as in (53)-(56); 2) the first-order approximations v0D(t; µ)
of the periodic solutions generated by the Hopf Bifurcation
are characterized by (57)-(58); 2) the Hopf bifurcation is
supercritical.
The first step of the proof is to show that for α > 1,

R satisfying (52), and GD, C1, C2, L as in (53)-(56), the
equilibrium point vD = VDE undergoes a Hopf bifurcation
at µ = µH . Since AH = VDE > 0 and n(y) = iD(y; µH ),
condition (36) becomes

VDE + L(0)I0 exp(−µH ) sinh
(
VDE
V0

)
= 0

1 + L(jωH )
I0
V0

exp(−µH ) cosh
(
VDE
V0

)
= 0.

(69)

Hence, taking into account (13), the Hopf bifurcution occurs
atµ = µH if and only if conditions (45) and (47) are satisfied
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and we have

GD −
1
R

−
I0
V0

exp(−µH )
sinh

(
V 0
DE

)
V 0
DE

= 0, (70)

GD −
1

0H
−

I0
V0

exp(−µH ) cosh
(
V 0
DE

)
= 0. (71)

Note that, as expected, (70) and (71) are indeed the first-order
HB equations (48) and (49) with A0 = V 0

DE , µ = µH , and
B = 0, since limB→0 J0(B0) = 1 and limB→0 J1(B0)/B0 =

1/2.
By substituting the expression (53) of GD in the above

equations we get that (70) is satisfied, while (71) holds if and
only if

1
0H

=
1
R

−
1
R0

. (72)

Hence, according to (14), it remains to show that for α > 1,
R satisfying (52), and C1, C2, L as in (54)-(56) the following
identity

1
C1

(
1
LC2

− ω2
H + jωH

1
RC2

)
1

RLC1C2
−

1
R

(
1
C1

+
1
C2

)
ω2
H + jωH

(
1
LC2

− ω2
H

)
=

1
1
R

−
1
R0

(73)

holds. It can be verified that (73) is indeed equivalent to the
following two equations(

1
LC2

− ω2
H

)2

=
1

R2C2
2

(
1
LC1

−
C2

C1
− 1

)
ω2
H , (74)

1
RC1C2
1
LC2

− ω2
H

= R0
1(

R0
R

− 1
) . (75)

Since from (54)-(56) we have LC1 = 1/(ω2
H (α +R0/R)) and

C2 = αC1, it follows that (74) and (75) can be rewritten as

R20
α2R2

ω4
H =

1

R2α2C2
1

(
R0
R

− 1
)

ω2
H (76)

and
1

RαC2
1

R0
Rα

ω2
H

= R0
1(

R0
R

− 1
) , (77)

respectively, and thus they are both satisfied once C1 is
replaced with its expression in (54).

The second step of the proof is to show that the first-order
approximations v0D(t; µ) of the periodic solutions generated
by the Hopf bifurcation are given by (57)-(58). First,
we observe that the first-order HB equations (48) and (49)
admit solutions for µ ∈ [µH , µF ] if and only if their

right-hand sides are constant with respect toµ, which implies
that

I0
V0

exp(−µH )
sinh

(
V 0
DE

)
V 0
DE

=
I0
V0

exp(−µ)
sinh (A0)

A0
J0 (B0) (78)

and
I0
V0

exp(−µH ) cosh
(
V 0
DE

)
=

I0
V0

exp(−µ) cosh (A0) 2
J1 (B0)
B0

. (79)

Since (79) can be replaced by the equation obtained by
dividing term by term (78) and (79), i.e.

sinh
(
V 0
DE

)
V 0
DE cosh

(
V 0
DE

) =
sinh (A0)

A0 cosh (A0)
B0J0 (B0)
2J1 (B0)

, (80)

it follows that (78) and (80) are indeed equivalent to the first
and second equation in (58), respectively. Hence, it remains to
show that (58) admits a unique solution. To show this, we find
it convenient to rewrite the first equation as

K (A0) = K
(
V 0
DE

)
H (B0), (81)

where

K (A0) :=
A0 cosh(A0)
sinh(A0)

(82)

and

H (B0) :=
B0J0(B0)
2J1(B0)

. (83)

It can be verified that K (0) = H (0) = 1, K ′(A0) > 0 for
A0 > 0, H ′(B0) for B0 > 0, and limA0→+∞ K (A0) =

+∞, limB0→+∞ H (B0) = +∞. Hence, it follows that
(81) implicitly defines a unique smooth function Ā0(B0)
such that Ā0(0) = V 0

DE , Ā
′

0(B0) > 0 for B0 > 0, and
limB0→+∞ Ā0(B0) = +∞.
We observe that the second equation in (58) withA0 = Ā0(B0)
can be rewritten as

µ=µH+log

sinh(Ā0(B0))

Ā0(B0)
J0(B0)

V 0
DE

sinh
(
V 0
DE

)
 , (84)

which is indeed a function µ(B0) for B0 ≥ 0. It can be readily
verified that µ(0) = µH , µ′(B0) > 0 for B0 > 0, and
limB0→+∞ µ(B0) = +∞. This implies that (84) implicitly
defines a function B̄0(µ) such that B̄0(µH ) = 0, B̄′

0(µ) >

0 for µ ≥ µH , and limµ→+∞ B̄0(µ) = +∞. Hence, we can
conclude that A0(µ) = Ā0(B̄0(µ)) and B0(µ) = B̄0(µ)
provide the unique solution of (58).
The final step is to show that the Hopf bifurcation is

supercritical by checking if the considered equilibrium point
at vD = VDE becomes unstable for µ > µH where it coexists
with the generated periodic solution. According to (34) and
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(35), the equilibrium point is given by the constant solution
v̄D(µ), µ ≥ µH , implicitly defined by the following equation

GD −
1
R

=
I0
V0

exp (−µ)

sinh
(
v̄D(µ)
V0

)
v̄D(µ)
V0

. (85)

Note that (70) implies v̄D(µH ) = VDE . Also, it can be verified
that the constant solution v̄D(µ) is increasing for µ > µH .
The stability properties of the equilibrium point defined by
v̄D(µ) are characterized by the zeroes of 1+L(s)i′D(v̄D(µ); µ).
Exploiting (13), (85), (70) and (71), it turns out that these
zeroes are indeed those of the third order polynomial at the
numerator of

1 + L̄(s)K(v̄D(µ)), (86)

where

K(v̄D(µ)) : =

(
GD −

1
R

) (
K

(
v̄D(µ)
V0

)
− K

(
VDE
V0

))
−

1
0H

(87)

with K (·) is as in (82). SinceK(v̄D(µH )) = −1/0H , (45) and
(47) imply that at µ = µH there are two zeroes at s = ±jωH .
The remaining zero is negative, since by factorizing the third
order polynomial at the numerator of (86) as (s2 + ω2

H )(s +

σ0) we get σ0 = (1/R0 + 1/(αR))/C1. Since K(v̄D(µ)) is
increasing for µ > µH , to complete the proof it is enough to
show that for small θ > 0 the third order polynomial at the
numerator of 1+L̄(s)(θ−1/0H ) has two zeroes with positive
real part, while the third one remains negative by a continuity
argument. Let P(s; θ) = s3+a2(θ )s2+a1(θ )s+a0(θ ) denote
such a polynomial whose coefficients depend on θ . It can be
verified that

P(s; θ) =

(
s+

(
1
R0

+
1

αR

)
1
C1

)
(s2 + ω2

H )

+
θ

C1

(
s2 +

1
RC2

s+
1
LC2

)
, (88)

and hence the coefficients ai(θ ), i = 0, 1, 2, are given by

a2(θ ) =
1
C1

(
1
R0

+
1

αR
+ θ

)
,

a1(θ ) = ω2
H +

θ

RC1C2
,

a0(θ ) =
1
C1

(
ω2
H

(
1
R0

+
1

αR

)
+

θ

LC2

)
.

Since ai(θ ) > 0, i = 0, 1, 2, from the Routh-Hurwitz
criterion it follows that P(s; θ ) has two zeroes with positive
real part for small θ > 0 if and only if the following condition

a2(θ )a1(θ ) − a0(θ )

=
θ

C1

(
ω2
H +

(
1
R0

+
1

αR

)
1

RC1C2
−

1
LC2

)
+

θ2

LC2
1C2

< 0

holds. Hence, it remains to show that we have

ω2
H +

(
1
R0

+
1

αR

)
1

RC1C2
−

1
LC2

< 0. (89)

Indeed, exploiting (54), (56) and taking into account that
C2 = αC1, condition (89) can be written equivalently as

ω2
HR0
αR

R−
α − 1
2α

R0

R0 − R
< 0, (90)

which is satisfied if and only if (52) holds, thus completing
the proof.
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