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ABSTRACT Voltage-controlled Oscillator (VCO) is a prominent part that has been used to generate a stable
frequency for the high-frequency transceiver system. This survey encompasses a comparative analysis of two
commonly used VCO architectures: the Ring VCO and LC-VCO. The Ring VCO has been constructed with
the collection of ring delay cells. Moreover, the LC-VCO utilizes inductors, capacitors, fine-tuning circuits,
coarse-tuning circuits to generate frequency. Furthermore, this study investigates an in-depth exploration
of VCO structures, operational principles, advantages, limitations, and performance metrics. In addition,
it evaluates performance parameters, including operating frequency range, phase noise, figure of merit,
and tuning techniques. This research suggests that based on the application and its requirements, the VCO
performance parameters need to be varied. This survey employs diverse types of VCO, and its design
methods. Implications for future research and study of VCO design and integration are discussed.

INDEX TERMS Current starved delay cell based VCO, differential delay cell based VCO, FOM, LCVCO,
maximum operating frequency, ring VCO, sensitivity, oscillator, phase noise, tuning range.

I. INTRODUCTION
The need for precise and low-power features in wireless
personal digital assistance devices has grown in recent years,
which emphasizes the need for RF designers to work within
the ultimate limits of technology [1], [2], [3], [4]. It is
identified that in recent years, voltage-controlled oscillators
(VCO) have been extensively designed, as it was the most
prominent building block in the Phase-Locked Loop (PLL)
system, which could generate a stable frequency [5], [6],
[7], [8], [9]. The VCO designers have addressed parameters
like good phase noise, low power, tuning range, smaller
area, lower Figure of Merit (FOM), and cost [9], [10]. The
VCOs have been employed in various kinds of applications
such as optical transmission, clock generation, frequency
synthesizers, function generators, and Radio Frequency
Integrated Circuits (RFIC) [11], [12], [13], [14], [15] etc.
The most predominantly used VCOs in PLL have been
categorized into different types, as shown in Fig. 1, which
are: 1. Ring oscillator VCO; 2. Inductance-capacitance
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VCO (LC-VCO) [16], [17], [18], [19]. The selection of a
required VCO architecture is to design a PLL depending
on numerous factors, including the desired frequency range,
phase noise performance, tuning range, power consumption,
and integration complexity [20], [21], [22], [23]. In the last
few years, high-performance VCOs have been in demand to
have high-speed wireless applications [24], [25], [26], [27].

In the last two to three decades, most of the communi-
cations were in the radio frequency range; hence, a current-
starved VCO was the best choice to have a high tuning range
and less power dissipation [28]. These current-starved VCOs
(CS-VCO) could provide a better tuning range and lower
power dissipation at the expense of more extensive phase
noise [29]. Nevertheless, the problem with the CS-VCO was
that it could provide frequency around 4.5 GHz. However,
during the past few last decades, communication technology
was in the transition stage from Radio Frequency (RF) range
to the millimetre-wave range [30], [31], [32]. Consequently,
the researcher needed a VCO that would contribute high
frequency with better phase noise [33], [34], [35], [36].
Subsequently, the researchers came up with an LC-VCO,
which would offer higher frequency with transcendent phase
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FIGURE 1. Types of VCO architectures.

FIGURE 2. Basic VCO taxonomy diagram.

noise when compared to the CSVCO [37], [38]. Henceforth,
this study seeks to present a comprehensive comparison
between the Ring VCO and LC-VCO architectures. It is
suggested that the designer choose the appropriate VCO for
their requirements based on specific applications.

It is stated by Syed et al. [39] and George et al. [40]
that the basic VCO diagram represents the pioneer research
articles in the field of Ring VCO and LC-VCO (As shown in
Fig. 2). Thus, during the analysis of the VCOs performance
parameters like tuning range, FOM, operating frequency,
phase noise, and the power consumption of the reported
VCOs would be very helpful for the researchers.

II. RING VCO
The ring VCOTaxonomy diagrams are shown in Fig. 3, Fig. 4
and Fig. 5. The taxonomy diagram represents the researcher’s
efforts to develop and enhance the ring oscillator circuit
throughout the period from 1983 to 2023.

Ring oscillators constructed with an odd number of
inverting gates or delay cells are incorporated like a ring
and impart an oscillation between the two different voltage
ranges. The inverting gates or delay cells have connected
with feedback from the last gate to the first one [20],
[60], [71], [72], [168]. The ring oscillator’s performance
highly depends on the parasitic capacitance placed in the
active NMOS transistor chip. Thereby, a number of tighter
layouts with more delay cells can improve considerable
performance [41], [49]. The core building block of a ring
VCO is a group of delay cells interconnected in a positive
or regenerative feedback loop to create a fundamental ring
oscillator [45], [73]. Janet [42] constructed a ring oscillator

with ten inverters, output buffers, and a NAND gate in 1984.
The NAND gate can be used to reject the multiple oscillations
from the ring oscillator. The capacitive loading problem can
be reduced by doubling the channel widths in each successive
stage, as shown in Fig. 6 [42].
Calzolari et al. [43] have summed up with a mathematical

equation for the propagation delay τd that can be calculated
from the period of oscillation (T ) given in equation (1),
[68], [74],

τd =
T
2N

(1)

where N = number of inverters. Luca Ravezzi [54] has
concluded in 2021 that ring oscillators with capacitive loads
are used for frequency tuning. However, the researcher has
formulated unsustainable and stable oscillations depending
on the capacitor’s size along with an equivalent value
of the severe resistance. Ring oscillators with capacitive
loads are frequently used in the industry simply because
of their compact size, wide frequency range, and easy
operation. However, the ring oscillator may not be able to
sustain stable oscillations due to the unavoidable significant
resistance of the capacitive load [3], [17], [44], [75]. In 1997,
Behzad Razavi [45] stated that ring circuits should
develop a phase shift 2π and unity voltage gain at the
oscillation frequency in order to attain the oscillation.
Stephen Docking et al. [76] have discussed that the phase
shift is required for each and every delay stage of π

N , Where
N represents the total delay stages in the ring. The remaining
phase shift π of the single-stage ring oscillator is offered by
the dc inversion. The single-stage ring oscillator provides the
dc inversion done by the odd number of oscillator stages
depicted in Fig. 7. When the ring oscillator is designed
with an even number of stages, and the output feed-backs
are swapped and connected to the input [74], [76] depicted
in Fig. 8 [76].

Assume the ring oscillator in each stage produces the delay
of Td . The signal must flow through every N delay stage
for the first time, the first 1800 phase shift in the time of
N ∗ td , and the signal must go through every N delay stage
for the second time of the remaining 1800 phase shift. The
resulting total time phase shift can be obtained at 2N ∗ td .
The oscillating frequency can be calculated as equation (2)
[11], [20], [21], [47], [76], [77],

f =
1

2N .td
(2)

The negative skewed delay element is connected with one
input of CMOS (Complementary Metal Oxide Semiconduc-
tor) inverter [47], [61] depicted in Fig. 9 [47]. The PMOS
is coupled to the delay element; this PMOS input signal
receiving is a little delayed compared toNMOS. If a transition
between logic low and high occurs, this delay element will
turn on the PMOS before the due time. When the output
transitions occur from high to low, the PMOS skewed delay
sickens prior to the NMOS turning on, and it accelerates
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FIGURE 3. Taxonomy diagram of ring VCO Part-I.

the transition. The negative skewed delay element achieved
oscillation frequency is maximum. The Negative Skew
raises the performance and power consumption; otherwise,
performance and power consumption also decrease because
the maximum current flows to the ground. The negative skew
delay element improves the performance, but it uses more
power when both transistors are turned on. This problem is
sorted out by the PMOS inputs being connected with outputs
distributed from the chain of adjacent cells. The five-stage

ring oscillator of the chain of inverters in every PMOS and
NMOS derives from the different input signals from its
different nodes [47] depicted in Fig. 10. The Oscillation of
the VCO can be obtained by an inverter switching at each
inverter stage.

In CMOS PLL design, the ring-based VCOs are commonly
used, and they are current starved delay cell-based VCOs
and differential delay cell-based VCO [48]. Yang et al.
in 1997 [48] proposed an inverter-based ring oscillator
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FIGURE 4. Taxonomy diagram of ring VCO Part-II.

VCO design that consists of a voltage-to-current con-
verter (VCC), a current-controlled ring-type oscillator, and

a band-gap reference circuit [48]. The current-controlled
oscillator (CCO) control input is used to tuneup the particular
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FIGURE 5. Taxonomy diagram of ring VCO Part-III.

frequency range. By using this internal band-gap reference,
the supply sensitivities and temperature sensitivities of this
system are enhanced [4], [63]. On-chip Voltage regula-
tor circuits are used to minimize the supply sensitivity
noise [48], [60], [78].

The Replica feedback biasing circuit, which dynamically
controls the oscillator bias current and voltage swing,
is shown in Fig. 11 [13], [79], [172]. The bias current is
adjusted by a feedback amplifier, such as the voltage drop
across the symmetric load.
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FIGURE 6. 10 stage inverter based ring oscillator.

FIGURE 7. Three stage ring oscillator (odd number of oscillator stages).

FIGURE 8. Differential ring oscillator (Even number of stages).

FIGURE 9. Skewed negative delay cell scheme.

FIGURE 10. Modified negative delay scheme.

The VCO buffer’s Voltage swing can be calculated as in
the equation (3),

Vswing = VDD − Vcntr (3)

The translation from Ibias to Vswing, is performed by
the half buffer replica in the bias generator through the
diode-connected MOS device, whose output resistance can

FIGURE 11. Replica feedback biasing.

be made to mimic that of the symmetric load at its full
swing [79], [172]. The relationship is dynamically main-
tained through the replica-feedback bias, which is obtained
as equation (4),

VDD − Vcntl = VDD − Vswing = Ibias − Rsymm (4)

Voltage swing and control voltage are related to themaximum
supply rail VDD and its potential difference with the Vdd can
be written as equations (5) and (6),

Vcntl = VDD − Vcntl (5)

and

Vswing = VDD − Vswing (6)

Jaeha et al. in 2003 [79] propounded that VCO contains a
bias generator, which functions essentially as a linear voltage
regulator to control the VCO supply, which is made up of
CMOS inverters, and it controls the VCO supply to modify
the frequency and rejects undesired noise from the external
supply, as shown in Fig. 12. The wide voltage swings and
abrupt transitions of an inverter-based VCO are useful for
lowering jitter [80]. However, an inverter is a single-ended
buffer by nature and hence cannot filter out common-mode
noise [78].

FIGURE 12. The inverter-based VCO.

Since the device speed is interconnected with the maxi-
mum oscillation frequency in the reported VCO by Manop
Thamsirianunt et al. in 1997 [49], the layout of the MOS
oscillator is to be designed in such a way to enhance their
speed. The pseudo-three-stage ring oscillator architecture is
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FIGURE 13. Pseudo three stage ring oscillator.

shaped with the two pairs of inverters, and the third pair of the
inverter ring is replaced by the TP3 and TP4 PMOS transistor
pairs, and TN1 and TN2 act as D-Latch in Fig. 13. When the
control voltage Vcont is high, the TN1 and TN2 act as D-latch,
passing the output signal to the input of PMOS. This circuit
starts oscillating when the control voltage Vcont becomes
high [49].

A. CURRENT STARVED DELAY-BASED VCO.
The ring oscillator is controlled by the gate capacitance of
each stageMOS (Metal Oxide Semiconductor) transistor. The
time required to charge and discharge the gate capacitance
increases to the peak as the charging current decreases [81].
When compared to LC-VCO, the ring oscillator possesses
many benefits: easy design with CMOS or BICMOS
(Bipolar-CMOS) technologies, better oscillation with less
tuning voltage, the high-frequency oscillation with low power
dissipation and also the quadrature phase and multi-phase
output could be obtained. The top of the PMOS and bottom
of the NMOS are operated like the current source, and the
middle NAND gate connection can be forced to starve from
the current sources shown in Fig. 14 [6].

FIGURE 14. Current starved NAND based VCO.

The current sources could be limited, considering that
the propagation delay has an opposite relationship with the
charging and discharging currents, and the frequency of

FIGURE 15. Current starved VCO1 delay cell.

FIGURE 16. Modified current starved VCO2 delay cell.

oscillation might be efficiently controlled [68], [75]. The
Modified current-starved VCO1 delay cell can be constructed
with the pair of differential NMOS transistors and the
cross-coupled connection of four PMOS transistors depicted
in Fig. 15 [6]. The input Pair of PMOS transistors acts as
the current source, and the output-connected PMOS pair
acts as the load. Reported Modified current starved VCO2
delay cell Fig. 16 [50] imparts a higher frequency than
the current starved VCO1 delay cell, Fig. 15 [50], [75].
MOSFETs (Metal Oxide Silicon Field Effect Transistors)
are used in Pass-Transistor Logic (PTL), not as inverters
as they are in CMOS, but as switches. The PTL has the
drawback of the threshold voltage drop, which is overcome by
using transmission gate logic. The transmission gate inverter
(TG-I) VCO Output frequency relies on the propaga-
tion delay, and every inverter stage frequency could be
inversely proportional to its propagation delay, as depicted
in Fig. 17 [51]. It increases the control voltages, and it
could increase the output frequency and also decrease the
propagation delay. Transmission gate NAND (TG-N) VCO
using comparison to the transmission gate inverter(TG-I)
shown in Fig. 18 [51], which is provided, when the control
voltage is raised, the higher current flow results in a shorter
propagation delay and a higher oscillation frequency [51].

The dual threshold CMOS (DTCMOS)-based cur-
rent starved VCO design method is very efficient to
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FIGURE 17. Transmission gate inverter(TGI) delay cell.

FIGURE 18. Transmission gate NAND (TGN) delay cell.

minimize the limitations of Multiple Threshold CMOS
devices(MTCMOS). Also, DTCMOS techniques are oper-
ated and provided as the same output of the MTCMOS
Fig. 19 [82]. The dual-threshold CMOS device gate terminal
is connected to the body terminal. DTCMOS-CSVCO is
constructed with five stages, and the delay stage inverter is
also made as same as the DTCMOS device. Based on the
biasing, the devices act as critical and non-critical paths.
If it is in the critical path when the body is coupled with
a gate terminal, the NMOS body terminal is tied at the
higher potential, whereas the PMOS body terminal is tied
at the lower potential, resulting in a decrease in the cut
in voltage of both NMOS and PMOS transistors. If the
opposite operation is performed in the non-critical path of
the DTCMOS, then the DTCMOS- CSVCO can improve
performance in the ON state and minimize leakage current in
the OFF state [82]. As a result of ageing, the threshold voltage
and saturation current of transistors deviate from their starting
values, which can have severe consequences [52], [53], [83].
If threshold voltage increases, then the delay of the transistor
also increases. The ageing can corrupt the output frequency
of the VCO [52], [53].

FIGURE 19. N stage DTCMOS-based CSVCO.

A ring oscillator design with decreased frequency drift
above the temperature has been proposed by George et al.
in 2022 [52]. As a method to eradicate frequency drift, the
oscillator’s output frequency is compensated with a PTAT
(Proportionally To the Absolute Temperature) current. The
VCO design consists of ring oscillator configurations and
frequency-controlling circuits. The frequency is controlled
by two circuit components: the voltage-to-current converter
circuit and the PTAT current-generating circuit. The ring
oscillator configuration was combined with the nine delay
cells, and each delay cell contained the three cascading
inverters, and these delay cells produced an equal number
of the output phase/frequency. So that the ring oscillator
oscillates at the required frequency, the number of inverters
within the delay cells has been selected. The PTAT current can
be generated by a simple beta multiplier circuit, but it cannot
be provided by accurate results. Because of its excellent
simplicity and low power consumption, it could be used to
generate a PTAT current when accuracy is not essential [52],
[59], [84].

B. DIFFERENTIAL DELAY CELL-BASED VCO
A differential ring oscillator type VCO is a type of CS-VCO
in which the differential delay cells are used as the delay
cells. Delay cell architectures decrease power consumption
by eradicating the conventional ring VCOs cross-coupled
latch Fig. 20 [85]. Instead of a latch, the inverters of the
delay cell generate negative conductance through the addition
of an RC network, which enhances the VCO’s start-up
performance. The Phase noise can also be improved by
delay cell architecture. In modified differential cell Fig. 21
architecture, which is replaced the PMOS transistor with the
RC network of the Capacitance CL and resistance Rs. This
RC network can Produce negative conductance and eradicate
the power dissipation from the latch circuit [85]. The post-
layout simulation results demonstrate that a differential ring
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FIGURE 20. Conventional differential delay cell.

FIGURE 21. Modified differential delay cell.

with a positive feedback architecture based on active CMOS
transistors and a polysilicon resistor contributes acceptable
performance in terms of the oscillation tuning range, power
consumption, and phase noise [58], [74]. The substrate noise
can be reduced by the differential mode ring oscillators.
Positive feedback has been introduced by a fully differential
CMOS amplifier in order to decrease delay time and increase
the operation speed, and at the same time, negative feedback
increases the speed [74]. The differential logic delay cell can
be divided into two categories, which are fully differential
and pseudo-differential. As with a fully differential VCO,
the presence of a tail bias current makes the VCO simple
to oscillate by supplying a constant current to the delay cell.
In addition, fully-differential logic can reduce the working
voltage swing and the switching time between the various
logic levels, allowing for high speed [46], [77], [86].
Typically, the tail current source will have the worst

phase noise. In order to ensure known pseudo-differential
VCO oscillates deferentially, as opposed to fully differential
logic, a cross-coupled circuit is typically used, which results
in a slower oscillation speed but improved phase noise.
The capacitive circuit tuning will reduce the frequency of
oscillation. Due to its higher oscillating frequency, superior
tuning linearity, and moderate swing variation, the resistance
tuning technique has been employed in this instance [77].
The number of delay cells inside the loop ascertains the
frequency of operation. The capacitor and resistor tied to
the output terminal are determined by the Quiescent regions
of delay-stage transistors. This kind of sized transistors is
in accordance with the gm

ID
method, and it explores the

design of the space using the relation between the gm
ID

ratio
and the normalised discharge current ID

(width/length) as the

fundamental design relationship [99]. A quick and enhanced
differential VCO is built using symbolic techniques and
multi-objective software algorithms to enhance the resolution
of an ADC(Analog to Digital Converter).

The differential VCO is then optimized using Multi-
Objective Particle Swarm Optimization (MOPSO) and
Infeasibility-Driven Evolutionary Algorithm (IDEA) algo-
rithms, which optimize phase noise and power dissipa-
tion [87]. The differential ring topology for VCOs can be
utilized for rejecting common mode noise and avoiding
bypass coupling capacitors with excellent stability and a high
frequency. The burden of a differential ring oscillator has
both active and passive components. The differential ring
oscillator is required to have a broad tuning range, constant
voltage output swings, low power consumption, and very low
noise [88]. The differential VCO configuration can reduce
the substrate noise. Tuning voltage (Vtune) is connected to
the gate of PMOS transistors, which controls the output
frequency of the structure. Positive feedback increases speed,
whereas negative feedback requires more resistance for the
same speed. The three-stage differential ring is preferred
to enhance the oscillation frequency and reduce the power
consumption [89].

C. PERFORMANCE PARAMETERS OF THE RING VCO
1) JITTERS AND PHASE NOISE IN RING VCO
The critical analysis of the phase noise of saturated ring
oscillators derives from the truth that these types of oscillators
are occasionally time-varying systems and the noise sources
are modulated, which means they are no longer stationary but
cyclo-stationary [80], [81], [90], [91].Typically, Jitter refers
to the deviation from the ideal timing of an occurrence. Jitters
occur in various system components of the digital system.
Each circuit element that generates, transmits, or receives
signals may introduce a Jitter. Jitter is commonly known as
a time domain behaviour [92], [93]. Jitter can be measured
from the eye diagram of the PLL system [94].

The Jitter is also classified into two, which are deter-
ministic Jitter and absolute Jitter. The deterministic Jitter
is determined by periodic frequency modulation. Absolute
Jitter is the disparity in phase between the noisy oscillator
and the noiseless oscillator operating at the analogous
standard frequency [71], [92]. In order to describe the phase
noise accurately, one must take into account the fact that
any oscillator is a frequently time-varying system. The
time-variant approach involved here is capable of accurately
assessing the impacts on the phase noise of stationary and
cyclostationary noise sources, in contrast to phase noise
systems that consider linearity and time-invariance [95]. The
general noise source of the circuit can be categorized into
two, which are interference and device noise. The device
noise may be categorised into two types, which are active
and passive device noise. Commonly available noise sources
in the circuit are thermal noise, shot noise, flicker noise
and substrate noise [81], [84], [91], [96], [97]. The active
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device −Gm and resistors combined noise is accounted for
by an excess noise coefficient F [55].

The Voltage source connected series with the resistance,
and it’s spectrum is referred to as white, and the noise voltage
can be obtained as an equation (7) [71], [81],

S(f ) = V̄ 2
n = 4kTR V 2/Hz (7)

where K=Boltzmann constant =1.38×10−23 JK−1 and
T represent the absolute temperature. If the voltage source
is tied series with the resistance and its spectrum is written as
equation (8),

S(f ) = Īn2 =
4KT
R

A2/Hz (8)

The CMOS transistors can generate the flicker noise 1f and
thermal noise. The calculation of flicker noise is given as
equation (9),

S 1
f
(f ) =

K
ωLCox

1
f

(9)

For computing thermal noise of the saturated is depicted as
equation (10),

¯Vn2 = 4KTγ gm A2/Hz (10)

Phase noise performance is methodically inferior compared
to devices with high-Quality factor(Q-factor) resonant com-
ponents. A direct trade-off between power consumption and
phase noise performance exists [57], [62], [71], [80], [98].

2) SUPPLY SENSITIVITY OF VARIOUS RING OSCILLATOR
TOPOLOGIES
Supply sensitivity is defined as the degree to which a system,
device, or circuit is affected or influenced by changes in
its power supply voltage. Supply sensitivity is a crucial
factor to consider in electrical and electronic engineering,
especially while constructing and analyzing circuits, due to
its impact on the reliability, efficiency, and functionality of
electronic devices. The delay cells in the ring VCO, which
are sensitive to supply noise, are effectively mitigated when
confronted with significant digital switching noise, and it is
achieved through the implementation of a fully differential
supply-regulated tuning mechanism [173].

Fully differential and current-starved cells necessitate
extra headroom, and voltage regulation introduces power
consumption and complicates loop dynamics due to its poles.
Furthermore, compensation schemes for delay cells require
calibration circuitry since the inherent delay cell sensitivity
to supply voltage remains. A low-voltage-operating delay
cell that inherently mitigates supply requirements without
requiring calibration or additional regulation. In order to
address supply sensitivity and incorporate a source-follower
structure, it has been effectively isolating the supply appreci-
ations to its saturation output resistance. The source terminal
is directly connected to the VDD, so the conventional structure
lacks inherent supply isolation, resulting in a static supply

sensitivity close to unity [14]. VCOwith inherent zero-supply
sensitivity would be obtained across a broad frequency range
through joint supply and control voltage biasing. Design
guidelines facilitate the adjustment of supply sensitivity,
positive or negative, as needed. For systems with positive
supply sensitivity, the VCO can be configured with negative
supply sensitivity for compensation. Employing adaptive
feedback, the design optimally determines the bias point to
minimize output jitter [60].
A technique to reduce supply sensitivity in the Current

Mode Logic (CML) oscillators, established and confirmed
through measurements, involves connecting capacitively
degenerated cross-coupled pairs in parallel with each delay
stage. The CML approach employs negative transcon-
ductance near the operating frequency to counter-supply
noise-induced frequency variations while also preventing
excessive close in-phase noise through high impedance at
low frequencies and suppressing sinusoidal jitter [174].
A switched resistor array has been suggested to diminish
the tuning sensitivity of the ring VCO does not compromise
its tuning range [175]. An oscillator-based PLL utilizing
a ring oscillator, coupled with a current source compensa-
tion technique, effectively reduces supply sensitivity. This
compensation method achieves nearly zero supply sensitivity
when optimally calibrated. Especially, it circumvents stability
concerns and can be applied to various types of delay
cells [176].

From Table 1, the researcher can analyze that the supply
sensitivity of a ring oscillator is affected by its topology.
CMOS ring oscillators are among the most sensitive devices
due to the direct influence of supply voltage on transistor
thresholds. When compared to CML, LC tank, and delay-cell
ring oscillators, the differential ring oscillators offer greater
supply sensitivity. Designers select the optimal topology
based on application requirements, taking into account supply
noise immunity, frequency stability, and power consumption.
In low-power applications, supply sensitivity reduction is
crucial. Future designs may prioritise low-power strategies
such as Dynamic Voltage Scaling (DVS) or subthreshold
operation, which can be combined with adaptive circuitry
to maintain oscillator performance while minimising supply
variations. Combining various oscillator topologies, such as
CMOS and LC tank oscillators, in a hybrid design can
provide a balanced solution between supply sensitivity and
performance, especially for high-frequency applications.

3) COMPACT SIZE OF RING VCO
The compact size of Ring Oscillators is one of the major
reasons for being used in modern integrated circuits (ICs)
present in Table 2. Comparing its compactness form factor to
other oscillator types is valuable because it offers numerous
benefits: 1. In comparison to other oscillator designs, ring
oscillators are easier to implement since they require only
transistors. 2. They dissipate less power because the circuit
design utilized only transistors. 3. Ring oscillators are
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TABLE 1. Supply sensitivity comparison table of ring oscillator topologies.

comprehended to include in a variety of IC designs, and
they can be positioned adjacent to other functional blocks to
improve signal routing and reduce parasitic effects. 4. Ring
oscillators are appropriate for applications that need fast clock
signals because they can operate at high frequencies.5. Ring
oscillators offer the flexibility to tune their output frequency
by adjusting the number of stages. 6. Ring Oscillator provides
moderate phase noise, but other types of oscillators may offer
superior frequency stability and phase noise.

TABLE 2. Comparison of compact size ring VCO and LC-VCO.

In comparison with LC types of oscillators, often, quite
large and complex circuits will consume more power because
inductors and capacitors are used. LC types of oscillators also
render high frequencies, but tuning circuits are quite complex.

III. LC-VOLTAGE CONTROLLED OSCILLATOR
Generally, Phase lock loops are implemented using two
different VCO architectures: the Ring oscillator VCO and
the LC oscillator VCO. The CS-VCO based PLL causes
higher phase noise and a lower operating frequency, and
hence it is not generally used for high-frequency applications
[38], [56], [100]. LC-VCO comprises a cross-coupled pair
of transistors, Inductors, and variable capacitors, as shown
in Fig. 22 [101]. The cross-coupled transistors can generate
negative resistance (−Rp), and this negative resistance needs

FIGURE 22. Negative resistance model.

to be overcome by introducing parallel resistance (−Rp)
[101], [102], as shown in Fig. 22 [101].

The generic LC-VCO circuit contains the LC resonator
with negative resistance in Fig. 22. This Circuit shows that the
Cp, Lp, and Rp are equivalent circuit resistance, capacitance,
and inductance, and (−Rp) projects the negative resistance
produced by the active transistors. If Rp is equal to (−Rp)
(Rp = −Rp), sustained oscillation occurs, or if Rp is less than
the −Rp (Rp < −Rp), the oscillation decays exponentially;
if Rp is greater than (−Rp) (Rp > −Rp) the oscillation
grows in nature. The latter’s presence results in continual
energy loss in the resonant cavity. In order to prevent this
loss, energy from an outside source must be continuously
pumped into the system to ensure stable and continuous
oscillation [97]. The LC-VCO is commonly used to construct
the three architectures, which are 1) N-MOS Cross coupled
LC Oscillator, 2) P- MOS Cross-coupled LC Oscillator, and
3) complementary cross-coupled LC Oscillator.

A. NMOS CROSS-COUPLED LC OSCILLATOR
Fig. 23 shows the NMOS cross-coupled LC Oscillator
architecture [101]. The circuit consists of two NMOS tail
current-connected current sources, two varactors, and two
inductors.

FIGURE 23. NMOS cross-coupled LC oscillator.

The NMOS LC-VCO Taxonomy diagram is highlighted in
Fig. 24. The taxonomy diagram represents the researchers
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FIGURE 24. NMOS LC-VCO taxonomy diagram.

who developed and enhanced the NMOS LC-VCO circuit
throughout the period from 1998 to 2022. The varactor
pair is used to tune the frequency and boost the varactor
quality factor, which can improve the generation of har-
monic power [103]. Injection-locked VCO: VCO oscillating

frequency could be obtained by the input of the injected fre-
quency. Tail-connected inductor achieved acceptable phase
noise [104], [127]. Inductive transformer feedback method-
based PN-VCO architecture achieved low phase noise and
improved the Q factor and negative conductance [105], [128].
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Reduce the quadrature error and phase noise bymodifying the
self(automatic) injection-based QVCO (Quadrature- VCO)
[106], [129]. A perfect selection of coupling coefficient
(k) and common mode resonance is used to attain the
largest oscillation frequency for the flicker noise suppression
method [96]. A Dual-band VCO structure is implemented
with a bandpass filter and Injection amplifier [107]. The
bandpass filter selects the second harmonic output signal,
which the injection amplifier stage then amplifies. Sym-
metrically split inductors have improved the frequency of
oscillation and power consumption. The tuning range is
increased by using a larger size of varactors [107].
A pair of sandwich-type connected MOS capacitors

employed as varactors can be utilized to create a tuning
range [108]. If varactors are connected in the middle, the
phase noise will be degraded, or else, in parallel with an
NMOS device, it does not suffer the phase noise [108]. The
back-to-back connected varactors can increase the tuning
range and reject the required decoupling capacitors. Face-
to-face Connected varactors with decoupling resistors can
be connected and decoupled with the RF output terminals,
decreasing the VCO loading effect. In this case, resistance
should be large [109]. Phase noise can highly depend on
the quality factor of the varactor [109]. With a selection of
voltages, the MOS varactor can be provided with a broad
tuning range. The greater phase noise issue can be overcome
by the fixed value capacitor cascade connection with the
varactor [110].
NMOS VCO is supplied by the PMOS current source,

which induces noise in the VCO output, that increases the
power supply rejection ratio and fixes the constant current.
This noise problem can also be solved by the low pass fil-
ter. Tail-connecting resistors can increase source-connected
NMOS pair impedance and prevent quality factor degrada-
tion [111]. One more cross-coupled transistor has connected
with NMOS VCO circuits, this pair wants to generate
negative resistance and rejects the resistance loss in the LC
tank circuit. The impedance circuit can be split into two
parts: the negative resistance device and capacitance. The
negative resistance and tank loss can wipe each other out.
Increasing the oscillation frequency decreases the negative
resistance value [111], [112]. The cross-coupled NMOS
transistor operating under a subthreshold region and its
tank loss and transconductance gm can be expressed as an
equation (11),

gactive = −
gmnmos
2

(11)

The width of the transistor should be selected to offer
the least amount of transconductance while increasing the
Number of transistor Fingers(NF) [120], [122]. The adaptive
body biasing technique enhances startup constraints and PVT
(Process Voltage Temperature) variations [122]. An adaptive
rectifier reduces the equilibrium threshold voltage, and a
bias resistor allows for the coupling of the dynamic body
voltage to the drain voltage and voltage of the bonding wire.

This bonding can be used to enhance the overall circuit
performance [113], [122]. The dynamic body bias method is
used on the VCO core transistors to enable faster-switching
transitions, which concurrently reduces conduction time and,
in turn, results in lower power consumption and provides
improved noise performance [170]. Differential Colpitts
VCO architecture with a new method of drain-to-source
feedback-based boosting that improves oscillation amplitude
and startup conditions, and it demonstrates decreased optimal
phase noise by maintaining the transistor in the saturation
region at the most significant oscillation amplitude [114],
[130]. Conventional NMOS LC-VCO is modified, which
connected tail current with a current source. This tail
capacitance can minimize the tail current high-frequency
portion and tail node voltage fluctuations [95], [115].

FIGURE 25. Adaptive body biasing technique.

The resultant tank deteriorates the centre frequency and
phase noise of VCO change, resulting in stress-induced
threshold voltage shift of the MOS varactor. The threshold
voltage change can affect the VCO Performance. So,
the Adaptive body biasing technique minimizes the phase
noise sensitivity and enhances the VCO reliability, Perfor-
mance [116] depicted in Fig. 25. The compromise between
operating frequency, tuning frequency, and capacitors are
required to maintain the oscillation frequency of operation,
which will increase the area of the capacitance in the LC
tank circuit that can be determined the operating frequency.
The number of inductors can be calculated by the desired
tuning frequency ratio fmaxfmin

and capacitance ratio of the
maximum tank to the minimum tank. The desired inductance
can be calculated for its adjacent bands. Ln

Ln+1
is given by

equation (12) [117],

Ctankmax
Ctankmin

≥

(
fmax
fmin

) 2
n

=
Ln
Ln+1

(12)
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If switched capacitor banks are increased in the VCO
design, tuning frequency will also be increased [118], [131],
[132], [133]. The transconductance can be modified for the
tank circuit by adjusting the bias currents. This VCO works
in the triple mode of operation, and this circuit works under
transformer-based dual coupled triple mode LC-VCO [118].
A transformer-based millimeter-wave VCO architecture has
been used to extend the tuning range while maintaining
minimal phase noise degradation. In order to mitigate
the effect of OFF-state parasitic capacitance, differential
switches were working in the secondary and tertiary coils.
The enhancement not only improved the effective quality
factor seen by the primary coil but also advanced the TR
in comparison to a single-ended implementation. Besides,
a 3-D implementation of the transformer, with each coil
placed out in a separate metal layer, enhanced the mutual
coupling factors between coupling coils. Consequently, this
led to reduced effective ON-state resistance (due to the
switches) at the primary coil [171]. However, the researcher
has a great challenge while designing the high-speed
LC-VCO, 1. Varactor/Capacitor banks need to provide a
wide tuning range, 2. Tank loss wants to be significantly
less, 3. Better phase noise, 4. Proper biasing current biasing
source, 5. The quality factor ought to be as high as possible,
6. Parasitic capacitance should be as low as possible, 7.
The designer must avoid high power supply resilience and
the largest up-conversion in the flicker noise [31], [67],
[102], [119], [134]. The Compensation technique minimizes
supply sensitivity in the single-ended VCO and achieves low
phase noise, a higher operating frequency, low power, tuning
range, and a higher supply rejection speed. The periodic jitter
performance can be degraded by the primary factors, which
are the two varactors and switched capacitors. The Periodic
jitter is obtained from the ratio of the fundamental power
to the first sideband power, and the jitter is expressed as
equation (13) [48], [84], [121],

Ĵp_p =
2

π ∗

√
P0
P1

(13)

An RC low pass filter at the tail Field Effect Transistor
(FET) gate node enhances the output resistance over a wide
range of Vds, as well as suppresses the output noise of the
tail FET [123]. It consequently fosters the phase noise when
combined with an LC tail filter. An inter-stage LC filter at
the VCO buffer interface boosts the swing at the buffer input
to avoid unwanted phase noise degradation. Consequently,
when used with an LC tail filter, it reduces phase noise. One
more LC filter is used in between the stages, and this will
improve the input swing in the buffer and avoid the undesired
phase noise reduction [123]. By incorporating a substantial
tail capacitance in the common source node of the differential
pair and a bias network to ensure that the transistors work
outside of the deep triode region, it is possible to accomplish
two significant advantages simultaneously. First, we convert
the DC bias current into class-C current waveforms with a

high conversion efficiency. Second, minimize the undesirable
noise generation, thereby optimizing phase noise perfor-
mance. In addition, the capacitance of the tail effectively
filters out high-frequency noise caused by the bias current
[230]. The QVCO configuration is better to provide negative
conductance and also relatively low power consumption
because the drain terminal provides the current, and this
current could be reused by the back gate method [5], [124]
as shown in Fig. 26 [124].

FIGURE 26. Back-gate technology.

In the tail current, two varactors can control the frequency
tuning, and the oscillator can develop a wide frequency
range [125]. Oscillator tail current can suffer from the
characterization of an active inductor. So, the tail current
requirement and the parallel resistance value cannot be
obtained each of these independently. The desired frequen-
cies and the parallel resistance value are obtained and
verified; this value does not surpass the dynamic frequency
range of the inductor [125]. The oscillation frequency can be
expressed as (14),

f =
1

2π ∗
√
L1C1

(14)

By lowering the power supply voltage to obtain a low
threshold voltage, the cross-coupled NMOS pair can be sup-
plied in a subthreshold regime. According to the oscillation
frequency, on-chip inductors, varactors, and active transistor
sizes have to be fixed [76], [125], [135].

B. PMOS CROSS-COUPLED LC OSCILLATOR
Fig. 27 shows that the PMOS Cross-Coupled LC Oscillator
architecture [136], [145]. The circuit consists of two PMOS
tail current-connected current sources, two capacitors, and
two inductors. The PMOS LC-VCO Taxonomy diagram
is shown in Fig. 28. The taxonomy diagram represents
the researchers who developed and enhanced the PMOS
LC-VCO circuit throughout the period from 2005 to 2023.
The tail capacitor is used to reduce voltage variations in the
tail node and attenuate the high-frequency noise components
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FIGURE 27. Basic PMOS cross-coupled LC oscillator.

of the tail current [136]. Cross-coupledVCOwith a capacitive
feedback method will impart high symmetric wave-forms
and minimum harmonic distortion in the output of the
VCO. PMOS transistors achieve lower 1/f noise than NMOS
transistors by using the PMOS tail current source. Persistently
decrease flicker noise, which will substantially minimize near
the phase noise by increasing the PMOS tail transistor’s
width and length. VCO achieves the best performance
of the circuit, specifically for the higher frequencies,
by using the capacitive feedback of the PMOS cross-coupled
pair [137], [145]. Capacitive feedback of the PMOS
cross-coupled design also enhances output swing and phase
noise [137], [145].
To fulfil the Barkhausen criterion for sustaining oscillation,

ensure both the oscillation frequency and the unity loop gain
condition are given as (15) [137],

f =

√
C1 + C2

C1C2LD
(15)

Small-size PMOS transistors cannot produce the required
transconductance for oscillation start-up. Additionally, larger
transistors can generate a large capacitance, which will
minimize the frequency tuning range(FTR) [138]. The back
gate methodology reduces the transistor threshold voltage;
thus, the method is to have opted for the low voltage
applications. The LC tank introduces the fine-tuning and
coarse-tuning methods [139]. The fine-tuning technique
consists of two varactors: likewise, the coarse-tuning method
consists capacitor array. Tuning circuit design is very
simple and enhances the performance of the VCO. The
cross-coupled PMOS VCO design minimizes phase noise
and less flicker noise compared to the NMOS. CMOS-based
LC tank VCO topology linearizes the tuning range with
PMOS varactors [140]. With PMOs varactors that stay in the
inversion zone for a wide range of the control voltage, where
the VCO tuning range is linearized. Tuning is accomplished
by designing the output nodes for the VCO’s quiescent

operating region to get a value to the supply rails, allowing
the varactors to behave almost linearly within the range of
achievable VCO tuning. Increasing the frequency range of
the varactor requires a high ratio of Cmax

Cmin
corresponding with

a large Q-factor [141], [146].
The transistors in the PMOS pair are able to carry a

small amount of current for a small portion of the cycle
if the capacitor is sufficiently large. This effect is essential
because it diminishes the noise injection from the drain
current during the tank differential voltages zero crossing.
The system incorporates a dual loop control, consisting of
analog components, to adjust finely and broadly tune the
VCO [142]. Switched resonator design enables effective
noise cancellation through a low VCO gain while still
maintaining a wide range of tuning capabilities. The VCO
coarse input is controlled through an analog circuit that
continuously modifies the gain. The dual-band of the VCO
design is used with a switched resonator [143], [144].
Switched resonators can achieve the same levels of phase
noise and power consumption. To enhance the performance
of the switched resonator of the VCO, when the control
switch is also activated, it is essential to minimize the mutual
inductance of the inductor coil and optimize the size of the
transistor switch [143].

C. CMOS CROSS-COUPLED LC OSCILLATOR
The Fig. 29 shows the Complementary-CMOS LC-VCO
architecture [149]. This Circuit is constructed with two
PMOS transistors, two NMOS transistors, two inductances,
and two variable capacitors.

The CMOS LC-VCO Taxonomy diagram is shown in
Fig. 30. The taxonomy diagram represents the researchers
who developed and enhanced the CMOS LC-VCO circuit
during the period from 2005 to 2023.

The CMOS transistors, including NMOS and PMOS
transistors, play a vital role in the CMOS LC-VCO circuit
[147], [160]. The researchers are associated in a cross-
coupled configuration, creating a positive feedback loop that
sustains the oscillation. The NMOS transistors have their
source terminals connected to the ground, whereas the PMOS
transistors have their source terminals linked to the supply
voltage. The Resistance is generated by the cross-coupled
NMOS transistors TN1 and TN2 to eliminate the losses
caused by the Parallel LC tank in the resonance. The PMOS
transistors, TP1 and TP2, in the cross-coupled configuration
of the CMOS LC-VCO circuit, have a width that is double of
the NMOS transistors, and it is deliberate sizing asymmetry
to enhance the loop gain, improving circuit performance.
Moreover, using PMOS devices enables better symmetry at
each resonant node by balancing the positive and negative
drive strengths. Phase noise is reduced in large part by this
emphasis on symmetry in both the full circuit and each half
circuit. The topology of the CMOS LC-VCO, combined with
careful attention to symmetry, plays a pivotal role in reducing
phase noise. One immediate impact of this characteristic
is that when the bias current is doubled in the CMOS
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FIGURE 28. PMOS LC-VCO taxonomy diagram.

FIGURE 29. Basic CMOS LC-VCO.

LC-VCO, it never reshapes the noise prompted by the
oscillator core [148].

However, doubling the bias current results in oscillation
amplitude also doubled. As a result, the phase noise is
improved. When parasitic capacitances exist among the
tank outputs and ground in a CMOS LC-VCO, the ideal
symmetry among the PMOS and NMOS transistors pair is
compromised. This occurs since the PMOS sources are no

longer floating, allowing PMOS noise to discover a path
through the tank to the ground. Meanwhile, the NMOS noise
is still effectively ignored due to cascading from tail source
bias, assuming that parasitic capacitance at NMOS sources
is negligible. The utilization of a cascade pair of tail current
sources effectively mitigates 1/f noise without introducing
any additional area consumption overhead. By employing
a PMOS current source with an extended gate length and
implementing bias filtering techniques, the achievement of
low phase noise has been made possible [149], [162].
Moreover, to minimize flicker noise upconversion without

compromising thermal noise, both the tail current source and
mirror in the VCO are maintained at a large size. Bias filters
are employed within the VCO circuit to effectively reduce
reference current noise and mitigate dynamic switching
causes on the bias line. In this subthreshold regime, the
MOS drain current is primarily governed by the diffusion
mechanism [125], [135]. Phase noise is reduced as a result
of the large transconductance-to-drain current ratio that
is produced. Consequently, low power consumption and
low phase noise particularities can be attained without the
need for non-conventional high Q passive components. The
dynamic common mode feedback design is employed to
dynamically adjust the common-mode (CM) voltage of
the differential varactor tuning signals with the VCO CM
voltage [150].

In contrast, with replica biassing and other widely used
methods, this strategy doesn’t require any more power [151].
Besides, it precisely trails the VCOs output common-mode
voltage during oscillations. By utilizing a differential control
scheme, this technique enables a significantly wide tuning
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FIGURE 30. CMOS LC-VCO taxonomy diagram.

range. Introducing negative conductance can effectively
minimize the overall output conductance of a VCO, leading
to an increased output swing and an improved quality factor.
This enhancement in performance results in enhanced phase
noise characteristics for the VCO. The shape of the oscillation
and its frequency are influenced not only by the nonlinearity
of devices, as typically observed in LC-tuned oscillators,
but also by the nonlinearity of varactors [152]. Therefore,
the frequency tuning curve deviates from the anticipated
curve based on the capacitance-voltage characteristics of
the varactors. The aforementioned difficulties are frequently
solved by making the assumption of constant capacitance.
The circuit model is simplified to a single second-order
differential equation as a result. The differential VCO circuit
consists of two single-ended half-circuit Colpitts oscillators
combined into a single differential configuration [153].
A configuration consisting of NMOS and PMOS transistors
is used to provide the necessary negative conductance
in order to enable oscillation start-up. In this study, the

proposed differential VCO incorporates self-bias techniques
for both the VCO core and buffer interface, resulting
in improved oscillation performance when compared to
alternative topologies. By utilizing a long-channel NMOS tail
current source, achieving the perfect common mode, which
parallels the VCO and the divide-by-two circuit, becomes
easier, eliminating the need for an additional DC-level
shifting circuit [154].

The LC tank uses switched capacitor bank arrays along
with a small varactor to achieve a wide frequency range
with a relatively low tuning sensitivity. The desired frequency
range is divided into 16 sub-bands using a 4-bit binary-
weighted array of switched metal-insulator-metal (MIM)
capacitors. The coarse tuning will be done by the varactors.
Simultaneous achievement of a broad tuning range and
low phase noise performance is accomplished in the VCO
by incorporating a switched capacitor array and noise
filtering technique. The CMOS LC QVCO features a
unique capability to automatically change its NMOS from a
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strong inversion region to an accumulation region, thereby
effectively reducing flicker noise [155]. The Researcher
provides a unique quadrature coupling method (QCM) that
enables this seamless and automated switching. The unique
quadrature coupling method involves dividing the tail by
biasing the current source and injecting the connecting signal
directly into the current source’s gate. A phase error results
when there is a mismatch between the two VCO cores.
The utilization of a composite CMOS transistor structure
enhances the gain of the negative-transconductance stage,
ensuring a dependable initiation, and also enhances device
reliability by incorporating high-voltage transistors [156].
The square of the resultant swing, whose expansion most

likely instantly results in higher supply, determines the phase
noise in an inverse proportion [157]. The tail bias current
source and the differential pair of negative gm switches are
the major noise inputs of the up-conversion. In order to
further enhance the noise performance, the current source,
which adds a significant amount of noise to its output,
is eliminated by the series resonator VCO [158]. In the series-
connected node containing the inductor and capacitor, the
series resonator increases the fundamental frequency while
attenuating the noise and harmonic components.The Self-
Adaptive Active Resistor (SAAR) will automatically adjust
itself to a higher resistance level in order to maintain the
quality factor of the LC tank and mitigate the detrimental
impacts of the tiny conducting resistor in the cross-coupled
transistor entering the triode area [159], [163].
This adjustment prevents any degradation in the quality

factor caused by the cross-coupled transistor’s conduction
resistance. The SAAR fulfils the criteria for achieving the
ideal 1/f 3 phase noise characteristic. The inductor in the
Resistor-Inductor-Capacitor-Mutual inductance tank uses a
metal resistor approach to remove any mode-ambiguity
issue that might arise during the VCO’s starting. With this
method, the mode-ambiguity problem is completely avoided.
By employing a rich harmonics approach in the RLCM tank,
the Intermodulation Suppression Filter (ISF) is effectively
shaped to mitigate the conversion of transistor noise to phase
noise across both the 1/f 3 and 1/f 2 frequency regions. Phase
noise is significantly reduced as a result of this improvement,
especially at low power levels [161].

D. CLASS-B, C, D, E, F AND COLPITTS LCVCO
1) CLASS-B LCVCO
In Class-B LC-VCO, two active CMOS transistors are in
a push-pull configuration, where one transistor conducts
during the positive half of the signal cycle, and the other
conducts during the negative half. By comparison with
Class-A VCOs, this helps increase efficiency, frequency,
tuning range, and lower power consumption. Class-B Cross-
Coupled CMOS oscillator can be utilized in the open
loop structure to optimize the low phase noise and low
power [178]. VCO employs Class-B biasing with optimized
switching amplitudes for tail current sources to enhance

phase noise performance and employs aGm-boosted structure
to minimize parasitic effects within the LC tank, thereby
achieving a larger tuning range [187].

Capacitive coupled with enhanced Gm boosting method
also provides and increase in the output amplitude and
lower phase noise [188]. Hybrid Class AB/class-B VCO
also achieved lower supply, better tuning range, and high
performance [189]. The best power efficiency and, thus, the
optimum phase-noise-versus-power trade-off are obtained by
CMOS oscillators that contain two tail resonators [190].
In order to isolate the LC-tank resonator from internal and
external loads and to produce greater negative resistance, the
push-pull complementary class-B oscillator is used in the
VCO and allows for a large frequency tuning range [191].
Inductive source degeneration is used for the tail current
source in a novel Class-B VCO operating in the K-band.
As a result, the VCO’s core size is decreased, and a compact,
low-Q tail filtering inductor can be used at millimeter-wave
frequencies [192].

2) CLASS-C LCVCO
The compromise between startup conditions and oscillation
amplitude in class-C LC-VCOs reduces the advantages of
this topology in comparison to traditional class-B operations.
There are two VCOs in the dynamic bias scheme. The first
VCO makes use of an active current tail generator, whereas
the second VCO uses a passive resistive tail and enables an
increasing in oscillation amplitude while maintaining all the
advantages of the class-C design. It improves phase noise
performance as a result of a given current consumption [179].
By naturally transitioning from class-B to class-C, the
class-B oscillator overcomes early design limitations. Startup
problems are solved with a low-frequency feedback loop,
which also ensures reliable operation and ideal oscillation
without sacrificing efficiency [177], [193]. Class-B/C hybrid
current-reuse voltage-controlled oscillator (VCO)with strong
starting, improved phase noise, and differential balancing at
low area and power [194]. A class-B and class-C connected
oscillator is used to achieve low phase noise, low power
consumption, fast startup, switchable transformers to increase
the tuning range, and the push-push approach to produce the
W-band oscillation [195].

A class-C core for the main portion and a class-B cross-
coupled pair for the secondary portion were constructed for
an adaptively biased class-C VCO. The use of the class-B
auxiliary pair solves the intrinsic startup problem of the class-
C VCOs. When the VCO reaches a steady state, it uses an
adaptive bias method to switch itself off. It only operates
during startup [196]. A class-C architecture constructed
with Capacitive Source Degeneration (CSD) principles and
optimizing current efficiency through the segmentation of
the PMOS tail current source operating in the subthreshold
region. In addition to reducing flicker noise up-conversion
in the tail current source, this segmentation increases current
efficiency [197]. The phase noise in class-C VCOs is
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improved by the introduction of both the Darlington-pair and
the noise shifting approaches. A straightforward technique
of two cascaded stages in the VCO core is employed to
utilise balanced and differential topologies to absorb the
strength of both the Colpitts and class-C VCO topology, ele-
vating the VCO driving capabilities without reducing power
efficiency [198]. Class-C push-push topology as the VCO
core improves phase noise, minimises parasitic capacitance,
and improves second-harmonic content to improve mixing
efficiency [199].

3) CLASS-D LCVCO
Class-D which combines lower phase noise, lower supply
voltage, and higher efficiency by simply expanding the
cross-coupled MOS switches of the conventional class-B
VCO and eliminating the current control circuitry at the
same time. The oscillation amplitude reaches maximum peak
voltage up to 3Vdd , and it enhances the power efficiency
above 90%. The class-D architecture is appropriate for very
low-voltage applications due to the relatively very large
oscillation amplitude, which benefits phase noise [200].
In contrast to the time-invariant tank of the Class-B oscillator
and its tank losses can be combined into an equivalent parallel
tank resistance for efficient analysis of power consumption
and phase noise, such simplification is unattainable in the
Class-D oscillator. This is primarily due to the time-variant
nature of its tank. The enhanced output swing leads to a better
phase noise performance. Moreover, with the gate and drain
bias voltages being independent, the VCO introduced can
oscillate at a reduced supply voltage compared to standard
VCOs. This feature preserves valuable chip footprint [181].
An oscillator, fundamentally a feedback-connected ampli-

fier, can be achieved efficient power conversion by using
MOSFETs in class D, E, or F modes within a dedicated class
of switching amplifiers. Low-voltage class-D differential
and QVCOs increase the carrier power through swing
growth, which lowers output phase noise. At the lowest
supply voltage, this VCO may deliver the greatest FOM to
date [201]. A class-D VCO can efficiently use the triode
region and improve phase noise performance by using the
second harmonic to restore the gain [202]. Low-power
class-D VCO that has a resistor to lower power requirements
and enhance phase noise [203]. The complementary inverse
class-D switching process ensures that the voltage and current
waveforms don’t cross over, which results in high energy
efficiency. The transistor’s CDS capacitance is absorbed into
the parallel resonant tank, minimizing power loss due to drain
parasitic discharge [204].

4) CLASS-E LCVCO
In an effort to diminish chip size, a comparatively modest
DC-feed impedance is working, and there’s no supplementary
harmonic filtering at the output [205]. Class-E oscillators can
perform better in all of the factors, which are noise factor,
second harmonics, Q-factor of the tank at the fundamental

and power efficiency is that directly impact FOM [206].
Theoretically, a class-E amplifier has a straightforward
design and a high efficiency of up to 100%. Typically,
a transistor serves as the switching mechanism [182], [207].

5) CLASS-F LCVCO
In Class-F VCO, while eliminating the drawbacks of the
die size penalty associated with the noise-filtering technique
and the voltage swing limits encountered in class-C VCO
and the class-F oscillator has achieved excellent phase
noise performance and outstanding power efficiency at a
low supply voltage [183]. While retaining the oscillator
voltage efficiency, the tail current transistor’s phase noise
contribution is successfully decreased [208]. Transformer
feedback is used in the Class-F2,3 arrangement to achieve
resonant impedance management at two times and three
times the VCO fundamental frequency (fVCO). A noise-
circulating technique is also used to successfully reduce
the noise contribution coming from the tail current transis-
tor [209]. Utilising CM resonance transformers in a CMOS
arrangement, a coupled-line-based design is used to construct
a scalable multicore Class-F VCO. With this design, tiny
inductors have a higher quality factor (Q), and the CMOS
setup enables operation at a nominal supply voltage [210].
The parasitic components of the resonator become more

prominent as the operating frequency of VCO increases,
which lowers the Q-factor. As a result, phase noise degrades
and the frequency tuning range (TR) narrow. The FOM for
the VCOs is also constrained by this circumstance. A novel
graphical Q-optimization technique is used to optimise the
Q-factor of the multi-LC resonator using a transformer for
Class-F operation. By tweaking the 2nd and 3rd harmonics
of the impulse sensitivity function (ISF), it is possible to
improve phase noise [211]. Utilizing the class-F VCO and
adiabatic switching techniques, a resonant multi-harmonic
drive is generated for an N-path-based mixer-first receiver.
It is significantly reduces power consumption while uphold-
ing a favorable mixer noise figure (NF). Coupled inductors
are used to minimize the area of the VCO architecture [212].
The design uses a small quad-core class-F VCO with
inductor sharing and a square-geometry transformer tank to
minimise chip area. It increases impedance at harmonics and
improves phase noise performanceWithout adding more chip
surface [213].

6) COLPITTS LCVCO
Low DC and RMS values for Impulse sensitivity function
(ISF) are guaranteed by the PMOS differential Colpitts
oscillator pair and switching pair in the VCO core. With this
configuration, energy transfer efficiency is maximised, phase
noise performance is improved, and a wider output voltage
swing is possible [214]. The enhanced Colpitts VCO design
to raises the negative resistance and diminishes interference
from outside noise, and feedback capacitors are inserted
between two transistors [215]. The Colpitts oscillator may
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be utilised over a large frequency range, has great frequency
stability, and is simple to tune. Due to their excellent
phase noise properties, single-ended Colpitts oscillators
are frequently utilised [185]. Additionally, under identical
circumstances, the output Power Spectral Density (PSD) at
the source is substantially smaller than at the drain in NMOS
and PMOS. This shows that a bottom-biased PMOS current
source performs better than a top-biased PMOS current
source for reduced phase noise. Furthermore, by controlling
the duty cycle of the current sources in saturation, using
a bottom PMOS current source in a cross-coupled system
efficiently reduces the close-in phase noise of the VCO [216].
Comparing the Colpitts oscillator to a cross-coupled

oscillator, the start-up requirements are often higher. The
Colpitts oscillator uses more DC power as a result than its
cross-coupled equivalent. Cross-coupled oscillator inherently
lower start-up conditions and diminishes parasitic effects, it is
a better choice for low-power, high-frequency applications.
However, it performs poorly in terms of noise [217].
Differential Colpitts VCO operation lowers common-mode
noise in silicon circuits while improving phase noise with a
Q factor boost from a symmetric inductor. By using parasitic
cancellation, the tank inductor can be made larger [218].
A tunable phase shifter is used by a wideband Colpitts VCO
at the input of a common collector Colpitts oscillator to
adjust the frequency. A feedback capacitor and an inductor
are connected in series to eliminate undesirable harmonic
frequencies [219]. A voltage-to-current positive-feedback
network is used in low-power Colpitts VCOs to lower
the starting transconductance need and reduce DC power.
This VCO design also makes use of an improved Q-factor
varactor to reduce phase noise [220]. A divide-by-two circuit
with a current-reused VCO produces a quadrature output
frequency. Phase noise performance and power consumption
are balanced by stacking the divide-by-two circuit onto a
gm-boosted Colpitts VCO with gate-to-source feedback and
using parasitic capacitance neutralisation [221].

The energy transfer efficiency of the Colpitts VCO has
been enhanced by the use of a transformer-coupled tank
and an additional inductor in the feedback loop, leading
to better phase noise sensitivity [222]. A novel quadra-
ture VCO with low phase noise and power consumption
couples two identical current-switching differential Colpitts
VCO without the use of additional coupling components
that might potentially increase phase noise and power
consumption [223]. A dynamic body bias technique-based
differential Colpitts VCO with low voltage and high swing.
Enhancing switching modes and removing common-mode
nodes from the transistors, this is done to provide a
significant output swing and reduce phase noise. A low-
voltage, high-swing bulk-coupled quadrature-VCO (QVCO)
without additional coupling components can also be made
using this method [224].
However, by eliminating the tail current source and

adding more transconductance, the usage of a Cascode
configuration in a Colpitts VCO improves phase noise

FIGURE 31. Phase noise comparative analysis of the ring VCO and LCVCO
at 1MHz offset frequency.

performance while relaxing the VCO’s initial oscillation
condition [225]. The differential Colpitts VCO achieves a
broad tuning range and low phase noise by implementing
inductive emitter degeneration and resistive tail bias [226].
The VCO uses an inductor for gm boosting at the emitter
of a hetero-junction bipolar transistor to hasten oscillation
starting. Additionally, by lowering the transformer ratio and
improving phase noise, a Collector-Emitter cross-coupling
capacitor is used to increase the loaded quality factor and
oscillation amplitude [227]. The VCO ensures a reliable
oscillation startup by using collector-emitter cross-coupled
capacitors in a Colpitts structure. Phase noise is improved
through a noise-shifting method that raises the loaded
Q-factor of the tank. Furthermore, three-bit switches, utilising
enhancement-mode high-electron mobility transistors (E-
HEMTs), improve the tuning range and reconfigurability of
this VCO [228].

IV. LITERATURE RESULT ANALYSIS
The researchers identified through the literature survey that
phase noise, maximum operating frequency, FOM, and
Frequency Tuning Range (FTR) are the most predominant
parameters of the ring VCOs and LC-VCOs.

A. PHASE NOISE ANALYSIS OF THE REPORTED VCOs
Phase noise can be expressed as the proportion of noise within
a 1-Hz bandwidth at a given frequency offset (fm), relative to
the amplitude of the oscillator signal at the frequency (fo).
Fig. 31 depicts a comparison between the phase noise of
the ring VCO and the LC-VCO, as stated in the reported
work. As a consequence of the literature survey, the phase
noise of the Ring VCOs varied between −86.13 dBc/Hz and
−110 dBc/Hz, and for the LC-VCO is between −110.5 to
−136.57 dBc/Hz. Therefore, it is concluded that to have
a better phase noise, LC-VCO would be the better option
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TABLE 3. Comparative analysis of the ring VCO and LC-VCO with its performance parameters.

as compared to Ring-based VCO circuits [19]. Fig. 32
shows the comparison between the phase noises reported
by Class-B to Class-F and Colpitts oscillators in harmony
with the reported work and the results. Therefore, researchers
summarize the evidence that the colpitts oscillator brings
superior PN [185] upto −140 dBc/Hz, class-C [183] and
Class-D [183]: similarly Class- C up to -135 and others can
provide moderate phase noise.

B. OPERATING FREQUENCY ANALYSIS OF THE REPORTED
VCOS
A VCO’s maximum operational frequency is the highest
frequency, where it can consistently and accurately produce

an output signal. Fig.33 demonstrates the maximum operat-
ing frequency ranges of ring-based VCO, Fig. 34 represents
the maximum operating frequency ranges of LC-based
VCO, Fig. 35 shows the comparison between the maximum
operating frequency ranges of Ring- based VCO as well as
LC-based VCO and Fig. 36 indicates the maximum operating
frequency ranges of Class-B to class-F LC-VCO and Colpitts
LC-VCO respectively. Consequently, it is identified from
the literature survey that the ring based VCO can opt for
radio frequency ranges from 0.4 GHz to 4.3 GHz. Similarly,
the LC-VCO can be selected for both radio frequency as
well as millimeter wave range frequencies ranging from
1.5 GHz to 105.2 GHz
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TABLE 4. Comparative analysis of the Class-B, Class-C, Class-D, Class-E, Class-F and colpitts LC-VCO with its performance parameters.

C. FOM ANALYSIS OF THE REPORTED VCOs
The FOM is a numerical expression representing the
efficiency of a given system. The FOM can be calculated
as SSB noise at the offset 1f from its carrier frequency

with the log of the ratio of the different carrier fre-
quencies to its offsets frequencies, which is normalized
with the square, and it’s multiplied with the VCO core
power dissipation [98], [131], [165], [166], [167]. Fig. 37,
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FIGURE 32. Phase noise comparative analysis of the Class-B, Class-C,
CLass-D,Class-E, Class-F LCVCO and colpitts LCVCO.

FIGURE 33. Operating frequency analysis of the ring VCO.

Fig. 38, Fig. 39, Fig. 40 shows the FOM of all the
surveyed VCOs.

The FoM can be calculated as per the equation given
in (16) [29].

FOM = $(fo, 1f ) + 10log

[(
1f
f0

)2

∗

(
Psupply
mW

)]
(16)

where $(fo, 1f ) is the phase noise at 1f offset frequency
from the carrier fo. FOM formulae has been used to assess
the efficiency of VCO. With a greater negative value or a
larger absolute value of the FOM, the performance of the
VCO is better [167]. According to the FOM observations
of the VCOs, the LC-VCO can deliver better phase noise
and a higher operating frequency when compared to the ring
VCO, which is adequate for high-frequency mm-wave range
applications.

FIGURE 34. Operating frequency analysis of the LC-VCO.

FIGURE 35. Operating frequency comparative analysis of the ring and
LC-VCO.

D. FTR ANALYSIS OF THE REPORTED VCOS
Fig. 41, Fig. 42 depict the FTR of reported VCOs. The
frequency tuning range percentage is stated as the ratio of the
variability between the maximum and minimum frequencies
to the center frequency(fo) and delivered as a percentage
(118). The formula is used to calculate the FTR in terms of
percentage for a VCO is given in the equation (17):

FTR (%) =
(fmax − fmin)

fo
× 100 (17)

where fmax is the maximum frequency that the VCO can pro-
duce, and fmin denotes the minimum frequency that the VCO
can generate. It is observed from Fig. 41, Fig. 42, and Table 3,
Table 4 that, FTR of the Ring based VCO suggestively
offers a wider frequency tuning range than LC-VCO. Table 3,
and Table 4 demonstrate the comparative analysis of the
Ring VCO and LC-VCO with their performance parameters,
Table 4 shows the comparative analysis of the Class B to F and
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FIGURE 36. Operating frequency comparative analysis of the Class-B,
Class-C, CLass-D,Class-E, Class-F LCVCO and Colpitts LCVCO.

FIGURE 37. FOM analysis of the ring VCO at 1MHz offset frequency.

Colpitts oscillator with their performance parameters. The
following advancement has been observed by the researchers
from the Ring VCO and LC-VCOs Survey. It is determined
that each VCO type has different features and is suitable
for distinctive applications. The designers used to select
disparate VCOs, necessitating the application requirements
like frequency range, power consumption, phase noise, and
integration complexity. Furthermore, the decision is also
influenced by the particular characteristics of the technology
process and the performance metrics sought for the intended
application.

1. Future designs may concentrate on attaining wideband
and multi-band operation to meet the requirements of
contemporary communication systems that facilitate multiple
frequency bands and standards.

2. This kind of VCOs may be integrated into compact
form factor, and innovative packaging techniques can be

FIGURE 38. FOM analysis of the LC-VCO at 1MHz offset frequency.

FIGURE 39. FOM comparative analysis of the ring and LC-VCO at 1MHz
offset frequency.

FIGURE 40. FOM comparative analysis of the Class-B, Class-C,
CLass-D,Class-E, Class-F LC-VCO and colpitts LC-VCO.

explored for improved integration within complex electronic
systems.
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FIGURE 41. Frequency tuning range comparative analysis of the ring VCO
and LCVCO.

FIGURE 42. Frequency tuning range comparative analysis of the Class-B,
Class-C, CLass-D,Class-E, Class-F LCVCO and Colpitts LCVCO.

3. Exploring new materials and advanced semi- conductor
technologies (e.g., FinFET, GaN) are used to improve the
VCOs’ performance, power efficiency, and frequency range.

4. To meet the demands of high-performance communi-
cation systems, continuous efforts must be made to design
VCOs with lower power consumption and phase Noise.

5. Achieving precise frequency tuning, modulation, and
dig- ital communication interfaces by incorporating digital
and mixed-signal control techniques.

6. Designing and optimizing the above-mentioned VCOs
for specific applications, specifically 5G, IoT, radar, and
space communication.

V. CONCLUSION
This survey has provided a comprehensive analysis on
comparison between the Ring and LC-VCOs architectures.
Furthermore, both VCO designs propose unique advantages

and trade-offs, making them suitable for different applica-
tions.Moreover, the RingVCOhas the advantage of a simpler
design in its circuit implementation, and it is suitable for
low-power and low-frequency applications. Therefore, the
LC-VCO imparts an extraordinary phase noise performance
and higher output frequency at the cost of a low tuning range.
Also, LC-VCO generally requires more complex circuitry
and may suffer FOM large chip area and fabrication costs
also high. According to the study, using an LC-VCO, one
could acquire a millimeter wave range frequency. Therefore,
future research directions may concentrate on implementing
high-tuning range LC-VCOs for reducing the complexity of
the circuits, area, and power consumption.
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