
Received 15 October 2023, accepted 29 October 2023, date of publication 8 November 2023,
date of current version 20 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3330973

Overhead Based Cluster Scheduling of Mixed
Criticality Systems on Multicore Platform
AMJAD ALI 1, ASAD MASOOD KHATTAK 2, (Member, IEEE), SHAHID IQBAL 1,
OMAR ALFANDI 2, (Member, IEEE), BASHIR HAYAT 3, MUHAMMAD HAMEED SIDDIQI 4,
AND ADIL KHAN 5, (Member, IEEE)
1Department of Computer and Software Technology, University of Swat, Swat, Khyber Pakhtunkhwa 19120, Pakistan
2College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates
3Center of Excellence in IT, Institute of Management Sciences, Peshawar 25000, Pakistan
4Department of Computer Science, Jouf University, Sakaka, Al Jowf 72388, Saudi Arabia
5School of Computer Science, University of Hull, HU6 7RX Hull, U.K.

Corresponding author: Asad Masood Khattak (asad.khattak@zu.ac.ae)

ABSTRACT The cluster-based technique is gaining focus for scheduling tasks of mixed-criticality (MC)
real-time multicore systems. In this technique, the cores of theMC system are distributed in groups known as
clusters. When all cores are distributed in clusters, the tasks are partitioned into clusters, which are scheduled
on the cores within each cluster using a global approach. In this study, a cluster-based technique is adopted
for scheduling tasks of real-time mixed-criticality systems (MCS). The Decreasing Criticality Decreasing
Utilization with the worst-fit (DCDU-WF) technique is used for partitioning of tasks to clusters, whereas a
novel mixed-criticality cluster-based boundary fair (MC-Bfair) scheduling approach is used for scheduling
tasks on cores within clusters. The MC-Bfair scheduling algorithm reduces the number context switches
and migration of tasks, which minimizes the overhead of mixed-criticality tasks. The migration and context
switch overhead time is added at the time of each migration and context switch respectively for a task.
In low critical mode, the low mode context switch and migration overhead time is added to task execution
time, while the high mode overhead time of migration and context switch is added to the execution time of a
task in high critical mode. The results obtained from experiments show the better schedulablity performance
of proposed cluster-based technique as compared to cluster-based fixed priority (CB-FP), MC-EKG-VD-1,
global and partitioned scheduling techniques e.g., for target utilization U=0.6, the proposed technique
schedule 66.7% task sets while MC-EKG-VD-1, CB-FP, partitioned and global techniques schedule 50%,
33.3%, 16.7% and 0% task sets respectively.

INDEX TERMS Mixed-criticality systems, real-time systems, cluster-based approach, mixed-criticality
boundary fair, context switches, tasks migration.

I. INTRODUCTION
The integration of multiple functionalities i.e., high critical
(safety-critical) and low critical functionalities (mission crit-
ical) on a common executing platform is a recent trend
in real-time systems and is commonly employed on dif-
ferent platforms such as ARINAC [1] for aerospace, and
AUTOSAR [2] for automotive industries. For integrat-
ing these different multiple functionalities on a common

The associate editor coordinating the review of this manuscript and

approving it for publication was Kuo-Ching Ying .

execution platform, the idea of mixed-criticality (MC) was
adopted by such platforms. The high critical functionalities
have very high importance while the importance of low crit-
ical functionalities is low. Such a real-time system having
different functionalities is known as mixed-criticality sys-
tem (MCS). Baruah et.al, noted that task execution time
bounds tend to be larger and more conservative as confidence
requirements increase. For example the largest execution time
observed during tests of normal operating mode scenarios
can be specified as the WCET at a low level of assurance;
the largest execution time observed during more exhaustive

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 142341

https://orcid.org/0000-0001-9117-3692
https://orcid.org/0000-0001-9135-8881
https://orcid.org/0009-0004-0436-7675
https://orcid.org/0000-0002-9581-401X
https://orcid.org/0000-0003-3448-9804
https://orcid.org/0000-0002-4370-8012
https://orcid.org/0000-0003-2220-8518
https://orcid.org/0000-0002-9549-5290


A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

‘‘code-coverage’’ tests are more appropriate as the WCET
at a higher level of assurance [3]. The high critical func-
tionalities need certification to ensure their correctness. For
certification, the certification authorities (CA) make cer-
tain assumptions e.g line of code for estimating the WCET
(worst-case execution Time) of these high critical function-
alities. The WCET estimated by CA is too large than the
WCET specified by designer of the system i.e., the WCET
acquired through experiments. The certification authorities
only concern with the correction of functionalities having
high criticality while the designer of the system requires the
correctness of both functionalities.

The evolution of embedded systems from single core to
multicore platforms is in trending from the recent past and
receiving more attention. There are three basic scheduling
techniques for scheduling tasks of real-time multicore sys-
tems i.e., partitioned, global, and cluster-based approaches.
In partitioned technique, each task is allocated to a partic-
ular core and the core executes those tasks only which are
allocated to it. Tasks can be scheduled on each core using
the EDF or RM scheduling algorithms. Partitioning tasks and
assigning each partition to one core has the advantages of
using the safety verification formula to make sure no task
overruns occurs, and task migration between cores is not
possible hence execution overhead is also reduced [4]. The
problem in partitioned scheduling approach is the allocation
of tasks to cores i.e., a task is not allocated to any core
when the utilization of a task is less than the total amount of
unused utilization of all cores but there is not a single core
with unused capacity greater or equal to the utilization of
that task. In this case, the task set is not schedulable, which
reduces the schedulable workload utilization. Similarly, when
themode is switched from low (LO) to high (HI) mode on any
processor, and if the execution time of tasks become higher
than the unused space of processor, the MC task set is also
not schedulable. Because task migration to another processor
is prohibited which have enough capacity for executing the
tasks, this causes a reduction of schedulable workload utiliza-
tion. In semi-partitioned approach, few tasks are splitted into
sub tasks, which can utilize the unused capacity of processors
to increase the utilization of processors [5]. But this approach
increases the number of preemptions and preemption over-
head of tasks, and decrease the schedulable utilization of a
task set.

In contrast, the global technique consists of a single
shared queue containing all tasks to be executed on multicore
platform. A task having higher priority is allocated from
the global queue to an idle core for execution. The global
approach allows migration of tasks among the cores during
runtime i.e. a task can execute on any core, which overcomes
the limitation of tasks allocation of the partitioned scheduling
technique [6]. But this tasks migrations among cores can lead
to high run-time overhead in the global scheduling approach.

Moreover, neither partitioned technique nor global tech-
nique take over each other, because some task sets are
schedulable by partitioned technique but not schedulable by

global technique, and vice versa. The number of context
switches in both techniques and the number of migrations
in global technique causes high overhead, which can’t be
neglected. Recently, Cluster based scheduling technique is
gaining focus for scheduling the tasks of multicore real-time
systems. Cluster-based technique overcomes the tasks allo-
cation problem of partitioned technique and high migration
overhead of global technique. In cluster-based technique, all
cores are divided in clusters and the tasks of system are
allocated to these clusters. The cluster-based approach affec-
tively utilizes the unused capacity on all cores i.e., a task is
allocated to a cluster when the utilization of a task does not
exceed the total amount of unused utilization of the cluster.
When the tasks are assigned to clusters, different global
scheduling algorithms are used within clusters to schedule
the task sets. The cluster-based technique can convert into
partitioned technique when every cluster has only one core
and can also change to global technique when all the cores
are putted in one cluster. Clustering reduces the number of
migrations as compared to global approach which leads to
reduce the overhead and also overcome the task allocation
problem in partitioned technique. Calandrino et.al presented a
new hybrid technique for real-time multicore systems named
H-EDF, to minimize the problems of G-EDF and P-EDF
scheduling approaches. The authors divides cores in various
clusters which share a cache and allocate tasks to these
clusters. The tasks are scheduled in clusters by a global
scheduling algorithm named preemptive global EDF [7].

In this research work, the overhead caused by tasks
migration and context switches is reduced in cluster-based
technique for multicore mixed-criticality systems. We used
an efficient task allocation technique for tasks allocation
to clusters. After tasks allocation to the clusters, the tasks
are scheduled on the cores within the cluster using a
novel global scheduling technique. This research work is
one of the initial research works that reduces the over-
head caused by context switches and migrations of tasks in
cluster-based MC systems. This research work performs bet-
ter as compared to cluster-based fixed priority (CB-FP) [8],
MC-EKG-VD-1 [9] global and partitioned scheduling
approaches.

II. RELATED WORK
Initially, Vestal [10] used the notion of mixed-criticality (MC)
for scheduling tasks on the unicore platform, but now mul-
ticore or multiprocessor platform is gaining focus to adopt
the idea of MC scheduling. For multicore MC real-time
systems, the partitioned scheduling approach is initially used
for scheduling MC tasks. For partitioned scheduling, Kelly et
al. discussed different techniques for task ordering and parti-
tioning of tasks among cores. The authors used Decreasing
Criticality and Decreasing Utilization techniques for tasks
ordering and partitioning of tasks among the cores. They
discussed different tasks partitioning heuristic approaches
i.e., first-fit, best-fit, and worst-fit. In first-fit, the order of
cores is fixed and a task is given to the first core on which it

142342 VOLUME 11, 2023



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

fits, otherwise it is allocated to the next core on which it fits,
and so on. In best-fit, the task is allocated to that core having
minimum unused capacity among cores. In worst-fit, each
task is assigned to that core havingmaximumunused capacity
among the cores. The authors also used the fixed-priority
RM and Audslay’s approach for tasks scheduling on each
core [11]. Later, Ekberg andYi extended EY (Ekberg and
Yi) [12] virtual deadline MC unicore scheduling algorithm,
and proposed a new algorithm named Mixed-criticality Par-
titioning with Virtual Deadline (MPVD) for scheduling the
MC task set of multicore systems. The MPVD algorithm
first allocates high-criticality tasks through worst-fit and then
allocates low critical tasks using first-fit approaches [13].
Nagalakshmi and Gomathi proposed a partitioned-based
scheduling approach named C-PEDF [14] that groups theMC
tasks in clusters. Each cluster contains one executive task i.e.
high critical task, and a group of member tasks i.e. low critical
tasks. These clusters are then partitioned among cores, which
schedule these clusters of tasks using partitioned approach.
It should be noted that if the execution budget of tasks exists
in two clusters, then these clusters should be allocated to
one core to avoid the concurrent execution of the task. As a
task may allocated to more than one clusters, therefore the
overhead of context switches is increases [14].
After the partitioned approach, the global approach is

used for scheduling tasks of MC multicore real-time sys-
tems. Initially, Pathan applied fixed-priority response time
analysis for the global scheduling of MC sporadic tasks
on multicore [15]. Andersson et al. considered utilization
bounds for periodic task sets with implicit deadlines. They
showed that the maximum utilization bound for any global
fixed job priority algorithm is (m+1)/2 on m cores [16].
Baruah derived a sufficient schedulability test for global
EDF scheduling of sporadic task sets with constrained dead-
lines [17]. Li and Baruah [6] extend a uni-core scheduling
algorithm EDF-VD (EDF with Virtual Deadline) [18] to
multicore and proposed a novel global algorithm named
GLOBAL, by applying fpEDF [19] for MC tasks schedul-
ing. EDF-VD is a unicore MC systems scheduling algorithm
and fpEDF is a scheduling approach for traditional real-time
multicore systems. Lee et al. proposed a fluid model based
scheduling algorithm for multiprocessor MC system MC-
Fluid. MC-Fluid algorithm executes each tasks in proportion
to its criticality-dependent rate. They also propose an exact
schedulability condition for MC-Fluid and an optimal assign-
ment algorithm for criticality-dependent execution rates. The
authors showed that MC-Fluid has a speedup factor of
(1+

√
5) /2 (∼ 1.618), which is best known inmultiprocessor

MC scheduling [20].
In the domain of real-time scheduling for heterogeneous

multicore platforms, various heuristic cluster-based and semi-
partitioned scheduling approaches have been proposed to
optimize energy efficiency, temperature management, and
task allocation. Sharma et.al introduced a heuristic approach
called RT-SEAT for hybrid scheduling approach. The pro-
posed RT-SEAT scheduler operates across four distinct

layers. It begins by segmenting the timeline into intervals in
the outermost layer. In the subsequent layer, the scheduler
handles task-to-core assignments and generates a provisional
task schedule for each core. Transitioning to the third layer,
the scheduler reorganizes the sequence of task execution on
individual cores to effectively manage core temperatures.
Finally, in the last layer, it incorporates DVFS to ensure
the scheduler’s energy awareness. In the following sections,
a more detailed exploration of the scheduler’s functioning
will be presented [21].
Moulik et.al introduced an efficient and low overhead

cluster-oriented scheduling technique referred to as SEAM-
ERS. This approach focuses on the allocation of tasks in
a heterogeneous multicore environment while minimizing
unnecessary computational burdens. SEAMERS implements
dynamic voltage and frequency scaling (DVFS) on a per-
core basis, enabling optimized task scheduling at the core
level [22]. Sharma et.al presented a cluster based heuristic
scheduling strategy named CETAS which stands for A Clus-
ter based Energy and Temperature Efficient Real-time Sched-
uler for heterogeneous platforms, which performs energy as
well as temperature aware task scheduling on heterogeneous
multicore platforms. This approach efficiently schedule a set
of real-time periodic tasks on a DVFS-enabled heterogeneous
platform with a focus on energy and temperature considera-
tions [23]. Moulik et.al introduce a heuristic Cluster based
Energy Aware Scheduler for Real-Time Heterogeneous Sys-
tems referred to as CEAT, aimed at energy-aware scheduling
of a set of real-time periodic tasks on a heterogeneous multi-
core platformwithDVFS capabilities. This approach involves
three sequential phases: Deadline Segmentation, Allocation
of Tasks to Cores, and scheduling that Prioritizes Energy
Efficiency [24].
Sharma et.al develop a heuristic scheduling approach

named FATS-2TC, addressing the simultaneous control of
energy and peak temperature levels. This is achieved through
the standby-sparing mechanism on systems with two types
of cores, such as the big. LITTLE architecture, enhancing
resilience against transient faults [25]. Moulik et.al presents
an innovative semi-partitioned heuristic scheduler known as
RESET, which stands for ‘‘A Real-time Scheduler for Energy
and Temperature Aware Heterogeneous Multi-core Sys-
tems.’’ This novel scheduler is designed to achieve optimizing
resource utilization by intelligently allocating tasks, while
concurrently tackling the challenges of reducing dynamic
energy consumption and effectively managing core temper-
atures. By striking this balance, RESET offers a promising
approach to enhance the overall performance and efficiency
of heterogeneous multi-core systems [26]. Sharma et.al
presents a heuristic technique, named ETA-HP, for energy
and temperature efficient scheduling of a set of real-time
periodic tasks on a DVFS empowered heterogeneous mul-
ticore system. The proposed strategy operates in four
stages, namely Deadline Partitioning, Task-to-Core Allo-
cation, Temperature-Aware Scheduling, and Energy-Aware
Scheduling [27].

VOLUME 11, 2023 142343



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

Recently, a cluster-based technique has been studied for
MC tasks scheduling on multicore systems. In this technique,
all the cores are distributed in clusters and the MC tasks
are assigned to clusters. After assigning tasks to clusters,
a global approach is used for the tasks scheduling within
clusters. For the cluster-based scheduling approach, Ali and
Kim [8] presented a scheduling algorithm for MC tasks
scheduling on multicore systems. The authors partitioned
MC tasks among clusters through the worst-fit heuristics
approach. In low mode, the authors used small sizes of clus-
ters (sub-clusters) while in a high mode they used larger
sizes of clusters for tasks allocation. For task schedula-
bility analysis, the authors used a fixed-priority response
time analysis based on Audsley’s approach [28] in each
cluster and sub-cluster. Burns and Davis provided an exten-
sive literature about scheduling algorithms proposed for the
mixed-criticality task sets on multicore platform including
cluster based approach [29].
For minimizing the overhead in real time systems, Zhang et

al. proposed a novel algorithm named Least Switch and Lax-
ity First to minimize the switching among tasks on unicore
systems [30]. To decrease the overhead in real-time systems,
Levin et al. used a scheduling algorithm named Deadline
Partitioning Fair (DP-fair) [31] which reduced the run-time
overhead of tasks. Zhu et al. discussed a novel algorithm for
scheduling of tasks named Boundary fair (Bfair) on real-time
multicore systems. The Bfair approach makes scheduling
decisions for tasks only at the period boundaries, which
essentially minimizes the points of scheduling. Furthermore,
by computing the execution time of tasks between period
boundaries, the Bfair schedule minimizes migrations and
context switches of tasks, which reduces the scheduling over-
head of real-time systems [32].

III. SYSTEM MODEL
This section presents the framework for the adopted
cluster-based scheduling technique. In the cluster-based
scheduling technique, the cores are divided into groups
known as clusters. After creating clusters, the MC tasks are
assigned to clusters by applying DCDU-WF tasks partition-
ing technique [1]. The MC tasks are scheduled by a novel
MC-Bfair approach on cores within clusters. Initially, the
tasks are scheduled in low mode i.e each task is executed
up to its low mode execution requirement i.e., Ci(LO), but if
a high critical task needs further execution after completing
Ci(LO), the system is changed to high mode. The low tasks of
the MC system are discarded after the mode switch and only
each high task is scheduled up to their high mode execution
requirement Ci(HI) in high mode.

A. TASK MODEL
The periodic task set of a mixed-criticality system is known
as workload, which is represented by τ . In lowmode, both LO
and HI critical tasks release a job sequence, but in high mode,
only HI tasks release a job sequence. A mixed-criticality

periodic task τi is characterized by 6 parameters i.e., τi = (Pi,
CXi
i , Xi,CS.Axii , M .Axii ), where,
• Pi is used for the period of task. It is supposed that Pi =

Di (task’s deadline).
• CXi

i is WCET of a task at criticality level Xi and
CXi
i = {Ci(LO), Ci(HI}. The Ci(LO) and Ci(HI) rep-

resent the low mode and high mode WCET of MC task
respectively.

• Xi is used to show the task’s criticality level, where LO
is used for low critical and HI is used for high critical
task.

• CS.Axii is used for context switch overhead time of a task
at criticality level Xi.

• M .Axii represents the migration overhead time of a task
at criticality level Xi.

The utilization in low and high mode of MC task τi is
denoted by ULO

i and UHI
i respectively and are derived as

ULO
i = Ci(LO)/Pi and UHI

i = Ci(HI)/Pi. The low mode
utilization of all MC tasks is represented by ULM, while in
high mode UHM is used to represent the total utilization of HI
tasks and can be calculated as.

ULM
=

∑
τi∈τ

ULO
i (1)

UHM
=

∑
τi∈τ

UHI
i (2)

Equation 1 shows the summation of the utilization of the
entire task set of the MC system in low mode calculated
through low worst-case execution time, while equation 2
shows the summation of the utilization of HI tasks in high
mode calculated through high worst-case execution time of
HI tasks.

B. CLUSTERS
The cores of a real-time MC system are divided into groups
known as clusters. Each cluster is denoted by C having two
parameters C(WC , NC ), where WC is used for the workload
of the cluster while NC is used for the number of cores within
a cluster. The tasks that are assigned to clusters are executed
up to Ci (LO) in low mode, while each task is executed up to
Ci (HI) in high mode within each cluster.

C. CLUSTER-BASED SCHEDULING FRAMEWORK
A cluster-based technique is adopted for the scheduling of
task sets of multicore MC systems, in which the overhead
caused due to context switches and migrations of task is
reduced. The MC tasks are allocated to clusters by DCDU-
WF [8] approach. After tasks partitioning, a novel MC-Bfair
scheduling algorithm is used for the scheduling of MC tasks
on cores within clusters. The general idea of the cluster-based
scheduling framework is given in figure 1 and figure 2 for low
and high modes respectively. The system consists of 4 cores
on which the task set of table 1 is scheduled. The cores are
equally partitioned into cluster C1 and cluster C2, each having
2 cores. The MC tasks of the system are partitioned into
cluster C1 and cluster C2, each having 4 tasks i.e., C1 = τ2,
τ4, τ6 and τ8 and C2 = τ1, τ3, τ5 and τ7.

142344 VOLUME 11, 2023



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

FIGURE 1. Framework of cluster-based approach in low mode.

FIGURE 2. Framework of cluster-based approach in high mode.

TABLE 1. MC task set.

IV. RESEARCH MOTIVATION
Global and partitioned scheduling approaches are the two
scheduling approaches for multicore mixed-criticality sys-
tems. In this research work, a novel MC-Bfair scheduling
technique is used for the overhead caused by context switches
and migrations of tasks during execution. In global schedul-
ing, both taskmigration and context switches can occur, while
in the partitioned approach, migration of tasks is not allowed,
but context switches of tasks occur. A cluster-basedMC-Bfair
scheduling approach is used for scheduling MC tasks to over-
come the problems of partitioned and global approaches. This
research work is an extension of the previous cluster-based
scheduling approach [18]. The cluster-based approach also
dominates the partitioned and global approaches but it lacks
the overhead amount for the scheduling of MC tasks.

For low and highmodes, theMC-Bfair algorithm is applied
for scheduling of tasks on cores. This algorithm minimizes
the context switches and migrations of MC tasks which
reduces the scheduling overhead, as the Bfair algorithm min-
imizes the overhead of tasks in traditional real-time systems.
The MC-Bfair constructs a periodic schedule for the task set
of MC systems as in Bfair algorithm [32]. This approach

allocates CLO
i execution time for all tasks in low mode, and

for high mode it allocates CHI
i execution time for each HI

tasks in the interval [(k − 1)·Pi, k·Pi) for all k ∈ {1, 2,
3,. . . }. The schedule for a given task set is only considered
from 0 to LCM of tasks periods due to its periodic property.
B = {b0,. . . , bf } is used for expressing the period boundaries
of tasks, where b0 is used for the starting point and is equal
to zero, while bf is used for the final time unit which is
equal to LCM. The time units between two consecutive period
boundaries bk and bk+1, is represented by interval [bk , bk+1).

For each period boundary, the total execution time of each
task is calculated. The low mode utilization ULO

i of a task
is calculated as cLOi /pi and the high mode utilization UHI

i
is calculated as cHIi /pi. The sum of utilizations of all tasks
of a system in low mode is defined by ULM

=
∑n

i=1U
LO
i

and for high mode the sum of utilizations of high critical
tasks is defined by UHM

=
∑n

i=1 U
HI
i . The remaining work

RWK+1
i at period boundary bk of task τi is define as the

difference of bk .Ui and the allocated time units of task τi
before period boundary bk . A schedule will be boundary fair
at any period boundary, if the remaining work of a task is
smaller than one. The mandatory time mK+1

i of an MC task
can be calculated as mK+1

i = max{0, ⌊RWK
i + (bk+1− bk ) ·

Ui⌋}. m
K+1
i which is the integer part of the summation of the

remaining work at bk and the work to be done during [bk ,
bk+1). The corresponding decimal part is defined as pending
work and can be calculated as PWK+1

i = RWK
i + (bk+1−

bk )·Ui−m
K+1
i . Now, we can calculate the total execution time

of each MC task at any period boundary. The total execution
time an MC task at each period boundary is calculated as
TEK+1

i = mK+1
i + (PWK+1

i − RWK+1
i ).

A. PARTITIONED APPROACH FOR SCHEDULING OF
MIXED-CRITICALITY TASKS
Mixed-criticality tasks are partitioned among cores in the
partitioned scheduling approach and are only schedules on
the cores to which the tasks are assigned. The migration
of tasks among cores is not allowed. Initially, LO and HI
tasks are executed in low mode up to Ci(LO) on a core.
If the mode is switched to high mode, LO tasks are dropped
and only HI tasks are executed up to Ci(HI) on a core. The
partitioned approach has the limitation of the partitioning of
tasks among cores i.e., if the utilization of a task is larger than
the remaining free space on each core, then such task can’t be
allocated to any core. In this scenario, the MC tasks are not
scheduled, which decreases the schedulable utilization of the
MC workload. Similarly, when the mode is switched from
low to high at any core, and if the execution time of a HI
task becomes larger than the remaining free space of the core,
then the task set is not schedulable, because the task cannot
migrate to a core which has enough capacity to schedule this
task.
Example 1: For the task set shown in table 1, consider a

system having 4 cores. The tasks τ1, τ2, τ3, τ4, τ5, τ6, τ7 and
τ8 are allocated to 4 cores by the DCDU-WF tasks allocation

VOLUME 11, 2023 142345



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

approach. Through this approach, firstly all HI tasks are
assigned to cores, and a HI task of a higher utilization is
assigned to that core having the largest unused space. After
partitioning all HI tasks, LO tasks are partitioned among cores
in the above manner. The MC tasks that are allocated to cores
are shown in Figures 3 and figure 4 for both low and high
modes respectively.

The MC-Bfair scheduling approach schedule all tasks on
each core in low mode including core 3 as shown in figure 5,
but when the overhead time caused by the context switch
is added to the execution time of each task, then the third,
fourth and sixth jobs of τ1 on core 3 missed the deadlines
at 12, 16 and 24 period boundaries respectively as shown in

FIGURE 3. Tasks allocation using DCDU-WF for low mode.

FIGURE 4. Tasks allocation using DCDU-WF for high mode.

TABLE 2. MC tasks for partitioned approach.

Figure 6. The time of context switch overhead of an MC task
is calculated as CS.AXii = CXi

i
∗5/100. Table 2 shows the time

of the context switch added to the execution time of tasks
when the context switches occur. The given task set is not
scheduled by partitioned technique.

FIGURE 5. Tasks scheduling on core 3.

FIGURE 6. Tasks scheduling on core 3 with overhead time.

B. GLOBAL APPROACH FOR MC TASKS SCHEDULING
Global scheduling consists of a global single-ready queue in
which all MC tasks are stored. In both low and high modes,
tasks are allocated to an idle core for execution. The MC
tasks can migrate among cores during run-time, which causes
high overhead. Initially, the global approach schedule both
LO and HI tasks in low mode. Global scheduling technique
overcomes the problem of partitioned scheduling i.e., allo-
cation of tasks to cores, but migrations of tasks may lead to
high overhead. The tasks for global approach in low and high
mode is shown in figure 7 and figure 8.
Consider the example given in table 1, the MC task set

is scheduled in low mode on 4 cores from a single ready
queue by using the MC-Bfair algorithm as shown in figure 9.
The total utilization of workload in low mode ULM

= 2.72.
The time of context switch overhead of an MC task is cal-
culated as CS.AXii = CXi

i
∗10/100, and migration overhead

is calculated as M .AXii = CXi
i

∗20/100, as given in table 3.
When the overhead time caused by the migration ad context
switch is added to the execution time of each task, which
increases the total execution time of tasks. In low mode,
the tasks are not schedulable between period boundaries b4
and b5 by adding the additional time of overhead. Table 4
shows the execution time of tasks with overhead time. The
16-time units are available between b4 and b5 for the 4 cores,

142346 VOLUME 11, 2023



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

FIGURE 7. Tasks for global scheduling in LO mode.

FIGURE 8. Tasks for global scheduling in HI mode.

FIGURE 9. Global scheduling of tasks.

while the required execution time units are 18.1 as shown
in table 4. Therefore, the MC workload is not scheduled at
period boundary 20 in low mode.

C. CLUSTER-BASED APPROACH FOR SCHEDULING OF
MC TASKS
In cluster-based technique, cores of systems are divided
in clusters and tasks are allocated to the clusters. The
cluster-based approach affectively utilizes the unused capac-
ity on all cores i.e., a task is allocated to a cluster when
the utilization of a task does not exceed the total amount of
unused utilization of the cluster. When the tasks are assigned
to clusters, different global scheduling algorithms are used
within clusters for scheduling the task sets. The cluster-based

TABLE 3. MC task set for global scheduling.

TABLE 4. The Execution time of each tasks with overhead in global
scheduling.

technique can change into partitioned technique if each clus-
ter has only one core and can also change to global technique
when all the cores are put together in one cluster.

Considering example 1, tasks τ2, τ4, τ6 and τ8 are allocated
to cluster C1 while tasks τ1, τ3, τ5 and τ7 are allocated to
cluster C2 in low mode using the DCDU-WF [8] approach,
as shown in figure 10. The utilizations of cluster C1 and
cluster C2 in low mode are higher than utilization in high
mode because the utilizations of all HI and LO tasks is added
in low mode while only the utilizations of all HI critical tasks
is added in highmode. Figure 11 shows the HI critical tasks of
cluster C1 and cluster C2 in highmode. The task set of Table 1
is scheduled in both low and high modes by the cluster-based
technique using a novel MC-Bfair scheduling algorithm.

V. ALLOCATION OF MC TASKS TO CLUSTERS
The tasks of MC system are distributed to clusters by the
DCDU-WF [8] tasks allocation technique. In the DCDU
technique, MC tasks are arranged by criticality level and
utilization i.e., all high tasks are arranged first and then low

VOLUME 11, 2023 142347



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

FIGURE 10. Allocation of tasks to clusters in low mode.

FIGURE 11. Allocation of tasks to clusters in high mode.

critical tasks by decreasing utilization. As each high criti-
cal tasks has two execution times CLO

i and CHI
i , therefore,

it has two utilizations ULO
i and UHI

i for the low mode and
high mode respectively, whereas a LO tasks have onlyULO

i
utilization for low mode. The high critical tasks are arranged
through UHI

i utilization while low critical tasks are arranged
through ULO

i utilization.
After the arrangement of allMC tasks byDCDU technique,

the worst-fit heuristic is used for partitioning MC tasks into
clusters. This approach assigns anMC task to a cluster having
maximum unused space i.e., high remaining utilization. The
HI tasks are partitioned among clusters to ensure the efficient
scheduling of HI tasks in high mode on the cores up to
their Ci(HI) execution time. The aim of the first allocation of
high-critical tasks to clusters is to ensure the schedulability of
high-critical tasks after mode change. After assigning all HI
tasks to clusters, LO tasks of the system are partitioned among
clusters through the same approach. The LO task with high
utilization is assigned first to a cluster with high remaining
capacity and so on. The allocation of MC tasks is discussed
in the following example 2.
Example 2: Consider the task set shown in Table 1.
The DCDU approach ordered the tasks as τ2, τ3, τ5, τ6,

τ1, τ4, τ7 and τ8. The low mode utilization of the given task
set is ULM

= 2.72 and the high mode utilization is UHM
=

2.29. As we know that the number of cores must be greater
than the total utilizations of tasks i.e., ULM and UHM for the
low mode and high mode respectively. The cores are divided
into two clusters, each having two cores. Initially, the high
mode utilization of cluster C1 and C2 i.e., UCHM

1 and UCHM
2

respectively for high tasks are zero. Therefore, the task τ2 is
assigned to cluster C1 and task τ3 is assigned to cluster C2.
The high mode utilization of cluster C1 becomes greater than

C2 i.e., (UCHM
1 = UHI

2 = 0.75) > (UCHM
2 = UHI

3 = 0.58),
so the next HI taskwith largest utilization i.e., τ5 is assigned to
cluster C2 and the utilization of cluster C2 becomesUCHM

2 =

UHI
3 + UHI

5 = 1.08 in high mode. The allocation of task
τ5 to cluster C2 minimizes the remaining unused space of
cluster C2 than C1, so the task τ6 is assigned to cluster C1
and the utilization of cluster C1 becomes UCHM

1 = UHI
2 +

UHI
6 = 1.21 in high mode. The HI tasks of the system are

distributed among both clusters C1 and C2 with DCDU-
WF. Now, the LO tasks are allocated to clusters by using
the same technique. For partitioning of LO tasks among
clusters, cluster C2 has the maximum unused space than
C1 in low mode i.e., (UCLM

2 = ULO
3 + ULO

5 = 0.75) <

(UCLM
1 = ULO

2 + ULO
6 = 0.92), therefore task τ1 is assigned

to C2, because τ1 have largest utilization among all low
critical tasks. After assigning τ1 to cluster C2, the remaining
unused space of C1 becomes larger than C2 i.e., UCLM

2 =

ULO
3 + ULO

5 + ULO
1 = 1.25. Therefore, the next low critical

task τ4 is assigned to cluster C1. The utilization of cluster C1
becomes UCLM

1 = ULO
2 + ULO

6 + ULO
4 = 1.16, and as the

utilization of C1 is still smaller than C2, so task τ8 is assigned
to cluster C1. Now, the remaining unused space of cluster
C2 becomes larger than cluster C1 i.e., UCLM

1 = ULO
2 +

ULO
6 + ULO

4 + ULO
8 = 1.34, so, the last task τ7 is assigned to

cluster C2. The low mode utilization of cluster C2 becomes,
UCLM

2 = ULO
3 + ULO

1 + ULO
5 + ULO

7 = 1.38. The tasks that
are assigned to both clusters C1 and C2 are shown in figure 12.

FIGURE 12. Allocation of tasks to clusters C1 and C2.

VI. CLUSTER-BASED SCHEDULING OF MC SYSTEM
For low and high modes, the MC-Bfair algorithm is applied
for globally scheduling of tasks on cores of cluster C1 and
cluster C2. The MC-BFair algorithm, first computes the uti-
lizations of all low and high criticality tasks in low criticality

142348 VOLUME 11, 2023



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

mode (ULM). For high criticality mode, it determines the
utilizations of only high criticality tasks (UHM) in the mixed
criticality system. For initial schedulability test, if the value
of ULM or UHM is larger than the total number of cores in the
system, then the mixed criticality task set is not schedulable.
A schedulability test is applied for each cluster capacity
(number of its cores) in high mode. If the utilization of high
criticality tasks in a cluster is less than the cluster capac-
ity, the task set is schedulable using MC-BFair scheduling
algorithm. Otherwise the task set is not schedulable. Another
schedulability test is applied for each cluster capacity in
low mode. If the utilization of both low and high criticality
tasks in a cluster is less than the cluster capacity, the task
set is schedulable using MC-BFair scheduling algorithm.
Otherwise the task set is not schedulable. The MC-BFair
scheduling algorithm is shown in figure 13.

FIGURE 13. Algorithm for mixed-criticality boundary fair scheduling.

The schedulability test is applied during mode change.
If the utilization of high criticality task for mode change
is less than the cluster capacity, the mixed criticality task
set is schedulable using MC-BFair scheduling algorithm.
Otherwise, the mixed-criticality task set is schedulable on
multicore platform using cluster-based approach.

A. TOTAL EXECUTION TIME CALCULATION IN LOW MODE
For low mode, the low mode utilizationULO

i = cLOi /pi is used
in each equation for finding the total execution time of tasks
in each period boundary. As explained earlier, the remaining
work (RWK+1

i ), mandatory work (mK+1
i ), and pending work

(PWK+1
i ) are calculated for each MC task to calculate the

total execution time units (TEK+1
i ) of each task. The calcu-

lated total execution time TEK+1
i of tasks is allocated to cores

by the DCDU-WF approach for scheduling on cores at each
period boundary. The tasks that are allocated to cluster C1
are shown in table 5 and the tasks of cluster C2 is given in
table 6. The overhead time of context switch and migration
of each task is calculated as, CS.AXii = CXi

i
∗5/100 and

M .AXii = CXi
i

∗10/100 respectively. The values of RWK+1
i ,

mK+1
i , PWK+1

i and TEK+1
i of each task in low mode at each

period boundary is shown in table 7 and table 8 for clusters
C1 and C2 respectively. The schedule generated from table 7
and table 8 is shown in figure 14 and figure 15.

TABLE 5. Cluster C1 Task.

TABLE 6. Cluster C2 tasks.

The time of overhead is added to the execution time of each
task. The time of migration overhead is added when the task
migrates from one core to another during run-time schedul-
ing and the time of context switch is added when context
switch occurs. In low mode, the overhead time of migration
and context switch is calculated MALOi = cLOi

∗10/100 and
CSALOi = cLOi

∗5/100 respectively. The execution time with
overhead time units of each task at each period boundary

VOLUME 11, 2023 142349



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

TABLE 7. Calculation of execution time for tasks of cluster C1 in low
mode.

TABLE 8. Calculation of execution time for tasks of cluster C2 in low
mode.

is given in table 9 and table 10 for cluster C1 and cluster
C2 respectively. The generated schedule form table 9 and
table 10 with overhead amount for cluster C1 and cluster C2

FIGURE 14. LO mode scheduling of cluster C1.

FIGURE 15. LO mode scheduling of cluster C2.

TABLE 9. The LO mode execution time with overhead time for tasks of
cluster C1.

is shown in figure 16 and figure 17, respectively. The novel
MC-Bfair approach scheduled the task set given in table 1
successfully for low mode with overhead time in both cluster
C1 and cluster C2. The MC-BFair scheduling algorithm for
low mode is shown in figure 18.

B. TOTAL EXECUTION TIME CALCULATION IN HIGH MODE
For high mode, the high mode utilization UHI

i = cHIi / pi of
high critical tasks is used in each equation for calculating the

142350 VOLUME 11, 2023



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

TABLE 10. The LO mode execution time with overhead time for tasks of
cluster C2.

FIGURE 16. Cluster C1 scheduling with overhead for low mode.

FIGURE 17. Cluster C2 scheduling with overhead for low mode.

total execution time of each task in each period boundary.
As explained earlier, the remaining work (RWK+1

i ), manda-
tory work (mK+1

i ), and pending work (PWK+1
i ) are calculated

for each task to calculate the total execution time units
(TEK+1

i ) of each task. When TEK+1
i is calculated for each

high task, the tasks are allocated to cores by the DCDU-WF
approach for scheduling at each period boundary. The tasks
that are assigned to cluster C1 are shown in table 5 and the task
of cluster C2 is given in table 6. The overhead time of context
switch and migration of each task is calculated by CS.AXii =

CXi
i

∗5/100 and M .AXii = CXi
i

∗10/100 respectively. The val-
ues of RWK+1

i , mK+1
i , PWK+1

i and TEK+1
i of each task in

high mode at each period boundary is shown in table 11
and table 12 for cluster C1 and cluster C2 respectively. The

FIGURE 18. Algorithm for tasks scheduling in low mode.

FIGURE 19. Cluster C1 scheduling in high mode.

generated schedule form table 11 and table 12 cluster C1 and
cluster C2 is shown in figure 19 and figure 20, respectively.
For high mode, the time of overhead is added to the task

execution time. The time of migration overhead is added
at each period boundary when the task migrates from one
core to another during run-time scheduling and the time of
context switch is added when context switch occurs. In high
mode, the overhead time of migration and context switch is
calculated as MAHIi = cHIi

∗10/100 and CSAHIi = cHIi
∗5/100

respectively. The overhead time added to the execution time

VOLUME 11, 2023 142351



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

TABLE 11. Calculation of execution time for tasks of cluster C1 in HI
mode.

FIGURE 20. Cluster C2 scheduling in high mode.

of tasks is given in table 13 table 14 for cluster C1 and cluster
C2 respectively. The schedule generated from table 13 and
table 14 is shown in figure 21 and figure 22. The novel
MC-Bfair approach scheduled the task set given in table 1
successfully for high mode with overhead time in both cluster
C1 and cluster C2. The MC-BFair scheduling algorithm for
high mode is shown in figure 23.

C. TOTAL EXECUTION TIME CALCULATION IN MODE
CHANGE
For the mode switch from low critical to high critical, the task
set given in table 1 is schedulable for all mode switch times st
of high critical tasks. Themode switch can occur in cluster C1

TABLE 12. Calculation of execution time for tasks of cluster C2 in HI
mode.

TABLE 13. The HI mode execution time with overhead time for tasks of
cluster C1.

TABLE 14. The HI mode execution time with overhead time for tasks of
cluster C2.

by HI task t2 on 2, 6, 10, 14, 18 and 22 time units while task
t6 can cause mode switch on 21 time unit. Similarly the mode
switch can occur in cluster C2 by HI task t3 on 9 and 22 time

142352 VOLUME 11, 2023



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

FIGURE 21. Cluster C1 scheduling with overhead for high mode.

FIGURE 22. Cluster C2 scheduling with overhead for high mode.

units, while t5 can cause mode switch on 21 time unit. These
switch times are the possible mode switch time units of high
critical tasks of cluster C1 and cluster C2. If a high critical task
causesmode switch at any time ofmode switch time of cluster
C1 and cluster C2, the values of remaining work RWK+1

i ,
mandatory time unit smK+1

i , pending work PWK+1
i and total

execution time of high tasks is also calculated. For calculating
RWK+1

i ,mK+1
i andPWK+1

i , the highmode utilizationUHI
i =

cHIi /pi is used for a HI task at the time of mode change and
after mode change. For all tasks before mode switch, the
low mode utilization ULO

i = cLOi /pi is used for calculating
RWK+1

i , mK+1
i and PWK+1

i in each period boundary. If the
deadline of a high critical task exists in a period boundary
aftermode change, the total execution time TEK+1

i ofHI tasks
is calculated as follows,

TEK+1
i =

⌈
mK+1
i + (PWK+1

i − RWK+1
i )

⌉
+ (cHIi −

∑
bko→bkn

TELOi )

where, bko is that period boundary in which these tasks start
their execution and bkn is the period boundary before the
mode switch. While,

∑
bko→bkn TE

LO
i is the sum of the total

execution time of high critical tasks in the lowmode in period

FIGURE 23. Algorithm for tasks scheduling in high mode.

FIGURE 24. Cluster C1 scheduling for mode change.

boundaries bko to bkn. The above equation is also used for
calculating total execution time TEK+1

i of an Hl task in period
boundaries after the mode switch which contain the deadline
of a high critical tasks. When a task τ2 causes a mode change
at time 14, the tasks τ4 and τ8 are discarded and only τ2 and
τ6 are scheduled in high mode. The execution time of tasks
for cluster C1 is calculated in table 15 while the schedule
generated from table 15 of cluster C1 for mode switch time at
time unit 14 is shown in figure 24.

The time of migration overhead is added when the task
migrates among cores during scheduling and the time of
context switch is added when context occurs. The overhead
time added to the execution time of each task is given in
table 16 for cluster C1. The generated schedule from table 16
is for the cluster C1 duringmode change is shown in figure 25.

VOLUME 11, 2023 142353



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

TABLE 15. Calculation of execution time for tasks of cluster C1 for mode
change.

TABLE 16. The mode change execution time with overhead time units for
tasks of cluster C1.

FIGURE 25. Cluster C1 scheduling with overhead for mode change.

Figure 22 shows the mode switch occurred at time
unit = 9 in cluster C2 by a HI task τ5. After mode change,
tasks τ1 and τ7 are discarded from further execution and only
HI tasks τ3 and τ5 are scheduled in high mode. The total
execution time of tasks is calculated in table 17. The schedule
generated from table 17 for the mode switch is shown in
figure 26.

TABLE 17. Calculation of execution time for tasks of cluster C2 for mode
change.

FIGURE 26. Cluster C2 scheduling for mode change.

The time of overhead added to the tasks execution time task
for mode change in cluster C2 is given in table 18. The time
of overhead of migration and context switches of a task τ i in
highmode is calculated asMAHIi = cHIi

∗10/100 andCSAHIi =

cHIi
∗5/100 for migration and context switch respectively and

is shown in table 18. For mode change, the schedule obtained
from table 18 is shown in figure 27. For both cluster C1 and
cluster C2, the tasks given in table 1 is scheduled by the
novel MC-Bfair scheduling algorithm during mode change.
The The MC-BFair scheduling algorithm for mode change is
shown in figure 28.

VII. EXPERIMENTAL EVALUATION
The efficiency of the cluster-based scheduling technique
is shown by experimental evaluation. The experiments are
evaluated on mixed-criticality task sets of MC systems.

142354 VOLUME 11, 2023



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

TABLE 18. The mode change execution time with overhead time units for
tasks of cluster C2.

FIGURE 27. Cluster C2 scheduling with overhead for mode change.

We compared the proposed approach with other multicore
scheduling approaches i.e., CB-FP [18], MC-EKG-VD-1 [9],
partitioned and global approaches to show the effectiveness of
our approach. The same time of context switch and migration
overhead of MC-Bfair approach is considered for CB-FP
and MC-EKG-VD-1 approach. The results obtained from
experiments show the better performance of cluster-based
technique as compared to CB-FP, MC-EKG-VD-1, parti-
tioned and global approaches.

A. GENERATION OF MC TASK SETS
For experimental evaluation, the MC task sets are randomly
generated, which are controlled by four parameters i.e., PHI ,
RHI , Ci(LO)max and Pmax . Where, PHI represents the proba-
bility of HI tasks in a task set, the parameter RHI is used to
represent the ratio between LO and HIWCET of high critical
tasks in a task set,Ci(LO)max denotes themaximum lowmode
WCET ofMC tasks and Pmax represents the maximum period
of MC tasks. A task set is created through the following
parameters,.

• Using PHI , if Xi = HI, the task is a HI task otherwise
Xi = LO for LO critical task

• Ci(LO) is generated within range [1, Ci(LO)max], where
Ci(LO)max < Pmax .

• Ci(HI) of a task is generated by Ci(HI) = Ci(LO). RHI .
• The task’s period Pi is generated within [1, Pmax] range.

FIGURE 28. Algorithm for tasks scheduling in mode change.

The MC task set is randomly generated by means of target
utilization U = ULM . The generation of an MC task set with
exact target utilization is difficult, so the task set is generated
between Umin and Umax . Whereas Umin

= U – 0.005, and
Umax

= U + 0.005. The generated task set is discarded if the
utilization in low or high mode is bigger than the number of
cores of the MC real-time system.

B. RESULT ANALYSIS
The experiments are carried out for MC task sets using dif-
ferent parameters i.e., RHI ∈ {1, 2, 3, 4, 5}, PHI ∈ {0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, Pmax = {60} and n ∈ {9,
10, 12, 15, 18}. Where, RHI = Ci(HI)/Ci(LO), is used for the
ratio between HI and LOWCET. The PHI Shows percentage
of HI tasks in a task set and n represents the number of tasks
in a task set. For result analysis, at least 300 MC task sets
are used at each point of figure 29, figure 30, figure 31,
and figure 32. The results obtained from the cluster-based
technique are compared with CB-FP, MC-EKG-VD-1, global
and partitioned techniques.

Under target utilization U = {0.25, 0.375, 0.5, 0.55,
0.6, 0.65, 0.70, 0.75}, figure 29 displays the percentage of
schedulable MC task sets for four cores using the cluster-
based, CB-FP, partitioned and global approaches. As shown
in figure 29, the cluster-based technique scheduled 100%

VOLUME 11, 2023 142355



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

FIGURE 29. Utilization vs schedulability for m = 4 and n = 10.

FIGURE 30. High criticality probability vs weighted schedulability for
m = 4 and n = 10.

task sets up to U = 0.55, while the partitioned, and CB-FP
techniques scheduled 100% of generated task sets up to
U = 0.45 and the global technique scheduled 100% of
the generated task sets up to U = 0.4. The percentage of
schedulable task sets are decreased onwards by increasing the
target utilization, but still, the performance of our proposed
cluster-based technique is higher than the other techniques up
to U = 0.79. At target utilization U = 0.50, the cluster-based
andMC-EKG-VD-1 techniques schedule 100%MC task sets
while CB-FP technique schedule 83.3%, partitioned tech-
nique schedule 50% and global technique schedule 16.7%
task sets respectively. Similarly, for U = 0.6 the proposed
technique schedule 66.7% task sets while MC-EKG-VD-1,
CB-FP, partitioned and global techniques schedule 50%,
33.3%, 16.7% and 0% task sets respectively. Figure 29 also

FIGURE 31. LO and HI WCET ratios vs weighted schedulability for
m = 4 and n = 10.

FIGURE 32. Task set size vs weighted schedulability for m = 4.

shows, if the task sets utilization is increased, the schedula-
bility of task sets has shown a decrease for all techniques.

In a task set, the impact of the probability of high critical
tasks on schedulability is shown in figure 30. The prob-
ability of high critical tasks for target utilizations gives
a 3-diamesional plot. To reduce 3-diamensional plots to
2-diamensionals plots, we used weighted schedulability mea-
sures [33]. The weighted acceptance ratio under the given
target utilization is obtained as

∑
Uiϵu Ui. A(Ui)/

∑
UiϵuUi,

where A(Ui) represents the acceptance ratio for target

142356 VOLUME 11, 2023



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

utilization Ui. For probability, at least 15 A(Ui) are com-
puted for different utilizations Ui. Figure 30 shows that if
the percentage of HI critical tasks increases, the percentage
of schedulable task sets decreases due to an increase in the
utilization of MC workload. As stated previously, the pro-
posed cluster-based technique performs better than the other
techniques using the parameter PHI .
The impact of the ratio between Ci(HI) and Ci(LO) exe-

cution times on schedulability is shown in figure 31. For
parameter RHI , at least 15 acceptance ratios are computed
for different utilizations Ui. Figure 31 shows that if the ratio
between Ci(HI) and Ci(LO) increases, the task set schedu-
lability decreases, because if the RHI between Ci(HI) and
Ci(LO) increases, it multiplies the utilization of a given task
set, which decreases the task sets schedulability. The pro-
posed technique performs better than MC-EKG-VD-1 [9],
CB-FP [18], global and partitioned techniques in terms of
high utilization of task sets due to increasing value of param-
eter RHI .

The impact of task set size on schedulability is shown
in figure 32. For each variable parameter n, at least 15
A(Ui) with different target utilization are computed. For n
= 6, 9, 12 and 15, the proposed cluster-based technique has
higher weighted schedulability as compared to the other three
techniques i.e., CB-FP, partitioned and global techniques.
The schedulability of our cluster-based approach is 84% for
n = 9, while the MC-EKG-VD-1, CB-FP, partitioned tech-
nique and global technique have shown 80%, 78%, 75%
and 67% weighted schedulability respectively. As compared
to CB-FP, global and partitioned scheduling techniques, the
weighted schedulability of our cluster-based technique is
higher for n = 6, 9, 12, and 15.

VIII. CONCLUSION AND FUTURE WORK
In this research work, a cluster-based technique is used for
scheduling the task set of multicore MC systems. In this
study, the overhead time of task migration and context
switches is reduced. The cores are divided into clusters and
MC tasks are distributed in these clusters by means of the
DCDU-WF heuristic approach [8]. A novel mixed-criticality
cluster-based boundary fair (MC-Bfair) scheduling algorithm
is used for the scheduling of tasks on cores within clusters.
The boundary fair algorithm minimizes the migrations and
context switches. The system initially executes the tasks in
low mode. The MC tasks are executed up to Ci(LO) time
units, but when a HI task is executed upto Ci(LO) execu-
tion time in any cluster and still needs further execution
i.e Ci(HI)−Ci(LO), the system is changed to high mode.
In high mode, all LO tasks are dropped and HI tasks are only
executed up to Ci(HI) through MC-Bfair algorithm in each
cluster. This approach has reduced the overhead caused by
context switches and migrations of tasks. For each migration
of a task or context switch, the overhead of migration and
context switch is added to the execution time of the MC
task. In low critical mode, the low mode context switch and
migration overhead time are added to the task’s execution

time while in high critical mode, the high mode context
switch and migration overhead time is added to the execution
time of the task for each context switch and migration respec-
tively. The results obtained from experiments show the better
performance of the cluster-based technique as compared
to the MC-EKG-VD-1, CB-FP [18], partitioned and global
techniques.

As a future work, the cluster-based scheduling of multicore
MC systems with overhead reduction can be extended to
a system having more criticality levels. It is also needed
to examine fault tolerance in cluster-based technique. As a
future work we will execute MC tasks on fraction rate of pro-
cessors like MC-Fluid [20] to check the performance of our
cluster-based scheduling approach as compared to partitioned
and global scheduling approaches.

APPENDIX
LIST OF EQUATIONS

Equation Definition
ULO
i = Ci(LO)/Pi Utilization of task in low

mode
UHI
i = Ci(HI)/Pi Utilization of task in high

mode
ULM

=
∑

τ i∈W ULO
i Summation of utilizations of

all tasks in low mode
UHM

=
∑

τ i∈W
UHI
i Summation of utilizations of

all high tasks in high mode
UCLM

k Utilization of cluster in low
mode

UCHM
k Utilization of cluster in high

mode
RWK+1

i The remaining work of task
τ i at boundary bk as in (Zhu
et al., 2011).

mK+1
i = max{0, ⌊RWK

i
+(bk+1− bk ) · Ui⌋}

The mandatory time units
that have to be assigned to
task τ i to keep its remaining
work within one time unit

PWK+1
i =RWK

i + (bk+1−

bk ) · Ui − mK+1
i

The pending work is the cor-
responding decimal part of
the summation of remaining
work at bk and the work to be
done

TEK+1
i = mK+1

i +

(PWK+1
i −RWK+1

i ).
The total execution time of a
task in interval [bk , bk+1)

CS.AXii = CXi
i ∗5/100 Context switch overhead

amount at criticality level Xi
M .AXii = CXi

i ∗10/100. Migration overhead amount
at criticality level Xi

TEK+1
i =

⌈
mK+1
i +

(PWK+1
i − RWK+1

i )
⌉

+

(cHIi −
∑

bko→bkn TE
LO
i )

Total execution time units
of tasks at period bound-
ary in which mode switch is
occurred from low to high
mode.

VOLUME 11, 2023 142357



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

LIST OF ACRONYMS
Acronym Explanation
MC Mixed Criticality
MCS Mixed Criticality System
DCDU Decreasing Criticality Decreasing Utilization
MC-Bfair Mixed-Criticality Clustered-based Boundary

Fair
CA Certification Authorities
WCET Worst-Case Execution Time
EDF Earliest Deadline First
RM Rate Monotonic
MPVD Mixed-Criticality Partitioning With Virtual

Deadline
EDF-VD EDF With Virtual Deadline
FpEDF Fixed-Priority EDF
DP-fair Deadline Partitioning Fair
Bfair Boundary Fair
CB-FP Cluster-Based Fixed Priority

REFERENCES
[1] An Avionics Standard for Safe, Partitioned Systems—Wind River, docu-

ment ARINC653, IEEE Seminar, 2008.
[2] M. Staron, ‘‘AUTOSAR (automotive open system architecture),’’ in

Automotive Software Architectures. Cham, Switzerland: Springer, 2021,
pp. 97–136.

[3] S. Baruah and S. Vestal, ‘‘Schedulability analysis of sporadic tasks with
multiple criticality specifications,’’ in Proc. Euromicro Conf. Real-Time
Syst., Jul. 2008, pp. 147–155.

[4] S. Ramanathan and A. Easwaran, ‘‘Utilization difference based partitioned
scheduling of mixed-criticality systems,’’ in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Mar. 2017, pp. 238–243.

[5] M. Naghibzadeh, P. Neamatollahi, R. Ramezani, A. Rezaeian, and
T. Dehghani, ‘‘Efficient semi-partitioning and rate-monotonic scheduling
hard real-time tasks on multi-core systems,’’ in Proc. 8th IEEE Int. Symp.
Ind. Embedded Syst. (SIES), Jun. 2013, pp. 85–88.

[6] H. Li and S. Baruah, ‘‘Outstanding paper award: Global mixed-criticality
scheduling on multiprocessors,’’ in Proc. 24th Euromicro Conf. Real-Time
Syst., Jul. 2012, pp. 166–175.

[7] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger, ‘‘A hybrid real-
time scheduling approach for large-scale multicore platforms,’’ in Proc.
19th Euromicro Conf. Real-Time Syst. (ECRTS), Jul. 2007, pp. 247–258.

[8] A. Ali and K. H. Kim, ‘‘Cluster-basedmulticore real-timemixed-criticality
scheduling,’’ J. Syst. Archit., vol. 79, pp. 45–58, Sep. 2017.

[9] C. Yang, H. Wang, J. Zhang, and L. Zuo, ‘‘Semi-partitioned scheduling of
mixed-criticality system on multiprocessor platforms,’’ J. Supercomput.,
vol. 78, no. 5, pp. 6386–6410, Apr. 2022.

[10] S. Vestal, ‘‘Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance,’’ in Proc. 28th IEEE Int. Real-Time
Syst. Symp. (RTSS), Dec. 2007, pp. 239–243.

[11] O. R. Kelly, H. Aydin, and B. Zhao, ‘‘On partitioned scheduling of fixed-
priority mixed-criticality task sets,’’ in Proc. IEEE 10th Int. Conf. Trust,
Secur. Privacy Comput. Commun., Nov. 2011, pp. 1051–1059.

[12] P. Ekberg and W. Yi, ‘‘Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,’’ Real-Time Syst., vol. 50, no. 1,
pp. 48–86, Jan. 2014.

[13] C. Gu, N. Guan, Q. Deng, and W. Yi, ‘‘Partitioned mixed-criticality
scheduling onmultiprocessor platforms,’’ inProc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Mar. 2014, pp. 1–6.

[14] K. Nagalakshmi and N. Gomathi, ‘‘Criticality-cognizant clustering-based
task scheduling on multicore processors in the avionics domain,’’ Int.
J. Comput. Intell. Syst., vol. 11, no. 1, pp. 219–237, 2018.

[15] R. M. Pathan, ‘‘Schedulability analysis of mixed-criticality systems
on multiprocessors,’’ in Proc. 24th Euromicro Conf. Real-Time Syst.,
Jul. 2012, pp. 309–320.

[16] B. Andersson, S. Baruah, and J. Jonsson, ‘‘Static-priority scheduling on
multiprocessors,’’ in Proc. 22nd IEEE Real-Time Syst. Symp. (RTSS),
Jul. 2001, pp. 193–202.

[17] S. Baruah, ‘‘Techniques for multiprocessor global schedulability analy-
sis,’’ in Proc. 28th IEEE Int. Real-Time Syst. Symp. (RTSS), Dec. 2007,
pp. 119–128.

[18] S. K. Baruah, B. Vincenzo, D. Gianlorenzo, M. S. Alberto, S. van der Ster,
and S. Leen, ‘‘Mixed-criticality scheduling of sporadic task systems,’’
in Proc. Eur. Symp. Algorithms. Berlin, Germany: Springer, 2011,
pp. 555–566.

[19] S. K. Baruah, ‘‘Optimal utilization bounds for the fixed-priority schedul-
ing of periodic task systems on identical multiprocessors,’’ IEEE Trans.
Comput., vol. 53, no. 6, pp. 781–784, Jun. 2004.

[20] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee,
‘‘MC-Fluid: Fluid model-based mixed-criticality scheduling on multipro-
cessors,’’ in Proc. IEEE Real-Time Syst. Symp., Dec. 2014, pp. 41–52.

[21] Y. Sharma and S. Moulik, ‘‘RT-SEAT: A hybrid approach based real-time
scheduler for energy and temperature efficient heterogeneous multicore
platforms,’’ Results Eng., vol. 16, Dec. 2022, Art. no. 100708.

[22] S. Moulik, Z. Das, R. Devaraj, and S. Chakraborty, ‘‘SEAMERS: A semi-
partitioned energy-aware scheduler for heterogeneous multicore real-time
systems,’’ J. Syst. Archit., vol. 114, Mar. 2021, Art. no. 101953.

[23] Y. Sharma and S. Moulik, ‘‘CETAS: A cluster based energy and temper-
ature efficient real-time scheduler for heterogeneous platforms,’’ in Proc.
37th ACM/SIGAPP Symp. Appl. Comput., Apr. 2022, pp. 501–509.

[24] S. Moulik, Z. Das, and G. Saikia, ‘‘CEAT: A cluster based energy aware
scheduler for real-time heterogeneous systems,’’ in Proc. IEEE Int. Conf.
Syst., Man, Cybern. (SMC), Oct. 2020, pp. 1815–1821.

[25] Y. Sharma and S. Moulik, ‘‘FATS-2TC: A fault tolerant real-time sched-
uler for energy and temperature aware heterogeneous platforms with
two types of cores,’’ Microprocessors Microsystems, vol. 96, Feb. 2023,
Art. no. 104744.

[26] S. Moulik, ‘‘RESET: A real-time scheduler for energy and temperature
aware heterogeneous multi-core systems,’’ Integration, vol. 77, pp. 59–69,
Mar. 2021.

[27] Y. Sharma, S. Chakraborty, and S. Moulik, ‘‘ETA-HP: An energy and
temperature-aware real-time scheduler for heterogeneous platforms,’’
J. Supercomput., vol. 78, no. 8, pp. 1–25, May 2022.

[28] N. C. Audsley, ‘‘Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times,’’ Dept. Comput. Sci., Univ. York,
Heslington, U.K., Tech. Rep. YCS-164, 1991.

[29] A. Burns and R. I. Davis,Mixed Criticality Systems—A Review. NewYork,
NY, USA, 2022.

[30] W. Zhang, S. Teng, Z. Zhu, X. Fu, and H. Zhu, ‘‘An improved least-laxity-
first scheduling algorithm of variable time slice for periodic tasks,’’ inProc.
6th IEEE Int. Conf. Cognit. Informat., Aug. 2007, pp. 548–553.

[31] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, ‘‘DP-FAIR:A simple
model for understanding optimal multiprocessor scheduling,’’ in Proc.
22nd Euromicro Conf. Real-Time Syst., Jul. 2010, pp. 3–13.

[32] D. Zhu, X. Qi, D. Mossé, and R. Melhem, ‘‘An optimal boundary fair
scheduling algorithm for multiprocessor real-time systems,’’ J. Parallel
Distrib. Comput., vol. 71, no. 10, pp. 1411–1425, Oct. 2011.

[33] A. Bastoni, B. B. Brandenburg, and J. Anderson, ‘‘Cache-related pre-
emption and migration delays: Empirical approximation and impact on
schedulability,’’ in Proc. OSPERT, no. 10, 2010, pp. 33–44.

AMJAD ALI received the B.Sc. and M.S. degrees
in computer science from the University of
Peshawar, Pakistan, in 1997 and 2010, respec-
tively, the M.Sc. degree in computer science
from Gomal University, Pakistan, and the Ph.D.
degree from the Real-Time Systems Laboratory,
Gyeongsang National University, South Korea,
in 2016. He was a Lecturer with the University of
Peshawar, from 2001 to 2011. Since 2012, he has
been an Assistant Professor with the Department

of Computer and Software Technology, University of Swat. His research
interests include real-time systems, power-aware computing, and fault-
tolerance computing.

142358 VOLUME 11, 2023



A. Ali et al.: Overhead Based Cluster Scheduling of MC Systems on Multicore Platform

ASAD MASOOD KHATTAK (Member, IEEE)
received the M.S. degree in information tech-
nology from the National University of Sciences
and Technology (NUST), Islamabad, Pakistan,
in 2008, and the Ph.D. degree in computer engi-
neering from Kyung Hee University, South Korea,
in 2012. He was a Postdoctoral Fellow and an
Assistant Professor with the Department of Com-
puter Engineering, Kyung Hee University. He is
currently an Associate Professor with the College

of Technological Innovation, Zayed University, Abu Dhabi, United Arab
Emirates, that he joined inAugust 2014. He is leading three research projects,
collaborating in four research projects, and has successfully completed five
research projects in the fields of data curation, context-aware computing,
the IoT, and secure computing. He has authored/coauthored more than
120 journal and conference papers in highly reputed venues. He has delivered
keynote speeches, invited talks, guest lectures, and short courses in many
universities. He serving as a reviewer, a program committee member, and
the guest editor of many conferences and journals. He and his team have
secured several national and international awards in different competitions.

SHAHID IQBAL received the B.S. and M.S.
degrees in computer science from the University
of Swat, Swat, Pakistan, in 2016 and 2022, respec-
tively. His research interests include real-time sys-
tems, power-aware computing, and fault-tolerance
computing.

OMAR ALFANDI (Member, IEEE) received the
M.Sc. degree in telecommunication engineering
from the Technical University of Kaiserslautern,
Germany, in 2005, and the Ph.D. degree in
computer engineering from the Georg-August
University of Göttingen, Germany, in 2009.
From 2009 to 2011, he enjoyed a Postdoctoral
Fellowship with the Telematics Research Group
and he founded the Research and Education Sensor
Laboratory, where he is currently a Laboratory

Advisor. Before that, he carried his Ph.D. research as part of the Industry,
Academia, and Research Centers collaboration with the European Union
(EU) Project. In 2015, he was appointed as the Assistant Dean of the
Abu Dhabi Campus. He was the Package Leader of EU DAIDALOS II,
6th Framework Project. He is an Associate Professor with the College of
Technological Innovation, Zayed University. He is the Co-Founder and the
Co-Director of the Sensors andMobile Applications Research and Education
(SMART) Laboratory, CTI. He published numerous articles on Authentica-
tion Framework for 4G Communication Systems, Future Internet, Trust and
Reputation Systems in mobile ad hoc, and Sensor Networks. His current
research interests include the Internet of Things (IoT), security in next
generation networks, smart technologies, security engineering, and mobile
and wireless communications.

BASHIR HAYAT received the M.S. degree in
computer science from the Shaheed Zulfikar
Ali Bhutto Institute of Science and Technology
(SZABIST), Islamabad, Pakistan, in 2010, and
the Ph.D. degree in informatics from Gyeongsang
National University, Jinju-si, South Korea,
in 2020. He is currently a Faculty Member with
the Institute of Management Sciences, Peshawar,
Pakistan, that he joined in 2011.

MUHAMMAD HAMEED SIDDIQI received the
Bachelor of Computer Science degree (Hons.)
from the Islamia College Peshawar (Chartered
University), Peshawar, Khyber Pakhtunkhwa,
Pakistan, in 2007, and the master’s and Ph.D.
degrees from the Ubiquitous Computing (UC)
Laboratory, Department of Computer Engi-
neering, Kyung Hee University, Suwon-si,
South Korea, in 2012 and 2016, respectively.
He was a Graduate Assistant with Universiti

Teknologi PETRONAS, Malaysia, from 2008 to 2009. He was also a
Postdoctoral Research Scientist with the Department of Computer Science
and Engineering, Sungkyunkwan University, Suwon-si, fromMarch 2016 to
August 2016. He was an Assistant Professor with the Department Computer
Science, Jouf University, from September 2016 to October 2020. He has
been an Associate Professor with the Department of Computer Science,
Jouf University, Sakaka, Saudi Arabia, since November 2020. He published
more than 85 research articles in highly reputable international journals
and conferences. His research interests include image processing, pattern
recognition, machine intelligence, activity recognition, and facial expression
recognition. He is also a reviewer of different journals and conferences.

ADIL KHAN (Member, IEEE) is currently a
seasoned Professor and a Prolific Researcher in
machine learning. With a robust background in
machine learning, deep learning, and representa-
tion learning, he is passionately dedicated to both
pedagogy and innovative research in the realm
of artificial intelligence. His research journey
started in South Korea, in 2006, where he con-
centrated on human activity recognition through
wearable sensors. His groundbreaking discoveries

were published in reputable journals and employed by leading technology
firms for their healthcare applications. Over his career, he has under-
taken more than ten research projects, obtaining substantial funding, and
has published in excess of 90 research articles. He has supervised more
than two dozen Ph.D. and M.S. students to completion. His expertise and
experience are not limited to a single geographic location. His academic
career has spanned across various prestigious universities in South Korea,
Denmark, Russia, United Arab Emirates, Switzerland, and U.K. These
diverse collaborations and experiences have enriched his knowledge and
cultural understanding, augmenting his holistic approach toward research
and education.

VOLUME 11, 2023 142359


