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ABSTRACT This study illustrates a dimensionality reduction effect of radial symmetry in nonparametric
density estimation. To deal with the class of radially symmetric functions, we adopt a generalized translation
operation that preserves the symmetry structure. Radial kernel density estimators based on directly or
indirectly observed random samples are proposed. For the latter case, we analyze deconvolution problems
with four distinct scenarios depending on the symmetry assumptions on the signal and noise. Minimax
upper and lower bounds are established for each scheme to investigate the role of the radial symmetry
in determining optimal rates of convergence. The results confirm that the radial symmetry reduces the
dimension of the estimation problems so that the optimal rate of convergence coincides with the univariate
convergence rate except at the origin where a singularity occurs. The results also imply that the proposed
estimators are rate optimal in the minimax sense for the Sobolev class of densities.

INDEX TERMS Deconvolution, Fourier analysis, Hankel transform, minimax risk, radial symmetry.

I. INTRODUCTION
Radially symmetric density functions form an important
class of probability densities from both theoretical and
practical viewpoints. They constitute a subclass of elliptically
contoured distributions, which has received special attention
in multivariate analysis; see [1] for a detailed account.
Radial distributions frequently arise in practice. In physical
chemistry, atomic and molecular orbitals are often modeled
using spherically symmetric electron density functions; for
example, see [2]. Radial distributions also regularly appear
in geospatial analysis. Moreover, there is a good reason
to believe that data follow a radial distribution in some
applications, such as radar sea clutter data in [3] and animal
motion data in [4].

From a theoretical perspective, symmetry plays a cru-
cial role in the statistical analysis on symmetric spaces.
Reference [5] considered the deconvolution problem on
the Poincaré half plane, and [6] examined Wishart mixture
density estimation on the space of symmetric positive
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matrices. The SO(2)-invariance and O(m)-invariance are
deeply involved in their analysis, where SO(2) and O(m)
denote the special orthogonal group in dimension 2 and
orthogonal group in dimension m, respectively. Since these
invariances correspond to the rotational invariance in Rd ,
understanding the effect of the symmetry in density esti-
mation on Rd can strengthen our understanding of such
estimation and deconvolution in other symmetric spaces.

This study examines minimax estimation of radial densi-
ties. We first consider the standard density estimation prob-
lem based on directly observed random samples. We propose
a radial density estimator that extends the standard kernel
density estimator in R2. We obtain minimax risk upper
bounds of the proposed estimator in the pointwise metric
when the true density belongs to a radial Sobolev class.
Corresponding lower bounds are established to determine
optimal convergence rates for the radial density estimation
problem, and to illustrate that the proposed estimator is rate
optimal in theminimax sense. The results imply that the radial
symmetry has a dimensionality reduction effect, except at
the origin, where the symmetry adds no information to the
estimation.

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 126447

https://orcid.org/0000-0002-4541-160X
https://orcid.org/0000-0002-1035-6102
https://orcid.org/0000-0003-4868-7932


K.-Y. Bak, J.-Y. Koo: Minimax Density Estimation Under Radial Symmetry

Our analysis is extended to the deconvolution problem
in which any empirical access is restricted to the data
contaminated by additive random noise. Our approach,
developed to deal with the radial symmetry, preserves the
convolution structure under the Fourier transform. This
property facilitates the development of a unified approach to
the deconvolution problem with radial symmetry. We assume
that the error distribution possesses the polynomial decay
rate in the Fourier domain and consider four distinct cases
depending on the symmetry assumptions on the signal
and noise. We obtain minimax upper and lower bounds
to conclude that the radial symmetry has a dimensionality
reduction effect in the deconvolution problem. We find that
only the radial symmetry of the signal variable has an
influence on the rates of convergence. Again, we observe a
singularity at the origin that results in a rate slowdown.

The main tool in our analysis is the Fourier transform,
which is recognized as a constant multiple of the Hankel
transform (or Bessel transform) of order zero for radial
functions. The use of the Fourier calculus provides an elegant
method to analyzeminimaxity of the kernel density estimator.
Furthermore, the Fourier transform lies at the center of the
deconvolution technique since the additive contamination
effect can be naturally separated in the Fourier domain;
see the references in Section II. A fundamental technical
difficulty of the analysis comes from a lack of a translation
operation under the symmetry assumption. To resolve this
issue, we adopt a generalized translation defined through the
zero-order Bessel function of the first kind in the Fourier
domain. We define a radial kernel density estimator with
the generalized translation operation. The expected risk of
the estimator for the radial Sobolev class of densities is
analyzed in the Fourier domain based on the L2-isometry
of the Fourier transform. Upon obtaining risk upper bounds,
we derive the corresponding minimax lower bounds using
the Le Cam method [7] to examine the complexity of
the estimation problem and the optimality of the proposed
method. The convolution theorem enables us to apply similar
lines of reasoning to the deconvolution problem under certain
regularity conditions.

Our primary contribution lies in the development of
a unified framework to analyze symmetry in function
estimation through minimax analysis. An alternative strategy
for addressing the given problem involves extracting radial
coordinates from the data and constructing an estimator
based on a density estimator over the positive real line. This
approach would involve assuming a Hölder-type function
class or employing Mellin transform-based Fourier calculus
to explore the theoretical implications of the symmetry. For
example, [8] considered a kernel method for the estimation
of densities supported on the positive real line, which
can be modified to obtain an estimator for the radial
density. However, directly comparing outcomes from this
approach with the established minimax result for function
estimation in the Sobolev class is challenging. Consequently,
it remains uncertain whether results akin to those found in

our study, such as dimensionality reduction and singularity
point occurrences, can be attained. Another significant
aspect of our analytical methods lies in the preservation
of the convolution structure under the Fourier transform.
This enables us to directly analyze scenarios where the
uncorrupted signal and/or contamination distribution exhibit
symmetry. In contrast, focusing solely on univariate function
analysis restricts us to analyzing only half of the cases,
with ambiguity surrounding the concurrence of analysis with
standardminimaxity results. Finally, the findings of this study
can be broadly extended to K -invariant density estimation on
general symmetric spaces, leveraging the group action and
the Helgason-Fourier transform. This feasibility is rooted in
our theory and computations, which are firmly anchored in a
unified framework built upon the standard Fourier calculus.

The remainder of this paper is organized as follows.
Section II presents an overview of the literature. In Sec-
tion III, we collect mathematical preliminaries including
the Fourier analysis and generalized translation. Section IV
defines the radial kernel density estimator and investigates its
minimaxity.Minimax analysis of the deconvolution problems
under the radial symmetry is presented in Section V.
Section VI discusses possible generalizations of the results
of this paper. The proofs of the main results are deferred to
Appendix VI.

II. OVERVIEW OF THE LITERATURE
This section provides an overview of the literature related
to the theoretical analysis of the kernel density estimation
based on the Fourier calculus. The origins of the current
form of kernel density estimation method can be found in
[9] and [10]. Since kernel density estimation is a method with
a long history, one may refer to monographs such as [11]
and [12] for a comprehensive overview. The use of Fourier
calculus in kernel density estimation dates to [10] and [13].
Many studies have extended the method of minimax analysis
in the Fourier domain to address the deconvolution problem.
Important earlier works in this direction include [14], [15],
[16], [17], [18], [19], and [20]. See also [21] for an overview
of nonparametric deconvolution. The method was further
extended to analyze the density deconvolution on symmetric
spaces by [5] and [6]. Our study adopts a similar analysis
method based on the Hankel transform. One may refer to,
for example, [22], [23], and [24] for relevant mathematical
backgrounds.

III. PRELIMINARIES
When dealing with radial functions, it is more convenient
to work with the polar coordinates system rather than the
rectangular coordinates system. Let R+ be the set of all
positive real numbers. The polar coordinates (r, u) ∈ R+ ×

[0, 2π ) for x ∈ R2 are defined as

x = rku, ku =

[
cos u
sin u

]
.
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FIGURE 1. Three perspective plots with the contours illustrating the translation operation by Ts. Plot (a) is the plot of the original
function g. Plots (b) and (c) present the functions translated by T1 and T√

2, respectively.

A function g is called radial if it depends only on the radial
part of its argument so that

g(rku) = g(rk0), (r, u) ∈ R+ × [0, 2π ).

For x = (x1, x2) ∈ R2, we write dx = dx1dx2. Recall that
the Fourier transform in rectangular coordinates is defined as

Fg(γ ) =

∫
x∈R2

g(x)ei⟨γ,x⟩dx,

with the inversion

g(x) = F−1[Fg(·)](x) =
1

4π2

∫
γ∈R2

Fg(γ )e−i⟨γ,x⟩dγ,

where x = (x1, x2), γ = (γ1, γ2) and ⟨γ, x⟩ = γ1x1 + γ2x2.
For a radial function g, the Fourier transform is recognized

as the 2π times Hankel transform of order zero. When g is
radial, we have

Fg(ρkθ ) = Fg(ρk0) = 2π
∫

∞

r=0
g(rk0)J (ρr)rdr,

where J (·) denotes the zero-order Bessel function of the first
kind. The inverse transform is

g(rku) = g(rk0) = F−1[Fg(·)](ρk0)

=
1
2π

∫
∞

ρ=0
Fg(ρk0)J (ρr)ρdρ.

An important property of the Fourier transform is that it
extends to an L2-isometric mapping. That is, we have the
Plancherel identity∫

x∈R2
|g(x)|2dx =

1
4π2

∫
γ∈R2

|Fg(γ )|2dγ.

When g is radial, it is expressed as∫
∞

r=0
|g(rk0)|2rdr =

1
4π2

∫
∞

ρ=0
|Fg(ρk0)|2ρdρ.

The dilation operation for radial function can be defined in
a usual way in R2. Let the dilation Dhg of a function g (not
necessarily radial) be defined as

Dhg(x) = g(x/h), h > 0.

Equivalently, in the polar coordinates system, we have

Dhg(rku) = g
( r
h
ku
)
.

A fundamental technical difficulty of the analysis comes from
a lack of a translation operation under the radial symmetry
assumption. The standard translation operation in R2 is not
appropriate for the radial function class, since the resulting
function is not radially symmetric with respect to the origin.
To resolve this issue, we adopt a generalized translation
operation defined as follows.

Consider the polar representation of the difference of the
two vectors in R2. Define τ (s, r,w) =

√
s2 + r2 − 2 sr cosw

η(s, r, v, u) = tan−1
(
s sin v−r sin u
s cos v−r cos u

)
.

Then

skv−rku = τ (s, r, v− u)kη(s,r,v,u).

For s ∈ R+, let Ts be the translation operator defined by

Tsg(rku) = Tsg(rk0)

=
1
2π

∫ 2π

w=0
g(τ (r, s,w)k0)dw, (r, u) ∈ R+ × [0, 2π ),

where r is the radial part of x, and g is a radial function.
Recall that the standard translation on R can be understood

as the convolution of a function g onRwith the delta function,
which, in the Fourier domain, is expressed as

F[g(· − s)](t) = eitsFg(t), t, s ∈ R.

The generalized translation for the radial function defined
above is indeed the ‘‘right’’ generalization in that it results
in

F[Tsg(·)](ρkθ ) = J (sρ)Fg(ρk0), (ρ, θ) ∈ R+ × [0, 2π ).

Since g is radial, the complex exponential function is replaced
by the Bessel function. This result is proved in Lemma 1.
Following the above discussion, the generalized translation
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FIGURE 2. The leftmost plot is the contour plot of the standard normal density. The middle and rightmost plots illustrate the
contours of the standard kernel density estimator (KDE) and the proposed radial kernel density estimator (RDE) based on a
sample of size 50, respectively.

can be understood as the convolution of a radial function with
the delta function. That is, the mass of the function is spread
out in the vicinity of the circle of radius s with the spreading
shape determined by the radial function g. Figure 1 illustrates
the translation operation for radial functions.

IV. MINIMAX KERNEL ESTIMATION OF RADIAL
DENSITY FUNCTIONS
LetX1, . . . ,XN be independent copies of a random variableX
with the density f with respect to the Lebesgue measure
on R2. We consider the case in which the density f is a radial
function.

Given a radial kernel function K and bandwidth h > 0,
we define the radial kernel density estimator as

f̂ (x) =
1
N

N∑
n=1

TRnKh(x)

=
1

2πN

N∑
n=1

∫ 2π

w=0
Kh (τ (r,Rn,w)k0) dw, x ∈ R2,

where Kh(·) = h−2K (·/h), and r and Rn denote the radial
parts of x and Xn, respectively. The proposed estimator is
seen to be a form of the kernelization of x − Xn followed by
integration with respect to the angular part. Since the angular
part is integrated out, the proposed estimator depends only
on the radial part r of x, and is therefore radial. Lemma 2
demonstrates that the proposed estimator is a valid density
provided that the kernel is given by a density function.

Our previous discussion on the generalized translation
implies that the proposed estimator can be understood as
follows. The impulse of X1, . . . ,XN is first averaged around
the circle of radius R1, . . . ,RN . Then, it is evenly spread
out in the vicinity of the circle with the spreading shape
determined by the radial kernel function K . The proposed
estimator is illustrated with Figure 2. It can be seen that the
radial kernel estimator closely recovers the true density with
a small sample size (N = 50).

Consider a Sobolev class of radial densities

Sα(Q) =

{
g ∈ L2(R2), g is radial :∫
x∈R2

g(x) dx = 1, ∥1α/2g∥
2

≤ Q2
}
,

where Q > 0 and α > 1 is a smoothness parameter.
Here, ∥·∥ denotes the L2-norm, and 1α/2f is the function
satisfying F

(
1α/2g

)
(ρ) = λ

α/2
ρ Fg(ρ), where λρ = ρ2 is

an eigenvalue of the Laplace operator.
We choose the kernel function defined by the Fourier

transform

FK (ρkθ ) =
1

1 + ρ2α
, (ρ, θ) ∈ R+ × [0, 2π ).

This choice is mainly for simplicity, and the results herein
are valid for other kernel functions provided that they satisfy
certain smoothness conditions. For example, the theoretical
results are valid for a Pinsker-type kernel defined as

FK (ρkθ ) =

[
1 − ρ2α

]
+

, (ρ, θ) ∈ R+ × [0, 2π ),

where [·]+ is the plus function.
Here and throughout this paper, let M1,M2, . . . and

C1,C2, . . . denote positive constants independent of the
sample size N , which may differ at various places. The
maximum risk for the radial Sobolev class of densities in
the pointwise metric is upper bounded as follows.
Theorem 1: Choose h = M1N−

1
2α . Then, we have

sup
f ∈Sα(Q)

E
[
f̂ (x0) − f (x0)

]2
≤ M2N−

2α−1
2α , x0 ̸= 0,

and

sup
f ∈Sα(Q)

E
[
f̂ (0) − f (0)

]2
≤ M3N−

2α−2
2α .

The optimal pointwise rate of convergence for the Sobolev
class without the symmetry can be obtained using the
renormalization argument of [25]. The optimal rate in this
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case is of order N−
2α−d
2α on Rd . It can be seen that the upper

bound at x0 ̸= 0 for the radial Sobolev class Sα(Q) in
Theorem 1 corresponds to the univariate convergence rate.
This can be understood as a dimensionality reduction effect
that comes from the radial symmetry. However, a singularity
occurs at the origin since the symmetry adds no information
to the estimation at this point. Thus, the upper bound
coincides with the bivariate convergence rate at the origin.

For a complete understanding of the dimensionality
reduction effect due to the radial symmetry, we obtain the
corresponding minimax lower bounds using the Le Cam
method [7] (see also Lemma 1 of [26] and Theorem 2.2
of [27]). We provide separate analyses when x0 = 0 and
x0 ̸= 0. The generalized translation proves useful for the case
in which x0 ̸= 0, since we need to construct two densities
in Sα(Q) with an appropriate separation rate. The standard
translation operation is not applicable because the resulting
function no longer belongs to the class Sα(Q).
When x0 = 0, the evaluation functional is homoge-

neous [25]. Thus, the renormalization argument can be
applied to conclude that the optimal rate is of order
N−

2α−2
2α without appealing to the Le Cam method. However,

we present the proof based on explicit construction of a
two point subfamily for later references. The results are
summarized in Theorem 2.
Theorem 2: As N → ∞, we have

inf
T

sup
f ∈Sα(Q)

E
[
N

2α−1
2α |T (x0) − f (x0)|2

]
≥ M4, x0 ̸= 0,

and

inf
T

sup
f ∈Sα(Q)

E
[
N

2α−2
2α |T (0) − f (0)|2

]
≥ M5,

where the infimum is taken over all estimators of f .
Theorem 1 and 2 imply that imposing the radial symmetry

reduces the difficulty of the density estimation problem by
one dimension except at the origin. The results also suggest
that the proposed estimator is rate optimal in the minimax
sense for the radial Sobolev class.

V. DECONVOLUTION UNDER THE RADIAL SYMMETRY
This section deals with the deconvolution problems when the
signal and/or error variables follow a radial distribution. Let
Y1, . . . ,YN be a random sample of size N where

Yn = Xn + εn, n = 1, . . . ,N .

Suppose that X1, . . . ,XN are incorrupted i.i.d. random
variables with the density fX , and ε1, . . . , εn are i.i.d. random
variables with the density fε, representing the contamination
of the data. We assume that Xn and εn are independent for
n = 1, . . . ,N so that the density fY of contaminated data
is given by fY = fX ∗ fε. Here, ∗ denotes the convolution
operation defined as

(g1 ∗ g2)(x) =

∫
y∈R2

g1(x − y)g2(y)dy,

for the functions g1 and g2 defined on R2. Furthermore,
we assume that the error distribution is known in advance.
Our goal is to estimate the unknown density fX from a set
of contaminated data Y1, . . . ,YN . Four distinct cases can
be considered depending on the symmetry assumptions on
X and ε.We analyze theminimaxity in each case and examine
the effect of the radial symmetry in the deconvolution
problem.

The smoothness of convolution kernels is usually charac-
terized as ordinary smooth and supersmooth depending on
the decay rate of the characteristic function; see [16] for
example. In the supersmooth case, it is known that the bias
term dominates the variance term, and hence the dimension
does not appear in the optimal convergence rate when we
consider a Sobolev class of functions. Our main focus is on
the dimensionality reduction effect of the radial symmetry
on the convergence rates. Thus, we confine our attention to
the ordinary smooth error distributions whose characteristic
functions satisfy, for γ ∈ R2,

M6|γ |
−β

≤ |F fε(γ )| ≤ M7|γ |
−β as |γ | → ∞,

where |·| denotes the usual ℓ2 norm of a vector. In the sequel,
we assume the following:

(D1) F fε(γ ) ̸= 0, γ ∈ R2

(D2) |F fε(γ )||γ |
β

≥ M6 as |γ | → ∞

(D3)
∫
γ∈R2 |FK (γ )||γ |

βdγ ≤ M8

A. CASE 1: NEITHER OF X AND ε IS RADIAL
Suppose that fX and fε are not radial. This case corresponds
to a classical deconvolution problem; see, for example,
[16] and [21]. In particular, we assume that fX ∈ S∗

α(Q)
where S∗

α(Q) denotes the Sobolev class of densities without
the radial symmetry defined as

S∗
α(Q) =

{
g ∈ L2(R2) :∫
x∈R2

g(x) dx = 1, ∥1α/2g∥
2

≤ Q2
}
.

We establish a minimax risk upper bound of the standard ker-
nel deconvolution estimator for the Sobolev class of densities.
Since no symmetry assumption is imposed, we work with the
rectangular coordinates system in this case.

We consider a kernel deconvolution estimator defined as

f̂X (x) =
1

4π2

∫
γ∈R2

FK (hγ )9̂Y (γ )
F fε(γ )

e−i⟨γ,x⟩dγ, x ∈ R2,

(1)

where 9̂Y is the empirical characteristic function

9̂Y (γ ) =
1
N

N∑
n=1

ei⟨γ,Yn⟩.

This estimator admits the following upper bound for the
maximum risk over the Sobolev class of densities.
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Theorem 3: Choose h = M9N
−

1
2α+2β . Then, we have,

as N → ∞,

sup
f ∈S∗

α (Q)
E
[
f̂X (x0) − fX (x0)

]2
≤ M10N

−
2α−2
2α+2β , x0 ∈ R2.

The renormalization argument of [25] can be applied when
neither of X and ε is radial. As explained in Section 5
of [25], we may use the Riesz transform to replace the
inhomogeneous convolution operator in the ordinary smooth
case. This leads to a reformulation of the problem that
renormalizes in an asymptotic sense. Then, it is not difficult
to calculate that the optimal rate of convergence is of order
N−

2α−d
2α+2β on Rd . This implies that the kernel deconvolution

estimator f̂X achieves the optimal rate of convergence.

B. CONVOLUTION BETWEEN RADIAL FUNCTIONS
Before we analyze the deconvolution problem under the
radial symmetry, we give some justifications for our approach
to deal with the radial function. We may view a radial
functions as a univariate function defined on R+, and
consider a standard convolution operation on R+. However,
this approach does not preserve the convolution structure of
the Fourier analysis on R2. Instead, we handle the radial
function in a way that coincides with the standard Fourier
transform method in R2 based on the generalized translation.
This property enables us to investigate all possible cases
under the radial symmetry in a unified way as we will see
in what follows.

To illustrate this idea further, we provide a result for
the concordance between two convolution operations. Let
G1 and G2 be functions defined on R+. The convolution
operation on R+ in our approach has the form

(G1 ◦ G2)(r) =

∫
∞

s=0
TsG1(r)G2(s)sds, r ∈ R+,

where, with a slight abuse of notation,

TsG1(r) =
1
2π

∫ 2π

w=0
G1(τ (r, s,w))dw.

For a radial function g on R2, we define a lift-down
function g↓ on R+ by

g↓(r) = 2πg(rk0), r ∈ R+.

Then, we have

Fg(ρkθ ) = Bg↓(ρ), (ρ, θ) ∈ R+ × [0, 2π ),

where B denotes the order zero Hankel transform defined as

Bg↓(ρ) =

∫
∞

r=0
g↓(r)J (ρr)rdr, ρ ∈ R+.

On the other hand, we may start with a univariate function
on R+. For a function G defined on R+, we define a lift-up
function G↑ on R2 by

G↑(rku) =
1
2π

G(r), (r, u) ∈ R+ × [0, 2π ),

which gives

FG↑(ρkθ ) = BG(ρ), (ρ, θ) ∈ R+ × [0, 2π ).

With this formulation, we have the following proposition.
Proposition 1: Suppose f1 and f2 are radial functions

on R2. Then,

(f1 ∗ f2)↓ = f ↓

1 ◦ f ↓

2 .

Moreover, for functions g1 and g2 on R+,

(g1 ◦ g2)↑ = g↑

1 ∗ g↑

2 .

Proposition 1 with the convolution theorem implies
Proposition 2.
Proposition 2: For functions g1 and g2 defined on R+,

B(g1 ◦ g2)(ρ) = Bg1(ρ)Bg2(ρ), ρ ∈ R+

and

F(g↑

1 ∗ g↑

2 )(ρkθ ) = Fg↑

1 (ρkθ )Fg
↑

2 (ρkθ ),

(ρ, θ) ∈ R+ × [0, 2π ).

Moreover, for radial functions f1 and f2 on R2,

B(f ↓

1 ◦ f ↓

2 )(ρ) = Bf ↓

1 (ρ)Bf ↓

2 (ρ), ρ ∈ R+.

The preceding arguments imply that our approach identify
a radial function on R2 with a function on R+ in a way that
preserves the convolution structure with respect to the Fourier
calculus. It will prove useful in subsequent analyses of the
deconvolution problem.

C. CASE 2: BOTH X AND ε ARE RADIAL
Suppose that fX and fε are radial densities. As in Section IV,
we determine the minimax optimal rate of convergence to
identify the dimensionality reduction effect of the radial
symmetry in the deconvolution problem. In the following,
we adopt the polar coordinates system and assume that
fX ∈ Sα(Q).
Motivated by the standard kernel deconvolution estima-

tor (1), we consider a radial kernel deconvolution estimator
defined as

f̂X (x) =
1
2π

∫
∞

ρ=0

FK (hρk0)8̂Y (ρ)
F fε(ρk0)

J (ρr)ρdρ

for x = rku ∈ R2, where

8̂Y (ρ) =
1
N

N∑
n=1

J (ρSn),

with Sn being the radial part of Yn for n = 1, . . . ,N . A risk
upper bound is given by Theorem 4.
Theorem 4: Choose h = M11N

−
1

2α+2β . Then, we have,
as N → ∞,

sup
f ∈Sα(Q)

E
[
f̂X (x0) − fX (x0)

]2
≤ M12N

−
2α−1
2α+2β , x0 ̸= 0,
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and

sup
f ∈Sα(Q)

E
[
f̂X (0) − fX (0)

]2
≤ M13N

−
2α−2
2α+2β .

Theorem 3 and 4 show that the information of the radial
symmetry improves the risk upper bounds by reducing the
dimension. Again, from the upper bounds, it is expected that
a singularity occurs at the origin.We derive the corresponding
lower bounds to conclude that the rates given in Theorem 4
are indeed optimal in the minimax sense.

As in Section IV, we make use of the Le Cam method to
obtain lower bounds for x0 ̸= 0. To this end, we construct
a pair of radial densities f0 and f1 in Sα(Q) so that the
separation rate |f0(x0) − f1(x0)| is as large as possible under
the constraint that χ2(f0 ∗ fε, f1 ∗ fε) is of order N−1. When
x0 = 0, the evaluation functional is homogeneous, and
thus the renormalization argument provides a desired lower
bound.
Theorem 5: As N → ∞, we have

inf
T

sup
fX∈Sα(Q)

E
[
N

2α−1
2α+2β |T (x0) − fX (x0)|2

]
≥ M14, x0 ̸= 0,

and

inf
T

sup
fX∈Sα(Q)

E
[
N

2α−2
2α+2β |T (0) − fX (0)|2

]
≥ M15,

where the infimum is taken over all estimators of f .

D. CASE 3: X IS NON-RADIAL AND ε IS RADIAL
This case is rather trivial. Since fX is not radial, we can
construct a pair of densities f0, f1 ∈ S∗

α(Q) in a usual way. The
function f1 is constructed by adding a suitable perturbation
function to f0. No symmetry is involved in the constraint
f0, f1 ∈ S∗

α(Q) and the calculation of the separation rate
|f0(x0) − f1(x0)|. Moreover, as can be seen in the proof of
Theorem 5, the calculation of the chi-squared divergence
χ2(f0 ∗ fε, f1 ∗ fε) is not affected by the symmetry of fε.
The preceding arguments imply that the optimal rate of
convergence in this case is given by the bivariate convergence
rate of order N−

2α−2
2α+2β as in Case 1. The proof of this

result is immediate 2-dimensional generalization of the proof
presented in [16], and hence will be omitted.

E. CASE 4: X IS RADIAL AND ε IS NON-RADIAL
Obtaining a minimax estimator is more involved in this case,
since the radial symmetry of fX is masked by the convolution
with fε. It can be seen in Lemma 12 that the bias of the
estimator (1) does not depend on the error distribution. Thus,
we may conjecture that the optimal rate in this case is given
by the univariate convergence rate.

Lemma 11 implies that the deconvolution estimator (1) can
be re-expressed as

f̂X (x) =
1
N

N∑
n=1

Lh(x − Yn), x ∈ R2,

where

L(x) =
1

4π2

∫
γ∈R2

FK (γ )
F fε(γ /h)

e−i⟨γ,x⟩dγ, x ∈ R2.

Suppose that we can choose a kernel function K that cancels
out the angular part of fε so that

L(rku) =
1
2π

∫
∞

ρ=0

FK (ρk0)
F fε((ρ/h)k0)

J (ρr)ρdρ

for (r, u) ∈ R+ × [0, 2π ). With this choice of the kernel,
we define an estimator

f̂X (x) =
1
N

N∑
n=1

TSnLh(rk0), x = rku ∈ R2,

see also Lemma 14. Then, Lemma 15 and Lemma 16 imply
the following risk upper bound.
Theorem 6: Choose h = M16N

−
1

2α+2β . Then, we have,
as N → ∞,

sup
f ∈Sα(Q)

E
[
f̂X (x0) − fX (x0)

]2
≤ M17N

−
2α−1
2α+2β , x0 ̸= 0,

and

sup
f ∈Sα(Q)

E
[
f̂X (0) − fX (0)

]2
≤ M18N

−
2α−2
2α+2β .

It can be easily confirmed that the radial symmetry of fε is
not required in the proof of Theorem 5. Thus, we conclude
that the optimal rate of convergence in this case is the
univariate rate except at the origin. That is, the minimax rate
of convergence depends only on the radial symmetry of fX in
the deconvolution problem.

VI. DISCUSSION
This study investigated the dimensionality reduction effect
of the radial symmetry in nonparametric density estimation.
To address technical difficulties arising from a lack of
translation, we adopted the generalized translation operation
that preserves the radial symmetry. This results in a radial
kernel density estimator analogous to the standard kernel
estimator in the Fourier domain except that we have a Bessel
function of the first kind in place of the character defined by
the complex exponential function. We established minimax
upper and lower bounds depending on whether the data are
observed directly or indirectly. It was verified that the radial
symmetry reduces the dimension of the estimation problems
so that the optimal rate of convergence coincides with the
univariate convergence rate except at the origin where a
singularity occurs. The results also imply that the proposed
estimators are rate optimal in the minimax sense for the
Sobolev class of densities.

Our results can be generalized and extended in several
ways. One obvious generalization is toward the radial density
estimation in Rd . As in this study, we may adopt the
d-dimensional spherical coordinates system and integrate out
the angular part to obtain a radial estimator inRd . The Fourier
transform of a radial function g on Rd is characterized by the
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Hankel transform of order (d−2)/2. Then, we may apply the
approaches developed herein to analyze the dimensionality
reduction effect of the radial symmetry in Rd .
The results of this study can also be generalized to

invariant density estimation on general symmetric spaces.
Theminimax analyses presented herein are performedmostly
in the Fourier domain. Thus, the results are expected to be
extended based on the group action and Helgason-Fourier
transform on a given symmetric space. One may refer
to [23] and [28] for the Fourier analysis on symmetric
spaces. In line with our study, we may analyze the
minimax convergence rates for density estimation under the
K -invariance assumptions. For example, we may consider
the SO(2)-invariant density estimation on the Poincaré upper
half-plane model, or theO(m)-invariant density estimation on
the space of positive matrices.

APPENDIX
PROOFS
A. PROOF OF THEOREM 1
Lemma 1: Let g be a radial function. For ρ ≥ 0, h > 0,

and θ ∈ [0, 2π ),

F
[
Tr0g(·)

]
(ρkθ ) = J (r0ρ)Fg(ρk0), (2)

F[Dhg(·)](ρkθ ) = h2Fg(hρk0), (3)

and thus

F
[
Tr0Dhg(·)

]
(ρkθ ) = h2J (r0ρ)Fg(hρk0).

Proof: Note

F
[
Tr0g(·)

]
(ρkθ )

=

∫
∞

r=0

[
1
2π

∫ 2π

w=0
g(τ (r, r0,w)k0)dw

]
J (ρr)rdr

=
1

4π2

∫ 2π

w=0

∫
∞

r=0

∫ 2π

z=0
g
(
τ (r, r0, z− w)kη(r,r0,z,w)

)
× eiρr cos(0−z)dzrdrdw

=
1

4π2

∫ 2π

w=0

∫
∞

r=0

∫ 2π

z=0
g(rkz − r0kw)ei⟨ρk0,rkz⟩dzrdrdw

=
1

4π2

∫ 2π

w=0

∫
∞

s=0

∫ 2π

v=0
g(skv)ei⟨ρk0,skv+r0kw⟩dvsdsdw

=
1

4π2

∫ 2π

w=0
eiρr0 cosw

×

[∫
∞

s=0

∫ 2π

v=0
g(skv)eiρs cos vdvsds

]
dw

=
1
2π

∫ 2π

w=0
eiρr0 coswdw

∫
∞

s=0
g(skv)J (ρs)sds

= J (r0ρ)Fg(ρk0).

For the dilation, we have

F[Dhg(·)](ρkθ ) =

∫
∞

r=0

∫ 2π

u=0
g
( r
h
ku
)
eiρr cos(θ−u)durdr

= h2
∫

∞

r=0

∫ 2π

u=0
g(sku)eihρr cos(θ−u)dusds

= h2Fg(hρkθ ) = h2Fg(hρk0),

where we have used the symmetry assumption for the last
equality. □
Lemma 2 shows that the proposed methods provide a valid

density estimator provided the kernel is given by a density
function.
Lemma 2: Let K be a radial kernel such that

∫
x∈R2 K (x)

dx = 1. We have ∫
x∈R2

f̂ (x)dx = 1.

Proof: Note∫
x∈R2

f̂ (x)dx

=
1

2πN

N∑
n=1

∫ 2π

w=0

∫ 2π

u=0

∫
∞

r=0
Kh (τ (r,Rn,w)k0) rdrdudw

=
1
N

N∑
n=1

∫ 2π

u=0

∫
∞

r=0
Kh
(
τ (r,Rn, u− Un)kη(r,Rn,u,Un)

)
× rdrdu

=
1
N

N∑
n=1

∫
x∈R2

Kh (x − Xn) dx = 1.

□
Define a radial empirical characteristic function

8̂(ρ) =
1
N

N∑
n=1

J (ρRn), ρ ∈ R+.

Observe that E8̂(ρ) = F f (ρk0). Lemma 3 enables us to use
the Fourier analysis technique.
Lemma 3: We have

F f̂ (ρkθ ) = 8̂(ρ)FK (hρk0), θ ∈ [0, 2π ).

Proof: Since∫ 2π

u=0

∫
∞

r=0

∫ 2π

z=0
Kh (τ (r,Rn, z− u)k0) eiρr cos(−z)dzrdrdu

=

∫ 2π

u=0

∫
∞

s=0

∫ 2π

v=0
Kh (skv) eiρk0

• (skv+Rnku)dvsdsdu

=

∫
∞

s=0
Kh (sk0)

[∫ 2π

v=0
eiρs cos vdv

]
×

[∫ 2π

u=0
eiρRn cos udu

]
sds,
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we have

F f̂ (ρkθ ) =

∫
∞

r=0

[
1

2πN

N∑
n=1

∫ 2π

u=0
Kh (τ (r,Rn, u)k0) du

]

×

[∫ 2π

z=0
eiρr cos zdz

]
rdr

=
1

2πN

N∑
n=1

∫ 2π

u=0

∫
∞

r=0

∫ 2π

z=0
Kh (τ (r,Rn, z− u)k0)

× eiρr cos(−z)dzrdrdu

=

[
1
N

N∑
n=1

J (ρRn)

]
2π
∫

∞

s=0
Kh (sk0) J (ρs) sds

= 8̂(ρ)FKh(ρk0) = 8̂(ρ)FK (hρk0),

where the last inequality follows from (3). □
Recall that the mean squared error is decomposed as

MSE(x0) = E
[
f̂ (x0) − f (x0)

]2
= B2(x0) + V (x0),

where B(x0) and V (x0) are, respectively, the bias and variance
term defined by

B(x0) =

∣∣∣Ef̂ (x0) − f (x0)
∣∣∣

and

V (x0) = E
[
f̂ (x0) − Ef̂ (x0)

]2
.

We find an upper bound for each term in Lemma 4 and
Lemma 5.
Lemma 4: We have

B(x0) ≤ M19hα−
1
2 , x0 ̸= 0 and B(0) ≤ M20hα−1.

Proof: Observe

f (x0) = F−1[F f (·)](r0k0)

=
1
2π

∫
∞

ρ=0
F f (ρk0)J (ρr0) ρdρ. (4)

Lemma 3 implies

Ef̂ (x0) =
1
2π

∫
∞

ρ=0
F f (ρk0)FK (hρk0)J (r0ρ) ρdρ. (5)

Combining (4) and (5), we have

B(x0) =
1
2π

∣∣∣∣∫ ∞

ρ=0
F f (ρk0)J (r0ρ)[FK (hρk0) − 1] ρdρ

∣∣∣∣.
It follows from the definition of Sα(Q) and the Cauchy-
Schwarz inequality that

B(0) =
1
2π

∣∣∣∣∫ ∞

ρ=0
F f (ρk0)J (0)[FK (hρk0) − 1] ρdρ

∣∣∣∣
≤

1
2π

∫
∞

ρ=0
|F f (ρk0)||FK (hρk0) − 1| ρdρ

≤
1

√
2π

(∫
∞

ρ=0

1
2π

|F f (ρk0)|2ρ2αρdρ
)1/2

×

(∫
∞

ρ=0

h2α(hρ)2α(
1 + (hρ)2α

)2 ρdρ
)1/2

=
Q

√
2π

hα−1

(
1
2α

∫ 1

z=0

(
1
z

− 1
)1/α

dz

)1/2

= M21hα−1, M21 =
QB(1 + α−1, 1 − α−1)

√
4πα

,

where B(·, ·) denotes the beta function. For x0 = r0ku0 ̸= 0,

using the inequality |J (a)| ≤

√
2
πa for a > 0 (see Chapter 7

of [24]), we have

B(x0) ≤
1
2π

∫
∞

ρ=0
|F f (ρk0)||J (r0ρ)||FK (hρk0) − 1| dρ

≤
Q

√
2π

(∫
∞

ρ=0
|F f (ρk0)|2ρ2α+1dρ

)1/2

×

(∫
∞

ρ=0

h2α(hρ)2α(
1 + (hρ)2α

)2 |J (r0ρ)|2ρdρ

)1/2

≤ M22hα−
1
2 ,

for M22 =
Q

π
√
r0

√
1
4 +

B(1+α−1,1−α−1)
2α . □

Lemma 5: We have

V (x0) ≤
M23

Nh
, x0 ̸= 0 and V (0) ≤

M24

Nh2
.

Proof: Following the argument in Lemma 3.1 of [29], we
have ∥f ∥∞ ≤ M25, where ∥·∥∞ denotes the usual sup-norm
of a function on R2. It follows from Lemma 1, the Plancherel
theorem, and the inequality |J (a)| ≤

√
2
πa for a > 0 that, for

x0 = r0ku0 ̸= 0,

V (x0) ≤
1

4π2N

∫
x∈R2

[∫ 2π

w=0
Kh

(
τ (r0, r,w)

h
k0

)
dw
]2

× f (x) dx, x = rku

≤
2πM25

N

∫
∞

r=0

[
1
2π

∫ 2π

w=0
Kh

(
τ (r0, r,w)

h
k0

)
dw
]2
rdr

=
2πM25

N

∫
∞

r=0

[
Tr0Kh(rk0)

]2rdr
=

M25

2πN

∫
∞

ρ=0
|J (r0ρ)FKh(ρk0)|2ρdρ

≤
M25

π2r0N

∫
∞

ρ=0
|FK (hρk0)|2dρ

≤
M23

Nh
, M23 =

M25

π2r0

∫
∞

ξ=0
|FK (ξk0)|2dξ.

At the origin, we have

V (0) ≤
M25

2πN

∫
∞

ρ=0
|FK (hρk0)|2ρdρ

=
M25

2πNh2

∫
∞

ξ=0
|FK (ξk0)|2ξdξ

≤
M24

Nh2
, M24 =

M25∥K∥
2

4π2 .

□
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1) PROOF OF THEOREM 1
Lemma 4 and 5 imply that

E
[
f̂ (x0) − f (x0)

]2
= B2(x0) + V (x0)

≤ M2
22h

2α−1
+
M23

Nh
≤ C1N−

2α−1
2α + C2N−1N

1
2α

≤ M2N−
2α−1
2α , x0 ̸= 0,

and

E
[
f̂ (0) − f (0)

]2
= B2(0) + V (0)

≤ M2
21h

2α−2
+
M24

Nh2

≤ C3N−
2α−2
2α + C4N−1N

2
2α

≤ M3N−
2α−2
2α .

B. PROOF OF THEOREM 2
We provide proofs for the case x0 = 0 and x0 ̸= 0 in
Proposition 3 and 4, respectively. The χ2 divergence between
two probability measures P and Q is defined as χ2(p, q) =∫
(p−q)2q−1 when they admit densities p and q, respectively.

1) LOWER BOUND AT THE ORIGIN
We construct a pair of densities f0 and f1 to obtain a minimax
lower bound. Let ψ be a radial function satisfying the
following:
(L1) ψ(0) > 0
(L2) ψ(rk0) = 0 for r /∈ [0, 1]
(L3)

∫ 1
r=0 ψ(rk0) rdr = 0

(L4) ∥1α/2ψ∥
2

≤ Q2/4
Let f0 be a radial density in Sα(Q/2) such that f0(rk0) ≥

M26 for r ∈ [0, 1], and define

f1(rku) = f0(rk0) +M27δ
α−1ψ

( r
δ
k0
)

for (r, u) ∈ [0, 1] × [0, 2π ), where M27 will be determined
later. For M28 > 0, which will be specified later, we choose

δ = δN = M28N−
1
2α .

Observe, for , M29 = M27M
α−1
28 |ψ(0)|,

|f0(0) − f1(0)| = M27δ
α−1

|ψ(0)| ≥ M29N−
α−1
2α . (6)

Lemma 6: We have f0, f1 ∈ Sα(Q).
Proof: By the assumptions f0 ∈ Sα(Q/2), (L4), and

equation (3) in Lemma 1, we have

∥1α/2f1∥
2

=
1
2π

∫
∞

ρ=0
|F f1(ρk0)|2ρ2α+1dρ

=
1
2π

∫
∞

ρ=0

∣∣∣F f0(ρk0)+M27δ
α−1F[ψ(·/δ)](ρk0)

∣∣∣2
× ρ2α+1dρ

≤
Q2

2
+
M2

27δ
2α−2

π

∫
∞

ρ=0
|F[ψ(·/δ)](ρk0)|2ρ2α+1dρ

=
Q2

2
+
M2

27δ
2α−2

π

∫
∞

ρ=0

∣∣∣δ2Fψ(δρk0)∣∣∣2ρ2α+1dρ

≤
Q2

2
+
M2

27

π

πQ2

2
≤ Q2,

provided that we choose M27 ≤ 1. □
Lemma 7: Let ϱ > 0 be given. Then, for sufficiently

large N , we have

χ2(f1, f0) ≤
ϱ

N
.

Proof: Let ϱ > 0 be given and N be large enough for 1/h
to be greater than 1. Note

χ2(f1, f0) = 2π
∫
r∈[0,1]

(f1(rk0) − f0(rk0))2

f0(rk0)
rdr

≤
2πM2

27

M26
δ2α−2

∫
r∈[0,1]

ψ2
( r
δ
k0
)
rdr

=
1

4M26
δ2α

∫ 1

s=0
ψ2(sk0) sds

≤ M30δ
2α

≤
ϱ

N
,

provided that we choose a sufficiently small M28. □
Combining (6), Lemma 6, and Lemma 7, we apply the Le

Cam method to obtain the following lower bound.
Proposition 3: As N → ∞, we have

inf
T

sup
f ∈Sα(Q)

E
[
N

2α−2
2α |T (0) − f (0)|2

]
≥ M38.

2) LOWER BOUND AT X0 ̸= 0
To obtain a lower bound at x0 = r0ku0 ̸= 0, we need to
construct a perturbation around the circle with the radius r0.
Since we cannot make use of the standard translation
operation on Euclidean spaces, we construct a perturbation
based on the generalized translation operation. That is, we put
mass around the circle with the radius r0 and spread it by
convolving with a radial function ψ so that the perturbation
satisfies the desired smoothness conditions. Here, we can
replace (L4) by

(L4-1) ∥1(α−1/2)/2ψ∥
2

≤ Q2/4

Define, for (r, u) ∈ [0, 1] × [0, 2π ),

f1(rku) = f0(rk0) +M31δ
α−3/2Tr0ψ

( r
δ
k0
)
,

whereM31 will be determined later. ForM32 > 0, which will
be specified later, we choose

δ = δN = M32N−
1
2α .

Lemma 8: We have f0, f1 ∈ Sα(Q).
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Proof: By the assumptions f0 ∈ Sα(Q/2),
∥1(α−1/2)/2ψ∥

2
≤ Q2/4, Lemma 1, and |J (a)| ≤

√
2
πa for

a > 0, we have

∥1α/2f1∥
2

=
1
2π

∫
∞

ρ=0
|F f1(ρk0)|2ρ2α+1dρ

=
1
2π

∫
∞

ρ=0

∣∣∣F f0(ρk0) +M31δ
α−3/2F

[
Tr0ψ(·/δ)

]
(ρk0)

∣∣∣2
× ρ2α+1dρ

≤
Q2

2
+
M2

31δ
2α−3

π

∫
∞

ρ=0

∣∣F[Tr0ψ(·/δ)](ρk0)∣∣2ρ2α+1dρ

=
Q2

2
+
M2

31δ
2α−3

π

∫
∞

ρ=0

∣∣∣δ2J (r0ρ)Fψ(δρk0)∣∣∣2ρ2α+1dρ

≤
Q2

2
+

2M2
31δ

2α+1

π2r0

∫
∞

ρ=0
|Fψ(δρk0)|2ρ2αdρ

≤
Q2

2
+
M2

31

πr0
Q2

≤ Q2,

provided that we choose M31 ≤
√
πr0/2. □

Lemma 9: Let ϱ > 0 be given. Then, for sufficiently
large N , we have

χ2(f1, f0) ≤
ϱ

N
.

Proof: Let N be sufficiently large. Using the Plancherel

identity and the inequality |J (a)| ≤

√
2
πa for a > 0, we obtain

χ2(f1, f0) = 2π
∫
r∈[0,1]

(f1(rk0) − f0(rk0))2

f0(rk0)
rdr

≤
2πM2

31

M26
δ2α−3

∫
r∈[0,1]

∣∣∣Tr0ψ( rδ k0)
∣∣∣2 rdr

=
M2

31

2πM26
δ2α+1

∫
∞

ρ=0
|J (r0ρ)Fψ(δρk0)|2ρdρ

≤
M2

31

π2r0M26
δ2α

∫
∞

ξ=0
|Fψ(ξk0)|2dξ

≤ M33δ
2α

≤
ϱ

N
,

provided that we choose a sufficiently small M32. □
Lemma 10: We have

|f0(r0k0) − f1(r0k0)| ≥ M34N−
α−1/2
2α .

Proof: Let N be sufficiently large. A change of variables
z =

√
1 − cosw/δ implies

|f0(r0ku) − f1(r0ku)|

=

∣∣∣M31δ
α−3/2Tr0ψ

( r
δ
k0
)∣∣∣

=
M31δ

α−3/2

π

∣∣∣∣∫ π

w=0
ψ

(
τ (r0, r0,w)

δ
k0

)
dw

∣∣∣∣
= M31δ

α−3/2

∣∣∣∣∣
∫ 1/

√
2r0

z=0
ψ(

√
2r0zk0)

2δdz
√
2 − δ2z2

∣∣∣∣∣

≥ M35δ
α−3/22δ

∣∣∣∣∣
∫ 1/

√
2r0

z=0
ψ(

√
2r0zk0)dz

∣∣∣∣∣
≥ M36δ

α−1/2
≥ M34N−

α−1/2
2α .

□
Combining Lemma 8, Lemma 9, and Lemma 10, we make

use of the Le Cam method to obtain the following lower
bound.
Proposition 4: As N → ∞, we have

inf
T

sup
f ∈Sα(Q)

E
[
N

2α−1
2α |T (x0) − f (x0)|2

]
≥ M57, x0 ̸= 0.

3) PROOF OF THEOREM 2
Proposition 3 and 4 imply that, as N → ∞,

inf
T

sup
f ∈Sα(Q)

E
[
N

2α−1
2α |T (x0) − f (x0)|2

]
≥ M37, x0 ̸= 0,

and

inf
T

sup
f ∈Sα(Q)

E
[
N

2α−2
2α |T (0) − f (0)|2

]
≥ M38.

C. PROOF OF THEOREM 3
Lemma 11: Define

L(x) =
1

4π2

∫
γ∈R2

FK (γ )
F fε(γ /h)

e−i⟨γ,x⟩dγ, x ∈ R2.

Then, we have

f̂X (x) =
1
N

N∑
n=1

Lh(x − Yn), x ∈ R2.

Proof: Note

f̂X (x) =
1

4π2

∫
ν∈R2

FK (hν)9̂Y (ν)
F fε(ν)

e−i⟨ν,x⟩dν

=
1
Nh2

N∑
n=1

1
4π2

∫
γ∈R2

FK (γ )
F fε(γ /h)

e−i⟨γ /h,x⟩ei⟨γ /h,Yn⟩dγ

=
1
Nh2

N∑
n=1

1
4π2

∫
γ∈R2

FK (γ )
F fε(γ /h)

e
−i
〈
γ,

x−Yn
h

〉
dγ

=
1
Nh2

N∑
n=1

L
(
x−Yn
h

)
.

□
Lemma 12: We have

B(x0) ≤ M39hα−1, x0 ∈ R2.

Proof: Observe

Ef̂X (x) =
1

4π2

∫
γ∈R2

FK (hγ )F fY (γ )
F fε(γ )

e−i⟨γ,x⟩dγ

=
1

4π2

∫
γ∈R2

FK (hγ )F fX (γ )e−i⟨γ,x⟩dγ.
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Note that the bias term does not depend on the error
distribution, and it is therefore of order hα−1 following the
proof of Lemma 4. To observe this, note

B(x0) =
1

4π2

∣∣∣∣∫
γ∈R2

F fX (γ )[FK (hγ ) − 1]e−i⟨γ,x0⟩dγ

∣∣∣∣
≤

1
4π2

∫
γ∈R2

|F fX (γ )||FK (hγ ) − 1|dγ

≤
1
2π

(∫
γ∈R2

1
4π2 |F fX (γ )|2|γ |

2αdγ
)1/2

×

(∫
γ∈R2

[
(h|γ |)2α

1 + (h|γ |)2α

]2
|γ |

−2αdγ

)1/2

≤
Q
2π

(
2π
∫

∞

ρ=0

h2α(hρ)2α(
1 + (hρ)2α

)2 ρdρ
)1/2

≤ M39hα−1, M39 =
QB(1 + α−1, 1 − α−1)

√
4πα

.

□
Lemma 13: Suppose h → 0 as N → ∞. We have,

as N → ∞,

V (x0) ≤
M40

Nh2β+2 , x0 ∈ R2.

Proof: Since Y1, . . . ,YN are i.i.d., it follows from
Lemma 11 that

V (x0) ≤
1
Nh4

EL2
(
x0 − Y1

h

)
.

Observe that ∥fY ∥∞ ≤ M25 because

fY (y) =

∫
x∈R2

fX (y− x)fε(x)dx

≤ M25

∫
x∈R2

fε(x)dx = M25.

The Plancherel identity implies

EL2
(
x0 − Y1

h

)
=

∫
y∈R2

L2
(
x0 − y
h

)
fY (y)dy

= h2
∫
z∈R2

L2(z)fY (x0 − hz)dz

≤ M25h2
∫
z∈R2

L2(z)dz

=
M25h2

4π2

∫
γ∈R2

|FK (γ )|2

|F fε(γ /h)|2
dγ.

When M41h ≤ |γ | for a large fixed constant M41,
(D2) implies

1
|F fε(γ /h)|

≤ C1h−β
|γ |

β

Thus, we obtain∫
|γ |≥M41h

|FK (γ )|2

|F fε(γ /h)|2
dγ

≤ C2
1h

−2β
∫

|γ |≥M41h
|FK (γ )|2|γ |

2βdγ

≤ C2h−2β ,

where C2 = C2
1M8. When |γ | ≤ M41h, (D1) implies

|F fε(γ /h)| ≥ C3 > 0, C3 = min
|ν|≤M41

|F fε(ν)|,

so that ∫
|γ |≤M41h

|FK (γ )|2

|F fε(γ /h)|2
dγ ≤ C4

for

C4 =
1
C3

∫
|γ |≤M41h

|FK (γ )|2dγ.

Combining the results, we have

V (x0) ≤
M40

Nh2β+2 .

□

1) PROOF OF THEOREM 3
Lemma 12 and 13 imply that

E
[
f̂X (x0) − fX (x0)

]2
= B2(x0) + V (x0)

≤ M2
39h

2α−2
+

M40

Nh2β+2

≤ C5N−
2α−1
2α + C6N−1N

2β+2
2α+2β

≤ M10N
−

2α−2
2α+2β , x0 ∈ R2.

D. PROOF OF PROPOSITION 1
Note

(f1 ∗ f2)↓(s)

= 2π (f1 ∗ f2)(sk0)

= 2π
∫

∞

r=0

[∫ 2π

w=0
f1(τ (s, r,w)k0)dw

]
f2(rk0)rdr

= 2π
∫

∞

r=0

[∫ 2π

w=0

1
2π

f ↓

1 (τ (s, r,w))dw
]

1
2π

f ↓

2 (rk)rdr

=

∫
∞

r=0

[
1
2π

∫ 2π

w=0
f ↓

1 (τ (s, r,w))dw
]
f ↓

2 (rk)rdr

= (f ↓

1 ◦ f ↓

2 )(s),

and

(g↑

1 ∗ g↑

2 )(skv)

=

∫
∞

r=0

∫ 2π

u=0
g↑

1 (skv − rku)g
↑

2 (rku)durdr

=

∫
∞

r=0

∫ 2π

u=0
g↑

1 (τ (s, r, v− u)kη(s,r,v,u))g
↑

2 (rku)durdr

=

∫
∞

r=0

∫ 2π

u=0

[
1
2π

g1(τ (s, r, v− u))
] [

1
2π

g2(r)
]
durdr

=
1

4π2

∫
∞

r=0

[∫ 2π

w=0
g1
(√

s2 + r2 − 2sr cosw
)
dw
]

× g2(r)rdr
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=
1
2π

∫
∞

r=0

[
1
2π

∫ 2π

w=0
g1(τ (s, r,w))dw

]
g2(r)rdr

=
1
2π

(g1 ◦ g2)(s)

= (g1 ◦ g2)↑(skv).

E. PROOF OF THEOREM 4
Lemma 14: We have

f̂X (x) =
1
N

N∑
n=1

TSnLh(rk0), x = rku ∈ R2.

Proof:We have

Lh(x) =
1

2πh2

∫
∞

ρ=0

FK (ρk0)
F fε((ρ/h)k0)

J (ρr/h)ρdρ

= F−1
[
FK ((h·)k0)
F fε(·k0)

]
(rk0),

and, by relation (2) in Lemma 1,

TSnF−1
[
FK (h·)
F fε(·)

]
(rk0)

= F−1
[
J (ρSn)

FK (h·)
F fε(·)

]
=

1
2π

∫
∞

ρ=0

FK (hρk0)
F fε(ρk0)

J (ρr)J (ρSn)ρdρ.

It follows that

f̂X (x) =
1
2π

∫
∞

ρ=0

FK (hρk0)8̂Y (ρ)
F fε(ρk0)

J (ρr)ρdρ

=
1
N

N∑
n=1

1
2π

∫
∞

ρ=0

FK (hρk0)
F fε(ρk0)

J (ρr)J (ρSn)ρdρ

=
1
N

N∑
n=1

TSnF−1
[
FK (h·)
F fε(·)

]
(rk0)

=
1
N

N∑
n=1

TSnLh(rk0).

□
Lemma 15: We have

B(x0) ≤ M42hα−
1
2 , x0 ̸= 0 and B(0) ≤ M43hα−1.

Proof: As can be seen in the proof of Lemma 12, the bias
term does not depend on the error distribution, and thus the
calculations in the proof of Lemma 4 yield the desired upper
bounds (see also [16]). □
Lemma 16: Suppose h → 0 as N → ∞. We have, as

N → ∞,

V (x0) ≤
M44

Nh2β+1 , x0 ̸= 0 and V (0) ≤
M45

Nh2β+2

Proof: For x0 = r0ku0 ∈ R2, it follows from Lemma 1,
Lemma 14, and the Plancherel identity that

V (x0) ≤
2π
N

∫
∞

s=0
[TsLh(r0k0)]2fY (sk0)sds

≤
2πM25

N

∫
∞

s=0
[TsLh(r0k0)]2sds

=
M25

2πN

∫
∞

ρ=0
|FL(hρk0)|2|J (ρr0)|2ρdρ.

For x0 ̸= 0, the inequality |J (a)| ≤

√
2
πa for a > 0 implies

V (x0) ≤
M25

2πN
2
πr0

∫
∞

ρ=0
|FL(hρk0)|2dρ

=
C1

Nh

∫
∞

ξ=0
|FL(ξk0)|2dξ

=
C1

Nh

∫
∞

ξ=0

|FK (ξk0)|2

F fε((ξ/h)k0)
dξ ≤

M44

Nh2β+1 ,

where the last inequality follows from the same line of
calculations as in the proof of Lemma 13 under (D1), (D2),
and (D3). When x0 = 0, the variance upper bound amounts
to the upper bound in Lemma 13. To observe this, note

V (0) ≤
M25

4π2N

∫ 2π

θ=0

∫
∞

ρ=0
|FL(hρkθ )|2ρdρdθ

=
M25

4π2N

∫
γ∈R2

|FL(hγ )|2dγ

=
M25

4π2Nh2

∫
ν∈R2

|FL(ν)|2dν

=
M25

4π2Nh2

∫
ν∈R2

|FK (ν)|2

|F fε(γ /h)|2
dν.

Thus, the variance upper bound at x0 = 0 is of order
N−1h−(2β+2). □

1) PROOF OF THEOREM 4
Lemma 15 and 16 imply that

E
[
f̂X (x0) − fX (x0)

]2
= B2(x0) + V (x0)

≤ M2
42h

2α−1
+

M44

Nh2β+1

≤ C2N
−

2α−1
2α+2β + C3N−1N

2β+1
2α+2β

≤ M12N
−

2α−1
2α+2β , x0 ̸= 0,

and

E
[
f̂X (0) − fX (0)

]2
= B2(0) + V (0)

≤ M2
43h

2α−2
+
M45

Nh2

≤ C4N
−

2α−2
2α+2β + C5N−1N

2β+2
2α+2β

≤ M13N−
2α−2
2α .
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F. PROOF OF THEOREM 5
We obtain a minimax lower bound for the deconvolution
problem in R2 when X and ε are both symmetric. When
x0 = 0, the evaluation functional is homogeneous, and
thus the renormalization argument implies that the optimal
convergence rate is of order N−

2α−2
2α+2β . Here, we assume that

x0 = r0ku0 ̸= 0 and analyze the effect of the radial symmetry
on the minimax convergence rate.

Let ψ be a radial function satisfying the following
(see [16]):

(DL-1)
∫

∞

r=0 ψ(rk0)rdr = 0

(DL-2) ψ(rk0) = 0 for r /∈ [0, 1]

(DL-3) ∥1(α−1/2)/2ψ∥
2

≤ Q2/4

(DL-4) Fψ(ρk0) = 0 for ρ /∈ [1,∞)

(DL-5)
∫

∞

ρ=1 |Fψ(ρk0)|2ρ−2βdρ ≤ M46

(DL-6) ρϑ ∂ j

∂ρj
Fψ are continuous and bounded for

j = 0, 1, 2 and ϑ > 3/2.

Since we are considering the ordinary smooth case,
we assume that

(DL-7)
∣∣∣ ∂ j
∂ρj
F fε(ρk0)

∣∣∣ ≤ M47ρ
−β−j as ρ → ∞ for

j = 0, 1, 2

Choose f0 to be a density in Sα(Q/2) such that

g0(rk0) = (f0 ∗ fε)(rk0) ≥ M48r−2κ as r → ∞, (7)

where 1 < κ < 1.5, and define, for (r, u) ∈ [0, 1] ×

[0, 2π ),

f1(rku) = f0(rk0) +M49δ
α−3/2Tr0ψ

( r
δ
k0
)
,

where M49 will be determined later. We also define
g1 = f1 ∗ fε. For M50 > 0, which will be specified later,
we choose

δ = δN = M50N
−

1
2α+2β .

With this construction, we need the following results to
obtain a minimax lower bound using the Le Cammethod. The
proofs are identical to those of Lemma 10 and Lemma 8, and
will be omitted.
Lemma 17: We have

|f0(r0k0) − f1(r0k0)| ≥ M51N
−
α−1/2
2α+2β

Lemma 18: We have f0, f1 ∈ Sα(Q).
We now obtain an upper bound for the χ2 divergence

between f0 ∗ fε and f1 ∗ fε.
Lemma 19: Let ϱ > 0 be given. Then, for sufficiently

large N , we have

χ2(g1, g0) ≤
ϱ

N
.

Proof: Let ϱ > 0 be given. By the distributive property of
the convolution, we have

χ2(g1, g0)

= 2π
∫

∞

r=0

(g1(rk0) − g0(rk0))2

g0(rk0)
rdr

= 2πM2
49δ

2α−3
∫

∞

r=0

[(
Tr0ψ(·/δ) ∗ fε

)
(rk0)

]2g−1
0 (rk0)rdr .

Note, by the Plancherel identity, Lemma 1, (DL-5), (DL-7),

and the inequality |J (a)| ≤

√
2
πa for 0 > 0,

R1 ≜
∫ 1

r=0

[(
Tr0ψ(·/δ) ∗ fε

)
(rk0)

]2g−1
0 (rk0)rdr

≤ M52

∫
∞

r=0

[(
Tr0ψ(·/δ) ∗ fε

)
(rk0)

]2 rdr,
×

(
M52 = max

0≤r≤1
g−1
0 (rk0)

)
=
M52

4π2

∫
∞

ρ=0

∣∣F[Tr0ψ(·/δ)](ρk0)F fε(ρk0)∣∣2ρdρ
=
M52

4π2

∫
∞

ρ=0

∣∣∣J (r0ρ)δ2Fψ(δρk0)F fε(ρk0)∣∣∣2ρdρ
≤

2M52

4π3r0

∫
∞

ξ=1

∣∣∣δ2Fψ(ξk0)F fε((ξ/δ)k0)∣∣∣2 dξ
δ

≤
2M52M47δ

2β+3

4π3r0

∫
∞

ξ=1
|Fψ(ξk0)|2ξ−2βdξ

≤ M53δ
2β+3. (8)

Observe that a change of variables r 7→ δr and s 7→ δs
implies

R2 ≜
∫

∞

r=1

[(
Tr0ψ(·/δ) ∗ fε

)
(rk0)

]2g−1
0 (rk0)rdr

=

∫
∞

r=1

[∫
∞

s=0

∫ 2π

v=0
Tr0ψ

(
rku − skv

δ

)
fε(skv)sdsdv

]2
× g−1

0 (rk0)rdr

= δ2
∫

∞

r=1/δ

[(
Tr0ψ ∗ δ2fε(δ·)

)
(rk0)

]2
g−1
0 (δrk0)rdr .

Under (DL-6) and (DL-7), we have, for any ρ ∈ [1,∞),

|1ϕδ(ρk0)| ≤ M54δ
βρ−ϑ as δ → 0,

where ϕδ(ρkθ ) = J (ρr0)Fψ(ρk0)F fε((ρ/δ)k0)) for (ρ, θ) ∈

[1,∞) × [0, 2π ). It follows from (DL-6) and (7) that

R2 = δ2
∫

∞

r=1/δ

[(
Tr0ψ ∗ δ2fε(δ·)

)
(rk0)

]2
g−1
0 (δrk0)rdr

= δ2
∫

∞

r=1/δ

[
−

1
r2
F−11ϕδ(rk0)

]2
g−1
0 (δrk0)rdr

≤
M2

54δ
2β+5

2π3

∫
∞

s=1

1
s4

[∫
∞

ρ=1
ρ1/2−ϑdρ

]
g−1
0 (sk0)ds

≤ M55δ
2β+5. (9)
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By (8) and (9), we have

χ2(g1, g0) ≤ 2πM2
49δ

2α−3(R1 + R2) ≤ M56δ
2α+2β

≤
ϱ

N
,

provided that we choose M49 small enough. □

1) PROOF OF THEOREM 5
The Le Cam method with Lemma 17, Lemma 18, Lemma 19
provides a lower bound for x0 ̸= 0:

inf
T

sup
fX∈Sα(Q)

E
[
N

2α−1
2α+2β |T (x0) − fX (x0)|2

]
≥ M57,

as N → ∞. As discussed above, a lower bound for
x0 = 0 can be determined by the renormalization argument.
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