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ABSTRACT This study illustrates a dimensionality reduction effect of radial symmetry in nonparametric
density estimation. To deal with the class of radially symmetric functions, we adopt a generalized translation
operation that preserves the symmetry structure. Radial kernel density estimators based on directly or
indirectly observed random samples are proposed. For the latter case, we analyze deconvolution problems
with four distinct scenarios depending on the symmetry assumptions on the signal and noise. Minimax
upper and lower bounds are established for each scheme to investigate the role of the radial symmetry
in determining optimal rates of convergence. The results confirm that the radial symmetry reduces the
dimension of the estimation problems so that the optimal rate of convergence coincides with the univariate
convergence rate except at the origin where a singularity occurs. The results also imply that the proposed
estimators are rate optimal in the minimax sense for the Sobolev class of densities.

INDEX TERMS Deconvolution, Fourier analysis, Hankel transform, minimax risk, radial symmetry.

I. INTRODUCTION

Radially symmetric density functions form an important
class of probability densities from both theoretical and
practical viewpoints. They constitute a subclass of elliptically
contoured distributions, which has received special attention
in multivariate analysis; see [1] for a detailed account.
Radial distributions frequently arise in practice. In physical
chemistry, atomic and molecular orbitals are often modeled
using spherically symmetric electron density functions; for
example, see [2]. Radial distributions also regularly appear
in geospatial analysis. Moreover, there is a good reason
to believe that data follow a radial distribution in some
applications, such as radar sea clutter data in [3] and animal
motion data in [4].

From a theoretical perspective, symmetry plays a cru-
cial role in the statistical analysis on symmetric spaces.
Reference [5] considered the deconvolution problem on
the Poincaré half plane, and [6] examined Wishart mixture
density estimation on the space of symmetric positive
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matrices. The SO(2)-invariance and Q(m)-invariance are
deeply involved in their analysis, where SO(2) and O(m)
denote the special orthogonal group in dimension 2 and
orthogonal group in dimension m, respectively. Since these
invariances correspond to the rotational invariance in R?,
understanding the effect of the symmetry in density esti-
mation on R? can strengthen our understanding of such
estimation and deconvolution in other symmetric spaces.

This study examines minimax estimation of radial densi-
ties. We first consider the standard density estimation prob-
lem based on directly observed random samples. We propose
a radial density estimator that extends the standard kernel
density estimator in R?. We obtain minimax risk upper
bounds of the proposed estimator in the pointwise metric
when the true density belongs to a radial Sobolev class.
Corresponding lower bounds are established to determine
optimal convergence rates for the radial density estimation
problem, and to illustrate that the proposed estimator is rate
optimal in the minimax sense. The results imply that the radial
symmetry has a dimensionality reduction effect, except at
the origin, where the symmetry adds no information to the
estimation.
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Our analysis is extended to the deconvolution problem
in which any empirical access is restricted to the data
contaminated by additive random noise. Our approach,
developed to deal with the radial symmetry, preserves the
convolution structure under the Fourier transform. This
property facilitates the development of a unified approach to
the deconvolution problem with radial symmetry. We assume
that the error distribution possesses the polynomial decay
rate in the Fourier domain and consider four distinct cases
depending on the symmetry assumptions on the signal
and noise. We obtain minimax upper and lower bounds
to conclude that the radial symmetry has a dimensionality
reduction effect in the deconvolution problem. We find that
only the radial symmetry of the signal variable has an
influence on the rates of convergence. Again, we observe a
singularity at the origin that results in a rate slowdown.

The main tool in our analysis is the Fourier transform,
which is recognized as a constant multiple of the Hankel
transform (or Bessel transform) of order zero for radial
functions. The use of the Fourier calculus provides an elegant
method to analyze minimaxity of the kernel density estimator.
Furthermore, the Fourier transform lies at the center of the
deconvolution technique since the additive contamination
effect can be naturally separated in the Fourier domain;
see the references in Section II. A fundamental technical
difficulty of the analysis comes from a lack of a translation
operation under the symmetry assumption. To resolve this
issue, we adopt a generalized translation defined through the
zero-order Bessel function of the first kind in the Fourier
domain. We define a radial kernel density estimator with
the generalized translation operation. The expected risk of
the estimator for the radial Sobolev class of densities is
analyzed in the Fourier domain based on the L-isometry
of the Fourier transform. Upon obtaining risk upper bounds,
we derive the corresponding minimax lower bounds using
the Le Cam method [7] to examine the complexity of
the estimation problem and the optimality of the proposed
method. The convolution theorem enables us to apply similar
lines of reasoning to the deconvolution problem under certain
regularity conditions.

Our primary contribution lies in the development of
a unified framework to analyze symmetry in function
estimation through minimax analysis. An alternative strategy
for addressing the given problem involves extracting radial
coordinates from the data and constructing an estimator
based on a density estimator over the positive real line. This
approach would involve assuming a Holder-type function
class or employing Mellin transform-based Fourier calculus
to explore the theoretical implications of the symmetry. For
example, [8] considered a kernel method for the estimation
of densities supported on the positive real line, which
can be modified to obtain an estimator for the radial
density. However, directly comparing outcomes from this
approach with the established minimax result for function
estimation in the Sobolev class is challenging. Consequently,
it remains uncertain whether results akin to those found in

126448

our study, such as dimensionality reduction and singularity
point occurrences, can be attained. Another significant
aspect of our analytical methods lies in the preservation
of the convolution structure under the Fourier transform.
This enables us to directly analyze scenarios where the
uncorrupted signal and/or contamination distribution exhibit
symmetry. In contrast, focusing solely on univariate function
analysis restricts us to analyzing only half of the cases,
with ambiguity surrounding the concurrence of analysis with
standard minimaxity results. Finally, the findings of this study
can be broadly extended to K -invariant density estimation on
general symmetric spaces, leveraging the group action and
the Helgason-Fourier transform. This feasibility is rooted in
our theory and computations, which are firmly anchored in a
unified framework built upon the standard Fourier calculus.

The remainder of this paper is organized as follows.
Section II presents an overview of the literature. In Sec-
tion III, we collect mathematical preliminaries including
the Fourier analysis and generalized translation. Section IV
defines the radial kernel density estimator and investigates its
minimaxity. Minimax analysis of the deconvolution problems
under the radial symmetry is presented in Section V.
Section VI discusses possible generalizations of the results
of this paper. The proofs of the main results are deferred to
Appendix VL

Il. OVERVIEW OF THE LITERATURE

This section provides an overview of the literature related
to the theoretical analysis of the kernel density estimation
based on the Fourier calculus. The origins of the current
form of kernel density estimation method can be found in
[9] and [10]. Since kernel density estimation is a method with
a long history, one may refer to monographs such as [11]
and [12] for a comprehensive overview. The use of Fourier
calculus in kernel density estimation dates to [10] and [13].
Many studies have extended the method of minimax analysis
in the Fourier domain to address the deconvolution problem.
Important earlier works in this direction include [14], [15],
[16], [17], [18], [19], and [20]. See also [21] for an overview
of nonparametric deconvolution. The method was further
extended to analyze the density deconvolution on symmetric
spaces by [5] and [6]. Our study adopts a similar analysis
method based on the Hankel transform. One may refer to,
for example, [22], [23], and [24] for relevant mathematical
backgrounds.

IIl. PRELIMINARIES

When dealing with radial functions, it is more convenient
to work with the polar coordinates system rather than the
rectangular coordinates system. Let Ry be the set of all
positive real numbers. The polar coordinates (r, u) € R4 x
[0, 27) for x € R? are defined as

cos u
x=rky, k,=| . .
w T |:51nuj|
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FIGURE 1. Three perspective plots with the contours illustrating the translation operation by Ts. Plot (a) is the plot of the original
function g. Plots (b) and (c) present the functions translated by T; and T /3 respectively.

A function g is called radial if it depends only on the radial
part of its argument so that

g(rky) = g(rko), (r,u) € Ry x [0, 2m).

For x = (x1,x2) € R2, we write dx = dx;dx;. Recall that
the Fourier transform in rectangular coordinates is defined as

Fe)= [ sod .
xeR?
with the inversion
—1 1 —i(y,x)
gx)=F [fg(')](X)=ﬁ Fegly)e ""Hdy,
T VE]RZ

where x = (x1,x2), ¥ = (y1, y2) and (y, x) = y1x1 + y2x2.
For a radial function g, the Fourier transform is recognized

as the 27 times Hankel transform of order zero. When g is

radial, we have

[o/0]

Felpks) = Fglpko) = 2 / g(rko) (pryrdr,

r=0
where J () denotes the zero-order Bessel function of the first
kind. The inverse transform is

g(rk,) = g(rko) = F ' [Fe()I(pko)

o0

1
=5- Fg(pko)J (pr)pdp.
T p=0

An important property of the Fourier transform is that it
extends to an Lp-isometric mapping. That is, we have the
Plancherel identity

1
[ swlac= [ iFsoray.
xeR2 4z yeR?

When g is radial, it is expressed as

o0 ) 1 o0 5
/ |g(rko)|“rdr = H/ | Fg(oko)|*pdp.
r=0 T 0

The dilation operation for radial function can be defined in
a usual way in R?. Let the dilation Djg of a function g (not
necessarily radial) be defined as

Dpg(x) = g(x/h), h > 0.
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Equivalently, in the polar coordinates system, we have

Dig(rk) = g(7ki).

A fundamental technical difficulty of the analysis comes from
a lack of a translation operation under the radial symmetry
assumption. The standard translation operation in R? is not
appropriate for the radial function class, since the resulting
function is not radially symmetric with respect to the origin.
To resolve this issue, we adopt a generalized translation
operation defined as follows.

Consider the polar representation of the difference of the
two vectors in R?. Define

=s2+r2—2srcosw
ssinv—r sinu)

(s, r,w)

n(s,r,v,u) = tan~!
SCOSV—F COS U

Then
sky—rky = T(s,r, v — Wkyes,rv,u)-
For s € R, let T, be the translation operator defined by

Tyg(rk,) = Tsg(rko)
2
=— g(z(r, s, wko)dw, (r,u) € Ry x [0, 27),
27 Jw=0

where r is the radial part of x, and g is a radial function.

Recall that the standard translation on R can be understood
as the convolution of a function g on R with the delta function,
which, in the Fourier domain, is expressed as

Flg(- — (1) = ™ Fg(r), t,s € R.

The generalized translation for the radial function defined
above is indeed the “right” generalization in that it results
in

FTsg())(pko) = J(sp)F g(pko), (p,0) € Ry x [0, 2m).

Since g is radial, the complex exponential function is replaced
by the Bessel function. This result is proved in Lemma 1.
Following the above discussion, the generalized translation
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FIGURE 2. The leftmost plot is the contour plot of the standard normal density. The middle and rightmost plots illustrate the
contours of the standard kernel density estimator (KDE) and the proposed radial kernel density estimator (RDE) based on a

sample of size 50, respectively.

can be understood as the convolution of a radial function with
the delta function. That is, the mass of the function is spread
out in the vicinity of the circle of radius s with the spreading
shape determined by the radial function g. Figure 1 illustrates
the translation operation for radial functions.

IV. MINIMAX KERNEL ESTIMATION OF RADIAL
DENSITY FUNCTIONS
Let Xy, ..., Xy be independent copies of arandom variable X
with the density f with respect to the Lebesgue measure
on R%. We consider the case in which the density f is a radial
function.

Given a radial kernel function K and bandwidth 2 > 0,
we define the radial kernel density estimator as

N
fo) = 1lv > Tr,Kn(x)

n=1
1

N 2w
_ 2
=5 ngl /:0 Ky (t(r, Ry, wko) dw, x € R~

where Kj,(-) = h_zK(~/h), and r and R, denote the radial
parts of x and X, respectively. The proposed estimator is
seen to be a form of the kernelization of x — X, followed by
integration with respect to the angular part. Since the angular
part is integrated out, the proposed estimator depends only
on the radial part r of x, and is therefore radial. Lemma 2
demonstrates that the proposed estimator is a valid density
provided that the kernel is given by a density function.

Our previous discussion on the generalized translation
implies that the proposed estimator can be understood as
follows. The impulse of Xi, ..., Xy is first averaged around
the circle of radius Ry, ..., Ry. Then, it is evenly spread
out in the vicinity of the circle with the spreading shape
determined by the radial kernel function K. The proposed
estimator is illustrated with Figure 2. It can be seen that the
radial kernel estimator closely recovers the true density with
a small sample size (N = 50).
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Consider a Sobolev class of radial densities

S84(0) = [g € Lr(R?), g isradial :

2
/Rzgu)dx =1, |A"%|" < 0%,
xXe

where QO > 0 and ¢ > 1 is a smoothness parameter.
Here, ||-|| denotes the L2-norm, and A%/ 2f is the function
satisfying F (A%/?g) (p) = )\%/ng(p), where 1, = p? is
an eigenvalue of the Laplace operator.

We choose the kernel function defined by the Fourier

transform

FK(pky) =

1
, (p,0) e Ry x [0, 2m).
T (00 €Rex [0,27)
This choice is mainly for simplicity, and the results herein
are valid for other kernel functions provided that they satisfy
certain smoothness conditions. For example, the theoretical
results are valid for a Pinsker-type kernel defined as

FK(pky) = [1=p™] . (p.6) € Ry x [0,2m),

where [-],. is the plus function.

Here and throughout this paper, let My, M>,... and
Ci, Cy, ... denote positive constants independent of the
sample size N, which may differ at various places. The
maximum risk for the radial Sobolev class of densities in
the pointwise metric is upper bounded as follows.

Theorem 1: Choose h = M| N _i. Then, we have

20—1

A 2
sup E[f(x0) — f(x0)| = MoNTE, 0 0,
F€Sa(Q)
and
A 2 22
sup E[f(0)—f(0)] = MaN 5
f€Sa(Q)

The optimal pointwise rate of convergence for the Sobolev
class without the symmetry can be obtained using the
renormalization argument of [25]. The optimal rate in this
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case is of order N~ >3 on RY. It can be seen that the upper
bound at xp # O for the radial Sobolev class S,(Q) in
Theorem 1 corresponds to the univariate convergence rate.
This can be understood as a dimensionality reduction effect
that comes from the radial symmetry. However, a singularity
occurs at the origin since the symmetry adds no information
to the estimation at this point. Thus, the upper bound
coincides with the bivariate convergence rate at the origin.

For a complete understanding of the dimensionality
reduction effect due to the radial symmetry, we obtain the
corresponding minimax lower bounds using the Le Cam
method [7] (see also Lemma 1 of [26] and Theorem 2.2
of [27]). We provide separate analyses when xp = 0 and
xo # 0. The generalized translation proves useful for the case
in which x9 # 0, since we need to construct two densities
in S4(Q) with an appropriate separation rate. The standard
translation operation is not applicable because the resulting
function no longer belongs to the class Sy (Q).

When xg = 0, the evaluation functional is homoge-
neous [25]. Thus, the renormalization argument can be
applied to conclude that the optimal rate is of order
N~ "% without appealing to the Le Cam method. However,
we present the proof based on explicit construction of a
two point subfamily for later references. The results are
summarized in Theorem 2.

Theorem 2: As N — oo, we have

inf sup B[N |T(x0) — f(x0)] = Ma, 20 #0,
T feSq.(0)

and

inf sup E[NS 170 ~fO)F] = M5,
T feS.(@

where the infimum is taken over all estimators of f .
Theorem 1 and 2 imply that imposing the radial symmetry

reduces the difficulty of the density estimation problem by

one dimension except at the origin. The results also suggest

that the proposed estimator is rate optimal in the minimax

sense for the radial Sobolev class.

V. DECONVOLUTION UNDER THE RADIAL SYMMETRY
This section deals with the deconvolution problems when the
signal and/or error variables follow a radial distribution. Let
Y1, ..., Yy be arandom sample of size N where

Y, =X, +¢e, n=1,...,N.

Suppose that Xi,...,Xy are incorrupted i.i.d. random
variables with the density fx, and ¢y, . .., &, are i.i.d. random
variables with the density f;, representing the contamination
of the data. We assume that X, and ¢, are independent for
n = 1,...,N so that the density fy of contaminated data
is given by fy = fx * f.. Here, * denotes the convolution
operation defined as

(g1 * g2)(x) =/ ) g1(x — y)g2(y)dy,

yeR
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for the functions g; and g, defined on R2. Furthermore,
we assume that the error distribution is known in advance.
Our goal is to estimate the unknown density fy from a set
of contaminated data Y, ..., Yy. Four distinct cases can
be considered depending on the symmetry assumptions on
X and ¢. We analyze the minimaxity in each case and examine
the effect of the radial symmetry in the deconvolution
problem.

The smoothness of convolution kernels is usually charac-
terized as ordinary smooth and supersmooth depending on
the decay rate of the characteristic function; see [16] for
example. In the supersmooth case, it is known that the bias
term dominates the variance term, and hence the dimension
does not appear in the optimal convergence rate when we
consider a Sobolev class of functions. Our main focus is on
the dimensionality reduction effect of the radial symmetry
on the convergence rates. Thus, we confine our attention to
the ordinary smooth error distributions whose characteristic
functions satisfy, for y € R2,

Mely 7P < |Ff(n)l < M7yl as |y| — o,

where |-| denotes the usual £, norm of a vector. In the sequel,
we assume the following:

(D) Ffe(y) #0, y € R

D2) |FWllylf =Ms as |y| - oo

D3) [, e [FKOIlyIPdy < Mg

A. CASE 1: NEITHER OF X AND ¢ IS RADIAL

Suppose that fy and f; are not radial. This case corresponds
to a classical deconvolution problem; see, for example,
[16] and [21]. In particular, we assume that fy € S;(Q)
where S}(Q) denotes the Sobolev class of densities without
the radial symmetry defined as

SiQ) = [g € LR :

2
/Rzg(x)dx =1 A"l st}.
xe

We establish a minimax risk upper bound of the standard ker-
nel deconvolution estimator for the Sobolev class of densities.
Since no symmetry assumption is imposed, we work with the
rectangular coordinates system in this case.

We consider a kernel deconvolution estimator defined as

1 / FKhy)¥y(y)
yeR2

2 — vX) g R2
fx@x) =7 o) © y, x € R%,

ey

where @y is the empirical characteristic function

N
—~ 1 ,
Uy(y) = ]V 2 eV Yn)

n=1

This estimator admits the following upper bound for the
maximum risk over the Sobolev class of densities.
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1
Theorem 3: Choose h = MoN ™ 2¢+28_ Then, we have,
as N — oo,

sup IE3[]%(()60) —fx(XO)]2 < MyoN~ %77, xp € R2,

€550

The renormalization argument of [25] can be applied when
neither of X and ¢ is radial. As explained in Section 5
of [25], we may use the Riesz transform to replace the
inhomogeneous convolution operator in the ordinary smooth
case. This leads to a reformulation of the problem that
renormalizes in an asymptotic sense. Then, it is not difficult
to calculate that the optimal rate of convergence is of order

_ 20=d_ .. . .
N~ 2728 on R, This implies that the kernel deconvolution
estimator fy achieves the optimal rate of convergence.

B. CONVOLUTION BETWEEN RADIAL FUNCTIONS

Before we analyze the deconvolution problem under the
radial symmetry, we give some justifications for our approach
to deal with the radial function. We may view a radial
functions as a univariate function defined on Ry, and
consider a standard convolution operation on R . However,
this approach does not preserve the convolution structure of
the Fourier analysis on R2. Instead, we handle the radial
function in a way that coincides with the standard Fourier
transform method in R? based on the generalized translation.
This property enables us to investigate all possible cases
under the radial symmetry in a unified way as we will see
in what follows.

To illustrate this idea further, we provide a result for
the concordance between two convolution operations. Let
G1 and G be functions defined on R;. The convolution
operation on R in our approach has the form

(G1oG)(r) = /OO T5Gi(r)Ga(s)sds, r € Ry,
s=0

where, with a slight abuse of notation,

1 2
G = 5 / Gi(x(r, 5, w))dw.

For a radial function g on R?, we define a lift-down
function g¥ on R by

gv(r) = 2mg(rko), r € Ry.
Then, we have
Fglpke) = Bg*(p). (p.0) € Ry x [0,27),

where B denotes the order zero Hankel transform defined as

Bg(p) = / Oy, p e Ry

On the other hand, we may start with a univariate function
on R, . For a function G defined on R, we define a lift-up
function Gt on R? by

Gl (rk,) = %G(r), (r,u) €e Ry x [0, 2n),

126452

which gives
FG (pkg) = BG(p), (p,0) € Ry x [0, 27).

With this formulation, we have the following proposition.
Proposition 1: Suppose fi and f> are radial functions
on R2. Then,

(i %)t =f1¢ szi-
Moreover, for functions g\ and g on Ry,

(grog)! = ng *g;

Proposition 1 with the convolution theorem implies
Proposition 2.
Proposition 2: For functions g\ and g defined on R,

B(g1 0 g2)(p) = Bg1(p)Bga(p), p € Ry

and

F(g! = gD oke) = Fal (pko)Fel ko),
(p,0) € Ry x [0, 2m).

Moreover; for radial functions fi and f> on R?,

B(f o f; )N0) = Bf (0)Bfy (0). p € Ry

The preceding arguments imply that our approach identify
a radial function on R? with a function on R in a way that
preserves the convolution structure with respect to the Fourier
calculus. It will prove useful in subsequent analyses of the
deconvolution problem.

C. CASE 2: BOTH X AND ¢ ARE RADIAL

Suppose that fx and f, are radial densities. As in Section IV,
we determine the minimax optimal rate of convergence to
identify the dimensionality reduction effect of the radial
symmetry in the deconvolution problem. In the following,
we adopt the polar coordinates system and assume that

Ix € Su(Q).

Motivated by the standard kernel deconvolution estima-
tor (1), we consider a radial kernel deconvolution estimator
defined as

Fxx) =

1 [ FK(hpko)®
/ (hpko) Y(p)./(pr)pdp
P

27 J o Ffe(pko)

forx =rk, € R2, where
1 N
by (p) =+ ZIJ(pSn),
n=

with S, being the radial part of ¥, forn = 1,..., N. A risk
upper bound is given by Theorem 4.

1
Theorem 4: Choose h = M{1N 2+28. Then, we have,
as N — oo,

~ 2 _ 2a-1
sup_ E[fx(x0) — f(xo) | = Mo~ 555, 50 £0,
feS(Q)
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and

sup E[fx(©) — £ )] < MV E,
fesSa(Q)

Theorem 3 and 4 show that the information of the radial
symmetry improves the risk upper bounds by reducing the
dimension. Again, from the upper bounds, it is expected that
a singularity occurs at the origin. We derive the corresponding
lower bounds to conclude that the rates given in Theorem 4
are indeed optimal in the minimax sense.

As in Section IV, we make use of the Le Cam method to
obtain lower bounds for xy 7% 0. To this end, we construct
a pair of radial densities fy and f; in Sx(Q) so that the
separation rate |fo(xo) — f1(xo)| is as large as possible under
the constraint that xz(fo * fe, f1 % fe) is of order N ~1 When
xo = 0, the evaluation functional is homogeneous, and
thus the renormalization argument provides a desired lower
bound.

Theorem 5: As N — oo, we have

inf sup B[N |T(x0) — (o)) = Mia, x0 %0,
T fxeSa(0)

and

inf sup B[N |T0) — £ OF] = Mss,
T fxeS.(Q)

where the infimum is taken over all estimators of f .

D. CASE 3: X IS NON-RADIAL AND ¢ IS RADIAL

This case is rather trivial. Since fy is not radial, we can
construct a pair of densities fy, fi € S;(Q)in ausual way. The
function fj is constructed by adding a suitable perturbation
function to fy. No symmetry is involved in the constraint
fo.fi € S;(Q) and the calculation of the separation rate
lfo(x0) — f1(x0)|. Moreover, as can be seen in the proof of
Theorem 5, the calculation of the chi-squared divergence
x2(fo * fo.fi * f.) is not affected by the symmetry of f;.
The preceding arguments imply that the optimal rate of
convergence in this case is given by the bivariate convergence

rate of order N~ Z¥p as in Case 1. The proof of this
result is immediate 2-dimensional generalization of the proof
presented in [16], and hence will be omitted.

E. CASE 4: X IS RADIAL AND ¢ IS NON-RADIAL
Obtaining a minimax estimator is more involved in this case,
since the radial symmetry of fy is masked by the convolution
with f;. It can be seen in Lemma 12 that the bias of the
estimator (1) does not depend on the error distribution. Thus,
we may conjecture that the optimal rate in this case is given
by the univariate convergence rate.

Lemma 11 implies that the deconvolution estimator (1) can
be re-expressed as

N
N 1
() =52 Lalx =Yy, x € R,

n=1

VOLUME 11, 2023

where
1 FK
b=y [ L
4r yeR? Ffe(y /h)
Suppose that we can choose a kernel function K that cancels
out the angular part of f; so that
1 [ FK(pk
L(rk,) = / _TKpko)
27 Jpmo Ffe((p/h)ko)
for (r,u) € Ry x [0,27). With this choice of the kernel,
we define an estimator

N
1
= N ZTSnLh(rk()), x=rk, € Rz,

n=1

e‘“’“”dy, x € R2.
J(pr)pdp

Fx(x)

see also Lemma 14. Then, Lemma 15 and Lemma 16 imply
the following risk upper bound.

1
Theorem 6: Choose h = MijgN 2+28. Then, we have,
as N — oo,

~ 2 _ 2a-1
sup_E[fx(x0) — f(xo) | = Mg~ %55, 30 £0,
feS(Q)

and

swp E[fx(© )] < MgV E.
feSa(0Q)

It can be easily confirmed that the radial symmetry of f; is
not required in the proof of Theorem 5. Thus, we conclude
that the optimal rate of convergence in this case is the
univariate rate except at the origin. That is, the minimax rate
of convergence depends only on the radial symmetry of fx in
the deconvolution problem.

VI. DISCUSSION

This study investigated the dimensionality reduction effect
of the radial symmetry in nonparametric density estimation.
To address technical difficulties arising from a lack of
translation, we adopted the generalized translation operation
that preserves the radial symmetry. This results in a radial
kernel density estimator analogous to the standard kernel
estimator in the Fourier domain except that we have a Bessel
function of the first kind in place of the character defined by
the complex exponential function. We established minimax
upper and lower bounds depending on whether the data are
observed directly or indirectly. It was verified that the radial
symmetry reduces the dimension of the estimation problems
so that the optimal rate of convergence coincides with the
univariate convergence rate except at the origin where a
singularity occurs. The results also imply that the proposed
estimators are rate optimal in the minimax sense for the
Sobolev class of densities.

Our results can be generalized and extended in several
ways. One obvious generalization is toward the radial density
estimation in R?. As in this study, we may adopt the
d-dimensional spherical coordinates system and integrate out
the angular part to obtain a radial estimator in R?. The Fourier
transform of a radial function g on R¥ is characterized by the
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Hankel transform of order (d —2)/2. Then, we may apply the
approaches developed herein to analyze the dimensionality
reduction effect of the radial symmetry in R9.

The results of this study can also be generalized to
invariant density estimation on general symmetric spaces.
The minimax analyses presented herein are performed mostly
in the Fourier domain. Thus, the results are expected to be
extended based on the group action and Helgason-Fourier
transform on a given symmetric space. One may refer
to [23] and [28] for the Fourier analysis on symmetric
spaces. In line with our study, we may analyze the
minimax convergence rates for density estimation under the
K-invariance assumptions. For example, we may consider
the SO(2)-invariant density estimation on the Poincaré upper
half-plane model, or the Q(m)-invariant density estimation on
the space of positive matrices.

APPENDIX
PROOFS
A. PROOF OF THEOREM 1

Lemma 1: Let g be a radial function. For p > 0, h > 0,
and 0 € [0, 2m),

F|Tro8()](0ko) = J(rop)Fg(pko). )
FIDrg()I(pke) = > Fg(hpko), 3)

and thus
F[TosDrg()](oke) = 12T (rop) Fg(hoko).
Proof: Note

F[Tre()](0ke)

o0 2
=/ [L/ g(z(r, ro,w)ko)dw}J(pr)rdr
2w
— 4n2/ /r O/Z r(r 10, 2 — Wkn(r, rozw))

x ezprcos(O Z)dzrdrdw

2w
=— / / g(rk, — rokyy)e! Pkork) gz pdrdw
4r r=0Jz

271
=— / / / g(sk, )e! PRo-skvtrok) gy g sy
47t s=0 Jv:

zpro cosw

w=0

X |: / / g(sk,,)eip”osvdvsds]dw
s= 0 =

o0
= £/PTOCOSW iy / g(sk,)J (ps)sds
27{ w= s=0

_ JGomFelplo). )

126454

For the dilation, we have

FIDrgO)(pke) = / /

= n? / / g(sku)eihp reos®=10) gy s
r=0Ju=0
= W’ Fg(hpke) = h> Fg(hpk).

zpr cos(@—u)dm,dr

where we have used the symmetry assumption for the last
equality. O
Lemma 2 shows that the proposed methods provide a valid
density estimator provided the kernel is given by a density
function.
Lemma 2: Let K be a radial kernel such that fx cr2 K(x)

dx = 1. We have
/ Fx)dx = 1.
xeR2

Proof: Note

/ f (x)dx
/ / / Ky, (t(r, Ry, wko) rdrdudw
w=0Ju=0 Jr=0

/ / Kh 'L'(r Rn, u— n)kn(r Ry ,u, Un))
u= r=0

xrdrdu

1

:_Z/ Kp (x — X)) dx = 1.
xeR2

N n=1

Define a radial empirical characteristic function

N
~ 1
®(p) = D J(PRw), p € R
n=1
Observe that Ea(p) = Ff(pko). Lemma 3 enables us to use

the Fourier analysis technique.
Lemma 3: We have

Ff (pke) = ®(p)FK (hpko), 6 € [0, 2).

Proof: Since

L)
/ / / K, (sky) e'Pko (kvtRakid gy, gy
u= V=
_ [Tk, (sko) [ / etpscos Vdv]
s=0 v=0
2
X |:/ g'PRucos ”dui| sds,
u=0

Kh (z(r, Ry, z — wko) €D dzrdrdu
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we have

. o) 1 N 27
F(pke) = / B [ﬁ Z:; / K (50 Ry k) du]

2
% |:/ iprcoszdz] rdr
z= 0
K , Ry, 7 — wk
2nN / /ro/z n (T(r, Rn, z — u)ko)

x etPr Coq( A dzrdrdu

[ Z](pRn):| 27 / ~ Ky, (sko) J(ps) sds
=0

n=1

= &(p)FKn(pko) =

where the last inequality follows from (3). O
Recall that the mean squared error is decomposed as

D(p)FK (hpko),

n 2
MSE(x0) = E[f(x0) = f(x0) | = B2a0) + V (xo).

where B(xp) and V (xp) are, respectively, the bias and variance
term defined by

Beo) = [Ef (o) — £ xo)|
and
= E[f()fo) - Ef(Xo)]2~

We find an upper bound for each term in Lemma 4 and
Lemma 5.
Lemma 4: We have

Vixo)

B(xo) < Mioh®" %, xo £0 and B(0) < Magh®~".
Proof: Observe
fx0) = F~FFO(roko)
= % /p :) Fif (pko) (pro) pdp. 4)

Lemma 3 implies

A 1 o0

Ef (x0) = 7 / Ff(pko)FK (hpko)J (rop) pdp.  (5)
T =0

Combining (4) and (5), we have

o]

Blxo) = -

. Ff (0ko)J (rop) [ FK (hpko) — 1] pdp‘-
p:

It follows from the definition of Sy(Q) and the Cauchy-
Schwarz inequality that

BO)= oo\ | _ FF(oko) OIFK (hpko) = 1] pdpl
p:
< Z _\FF (koI FK (hpko) — 1] pd p
- 1/2
<— ( |5ff<pko>|2 mpdp)

VOLUME 11, 2023
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1/t Ve
(L) ()
2T 200 7=0 \ <
Bl +a !, 1-
_Mlhale_Q(wLa a” ),
4o
where B(-, -) denotes the beta function. For xo = rok,, # 0,
using the inequality |J(a)| < ./ % for a > 0 (see Chapter 7
of [24]), we have

1 0.¢]
B(xo) = E/ |Ff (pko)llJ (rop) | F K (hpko) — 1] dp

Q * 2 20+1 12
|Ff (pko)|“p™ " dp
o

= Y2z \Unmo
( 0 p2a(ppy2e )1/2
([ e
p=0 (1 + (hp)*)
< Myph~3,
for M, = n%\/%—l—w. U
Lemma 5: We have
Voo < B 3020 and V(0) < M2
Nh’ = NR2

Proof: Following the argument in Lemma 3.1 of [29], we
have |f |l < Mas, where |||, denotes the usual sup-norm
of a function on R2. It follows from Lemma 1, the Plancherel

theorem, and the inequality |J(a)| < ,/ﬂ—za for a > O that, for

X0 = rokuy, # 0,
Vi) < — /hK to. W) Vo ’
X o
0= 42N xeR2 LJw=0 " h o)
X f(x)dx, x=rky
2171 M- o 2 7 2
5”25/ _/ Ko (27 Naw! rar
N r=0 L27 Jw=0 h
2nMsrs [ 2
=N /r—o [T,OKh(rko)] rdr
M25 > 2
= [ (rop)FKn( ko)~ pd p
2n N =0
Mps [ )
< FK (hpko)|°d
_nerN/p_ |FK (hoko)dp
M>3 M25/ )
< — M — FK (Eko)|“dE.
S M=o ) | FK (§ko)|"dE
At the origin, we have
M25 o0 2
V) < —— | FK (hpko)|” pd p
aN =0
s / | FK (ko) %6 d
= 27Ni2 0
2
- M24’ Mo _ Mos|Kl _
— Nh? 472

O
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1) PROOF OF THEOREM 1
Lemma 4 and 5 imply that

~ 2
E[fe0) —f00)] = B20) + V(o)
M23
‘Nh
<CON% + NN

20—1
<MpN™ 2, x9 #0,

< MR 4

and

N 2 5
E[f©0 -] =B+ V)

22 2
< Ci3N™ 2« 4+ C4N™ "N«

202

<M3N~ 2o,

B. PROOF OF THEOREM 2

We provide proofs for the case xp = 0 and x9 # O in
Proposition 3 and 4, respectively. The x> divergence between
two probability measures P and Q is defined as x2(p, ¢) =
Jo— ¢)*q~" when they admit densities p and g, respectively.

1) LOWER BOUND AT THE ORIGIN

We construct a pair of densities fy and f] to obtain a minimax
lower bound. Let ¢ be a radial function satisfying the
following:

(L1) ¥ () >0

(L2) ¥ (rko) =0 forr ¢ [0, 1]

(L3) [ (ko) rdr =0

L4) Ay | < Q>4

Let fy be a radial density in S,(Q/2) such that fy(rky) >
My for r € [0, 1], and define

Filrke) = fo(rko) + M275a_110(§k0)

for (r,u) € [0, 1] x [0, 27), where M»7 will be determined
later. For Mg > 0, which will be specified later, we choose

S = 8N :Mngii.
Observe, for, Mag = MM ' [ (0)],

o(0) — A1(0)] = M8 [y (0)] = MagN ™% . (6)

Lemma 6: We have fy, fi € Su(Q).
Proof: By the assumptions fy € Su(Q/2), (L4), and
equation (3) in Lemma 1, we have

2 1 [
IAY2f)" = —

= |Ffi(oko)> 0% dp

p=0
1 [ 2
= | | Fhotoko)+ M F Ly /8)1pko)
T p=0
x p20l+ldp
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|F Ly (/8)](pko))* 0> d p

2 -
Q2 M2 520{—2 [e'e) 2
:7_{_27— ’82.7:10(5/)](0)’ p2a+ldp
s p=0
0 M227 nQ* 2
<= 4 £ = <
=3 + ~ 5 = o,
provided that we choose M7 < 1. O

Lemma 7: Let ¢ > 0 be given. Then, for sufficiently
large N, we have

xX2(f1, fo) < 1%

Proof: Let o > 0 be given and N be large enough for 1/h
to be greater than 1. Note

rdr

2
20 ) =2 / (f1(rko) — fo(rko))
K Jo) =27 ref0,1] Jo(rko)

2w M2
< T 27820(—2/ ¢2(£k0)rdr
Mo ref0,1] s

() / : 2
= i Y- (sko) sds
4M>e6 5=0
4
< M3p82® < =,
= M30 =N
provided that we choose a sufficiently small M»g. (|
Combining (6), Lemma 6, and Lemma 7, we apply the Le
Cam method to obtain the following lower bound.
Proposition 3: As N — 0o, we have

inf sup E[N2‘352|T(0) _ f(0)|2] > M.
T feSa(0)

2) LOWER BOUND AT Xy # 0
To obtain a lower bound at xo = rok,, # 0, we need to
construct a perturbation around the circle with the radius ry.
Since we cannot make use of the standard translation
operation on Euclidean spaces, we construct a perturbation
based on the generalized translation operation. That is, we put
mass around the circle with the radius ry and spread it by
convolving with a radial function ¥ so that the perturbation
satisfies the desired smoothness conditions. Here, we can
replace (L4) by

(LA-1) [AC122y ) < 24
Define, for (r, u) € [0, 1] x [0, 27),

fi(rky) = fo(rko) +M316“—3/2Tr01/f(§ko),

where M3 will be determined later. For M3, > 0, which will
be specified later, we choose

§ =8y = MypN ™%,
Lemma 8: We have fy, fi € Sa(Q).
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Proof: By the assumptions fy €

||A(°‘*1/2)/2w||2 < Q%/4, Lemma 1, and |J(a)| <
a > 0, we have

Sa(Q/2),

2
N for

2
A2
1 o 2 2a+1
=— | Ffi(oko)|*p**dp
2 p=0
[ a—3/2 2
5r | [tk + 516 P F [Ty /) oko)
p:
% p201+1dp

- Q_2 M321 820{—3 /OO

+ | F[ T (-/8)](oko) [ 0> dp

-2 T
2 M2 320!—3 e’} 2
_2 My ” / 1o Fyooko)| P+ dp
p=0

2 T

Q2 2M2 82a+1 00
< St | IFuGoko)Pp*dp
T=ro p=0

2 M2
<L Mg
2 Tro
provided that we choose M3; < /mry/2. O
Lemma 9: Let 0 > 0 be given. Then, for sufficiently
large N, we have

2 .
x“(fi./o) < N
Proof: Let N be sufficiently large. Using the Plancherel

identity and the inequality |J(a)| < % fora > 0, we obtain

(fi(rko) — fo(rko))?
Jo(rko)

rdr

X2 fo) = 277/

ref0,1]

2w M? 2
< 751 g2a=3 / Trow(fko)) rdr
M rel0,1] 8
M321 il [0 2
= sl [ ooFu ok Pods
27 M>g =
M2 ()
< s [\ FwehPds
e roMae £=0
o
< Ma28% < —,
= M33 =N
provided that we choose a sufficiently small M3;. d

Lemma 10: We have

w12
[fo(roko) — fi(roko)| = M34N ™ 2« .

Proof: Let N be sufficiently large. A change of variables

7 =4+/1 —cosw/§ implies
o(roky) — f1(roky)|
M316° =T (Sho )|
0 )

M 805—3/2 b4 ,
_ My / 1//(T(Vo,ro W)ko)dw‘
T w=0 )
1//2ro 28d
:M318a_3/2/ w(\/zrozko)—z
z=0 2— 52Z2

VOLUME 11, 2023

1/+/2r
> M358%3/228 / v (v 2rozko)dz
Z

=0

—1/2
> M38%"/2 > MayN~"%

|
Combining Lemma 8, Lemma 9, and Lemma 10, we make
use of the Le Cam method to obtain the following lower
bound.
Proposition 4: As N — oo, we have

inf sup [N T() — f(x0) ] = Ms7, x0 #0.
T feSa(0)

3) PROOF OF THEOREM 2
Proposition 3 and 4 imply that, as N — oo,

inf sup E[N5 [T(0) (o) ] = M7, x0 #0,
T fesa@)

and

inf sup E[N%U(O) —f(0)|2] > M.
T feSq(Q)

C. PROOF OF THEOREM 3
Lemma 11: Define

s / FK()
4n2 )y epe Froy [h)

Then, we have

L(x) = e gy, x e R2.

N
fx(x) = ]leLh(x —Y,), x € R%

n=1
Proof: Note
. 1 FK (hv)¥ .
fx(x) = _2/ FRENCY Q) v 4,
4r= Jyer2 Ffe(w)
N
S / FED) ity o) ity ) g,
Nh* = 4x? |, er> Ffe(y /h)
N H X—In
SIS R g
N> = 4n2 |, ep2 Ffe(y /h)

N

1 x—Y,
= — L .
()

Lemma 12: We have

B(xg) < M39ha_1, Xg € RZ.

Proof: Observe
N 1 FK(hy)F, ;

B = Ly [ ZKODTO)

4n= Jyer2 Fle(y)

1 .
=13 / FRhy)Ffx (e dy.
4 )/ERZ

dy
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Note that the bias term does not depend on the error
distribution, and it is therefore of order h*~! following the
proof of Lemma 4. To observe this, note

B(xp) =

Fix(WIFK(hy) — 1]e—i<%m>dy’

4]'[2 J/GRz
1

<2 | Ffx(WIFK (hy) — 1ldy
T yeR?

1 20 12
([ . amnPyEeay)
1/2
(hly > ]2 o
_ d
X(/yekz[lﬂhwh vy
o) 20 20 172
g(z,, / Lmzpdp)
2 p=0 (1+(/’l,0)2a)
OBl +a L 1—ah
4o '

A

IA

< M3gh®™!, Mzg =

g
Lemma 13: Suppose h — 0 as N — oo. We have,
as N — oo,

My
Vixg) < Nh2ﬂ+2 , X0 € RZ.

Proof: Since Yi,...,
Lemma 11 that

-1
Vixo) < —EL2 )
(X0) = Ny ( h )

Observe that ||fy ||, < M25 because

Yy are iid. it follows from

fY(y)=/ szx(y—x)fa(X)dx

< M>s Sfe(x)dx = Mps.

xeR2

The Plancherel identity implies

w (5= L C
h yeR2

=K / L*()fy (xo — h2)dz
zeR2

< Mysh?

)f Yy )dy

Lz(z)dz
zeR2
\FK ()

_M25h2/
42 Jyere |Ffi(y /h)I?

|y| for a large fixed constant My,

When Myh <
(D2) implies

; < C1h7ﬁ|y|5
|Ffe(y /M

Thus, we obtain

/ \FK ()
yl=Mah | Ffe(y /D12

<Cih / \FK ()P ly PP dy
[y1>M4a1h

< Coh2F,

126458

where C; = C7Ms. When |y| < My1h, (D1) implies

|[Ffe(y/W)| = C3 >0, C3 = min |Ffe(v)l,
[v]<Myy

so that
FK»))?
[ e,
lyl<Mah | Ffe(y /)|
for
1 2
Cy = — |FKy)l“dy.
3 Jiy|<Maih

Combining the results, we have

My

Vo) = w3

1) PROOF OF THEOREM 3
Lemma 12 and 13 imply that

~ 2
E[fx (o) — fe(x0)| = B*Gxo) + V(xo)
My
NHK2B+2
2=l + CgN~ 1N2a+2ﬁ

202 2
< MjoN ™% | xy € R2.

< M3Lh** % +

<CsN™

D. PROOF OF PROPOSITION 1
Note

(fi *f2)¥(s)
= 27 (f1 * 2)(sko)

00 2w
= Zn/ |: filz(s, r, w)ko)dwi|f2(rko)rdr

=0 L/w=0

[ee) 2 1 ! 1 f
= 27[/ |:/ —f (s, r, w))dwi| —f5 (rk)rdr
r=0 LJw=0 27 2

o0 2
- /—0 [% —of#(f(s’ " W))dw}f;(rk)rdr

= (" o ;' )(s),

and

(gl * g))(sky)

00 2
- / / g (sky — kgl (rky)durdr
r=0

/ 0/ gl(t(s r,v— u)kn(s,r,v,u))gg(rku)durdr
r= u=!

/ / |:—81(T(S r,v— M))] |:Lg2(r)i| durdr
r=0Ju= 2

27
= 4n2 /r=0 |:/W=0gl (\/52 +r2 = 2sr cosw) dw:|

X go(r)rdr
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00 2
— L [L/ gi1(z(s, r, w))dW] &a(r)rdr
2 r=0 2 w=0
1
= E(gl 0 g2)(s)
= (g1 0 g2)" (sky).

E. PROOF OF THEOREM 4
Lemma 14: We have

N
R 1
fxo =~ > Ts,Li(rko). x = rk, € R,

n=1
Proof: We have

L FR(pky)
bl = 2 /pzo T (o)’ P MPdp

—1| FK((h-)ko)
=F |
|: ffs('kO)

and, by relation (2) in Lemma 1,

FK(h)
Tg F~
5 [ffs()]( ko)
]—'K(h)i|

[1( Sn)
Ffe()
1 /00 FK (hpko)

" 27 Jypmo Felpko)

}(rko),

J(pr)J (pSn)pdp.

It follows that

. 1 [ FK(hpko)®
fx(X)=2—/ (hoko)®y (p)
p=0

J d
ok 7040
L L [ FK(ipko)

1
= — Z2PR0) 1 or) I (pS,)pd
Zz /:o 77 (ol (pr)J (pSy)pdp

2

2

1 [ FKh)
=_§ Te F 1[ }
5 ERG) ko)

=z

=

1
~ Z Ts, Ly(rko).

n=1

=

Lemma 15: We have
B(xo) < Mah® 2, x0 £ 0 and B(0) < Myzh®~".

Proof: As can be seen in the proof of Lemma 12, the bias
term does not depend on the error distribution, and thus the
calculations in the proof of Lemma 4 yield the desired upper
bounds (see also [16]). ]

Lemma 16: Suppose h — 0 as N — oo. We have, as
N — oo,

Mas Mas
Vixg) < NjBT Y0 £0 and V()< TS

VOLUME 11, 2023

Le

Proof: For xo = roky, € R2, it follows from Lemma 1,
mma 14, and the Plancherel identity that

2 o0
Vo) < / Tk skoyss

<2TL’M25

- N

Mys [

=3aN | | FL(hpko)|* 1T (pro)|* pd p.
p:

(o]
/ [TsLn(roko))*sds
s=0

2N

For x¢ # 0, the inequality |J(a)| < ./ % for a > 0 implies

M 2 o0
Vi) < M5 2 / FL(hpko)2dp
2N mry

_ G 2
=L /&_  IFLEkoPds
_ g * |FK (ko) May

= Nh oo FhuE ko)™ = N2ET

where the last inequality follows from the same line of
calculations as in the proof of Lemma 13 under (D1), (D2),
and (D3). When xg = 0, the variance upper bound amounts
to the upper bound in Lemma 13. To observe this, note

Vo) < / / \FL(hpka)2pd pdo
0=
M25 2
— FL(h d
122N yeR2| (hy)I~dy
M>s

=25 FLO)*d
472Ni? /v€R2| ()fdv

M>s / | FK () J
v

ATENE yer2 | Ffe(y )
Thus, the variance upper bound at xp = 0 is of order
N-1p—26+2) 0
1) PROOF OF THEOREM 4

Lemma 15 and 16 imply that

and

~ 2 5
E[fx (o) ~ fe(xo)| = B*x0) + Vo)
Myq
N2+

< C2N 20+26 C3N_ N 20+28

< MLR* ! 4

_ 20-—1
< MppN 2% x9 # 0,

~ 2 5
E[fx(0) ~fx©] = B0) + v(0)
w2 , Mas
< Mpjh*e 4 N2
28+2

< 4N~ g + CsN~'N 252
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F. PROOF OF THEOREM 5

We obtain a minimax lower bound for the deconvolution
problem in R? when X and & are both symmetric. When
xp = 0, the evaluation functional is homogeneous, and
thus the renormalization argument implies that the optimal

2a—2

convergence rate is of order N 2#+28 | Here, we assume that
xo = roky, # 0 and analyze the effect of the radial symmetry
on the minimax convergence rate.

Let ¢ be a radial function satisfying the following
(see [16]):

(DL-1) [Z v (rko)rdr =0

(DL-2) v (rko) = 0 forr ¢ [0, 1]

(DL-3) [|AC1/22y ) < 0%/4

(DL-4) Fy(pko) = 0 for p ¢ [1, 00)

(DL-5) [22 |F ¥ (pko)l*p~*dp < Mus

(DL-6) p? ai-]-' Y are continuous and bounded for

j=0,1,2and ¥ > 3/2.
Since we are considering the ordinary smooth case,
we assume that
LY | LFfpko)| = Map™# as p = oo for
j=0,1,2
Choose fj to be a density in S,(Q/2) such that

go(rko) = (fo * fo)(rko) = Magr™> as r — oo, (7)
where 1 < k < 1.5, and define, for (r,u) € [0,1] x
[0, 27),

fi(rky) = fo(rko) + Mg T, ¢ (gko),

where My9 will be determined later. We also define
g1 = fi x fe. For M5y > 0, which will be specified later,
we choose

1
8§ =8y = M5ogN 2428,

With this construction, we need the following results to
obtain a minimax lower bound using the Le Cam method. The
proofs are identical to those of Lemma 10 and Lemma 8, and
will be omitted.

Lemma 17: We have

a—1/2

[fo(roko) — fi(roko)| = M5 N~ %28

Lemma 18: We have fy, fi € Su(Q).

We now obtain an upper bound for the x? divergence
between fy * f and f] * f.

Lemma 19: Let 0 > 0 be given. Then, for sufficiently
large N, we have

2 s
X (gl,go)_N-
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Proof: Let o > 0 be given. By the distributive property of
the convolution, we have

x2(g1, £0)

—» /°° (g1(rko) — go(rko))*
=2
r=0 go(rko)

e 9]

[(Tr W (-/8) # £ ) rko)] g5 (rko)rdr-.

rdr

= 2mM 38773 /

r=0
Note, by the Plancherel identity, Lemma 1, (DL-5), (DL-7),
and the inequality |J(a)| < /% for 0 > 0,

Ry

1
/ [(Tow(-/8) % ) (ko) ]85 (rko)rdr

=0

< Ms, / . [(Tow (-/8)  f2) (rko)| rdr,

x (Ms, = max g7 (rk

( 52 = max g (r 0))

_ M
472

M o 2
=3 / |7 00)8 FrGpko) Fi (oko)| pedp
T p=0

2M © 2d
< o2 [ Ereetorn o 5
T 1) £=1 p)

IM<r M. 82/3+3 00
< MMard 7 /g Pk e g

< Ms538%P 13, ®)

/ O|]:[Tro1/f(~/5)](pko)7:fs(0ko)|2,0d,0

4731

Observe that a change of variables r +— &r and s +— §s
implies

Ry

/ . (T W (-/8) % ) (ko))" 85 (rko)rdr

00 oo 2w _
/ [ / / TV (u) fg(skv)sdsdv:|
r=1 s=0 Jv=0 )

X gal(rko)rdr
0 2
Sy / [(me x 52f£(5-))(rk0)] g5 (Srko)rdr.
r=1/8

2

Under (DL-6) and (DL-7), we have, for any p € [1, 00),
|Aps(pko)l < Msa8Pp™"  as

where @s(pkg) = J(pro)Fy (pko)Ffe((p/8)ko)) for (p, 0) €
[1, 00) x [0, 27). It follows from (DL-6) and (7) that

00
Ry = 52/
r=1/§

2 * 1 —1 2 -1
=34 s — r—zf Ags(rko) | g (Srko)rdr
r=

M2 82ﬁ+5 0 1 00 B
=S [l e oo
s=1

< M5532ﬂ+5. 9

5§ — 0,

[(T,Ow » 82f8(8~))(rk0)]2g51(8rk0)rdr
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By (8) and (9), we have

— Q
x2(81, 80) < 2TMjo8>* (R + Ry) < Ms8™+F < N
provided that we choose M49 small enough. g

1) PROOF OF THEOREM 5
The Le Cam method with Lemma 17, Lemma 18, Lemma 19
provides a lower bound for xy # 0:

20—1
inf sup E[N (T (x0) — fx o) | = Ms7,
T fxeSu@)

as N — o00. As discussed above, a lower bound for
xo = 0 can be determined by the renormalization argument.

ACKNOWLEDGMENT
This article is based in part on the Kwan-Young Bak’s Ph.D.
dissertation.

REFERENCES

[1] K. Fang and Y. T. Zhang, Generalized Multivariate Analysis. Beijing,
China: Science Press, 1990.

[2] R. F. W. Bader, An Introduction to the Electronic Structure of Atoms and
Molecules. Toronto, ON, Canada: Clarke & Irwin, 1970.

[3] J. P. Nolan, “Fitting data and assessing goodness-of-fit with stable
distributions,” in Applications of Heavy Tailed Distributions in Economics,
Engineering and Statistics. Washington, DC, USA: American Univ., 1999.

[4] J. S. Jaffe, “Three-dimensional probability density functions via tomo-
graphic inversion,” SIAM J. Appl. Math., vol. 65, no. 5, pp. 1506-1525,
Jan. 2005.

[5] S. E Huckemann, P. T. Kim, J.-Y. Koo, and A. Munk, “Mobius
deconvolution on the hyperbolic plane with application to impedance
density estimation,” Ann. Statist., vol. 38, no. 4, pp. 2465-2498, 2010.

[6] L. R. Haff, P. T. Kim, J.-Y. Koo, and D. S. P. Richards, ‘“Minimax
estimation for mixtures of Wishart distributions,” Ann. Statist., vol. 39,
no. 6, pp. 3417-3440, Dec. 2011.

[7] L.LeCam, “Convergence of estimates under dimensionality restrictions,”
Ann. Statist., vol. 1, no. 1, pp. 38-53, Jan. 1973.

[8] G. Geenens, “Mellin-Meijer kernel density estimation on R*,”” Ann. Inst.
Stat. Math., vol. 73, no. 5, pp. 953-977, 2021.

[91 M. Rosenblatt, “Remarks on some nonparametric estimates of a
density function,” Ann. Math. Statist., vol. 27, no. 3, pp. 832-837,
Sep. 1956.

[10] E. Parzen, ““On estimation of a probability density function and mode,”
Ann. Math. Statist., vol. 33, no. 3, pp. 1065-1076, Sep. 1962.

[11] B.W.Silverman, Density Estimation for Statistics and Data Analysis. Boca
Raton, FL, USA: CRC Press, 1986.

[12] M. P. Wand and M. C. Jones, Kernel Smoothing. Boca Raton, FL, USA:
CRC Press, 1994.

[13] G. S. Watson and M. R. Leadbetter, “On the estimation of the
probability density, 1’ Ann. Math. Statist., vol. 34, no. 2, pp. 480491,
Jun. 1963.

[14] P. J. Diggle and P. Hall, “A Fourier approach to nonparametric
deconvolution of a density estimate,” J. Roy. Stat. Soc. B, Methodol.,
vol. 55, no. 2, pp. 523-531, Jan. 1993.

[15] J. Fan, “Global behavior of deconvolution kernel estimates,” Statistica
Sinica, vol. 1, no. 2, pp. 541-551, Jul. 1991.

VOLUME 11, 2023

(16]

(17]
(18]
(19]
(20]
[21]
(22]

(23]

(24]

(25]

[26]
(27]

(28]

[29]

J. Fan, “On the optimal rates of convergence for nonparametric
deconvolution problems,” Ann. Statist., vol. 19, no. 3, pp. 1257-1272,
Sep. 1991.

J. Fan and J.-Y. Koo, “Wavelet deconvolution,” IEEE Trans. Inf. Theory,
vol. 48, no. 3, pp. 734-747, Mar. 2002.

J.-Y. Koo, “Optimal rates of convergence for nonparametric statistical
inverse problems,” Ann. Statist., vol. 21, no. 2, pp. 590-599, Jun. 1993.
B. A. Mair and F. H. Ruymgaart, ““Statistical inverse estimation in Hilbert
scales,” SIAM J. Appl. Math., vol. 56, no. 5, pp. 1424-1444, Oct. 1996.
C.-H. Zhang, “Fourier methods for estimating mixing densities and
distributions,” Ann. Statist., vol. 18, no. 2, pp. 806-831, Jun. 1990.

A. Meister, Deconvolution Problems in Nonparametric Statistics. Berlin,
Germany: Springer, 2009.

1. N. Sneddon, Fourier Transforms. North Chelmsford, MA, USA: Courier
Corporation, 1995.

A. Terras, Harmonic Analysis on Symmetric Spaces—Euclidean Space,
the Sphere, and the Poincaré Upper Half-Plane. New York, NY, USA:
Springer, 2013.

G. N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge,
U.K.: Cambridge Univ. Press, 1995.

D. L. Donoho and M. G. Low, “Renormalization exponents and optimal
pointwise rates of convergence,” Ann. Statist., vol. 20, no. 2, pp. 944-970,
Jun. 1992.

B. Yu, “Assouad, Fano, and Le Cam,” in Festschrift for Lucien Le Cam.
New York, NY, USA: Springer, 1997, pp. 423-435.

A. B. Tsybakov, Introduction to Nonparametric Estimation. New York,
NY, USA: Springer, 2009.

A. Terras, Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces,
Positive Definite Matrix Space and Generalizations. New York, NY, USA:
Springer, 2016.

C. Butucea, “Exact adaptive pointwise estimation on Sobolev classes of
densities,” ESAIM, Probab. Statist., vol. 5, pp. 1-31, Aug. 2001.

KWAN-YOUNG BAK received the B.S. and Ph.D.
degrees in statistics from Korea University, in
2017 and 2021, respectively. He was a Research
Professor with the Department of Statistics, Korea

.

A
)
¢

e Y University. He is currently an Assistant Professor

-
‘X.

with the School of Mathematics, Statistics and
Data Science, Sungshin Women’s University. His
research interests include function estimation and
minimax theory.

JA-YONG KOO received the B.S. degree in statis-
tics from Seoul National University, in 1984, and
the Ph.D. degree in statistics from the University
of California at Berkeley, Berkeley, in 1988. He is
currently a Professor with the Department of
Statistics, Korea University. His research interests
include function estimation and data mining.

126461



