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ABSTRACT Individual cattle identification is pivotal for dairy farming, food quality tracing, disease
prevention and control, and registration against fraudulent insurance claims.When employing neural network
models for cattle face recognition, challenges arise due to limited individual data, varying cattle face positions
and angles, and significant image background noise. This often results in the model’s low robustness in
recognizing untrained individuals. To address this, we introduce an algorithm based on the Siamese Group
Chunking (GC) Capsule Network (SGCCN). Firstly, the GC block serves as the feature extractor for the
primary capsules. By utilizing separate filters, the GC block learns the unique representations of cattle faces,
enhancing feature extraction capabilities while reducing model parameters. Secondly, a adjusted cosine
similarity is employed to capture both directional and absolute numerical differences between cattle face
vectors, bolstering the network’s robustness. Experimental results reveal that, compared to the conventional
Siamese capsule network, the SGCCN reduces parameter usage by 57.65% yet increases recognition
accuracy by 7.67%. The recognition rate on the validation set reaches 92.67%, and 89.33% for untrained
individuals.

INDEX TERMS Capsule networks, cow face recognition, one time learning, adjusted cosine similarity,
Siamese neural network.

I. INTRODUCTION
With the increasing demand for meat and rising standards
for food quality, the livestock industry is evolving from
small-scale operations to large-scale farming and specialized
grazing. To enhance product yield and quality, there’s a clear
need for automated and precise livestock management to
ensure product quality traceability. Dairy cows, as animals
of high economic value, produce milk, meat, and other prod-
ucts that are indispensable in our daily lives. Accurate and
reliable cow identification plays a vital role in tracking cows
from birth to becoming meat products and in preventing
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false insurance claims. This addresses the mismatch between
claimed and insured cows and the issue of food traceability.

In contemporary large-scale livestock farming, the pre-
dominant method for cow identification relies on electronic
tags based on radio-frequency technology [1], [2]. How-
ever, these electronic tags are susceptible to tampering or
loss, leading to potential issues of identity substitution and
inaccuracies in identification. Moreover, they might inflict
physical harm on the cows. Furthermore, during the insur-
ance claim process for dairy cows, challenges frequently
arise in determining, through images, whether a particular
cow was insured, a dilemma for which no satisfactory solu-
tion currently exists. Owing to the biological similarities
between cow faces and human faces, both covered in hair
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and possessing abundant texture elements that might form
distinctive patterns, cow faces offer unique biological charac-
teristics for identification. Consequently, various approaches,
encompassing both traditional and deep learning methods,
have been progressively explored for cow face recognition.

In traditional methodologies, Kim et al. [3] identi-
fied Japanese Black cattle using facial images processed
through associative neural memory techniques, validating
the approach through brightness, distortion, noise, and angle
transformations of facial images. Cai et al. [4] introduced
the Local Binary Pattern (LBP) feature for extracting local
texture attributes from cow faces. Kumar and colleagues [5],
[6] presented a comparative analysis of ICA, PCA, LBP,
Speeded-Up Robust Features (SURF), and Linear Discrim-
inant Analysis (LDA) for extracting local texture attributes
from images at various Gaussian filter levels for auto-
mated cow facial recognition. When employing traditional
approaches for identification, several challenges arise: as the
number of categories increases, feature extraction becomes
progressively complex; it’s also difficult to pinpoint key fea-
tures that differentiate various target categories, leading to
reduced robustness in traditional models.

Within the realm of deep learning methodologies,
Qiao et al. utilized CNN and LSTM (Long Short-Term
Memory) networks to recognize beef cattle through image
sequences. They harnessed the Inception-V3 network to
extract features from a dataset of cow face videos and
then fed these extracted features into an LSTM model for
training, thereby identifying each individual [7]. Minling
and colleagues proposed an algorithm and model for cow
face recognition and detection primarily based on CNN, but
also integrating ResNet and SVM. This method exhibited
faster training convergence compared to conventional CNN
architectures [8]. Bisen introduced a deep separable con-
volutional network named cow-net, utilizing focal loss to
address performance issues arising from data imbalances,
thus enhancing recognition accuracy [9]. Xu adopted a
lightweight backbone network and integrated state-of-the-
art face recognition loss functions into the network, putting
forth a novel cow face recognition framework that combines
lightweight RetinaFace-mobilenet with Additive Angular
Margin Loss (ArcFace). This model leverages ArcFace to
bolster intraclass compactness and interclass distinctions
during the cow face recognition training process [10].
All the aforementioned methods utilize extensive individ-

ual data for cow face recognition. In farms, the count of dairy
cows ranges from 200 to 1000. However, obtaining numerous
facial photographs for each cow is challenging. Throughout
the data collection phase, the cow’s head is constantly in
motion, leading to various orientations of the cow face in
images. Consequently, gathering a substantial amount of per-
tinent data entails considerable time and manpower costs.

In the context of few-shot cow face recognition,
Wang et al. achieved facial identification of cows by utilizing
the VGG-16 network in conjunction with parameter transfer

for few-shot data [1]. Xu proposed a cow face recognition
algorithm based on SDBCN. The SDBCN combines the den-
sity block and the capsule network, and through the Siamese
Network structure, it utilizes the correlation of binary features
for cow face image recognition. Furthermore, this approach
can recognize cow faces that have not been previously trained
[11]. However, it also faces the challenge of having a substan-
tial number of parameters, which can consume significant
equipment resources.

In the realm of one-shot image classification, the typi-
cal approach is to train a universal model based on labeled
samples from training classes and then directly employ the
learned model to classify each unlabeled sample in the test
classes independently [12], [13], [14], [15], [16], [17]. In con-
trast, one-shot learning often resorts to metric-based learning
methods for training [18]. The objective is to learn a similarity
classifier in the feature space by randomly sampling labeled
training samples and partitioning them into support and query
sets, thereby constructing various episodes. Vinyals et al.
introduced a matching network to learn embeddings [13],
while Snell and colleagues proposed a prototype network to
construct class-centric prototype representations [14]. Addi-
tionally, Sung et al. presented a relation network, where a
simple neural network can be harnessed to learn non-linear
distance metrics, as opposed to utilizing fixed linear metrics
[15]. Xu et al. integrated an initiation module into Siamese
Neural Networks, a strategy that enhanced the speed and
accuracy of face recognition training [19]. During one-shot
learning, each category has only a limited number of labeled
samples. When no labeled samples are available for a cat-
egory, one-shot learning transitions into zero-shot learning
[20], [21]. Zero-shot learning operates either by leveraging
shared attributes for transfer learning or by direct prediction.
It employs a network trained in a pre-defined semantic space
to determine feature categorizations [15], [22], [23], [24].

In summary, by integrating the principles of few-shot learn-
ing and one-shot learning, this paper addresses the challenges
of bovine facial recognition where individual data for cattle is
limited, and variations in cattle facial positioning and angles
are diverse. These challenges are compounded when image
backgrounds are noisy, leading to low robustness of models
in recognizing untrained individuals. To tackle these issues,
we propose a bovine facial recognition algorithm based on
the Siamese Grouped Convolution Capsule Network. Lever-
aging the Siamese structure, we obtain pairwise features and
analyze the relationships between these features for effective
cattle facial recognition.

The main contributions of this paper are as follows:
• Utilizing the combination of grouped convolution and
GC blocks as a shallow feature extractor for the capsule
network, each filter is designed to learn unique facial
features of cattle and relay them to the capsule network.
This enhancement reduces the model’s parameter count,
while amplifying its capability to extract distinctive rep-
resentations of bovine faces.
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• The adjusted cosine similarity is employed to measure
the similarity between two vectors, taking into account
not only the directional differences but also emphasizing
the impact of numerical discrepancies on the similarity
between vectors.

• The proposed network model is adept at addressing the
challenge of one-shot learning for bovine facial recog-
nition with limited samples. Moreover, it demonstrates
robust performance when confronted with unfamiliar
bovine faces, positioning it as a promising tool for
one-shot learning scenarios.

The organization of this paper is as follows. Section II
presents the relevant technologies and algorithmic formu-
lations. Section III delineates our proposed Siamese GC
Capsule Network algorithm. Section IV provides details on
the experimental setup. Section V discusses the experimental
results. Finally, Section VI concludes the paper.

II. RELATED TECHNOLOGIES
A. SIAMESE NEURAL NETWORKS
The Siamese network is constructed upon a coupled archi-
tecture consisting of two artificial neural networks. In the
Siamese Neural Network (SNN), two images are concur-
rently fed into an embedding function composed of mul-
tiple convolutional layers for feature extraction [25].The
Euclidean distance [26], [27], [28] between the features of
the two images is calculated and then transformed into a
probability, which is subsequently classified using (4).The
Euclidean distance between the features of the two images
is calculated and then converted into a probability. This prob-
ability is used by (1) to determine if the two images belong to
the same category. In (1), σ represents the sigmoid activation
function, while α indicates other parameters learned by the
model during training.

p(xi, xj) = σ (α|fθ (xi) − fθ (xj)|) (1)

SNN employs two identical networks with distinct images
as inputs. During computation, parameters are shared across
the networks. This architecture processes distinct images
through the same feature extraction pipeline, yielding equiva-
lent output features. Typically, SNN utilize a contrastive loss
function [29], [30].

Formula (2) is the comparison loss function, where N
represents the number of samples, d represents the distance
between two features. Euclidean distance is commonly used
in Siam networks, and Y is the label of the image pair. When
Y = 1, two images belong to the same category, and L
minimizes the distance between the two features. When Y =

0, two images belong to different categories. If the distance
between the two features is less than M, the distance between
the two features increases toM .

L =
1
2

∗
1
N

∑N

n=1
[(Y )(d)2 + (1 − Y ){max(0,M − d)}2]

(2)

B. CHANNEL GROUPING
Channel grouping facilitates the learning of distinct features
across different groups. This enhances the model’s ability
to capture diverse aspects and characteristics of the input
data, thereby bolstering its representational capacity.Channel
grouping has found a multitude of applications in the realm
of neural network architectures.

The utilization of channel grouping has been extensively
employed in various neural network architectures. In grouped
convolution, the input feature maps are divided by chan-
nels into n distinct groups, with each group subjected to
standard convolution operations. Following this division, the
channel count for each subset of the feature map is effec-
tively reduced to 1/n. As a result, the channel count for each
convolutional kernel is subsequently decreased to 1/n. This
methodology inherent to grouped convolution considerably
diminishes both computational requirements and the total
parameter count. Qing-Long Zhang introduced a mechanism
termed ‘Shuffle Attention’ (SA) [31], which segments the
channel dimensions into multiple sub-features, subsequently
processing them in parallel. For each of these sub-features,
SA employs a shuffle unit to encapsulate dependencies across
both spatial and channel dimensions. Following this, all
the sub-features are aggregated. Finally, a ‘channel shuf-
fle’ operator is invoked, ensuring efficient communication
of information between different sub-features. Wu Rong
introduced a mechanism termed ‘Channel Group-wise Drop’
(CGD) module [32]. This model leverages group-level chan-
nel attention to aggregate activations of certain objects and
enhance fine-grained features. However, the response within
these channel groups isn’t particularly pronounced. Thus,
by employing a group-level mask to randomly eliminate
some positional responses, activations at the same positions
are invigorated, mitigating redundant aggregations within the
channel group. Consequently, an appropriate channel group-
ing of features proves beneficial for both fine-grained feature
extraction and feature aggregation.

C. CAPSULE NETWORK
The network was originally proposed by Hinton and col-
leagues, introducing a neural unit termed as ‘capsule’. Within
these capsules, individual activations no longer represent
distinct features, but rather various attributes of the same
entity.Subsequently, Sabour et al. [34] introduced the first
architecture named CapsNet. Capsule networks instantiate
parameters by encapsulating convolutional neurons into fea-
ture vectors of neurons representing specific entity types.
Each capsule encompasses spatial information, such as posi-
tion, texture, orientation, and the probability of a specific
entity’s presence. This preserves the part-to-whole rela-
tionship between sub-objects and the main object, thereby
enhancing feature detection and recognition.

Traditional capsule networks are frequently utilized for the
MNIST dataset. Input images undergo two convolutions with
a kernel size of 9, resulting in features of a 6 × 6×32 × 8
dimension. These features are reshaped to 1152 × 8,
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indicating 1152 output capsules, with each capsule charac-
terized by an 8-dimensional vector.These vectors are linearly
combined with the weights w to produce the output ui.
The weight w encodes the spatial relationships and other
significant associations between low-level and high-level fea-
tures.The vector ui is processed through a dynamic routing
mechanism three times, ultimately resulting in 10 high-level
capsules of length 16.

The dynamic routing algorithm employs an iterative pro-
cess, updating coefficients based on the consistency between
input and output capsules.Initially, for all input lower-level
capsules i and output higher-level capsules j, a temporary
variable brij is defined, with its initial value set to 0. r rep-
resents the r-th routing iteration.
At the start of the first iteration, the weighting coefficients

of the lower-level capsules, denoted as c1ij, are determined
using (3). The softmax function ensures that all these weights
remain non-negative and their sum is unity. Initially, all values
of c1ij are equivalent, but as the iterations advance, this uniform
distribution undergoes modifications.

cij = softmax(bij) (3)

Using (4), the output vector s1j is computed by taking
a weighted sum of ui with the capsule weights c1ij. Subse-
quently, the vector s1j is processed through (5) to obtain the
high-level capsule vector v from the first iteration. (5) defines
a squeezing function that preserves the direction of the vector
while constraining its magnitude to the range [0, 1].

sj =

∑
i

cijuj|i (4)

vj =

∥∥sj∥∥2
1 +

∥∥sj∥∥2 ·
sj∥∥sj∥∥ (5)

Finally, the subsequent value of b2ij for the next iteration
is determined by (6). In (6), a dot product is first performed
between v1j and uj|i, updating the weights by assessing the
similarity between the input and output of the capsule. The
iterations then proceed, and upon completion of three cycles,
a 160-dimensional vector is outputted.

br+1
ij = brij + vj · uj|i (6)

However, the dynamic routing in capsule networks con-
sumes a vast amount of parameters, leading to a more
resource-intensive and time-consuming training and infer-
ence process. To address this, researchers have shifted
towards modifying convolution kernel sizes and employing
channel grouping [35], [36]. Specifically, they utilized 3 ×

3 convolutions and depthwise separable convolution opera-
tions for discriminative learning, maximizing the use of the
network’s filters to capture all capsule-centric features. This
approach substantially streamlines and reduces the number
of parameters needed in the capsule formation, resulting in
decreased computational complexity and expedited training
and inference times.

FIGURE 1. Flowchart of SIAMESE GC CAPSULE NETWORK algorithm.

III. SIAMESE GC CAPSULE NETWORK
In this paper, we introduce the Siamese GC Capsule Network
(SGCCN) algorithm. Within SGCCN, two identical GC Cap-
sule Networks act as feature extractors, enabling concurrent
feature extraction from two images. The weights are shared
between the two GC Capsule Networks, ensuring consis-
tent feature acquisition from both sub-networks for identical
images. The adjusted cosine similarity metric is employed to
gauge the similarity between the two input images, address-
ing the one-shot learning challenge for small-sample bovine
facial recognition. Figure 1 illustrates the flowchart of the
SGCCN algorithm, which takes a pair of images and their
label as input. When the two images belong to the same
category, the label is set to 1; conversely, if the images pertain
to different categories, the label is assigned a value of 0.

A. GENERATE IMAGE PAIRS
In our study, we create a binary dataset by selecting pairs
of images at random, detailed in Algorithm 1. The input to
this algorithm consists of the directory path where images are
stored and the number of image pairs desired for generation.
The resultant output is a list, containing the paired images
accompanied by their associated labels. The algorithm iter-
ates over the specified number of pairs to be generated.
To circumvent any imbalance in the number of pairs from
the same category versus those from different categories, the
label assigned to each image pair is randomly set to either 0 or
1. A label of 1 signifies that the images within the pair are
from the same category, whereas a label of 0 indicates that
they belong to different categories. This method of random
label generation ensures an equitable probability of generat-
ing both positive and negative pairs.

B. GC CAPSULE NETWORK
The GC Capsule Network consists of several layers, includ-
ing the input layer, convolutional layer, group convolutional
layer, GC layer, PrimaryCaps layer, CowFaceCaps layer, and
the output layer. Figure 2 provides a schematic represen-
tation of the GC Capsule Network architecture.Compared
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Algorithm 1 Pseudocode for Building an Image Pairs
Input: image folder path img_dir; image pairs number num
Output: img_pairs[]

1. Start
2. Defifine empty lists img_pairs[]
3. folder_dataset = dset.ImageFolder(root=img_dir) #image path
4. for i in range(num)
5. img_0, label_0 = random.choice(folder_dataset.imgs)
6. should_get_same_class = random.randint(0,1)
7. if should_get_same_class
8. while True
9. #keep looping till the same class image is found
10. img_1, label_1 = random.choice(folder_dataset.imgs)
11. if label_0==label_1
12. break
13. else
14. while True
15. #keep looping till a different class image is found
16. Img_1, label_1 = random.choice(folder_dataset.imgs)
17. if label_0 == label_1
18. break
19. img_pairs.append([img_0,img_1,should_get_same_class])
20. end for
21. End.

to the conventional capsule networks, the GC Capsule Net-
work substitutes the standard convolutions with grouped
convolutions and integrates the GC block as a shallow fea-
ture extractor.Grouped convolution learns the block-diagonal
sparsity in the channel dimension in a more structured man-
ner. The GC block facilitates diverse feature extraction across
different channels of bovine facial features, where each filter
group captures a unique representation of the cow’s face.This
enhancement significantly reduces the number of parameters
in the network and mitigates overfitting. A capsule is a car-
rier with numerous neurons, where each value in the vector
neurons represents a specific attribute, such as pose, defor-
mation, color, texture structure, and so forth. By integrating
the GC block as an early-stage feature extractor, independent
representations of the cow’s face are fed into the higher-level
capsules. This amplifies the expressive capacity of the values
in the vector neurons concerning the attributes of bovine
facial features.

When a bovine face image with dimensions of 50 × 50 is
fed into the network, it first traverses the convolutional
layer, conv1. Here, a 3 × 3 convolution kernel is employed
to extract 64 layers of features. Subsequently, features are
extracted through a grouped convolutional layer. This layer
consists of a 3 × 3 convolution, Conv2, with a grouping
parameter set to 2, resulting in feature maps of size 128 ×

50×50. Although we experimented with more extensive
feature grouping, we observed that it challenges the effi-
cient extraction and aggregation of features. Consequently,
we restricted our approach to bifurcate the convolution into
two groups at this layer.

Following this, the features pass through a GC block.
Within the GC block, a shuffle unit segregates the feature
maps into two groups. Each group of features undergoes a

FIGURE 2. Structure of the GC capsule network model.

‘chunk’ operation, splitting them into two distinct feature
blocks. These blocks are then fed into convolutional layers
with 3 × 3 kernels, labeled Conv3_1 and Conv3_2, respec-
tively. Post convolution, the results from these two feature
blocks are concatenated. After shuffling, each group of fea-
tures is restored to a dimensionality of 256 × 48×48. The
GC block aids in refining deep semantic features and retains
the more pertinent information within each feature group.
Subsequently, these features pass through a max-pooling
layer, resulting in shallow feature maps with dimensions of
256 × 24×24.
Subsequently, the shallow features are fed into the Pri-

maryCaps layer. Through a convolutional operation, Conv4,
characterized by a kernel size of 9 × 9, a stride of 2,
and 8 groups, a feature representation of dimensions 32 ×

8×8 × 8 is obtained. This representation is transformed into
2,048 lower-level capsule units, with each capsule encapsu-
lating an 8-dimensional vector. These lower-level capsules,
upon progression through the CowFaceCaps layer, culminate
in 10 higher-level capsules, where each is described by a
16-dimensional vector. The CowFaceCaps layer employs a
tri-fold dynamic routing algorithm and a Softmax function to
regulate the count and dimensions of the capsules between
the two layers. Ultimately, a 160-dimensional vector is the
output from the higher-level capsules. When the SGCCN is
presented with a pair of images, the model produces two
160-dimensional vectors for the pair, and these vectors are
utilized to compute the similarity between the images.

vj =
||sj||2

m+ ||sj||2
·
sj

||sj||
(7)

In the three iterations of the dynamic routing algorithm,
a Squash activation function is employed. This function com-
presses the vector to the interval [0, m] while preserving its
original direction. The Squash function is defined by (7),
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where sj represents the sum of the weighted outputs from
all primary capsules, vj is the value post-compression, and
m is the compression ratio. m is a hyperparameter, and in this
study, it is set to 0.5.

C. ADJUST CONSIN SIMILARITY
In Siamese Neural Networks (SNN), the Euclidean distance
is commonly employed to ascertain whether two features
belong to the same class. Features from samples within the
same class tend to be closer, while those from different classes
aremore distant. However, unlike traditional methods that use
scalars to represent features, capsule networks utilize vectors
to depict them.Thus, when gauging the distance between two
capsule vectors, one shouldn’t only consider the absolute
numerical differences, such as the Euclidean distance, but
also the variations in the vector directions, like the cosine
similarity and Pearson coefficient. Cosine similarity pre-
dominantly distinguishes differences in direction and is less
sensitive to absolute magnitudes.

When measuring the distance between two vectors,
we believe that both the magnitude difference and directional
difference should be taken into consideration. To enhance the
sensitivity of cosine similarity to the numerical differences
between two vectors, we employ a adjusted cosine similarity
to assess the resemblance of two feature vectors. Unlike the
Pearson correlation, where vectors are subtracted from their
respective means, in the adjusted cosine similarity, both vec-
tors are subtracted from the overall mean of the two vectors,
as shown in (8) and (9).

In (9), xi and xj are the actual variables, c represents the
overall mean of the two vectors, and d denotes the adjusted
cosine similarity between the vectors.

When vectors are compressed to the range [0, m]
through the squeezing function in (8), their direction remains
unchanged, where m represents the compression ratio. Sub-
sequently, when both vectors are subtracted by the overall
mean, the resulting effect is that as the numerical differ-
ence between the two vectors increases, the angle between
them grows larger, leading to a reduced cosine similarity.
Therefore, the adjusted cosine similarity not only captures the
directional difference between the two vectors but also their
numerical disparities.

c =

n∑
i=1

xi +
n∑
i=1

yi

2n
(8)

d =

n∑
i=1

((xi − c) × (yi − c))√
n∑
i=1

(xi − c)2 ×

√
n∑
i=1

(yi − c)2
(9)

D. CONTRASTIVE LOSS
Contrary to the Euclidean distance, a smaller value in
the adjusted cosine similarity indicates a lower similar-
ity between the two vectors. The objective function is

represented by (10).

L =
1
N

∑N

n=1
[(1 − Y ) × (d)2 + (Y ) × {max(0,M − d)}2]

(10)

In (10), d denotes the similarity between two features
calculated using the adjusted cosine similarity, and Y is the
label for the image pair. When Y = 1, the two images
belong to the same category, and L aims tominimize the angle
between the two vectors, making d approachM . Conversely,
when Y = 0, the two images belong to different categories,
and L seeks to maximize the angle between the two vectors,
pushing d towards 0.

IV. EXPERIMENTS
A. DATA SETS AND PREPROCESSING
We conducted method comparison experiments using three
datasets: the small-scale cow face dataset provided by the
laboratory, the CASIA WebFace dataset, and the LFW face
dataset.

The laboratory-curated small-scale cow face dataset is
derived from facial images of 130 cows captured in their
natural habitat. These images span various poses, includ-
ing upward glances, downward tilts, and head turns to the
left or right. The 130 cows were sequentially numbered
from 0 to 129. Each cow was treated as an individual class,
with each class encompassing 15 RGB images depicting
different poses, aggregating to 1,950 cow face images. All
these images were resized to 50 × 50 pixels, thus constitut-
ing a small-scale dataset. For one-shot learning, 100 cows
were randomly selected from the cohort of 130. From each
cow, 10 facial images were randomly selected for training,
leaving the remaining 5 images for validation. 600 image
pairs were subsequently generated from the training data to
form the training set, while 300 image pairs were derived
from the validation data to create the validation set. The
images from the remaining 30 cows were utilized as test data,
from which 300 image pairs were generated to compose the
test set.

The CASIA-WebFace dataset [37] encompasses a total of
494,414 face images, representing 10,575 distinct identities.
Contrastingly, the LFW dataset [38] contains over 13,000
face images predominantly sourced from the internet, with
approximately 1,680 individuals represented by more than
one image.Within the LFWdataset, a specific subset of 6,000
paired face images is designated as the standard test set for
unconstrained face verification. Although this positions LFW
as a comprehensive testing benchmark, it remains inadequate
for training due to the majority of identities in LFW being
characterized by a single face image. As a result, much like
contemporary high-performance face verification algorithms
[39], we are compelled to rely on a more expansive external
dataset for our training endeavors. In this light, we employ
CASIA-WebFace for training purposes and reserve LFW for
testing.
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B. EXPERIMENT
The experiments were conducted on a machine equipped
with a Tesla P40 23 GB GPU and operated on the Centos
7.9 platform with the Pytorch 1.10.0 deep learning frame-
work. The evaluation metrics employed for the experiment
included accuracy, F1-score, and loss. The F1-score serves
as a composite measure of recall and precision, as defined in
(11). A higher F1-score indicates a more robust classification
model.

F1 =
2 × Recall × Precision
Recall + Precision

(11)

In the experiments presented in this paper, the Adam opti-
mizer was employed with a learning rate of 0.0001. The
parameter m in the squash function was set to 0.5. Each
experimental epoch consisted of 200 training iterations with
a batch size of 32. Experimental results revealed that the
loss converges most effectively when the margin value of the
contrastive loss function is set to 1.

We orchestrated four sets of experiments targeting bovine
face recognition using a small-sample bovine face dataset
crafted in our laboratory. In the first set of experiments, under
consistent conditions, our proposed Siamese GC Capsule
Network (SGCCN) was benchmarked against other Siamese
deep convolutional network models. In the second set of
experiments, we juxtaposed SGCCN with other Siamese net-
works utilizing the adjusted cosine similarity metric. In the
third experimental set, we investigated the effects of different
group counts in the primary capsule group convolution within
our SGCCN. For the fourth set, under the condition where
M = 1.7 in the loss function, we compared the perfor-
mance results between our SGCCN and the Siamese Dense
Block Capsule Network (SDBCN). Ultimately, to corrobo-
rate the effectiveness of the proposed methodologies in this
manuscript, we conducted evaluations on the LFW dataset.

V. RESULTS AND DISCUSSION
In this paper, we perform comparison experiments using
SGCCN and several Siamese deep convolutional networks.
To ensure the fairness of the comparison experiments,
we keep the same parameter sizes as much as possible, and
in the following subsections, we present the details of each
network separately.

A. COMPARISON OF DIFFERENT SIAMESE NETWORKS
Under identical conditions, the experiment compared the fea-
ture extraction capabilities of the SGCCNwith other Siamese
deep convolutional networks. Within the experiment, net-
works utilizing cosine similarity are denoted as _C.

1. SNN_C represents a Siamese deep convolutional net-
work employing standard convolution. In this study, the
SNN_C network serves as the baseline.

2. SCN_C denotes a Siamese capsule network utilizing
standard convolution.

3. SGN_C represents a Siamese network that employs
grouped convolution and GC blocks.

TABLE 1. Comparison of SGCCN and other Siamese capsule network
validation set results.

4. SGCCN_C denotes a Siamese capsule network that
incorporates grouped convolution and GC blocks.

Comparative experiments were conducted on a bovine face
dataset constructed in our laboratory. Table 1 presents the
validation results. In comparison to SNN_C, the parameter
size of SGCCN_C is reduced by 54.56%. Relative to SGN_C,
it sees a reduction of 50.62%, and when compared to SCN_C,
there’s a decrease of 57.65%. Nevertheless, the accuracy of
SGCCN_C on the validation set surpasses that of SNN_C
by 5%. Moreover, SGCCN_C’s accuracy exceeds SGN_C’s
by 1.67% and outperforms SCN_C’s by 2%. Due to the sub-
stantial number of parameters in the aforementioned models,
we employed Dropout to prevent overfitting. We attempted
to enhance the feature extraction by increasing the depth of
grouped convolutions. However, results indicated that as the
depth of the network increased, the recognition rate declined.
Moreover, in recent literature related to capsule networks,
it was observed that with an increase in model depth, capsules
tend to become inactive. Such inactive capsules are no longer
activated [40].

Experimental results demonstrate that SGCCN, by employ-
ing grouped convolutions and GC blocks, excels in extracting
low-level facial features of cattle, such as color, texture,
and edges. Subsequently, the model leverages capsules to
capture instantiated spatial vector information. As a result,
SGCCN extracts more comprehensive features compared to
other capsule-based networks.

B. A COMPARATIVE ANALYSIS OF RESULTS WAS
CONDUCTED BETWEEN SGCCN AND OTHER SIAMESE
NETWORKS UTILIZING THE ADJUSTED COSINE
SIMILARITY METRIC
In this study, various network architectures were assessed
utilizing the adjusted cosine similarity, denoted as _AC. Since
cosine similarity is non-parametric, the parameter count
remains consistent between SGCCN_AC and SGCCN_C.
Leveraging the adjusted cosine similarity, SGCCN_AC
achieved an accuracy rate of 92.67%.

Table 2 presents a comparative analysis of validation
results between the adjusted cosine similarity and the tradi-
tional cosine similarity across different Siamese networks.
The experiments reveal that the SNN_AC network, which
employs the adjusted cosine similarity, achieves a 0.67%
accuracy improvement over the SNN_C network that uses the
traditional cosine similarity. Similarly, the SCN_AC network

125924 VOLUME 11, 2023



Z. Zhang et al.: Siamese GC Capsule Networks for Small Sample Cow Face Recognition

TABLE 2. Validation results of SGCCN were compared with other Siamese
networks using the adjusted cosine similarity metric.

witnesses a 0.33% enhancement in accuracy compared to
SCN. Notably, the SGCCN_AC network, when leveraging
the adjusted cosine similarity, sees a substantial accuracy
boost of 2.67% over the SGCCN_C that relies on the tradi-
tional cosine similarity.

Both SNN and SGN exhibited a decline in performance
upon adopting the adjusted cosine similarity. Given that both
SNN and SGN are convolutional networks, the adjusted
cosine similarity measures the likeness of two vectors by
subtracting the overall mean of the two vectors. This can
pose an issue when two images of the same class, once
processed through the model, output vectors with small angu-
lar differences but significant magnitude discrepancies. The
subtraction induced by the adjusted cosine similarity can lead
to an increased angle between the two vectors, causing the
similarity to approach values below zero. This phenomenon
can result in mispredictions for pairs of images from the
same class, subsequently leading to a decline in overall
performance.

Both SCN and SGCCN are convolutional capsule net-
works. Within the realm of capsule networks, dynamic
routing is implemented based on the dot product between
input and output capsules, aligning the direction of identical
entity features within the vectors. Moreover, capsule net-
works deploy the squash function. This function serves to
constrain the vector magnitudes within a specific range while
preserving their original directionality. When outputting
vectors with small angular differences and pronounced mag-
nitude disparities, the adjusted cosine similarity experiences
only a marginal decrement. This reduction is less pronounced
than in SNN and SGN. Therefore, when employing adjusted
cosine similarity, SCN and SGCCN exhibit superior robust-
ness in their models.

For the one-shot learning challenge, we evaluated
300 image pairs generated from 30 cattle individuals that
had not previously undergone model training, with the results
detailed in Table 3. The experimental findings suggest that
the SGCCN_AC model, through the mechanism of grouped
convolutions and GC blocks, carries out channel group
convolution. Each filter group distinctively identifies facial
features of cattle. The integration of the capsule network
enables the model to detect subtle pattern shifts in images,
such as the lateral movements observed in cattle faces.
Furthermore, by utilizing the adjusted cosine similarity, the
model amplifies the sensitivity of vector magnitudes to cosine
similarity, effectively diminishing the impact of background

TABLE 3. Test results from 30 bovines without prior model training.

noise on cattle face images. SGCCN_AC achieved a notable
accuracy rate of 89.33% on the test set. This outcome robustly
attests to the prowess of the SGCCN_AC network in adeptly
recognizing cattle faces that were not part of the training
dataset.

C. COMPARING THE NUMBER OF DIFFERENT
GROUPINGS FOR GROUPED CONVOLUTIONS IN
PRIMARY CAPS
Although employing depthwise separable convolutions in
capsule networks [35], [36] can reduce the number of param-
eters and computational time, our experiments revealed that
they fail to comprehensively and effectively extract facial
features from the channel information of cattle. The division
of channels through this method is overly isolated. Even
when channel mixing was implemented following the depth-
wise separable convolutions, it did not sufficiently aggregate
the facial features of cattle. Consequently, we refrained
from segmenting each channel into separate groups. Instead,
we prioritized keeping a larger number of channels within
each group, ensuring the filters adeptly capture the intrinsic
facial features of cattle.

To investigate the influence of the number of groups
on extracting bovine facial features, we conducted various
groupings for the 9 × 9 convolutions in the primary capsule.
As shown in Table 4, the network attained its peak recognition
accuracy when the grouping was set to eight.

D. COMPARING SGCCN WITH SIAMESE DENSE BLOCK
CAPSULE NETWORK (SDBCN) WHEN M=1.7 IN THE
COMPARISON LOSS FUNCTION
In our study, we juxtaposed the SGCCN methodology with
the SDBCN technique as delineated in [11]. For the sake
of experimental fairness, the hyperparameters within the
networks were maintained consistent. Specifically, the hyper-
parameter M in the contrastive loss was set at 1.7, and m in
the squeeze function was established at 0.5. As evidenced by
Table 5, SGCCN_C surpasses SDBCN_C by 4% on the vali-
dation set. Furthermore, SGCCN_AC employing the adjusted
cosine similarity outstrips SDBCN_P that utilizes the Pear-
son correlation coefficient margin of 5.34%. Intriguingly, the
SGCCN_AC network exhibits consistent accuracy outcomes
for bothM = 1 andM = 1.7. Notably, when set atM = 1.7,
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TABLE 4. Main capsule convolution test results with different number of
groups.

TABLE 5. M=1.7 Validation results.

the convergence speed of the loss is slower compared to that
at M = 1. This substantiates the robustness of the SGCCN
model, emphasizing its adaptability to varying M values.

In Figure 3, the image pairs on the left depict the test results
from SCN, while those on the right represent the outcomes
from SGCCN_AC. Within these pairs, when the label is 0,
the images on the left and right are from different individuals;
conversely, when the label is 1, both images are from the
same individual. Predictions align similarly: a prediction of
0 suggests the model anticipates the images as being from
different individuals, while a prediction of 1 indicates the
same individual. The final numeric value presented signifies
the cosine similarity between the image pairs. When the
cosine similarity is less than 0.5, the prediction is 0, and when
it exceeds 0.5, the prediction becomes 1.

From the presented images, it’s discernible that SGCCN_
AC demonstrates enhanced recognition capabilities for
unique color patterns and facial features of the cattle. Fur-
thermore, it can effectively detect rudimentary pattern shifts.
The incorporation of the adjusted cosine similarity height-
ens the sensitivity to vector magnitudes. In culmination,
SGCCN_AC manifests considerable robustness in recogniz-
ing cattle individuals that it hasn’t been trained on.

E. STABILITY EXPERIMENTS FOR SGCCN
At present, the majority of face verification techniques attain
high performance by leveraging extensive training data.
We employed the CASIA-WebFace dataset for training and
subsequently tested on the LFW dataset. As can be inferred
from the results in Table 6, our method outperforms 3DMM
[41] by a margin of +0.52%. However, the accuracy of
SGCCN falls short when compared to Deepfacehe [42] and
PSI [43]. This discrepancy arises primarily because human
facial skin tones are relatively uniform, making it easy for
models to detect and extract pertinent features from images.

In contrast, while cattle faces are conspicuously colored,
capturing them often results in the bovine face and body

FIGURE 3. SCN model and SGCCN model cow face recognition results.

TABLE 6. LFW test results.

being oriented in the same direction. Consequently, images
of cattle faces inadvertently feature portions of their bodies,
the color of which closely resembles that of the face. This
introduces significant background noise in the images. Such
occurrences are inevitable, given they mirror real-world pho-
tography scenarios.

The SGCCN, however, is purposefully tailored for cattle
face recognition. The GC block adeptly extracts color, tex-
ture, and contour features from images, shifting the model’s
focus predominantly onto the cattle face. The adjusted cosine
similarity not only reveals directional variations but also dif-
ferentiates based on absolute magnitudes. Thus, this model
excels in recognizing cattle faces. However, given that human
faces lack vibrant colors and distinctive textures, its perfor-
mance in human face recognition remains unremarkable.

VI. SUMMARY
Cattle face recognition presents numerous challenges such
as limited individual data availability, varied facial posi-
tions and angles, interference from image background noise,
and reduced robustness in recognizing untrained individuals.
To address these issues, this paper introduces the SGCCN,
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designed specifically to tackle the challenges of cattle face
recognition. The SGCCN integrates grouped convolution and
the GC block to serve as a shallow feature extractor within the
capsule network framework.

Grouped convolution and the GC block enable differenti-
ated feature extraction from various channels of cattle face
feature maps. Each filter group learns a unique represen-
tation of the cattle face, significantly reducing the number
of parameters in the network while preventing overfitting.
By integrating the GC block’s shallow feature extractor, the
distinct representations of cattle faces are fed into higher-level
capsules. This enhances the expressive power of vector neu-
rons with respect to cattle face feature attributes, addressing
issues of limited individual cattle data and varied cattle face
positions and angles.

The SGCCN employs a adjusted cosine similarity met-
ric to gauge the likeness between two vectors. This not
only accounts for the directional discrepancy between the
two vectors but also emphasizes the numerical differences
in their similarity. The experiments were conducted on a
small-scale laboratory cattle face dataset, which comprises
130 cattle with 15 images per individual. In the tests, the
SGCCN was juxtaposed with the classical Siamese capsule
network and its variations. The SGCCN achieved an accu-
racy rate of 92.67% for recognizing trained cattle individuals
and 89.33% for untrained ones. Compared to other Siamese
capsule networks, it demonstrated significant enhancements
in recognition accuracy and robustness, all while using
fewer parameters. Additionally, the SGCCN exhibits strong
robustness in recognizing untrained individuals, effectively
addressing the one-shot learning challenge in cattle face
recognition.
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