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ABSTRACT Regional traffic flow forecasting is the key to the realization of intelligent transportation
system. The existing traffic flow forecasting methods have problems such as insufficient Spatio-temporal
Correlation modeling and ignoring the impact of weather factors, which lead to high prediction errors.
Therefore, in this study, aMulti-channel Graph Convolutional Neural network (MGCN) was first established
to analyze and express the spatial correlation of traffic flow on different dimensions, and a self-attention
mechanism was used to weight the spatial correlation features of MGCN output. Next, an LSTM is built
after the MGCN network layer to obtain temporal features, an Embedding layer is added to embed traffic
flow temporal periodic features, and the Whale Optimization Algorithm (WOA) is introduced to find the
global optimal LSTM network parameter combination, which is then applied to the prediction model. The
performance of the model was tested using the public dataset PeMSD4 and corresponding weather data.
Compared with prediction models that were not optimized by WOA and did not consider the influence of
weather factors (GCN, LSTM, ASTGCN, etc.), the prediction errors RMSE, MAE, and MAPE of the final
constructed prediction model were reduced, indicating that the MGCN-WOALSTMmodel has better traffic
flow prediction performance.

INDEX TERMS MGCN, regional traffic flow prediction, LSTM, WOA, spatio-temporal correlation.

I. INTRODUCTION
With the rapid development of technology, people’s eco-
nomic level has reached new heights and the number of
private cars has increased dramatically. This in turn has
led to increasingly serious traffic congestion and frequent
traffic accidents, which have a great impact on residents’
living standards and road safety. Therefore the optimization
of intelligent transportation systems [1] has become more
and more important. Efficient prediction algorithms for more
accurate traffic flow prediction are also indispensable for the
realization of intelligent transportation systems. The goal of
traffic forecasting is to estimate traffic conditions at future
moments based on historical traffic flow data, which can

The associate editor coordinating the review of this manuscript and

approving it for publication was N. Ramesh Babu .

balance traffic resources and reduce traffic congestion rates.
It also plays an important role in traffic applications such as
path optimization and traffic light control. Traffic flow data
is not only random and uncertain due to weather and traffic
accidents, but also has complex spatio-temporal Correlation.
Traffic flow prediction should consider both the spatial corre-
lation of traffic flow and the temporal correlation of the time
series itself, while current prediction models are difficult to
fully extract its spatio-temporal characteristics. It is of strong
research significance how to fully extract the spatio-temporal
characteristic relationships of traffic flow from the traffic
road network topology and the temporal dimension, and con-
struct an accurate and efficient regional traffic flow prediction
model in real time [2].

Traffic flow prediction has always been a popular research
problem. It started with time series analysis models to
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predict traffic flow information in future time steps, such
as Kalman Filter Model (KFM), Autoregressive Integrated
Moving Average (ARIMA) model, etc. Lu et al. [3] proposed
a combined short-term traffic flow prediction method based
onARIMA and LSTMneural network to predict future traffic
flow based on historical traffic flow data. Then comes the
machine learning based prediction model [4] which is heavily
used nowadays. Yang [5] proposed a traffic flow uncertainty
prediction method based on KNN and Kalman filter to solve
the problem of low fit between actual and predicted values.
Ma et al. [6] proposed a GS-SVM prediction model, which
models the mapping relationship between the traffic flow and
spatio-temporal information by supporting vector machine
algorithm, and uses grid search algorithm to dynamically
optimize the SVM parameters. The above machine learning
methods are less suitable for regions with complex traffic
road network structures, and it is difficult to fully obtain the
spatial correlation of traffic flow data on different roads.

Deep learning methods can tap deeper levels of com-
plex spatio-temporal features of traffic data. Therefore, many
deep learning models have been proposed and used to solve
traffic flow prediction problems. Shu et al. [7] proposed
to study the time series of traffic flows using an improved
Gated Recurrent Unit (GRU) with bidirectional positive and
negative feedback, and optimize the learning rate using a
modified adaptive (RADAM) model to improve the accuracy
of model prediction. Chen et al. [8] construct a dynamic
spatio-temporal graph-based DST-GCNN dual-flow network
to predict the dynamic graph structure using graph prediction
flow and input the predicted structure into a traffic prediction
flow consisting of a stack of graph-based spatio-temporal
convolutional layers to predict traffic flows at future times.
Cheng et al. [9] proposed to evaluate the intrinsic correlation
between traffic variables using an econometric theory-based
VARmodel, then a CNN-LSTM hybrid neural network based
on deep learning was used for multi-feature short-term traffic
flow prediction. Zhang et al. [10] proposed a gated adaptive
graph convolutional network (MSTA-GCN) model, which
introduced a multi-headed spatio-temporal attention mecha-
nism to capture the dynamic spatio-temporal correlation of
traffic flows at different moments and in different spaces.
An et al. [11] proposed a spatio-temporal graph convolu-
tional network model (IGAGCN) for urban road network
traffic flow prediction by fully considering the combination
of information geometry method and attention mechanism to
capture the spatial dependence of traffic flow. Zhang et al.
[12] captured the spatial correlation of traffic road networks
by GCN and introduced the Soft-Attention mechanism, based
on which they established a traffic flow prediction model
GRU-GCN-Soft Attention (GGCN-SA). Chen et al. [13]
proposed a parallel structured deep learning model consist-
ing of a GCN and a stacked bi-directional LSTM network
(GCN-SBULSTM). In addition, severe weather conditions
are an important factor affecting road traffic safety and traffic
congestion status. The analysis of the correlation between
traffic flow and weather factors at different frequencies and

time intervals can help to select the most important weather
factors affecting the magnitude of traffic flow [14]. Yang et
al. [15] studied by example the severe weather related traffic
safety and traffic flow problems, and the results showed that
severe weather events such as rainfall and fog can affect
traffic flow to some extent. Hou et al. [16] completed traffic
flow prediction based on deep learning algorithms and data
fusion, considering the impact of weather changes on traffic
flow, using Stacked Auto-Encoder (SAE) and Radial Basis
Function (RBF) to process traffic flow data and capture the
correlation between weather perturbations and traffic flow
periodicity. Miao et al. [17] proposed a Queue Hybrid Neural
Network (QHNN)model based on LSTM and GRU to extract
traffic flow features while taking weather weighting factors
into account to predict traffic flow.

In summary, the existing traffic flow prediction models
are still inadequate in extracting the spatio-temporal corre-
lation of traffic flow data, and it is difficult to fully obtain
the tighter spatial correlation features in the traffic road
network topology. There is room for improvement in the
extraction of time-dependent relationships. To address the
problem of temporal traffic flow prediction with multiple
traffic flow influencing factors and to take into account the
complex topology of the traffic road network, this paper
proposes the MGCN-WOALSTM traffic flow prediction
model based on the whale optimization algorithm. The model
adopts the construction of multi-channel GCN layers to cap-
ture the spatial correlation of traffic flow, and introduces a
self-attention mechanism in the multi-channel GCN layers
to further explore the dependencies of different road nodes
in spatial locations. We build the LSTM neural network on
the GCN layer of each channel for learning the dynamic
changes in the temporal dimension of traffic data to obtain
the temporal correlation. Then the WOA is used to optimize
the LSTM network hyperparameters, the temporal periodic
features are added to the LSTM in the form of embedding
layer vectors, and the spatio-temporal feature vectors are
stitched by the fully connected layer as the basis for predic-
tion. Finally, on the basis of considering weather factors and
using WOA to optimize network hyper-parameter, through
testing on the public data set PeMSD4, and using RMSE,
MAE, MAPE to evaluate model performance, it is verified
that MGCN-WOALSTM model achieves the best prediction
effect.

II. RELATED WORK
A. GCN: GRAPH CONVOLUTIONAL NETWORK
Since its innovation, GCN has been used in many appli-
cations, such as node classification, connection prediction,
whole graph classification, etc. It is usually divided into
Spectral domain graph convolution (converting data from the
spatial domain to the spectral domain for processing accord-
ing to the graph theory and convolution theorem) and Spatial
graph convolution (defining convolution operations directly
on the spacewithout relying on the graph convolution theory).
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GCN can use both structural information and node features
to accomplish classification (regression) tasks. According to
previous studies, it is found that GCN has superior perfor-
mance when 2-3 neural network layers are set up. The GCN
can be regarded as the same as the Convolutional Neural
Network (CNN) to some extent, which is a feature extractor in
practical applications. The difference between the two above
mentioned is that the objects of action are different. The
object of action in GCN is graph data, which can extract
feature information of topological data more comprehen-
sively. It makes up for the shortcoming of CNN, in which
the object of action is spatial features that cannot be exacted
adequately. The regional traffic road network is essentially
a topological structure, which can be modeled perfectly by
graph. Therefore, GCN can be well applied to the field of
intelligent transportation.

Suppose now there is a weighted graph G = (V, A, X):
Where V is the vertex set, consisting of a total of N nodes;
A is the adjacency matrix (0-1), representing the relation-
ship between the nodes; X is defined as a matrix of size
m∗|V|, representing the node features, and each node has m-
dimensional features.

GCN mathematical representation:

h0v = xv (1)

hkv = σ (Wk

∑
u∈N (v)

hk−1
u

|N (v)|
+ Bk hk−1

v ), ∀k ∈ {1, . . . ,K }

(2)

zv = hKv (3)

GCN vector representation:

H (l+1)
= σ (H (l)W

(l)
0 + Ã H (l)W

(l)
1 ) (4)

The key idea of GCN is to generate the embedding repre-
sentation of the current node based on the neighbor nodes in
the graph structure. Each node has an independent computa-
tional graph based on the neighbor nodes, and the nodes use a
neural network based approach to aggregate the information
of the neighbors. The basic method of GCN aggregation is
to average the information from the neighbors and apply
it to the neural network layer. The GCN model can be of
any depth, and nodes have embedding representation at each
layer. The embedding representation at layer 0 is the node
feature X, and the embedding representation of the nodes at
layer K is computed by aggregating the node information of
the neighbors at layer K-1. The nodes in the GCNmodel share
common learnable parameters W and B at each layer, and
because of the shared parameters, the model can cope with
new nodes added to the graph data, which is not possible
with traditional graph machine learning methods. However,
it is not enough for the GCN to accomplish temporal data
prediction by simply embedding the feature information of
neighboring nodes in non-Euclidean space.When the number
of layers of the graph convolutional network increases to a
certain number, the feature vector expression of the GCNwill
weaken as the number of layers increases.Moreover, the node

feature quantity will tend to converge to a certain value, and
then the phenomenon of over-smoothing will occur.

B. ATTENTION MECHANISM
The attention mechanism also has many applications in the
field of traffic flow prediction. The core idea of the attention
mechanism is to globally scan the input information, and
obtain the information that is more critical to the current
task goal from a large amount of information. It adaptively
captures the feature with the highest relevance, assigns it the
highest weight, and assigns different weights to the parts with
different degrees of relevance in the model training process.
The attention mechanism operation process can be described
as follows: Specifically, the attention matrix is calculated
based on the query matrix Q and the key matrix K; the atten-
tion matrix is calculated using the attention scoring function;
the relevance of the two is calculated based on the Query
and a certain Key; different functions and computational
mechanisms can be introduced to obtain the attention score,
and the higher the score the higher the relevance. This can be
done by finding the vector dot product of the two, introducing
a neural network to find the value, etc. Query is an artificially
defined hyper-parameter, which can be a dynamically gener-
ated vector or a vector of learnable model parameters. Then it
is processed by the SoftMax normalization function to obtain
the attention probability distribution vector, which gives the
weight coefficients between 0 and 1 for all keys. Finally, the
input matrix is multiplied with the probability distribution to
obtain the attention weight matrix.

Firstly, we define the attention correlation matrices Q,
K and V. Let N denotes the feature dimension of the input
information, and the specific operation of the weighted atten-
tion matrix Att is shown in equation (5):

Simi = Sim(Q,K ) = Query · Key

ai = SoftMax(Simi) =
eSimi

N∑
j=1

eSimj

Att(Q,K ,V ) =

N∑
i=1

ai ·Vi

(5)

C. LSTM: LONG SHORT TERM MEMORY
Ordinary Recurrent Neural Networks (RNN) are trying to
remember all the information, no matter it is useful or not.
LSTM usually works on sequential data. It is an improvement
of RNN in sense of better handling the temporal dependencies
of long sequences, and it can predict the time series vari-
ables more accurately. While in recurrent neural networks
due to the problem of gradient explosion, or disappearance
due to high powers of the matrix during the training of long
sequences, in fact only short-period dependencies can be
learned, which is called the long-range dependency problem.

The difference between LSTM and RNN is that LSTM is
used to alleviate the gradient disappearance problem by con-
trolling the information flow through three gating units (input
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gate, output gate and forgetting gate), and more importantly,
LSTM has four times the number of parameters to control the
model than RNN. The core idea is to selectively process the
input information and design a memory cell with the same
shape as the hidden state, which has the function of selective
memory. It can choose to remember important information,
filter out useless information, and reduce the memory burden.
The input of LSTM gate is the current time step input Xt
and the previous time step hidden state ht−1. The output
is calculated by the fully connected layer whose activation
function is sigmoid function. And the forgetting gate is used
to control which part of the previous state should be kept and
which part should be forgotten.

There are three main stages within the LSTM. The first
stage is the forgetting stage, in which ft, is calculated to be
used as the forgetting gating, as shown in Eq. (6):

ft = σ (Wf Xt +Uf ht−1 + bf ) (6)

The second stage is the selection memory stage, where the
input information Xt is selected and memorized. Let it be the
input gating, and the results obtained from the first and second
stages are summed to obtain the ct, which will be transmitted
to the next state, calculated as follows:

it = σ (Wi Xt +Ui ht−1 + bi) (7)

c̃t = tanh(Wc Xt +Uc ht−1 + bc) (8)

ct = ft × ct−1 + it + c̃t (9)

The third stage is the output stage, which is mainly con-
trolled by ot. And the results ct of the previous stage are
deflated by a tanh activation function to obtain the final output
ht, calculated as follows:

Ot = σ (WO Xt +UO ht−1 + bO) (10)

ht = Ot × tanh(ct ) (11)

where ft, it, ot denote the values of the forgetting gate, input
gate, and output gate of the LSTM at the t time step, ct and
ct-1 respectively denote the cell states at the t and t-1 time
step, Wf, Wi, Wc, WO respectively represents the weight
coefficient matrices to be trained for the forgetting gate, input
gate, memory cell, and output gate, bf, bi, bc, bO respectively
represents the bias parameters to be trained for the forgetting
gate, input gate, memory cell, and output gate.

D. WHALE OPTIMIZATION ALGORITHM
The Whale Optimization Algorithm (WOA) is an intelligent
optimization algorithm that simulates bubble net hunting
behaviors of the humpback whale, and achieves the opti-
mal solution through the process of searching, encircling,
pursuing and attacking the prey by the whale population.
It mainly updates the individual whale positions through
the three stages of encircling the prey, bubble net hunting
and searching for the prey, and has the advantages of sim-
ple operation and strong optimization-seeking ability with
fewer parameters to be adjusted, etc. The WOA algorithm
first initializes the whale population positions in the feasible

solution. Each whale represents the potential Initial Opti-
mal Solution of the optimization problem, and the position
represents the characteristics of the whale. Each whale will
search in the solution space according to certain rules, and
the fitness function will be recalculated every time the whale
moves to update the current optimal fitness value. When all
whales have finishedmoving, the algorithm updates all whale
positions and performs multiple iterations until the global
optimal solution is found. The flow of the WOA is shown
in Figure 1 below:

FIGURE 1. Flow chart of whale optimization algorithm.

Assume in a D-dimensional space, a population of N
whales X = (X1,X2, . . . ,XN), where D denotes the number
of variables in the solution of the optimization search prob-
lem. TheWOA algorithm is implemented through three main
stages:

1) SURROUNDING PREY
The WOA assumes that the current best candidate solution
is the target prey position. After determining the target prey
position, other whales will update their own position by
encircling the prey, and this behavior can be expressed by the
following equation:

D = |C · X∗(t) − X (t)| (12)

X (t + 1) = X∗(t) − A · D (13)

where t denotes the current number of iterations, A and C
are the coefficient vectors, X∗ (t) are the position vectors
of the current optimal solution, X (t) are the whale position
vectors in the current number of iterations. Vector A and C
are calculated as follows:

A = 2a · r1 − a;C = 2 · r2 (14)

where the value of a decreases linearly from 2 to 0, and the r1
and r2 are random vectors in [0, 1].
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2) BUBBLE NET PREDATION
The first contraction envelope mechanism is to calculate the
distance between the current whale position and the target
prey position, and the position update between the whale
and the prey is expressed by the logarithmic spiral equation,
as follows:

X (t + 1) = D′
· ebl · cos(2π l) + X∗(t) (15)

D′
= |X∗(t) − X (t)| (16)

where D′ denotes the distance between the individual whale
and the target prey, and b is a constant, l is a random vector
in [−1,1].

The WOA selects bubble net predation or contraction
enclosure according to the probability p. Assuming that the
probability of each of the two behaviors is 0.5 and p takes val-
ues in the range [0, 1], the mathematical formula is expressed
as follows:

X (t + 1) =

{
X∗(t) − A · D, p < 0.5
D′

· ebl · cos(2π l) + X∗(t), p ≥ 0.5
(17)

Through the changes of probability p, parameter a and
fluctuation range A, the whales will update their positions in
different ways and move toward the more optimal position.
As the number of iterations t increases, the parameter A and
the convergence factor a gradually decrease. And if |A| <

1, each whale will gradually surround the current optimal
solution, which belongs to the local optimal-seeking stage in
WOA.

3) PREY SEARCH
WOA searches randomly according to the distance between
each pairs of the whales, and updates the position for the
purpose of finding the prey.

D = |C · Xrand (t) − X (t)| (18)

X (t + 1) = Xrand (t) − A · D (19)

where Xrand (t) is a randomly selected whale position vector.
When the absolute value of A is greater than 1, a whale
is randomly selected and the whale population position is
updated, forcing the whales to move away from the target
prey, thereby exploring the global optimal prey position.

III. MGCN-WOALSTM TRAFFIC FLOW PREDICTION
MODEL
A. TRAFFIC FLOW PREDICTION PROBLEM
Traffic flow prediction problem description: Define the undi-
rected graph G= (V, E, A) to represent the complex topology
of the traffic road network, where V represents the set of
road network nodes and E is the set of edges. The adjacency
matrix A represents the connection relationship between
roads, which is obtained by adaptive learning. Additionally,
let the feature matrix X represent the attribute features of road
nodes in the road network, including traffic flow, average
speed, rainfall, and snowfall. Thus the traffic flow prediction

problem can be defined as a mapping function F, which
represents the MGCN-WOALSTM model. The prediction
could be obtained under a series of transformations of the
traffic road network G and the traffic flow feature matrix X
for the first T time intervals that are known. Let Y represent
the predicted traffic flow, then the problem can be expressed
as the following equation:

Y = F(G, (X1,X2, . . . ,XT )) (20)

Based on the above problem description, the steps for
implementing the MGCN-WOALSTM traffic flow predic-
tion model are as follows:
Step1: Select the region, obtain the distance between the

target road section and other road sections in the road net-
work region, obtain the historical traffic flow and speed data
of other road sections in the road network region, plus the
corresponding weather data set, divide the training set and
the testing set, and pre-process the used data (data cleaning,
normalization, etc.).
Step2: Set the initial structure and parameters of the

multi-channel GCN model, pre-process the traffic flow data
into the form of topological graph structure, and get the
adjacency matrix by adaptive learning during the training
process which will be used as the data input of the GCN
model. Then the initialization parameters of the LSTMmodel
are set, and the initial network structures such as input layer,
hidden layer and output layer are established.
Step3: The global optimal hyperparameters of the LSTM

network are optimized by using the WOA to derive the opti-
mal solutions of the 2- to 4-layer LSTM network structure.
Step4: Construct a regional traffic flow prediction model

based on MGCN-WOALSTM; determine the parameters
such as the number of GCN layers and channels; use the
Self-attention mechanism to weight the spatial correlation
features of MGCN output, which will be used to calculate
the degree of influence of different factors on the spatial
feature vector; and use the weighted spatial feature vector
as the input of the LSTM network. The WOA-optimized
LSTM extracted traffic flow temporal correlation features
and embedding layer vector-time-period features are spliced
through the fully connected layer to obtain the final output
predicted traffic flow results.
Step5: The MGCN-WOALSTM traffic flow prediction

model is trained using the training set, and the trained model
is tested with the test set.
Step6: Finally, the output data are back-normalized, and the

prediction results are analyzed with the real values; the per-
formance of the prediction model is evaluated with MAPE,
RMSE, and MAE; and if the results are not satisfactory, the
network parameters are re-adjusted back to Step2.

B. TRAFFIC FLOW PREDICTION MODEL MODULE
1) MULTI-CHANNEL GCN MODULE
GCN is mainly constructed by the adjacency matrix as well
as the degree matrix, together with the feature matrix of the
graph network data itself, which can extract the scale of the
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influence on the target node by other nodes, most notably by
establishing the adjacency matrix (indicating the relationship
between traffic road networks) and the graph feature data
(traffic flow data converted into graph structure data). The
adjacency matrix A of the traffic road network is usually
determined by the location and number of sensors in the
traffic dataset. But as the basis for GCN analysis of spatial
dimensional features, this method is bound to lose some
important spatial association information. To address this
problem, this paper proposes to use a self-learning approach
to obtain an adaptive road network adjacency matrix A∗,
which is a shared parameter matrix in GCN, by training with
traffic flow data.

This module is mainly used to express the spatial character-
istics of traffic flow data in a more comprehensive analysis.
The structure of the MGCN module is shown in Figure 2,
where the input information is X = (X1,X2,X3. . . ,XT) and
adjacency matrix A∗, and X is the traffic flow feature data at
T consecutive time steps. The module consists of two layers
of GCN. The number of input and output channels in each
layer are C11, C12 and C21, C22 respectively, where C12 =

C21. So the spatial feature vectors output from the two layers
of GCN have C12 and C22 channels. The spatial features
extracted from different channels in their respective dimen-
sions are stitched together into a complete spatial feature
vector, which is used as input information for the next stage
of the WOALSTM module.

The first layer of GCN extracts the spatial correlation fea-
ture vector G(1)

∈ RV×T×C12 of traffic flow, which contains
the GCN results of the C12 channels. It is shown in equation
(21): {

G(l+1)
= f (G(l),A∗)

G(1)
= f (G(0),A∗) = σ (A∗XW (0)

j )
(21)

where l represents the number of network layers, G(l) repre-
sents the features of the lth layer of the network, σ represents
the ReLU activation function, and W (0)

j , j = {1, 2, . . . , C12}
denotes the weight parameter matrix of the jth channel in the
first layer GCN.

The second layer of GCN takes G(1) as input information
and goes to analyze deeper spatial correlation based on the
already obtained spatial feature vector to calculate new vector
G(2)

∈ RV×T×C22, as shown in equation (22):

G(2)
= f(G(1),A∗) = σ (A∗G(1)W (1)

Z ) (22)

whereW (1)
Z , Z= {1, 2, . . . , C22} denotes the weight parameter

matrix of the Zth channel in the second layer GCN.

2) WOALSTM MODULE
The structure of the initial LSTM module is shown in
Figure 3. The multi-channel GCN module obtains the vector
G(2), which describes the spatial correlation of the traffic flow
at T consecutive time steps from C22 different dimensions
respectively, and uses the self-attention mechanism to weight

FIGURE 2. MGCN module structure.

the spatial correlation features of theMGCNoutput, as shown
in equation (23).

Q = WQG(2)

K = WKG(2)

V = WVG(2)

G(2)′
= SoftMax(

QKT
√
dK

) · V

(23)

where WQ, WK, and WV are the weight matrices that can be
learned during the training process, dK denotes the dimen-
sionality of the input vector G(2), and the resulting vector G(2)′

is used as the input to the WOALSTM.
WOALSTM constructs an independent LSTM network for

the output of each channel of G(2)′ , and analyzes the temporal
correlation of traffic flow on the basis of the spatial corre-
lation feature vector G(2)′ to obtain the spatial and temporal
correlation features of traffic flow data.

H (1)
Z = LSTM (1)

Z (G(2)′ )

H (2)
Z = LSTM (1)

Z (H (1)
Z )

. . . . . .

H (n)
Z = LSTM (n)

Z (H (n−1)
Z )

(24)

As shown in equation (24),H (n)
Z represents the final output

of vector G(2)′ through the LSTM network layer corre-
sponding to channel Z. The feature vector H, obtained by
concatenating the output feature vectors HZ, Z = (1, 2, . . . ,
C22) of all channels, is used as the spatio-temporal feature
vector of traffic flow.

In the training process of LSTM for temporal prediction
task, the network structure and how to choose the optimal
hyper-parameters such as the number of hidden layer neurons
and learning rate have a direct impact on the prediction
results. Based on the above reasons, this paper combines
the intelligent optimization algorithm-WOAwith LSTM, and
uses theWOA to find the optimal combination of four param-
eters, namely, the number of LSTM layers n, the maximum
number of iterations m, the number of hidden layer neurons
unit, and the learning rate LR, to determine the optimal
combination of LSTM parameters. Then the parameters will
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FIGURE 3. Initial LSTM module structure.

be applied to MGCN-LSTM for traffic flow prediction train-
ing and testing, and the traffic flow spatio-temporal feature
vector H is obtained. Meanwhile the traffic flow data are
analyzed in time dimension to obtain time_slot and weekday
information, which are converted to vector form through the
embedding layer and then spliced to obtain the time period
feature vector et through the fully connected layer. Finally, the
spatio-temporal feature vector H and the time-period feature
vector et are input to a fully connected layer to obtain Ypre,
which is the regional traffic flow prediction result.

The detailed steps for optimizing the hyperparameters of
the LSTM network based on WOA are as follows:

Step1: Initialization of the LSTM neural network parame-
ters, setting the number of LSTM layers to 2 to 4 layers.

Step2: Initialization of WOA parameters, determining the
maximum number of iterations M, the dimension of whales
D, the number of whale populations N, and the upper limit
UB and the lower limit LB of the parameters.

Step3: Initialize the location of the whales and generate the
initial population. A certain whale individual location Xi =

(n,m, unit,LR) is randomly selected, where n represents the
number of LSTM layers, m represents the maximum number
of iterations, unit represents the number of hidden layer neu-
rons, and LR represents the learning rate. Then Xi could be
regarded as the combination of parameters to be optimized,
which will be input to the WOA. In our experiment, the value
range of n is [2, 4], the value range of m is [200,800], the
value range of unit is [20,100], and the value range of LR is
set to [0.001,0.01].

Step4: Calculation of whale population fitness values. The
fitness value is calculated for the current whale population
whenever the whales move. The Root Mean Square Error
(RMSE) between the actual traffic flow value and the pre-
dicted value of the testing set is used as the fitness function
and calculated as follows:

RMSE =

√√√√1
n

n∑
i=1

(Xtrue − ypre)2 (25)

where n denotes the number of samples in the testing set,
Xtrue denotes the actual traffic flow value, and ypre denotes
the model prediction value.

Step5: Update the whale individual seeking position. The
starting parameter values randomly selected in step 3, are
used as the historical optimal values to assign and train the
parameters of the LSTM. All whale positions will be updated
when each whale has completed the calculation of movement
and fitness values. The search will stop when the optimal
solution is found. Then the combination of parameters at
this time will be used as the optimal hyperparameters of
the MGCN-LSTM model. Otherwise, the individual whale
search will be performed again.

Step6: The MGCN-LSTM neural network is trained and
predicted using the hyper-parameters derived from the WOA
algorithm.

3) FLOW CHART OF MGCN-WOALSTM TRAFFIC FLOW
PREDICTION MODEL
The flow of MGCN-WOALSTM traffic flow prediction
model is shown in Figure 4. The data set is divided after
pre-processing the traffic flow data such as data clean-
ing, filling the null and normalization. The input data
{X1,X2, . . . .XT} is updated after the two-layer multi-channel
GCN network, and feature extraction of the surrounding
traffic network information is completed, which at this time
now contains spatial feature information. Then the output
spatial features are weighted by the Self-attention mecha-
nism. The weighted spatial feature vector is used as the
input information of the WOALSTM network, and the final
output Ypre = {y1, y2, . . . .yT} is obtained through Dropout
optimization and a fully connected layer, which is a mapping
between the spatio-temporal feature vector H and the traffic
flow prediction value Ypre. For the model training process,
the input data is the training set, and the output Ypre and the
actual traffic flow Xtrue are subjected to Root Mean Square
Error (RMSE) loss calculation. The model is continuously
optimized by using the WOA in order to find the optimal
LSTM parameters. For the traffic flow prediction task, the
input data is the testing set, and no further model optimization
is performed. The output value Ypre = {y1, y2, . . . .yT} is the
traffic flow prediction value of the model.

IV. RESULTS
A. TRAFFIC FLOW DATA PRE-PROCESSING
The dataset used in this paper is obtained from the official
PeMS website (http://pems.dot.ca.gov) [18]. The selected
PeMSD4 dataset is the traffic data of San Francisco BayArea,
which contains the traffic flow data collected by 307 sensor
nodes of the California highway network in the United States
for a total of 59 days from January 1, 2018 to February 28,
2018. The data is recorded every five minutes, indicating that
each sensor contains 288 data nodes per day. Theweather data
for the corresponding dates were obtained from MesoWest,
and the weather data were collected at the same time interval
as PeMSD4.

The accuracy of the weather data and traffic flow data
will be directly related to the performance of the prediction
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FIGURE 4. Flow chart of MGCN-WOALSTM traffic flow prediction model.

model. In order to avoid the influence of abnormal data on
the prediction performance, the data are preprocessed first,
and the abnormal data are replaced by the average of the
traffic and speed values of the neighboring time periods at
the corresponding time points. In addition, Min-Max nor-
malization was used to scale the data to the range [0, 1];
for subsequent training and verification of the prediction
model performance, the traffic flow data set was divided into
training and testing sets in the ratio of 5:1. As a consquence
data of the first 50 days were taken as the training set and the
data of the last 9 days were taken as the test set.

The input of MGCN-WOALSTM prediction model is the
pre-processed traffic flow and weather data, and the output is
the predicted traffic flow value, and the input training set and
testing set are constructed according to the characteristics of
traffic flow and weather data. Assuming that the traffic flow
data input is x, the weather data input is w, let X be the input
data set of the prediction model, then we have

X = (X1,X2,X3, . . . ,XT )

= {(x1,w1), (x2,w2), (x3,w3), . . . , (xt ,wt )}

w = {w1,w2,w3, . . . ,wt } (26)

where xi (i= 1 to t) represents the traffic flow data at moment
i, including traffic flow and average speed; wj (j = 1 to t)
represents the weather data at moment j, wk (k = 1 to t)
indicating the kth weather factor, such as visibility, rainfall,
snowfall, etc. After taking into account the influence of each
weather factor on traffic flow, only two weather factors, that
is rainfall and snowfall, are selected in this paper.

B. MODEL EVALUATION METRICS
The degree of merit of a time series forecasting task is
usually evaluated using three performance metrics: Root
Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Mean Absolute Percentage Error (MAPE). Smaller val-
ues of the three evaluation metrics represent higher model

prediction accuracy. Metrics RMSE is expressed by formula
(25). The other twometrics can be expressed by formulas (27)
and (28) respectively, as following:

MAPE =
1
n

1∑
n

|
ypre − xtrue

ypre
| × 100 (27)

MAE =
1
n

n∑
i=1

|Xtrue − ypre| (28)

where n denotes the number of samples in the testing set,
Xtrue denotes the actual traffic flow value, and ypre denotes
the model prediction value.

C. MODEL PARAMETER SETTINGS
To prevent over-fitting during the training of the LSTMneural
network, a Dropout layer is added after each LSTM layer.
In this model, the loss rate is set to 0.2, the batch_size is set
to 32, the epoch is set to 300, the initial whale population in
WOA is 30, and the initial number of iterations is 500. After
predictive training, the optimal MGCN-WOALSTM model
parameters are set as shown in Table 1:

TABLE 1. Model optimal parameter settings.

D. MODEL PERFORMANCE COMPARISON
1) PERFORMANCE ANALYSIS OF DIFFERENT TRAFFIC FLOW
FORECASTING MODELS
The performance of the regional traffic flow prediction
model proposed in this paper is validated by the publicly
available dataset PeMSD4 and evaluated using common per-
formance metrics in three time-series prediction problems.
In order to more intuitively reflect the superior results of
the MGCN-LSTM model compared with other forecasting
models such as GRU, LSTM, GCN and ASTGCN, the error
evaluation metrics are introduced to test the model perfor-
mance. The error results are shown in Table 2, where shows
the error values of each model for predicting traffic flow
within one day on the PeMSD4 dataset. It can be seen
that the prediction effect of GRU and LSTM models that
extract only the correlation on the temporal dimension of
traffic flow is basically the same. And the effect of extracting
spatial dependence using only GCN is not very satisfactory,
because GCN only considers the spatial characteristics and
ignores the temporal characteristics of traffic data. AST-
GCN adds spatio-temporal attention mechanism to GCN to
obtain dynamic spatio-temporal correlations among traffic
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TABLE 2. Error comparison table between MGCN-LSTM model and other
models.

FIGURE 5. MAE for each model.

FIGURE 6. MAPE for each model.

road networks, which is a more accurate model in traffic
flow prediction at present. The MGCN-LSTM constructed in
this paper also captures the spatio-temporal characteristics of
traffic flow from both temporal and spatial dimensions. In our
model, the prediction index RMSE error decreases by 0.83,
MAE error decreases by 0.65, and MAPE error increases by
0.39 compared with ASTGCN; but the overall trend of the
three errors of MAE, MAPE, and RMSE gradually decreases
with the increase of the number of training rounds, as shown
in Figure 5. Figures 6 and 7 show that, overall the prediction
performance of MGCN-LSTM model is better than other
models, which proves the effectiveness of MGCN-LSTM
model in spatio-temporal traffic prediction.

Figure 8 shows the comparison between the traffic flow
values predicted by each model in the testing set for one
day and the actual traffic flow collected by sensor node 1.
It can be seen from the figure that the prediction results
of the MGCN-LSTM constructed in this paper are in better
agreement with the actual traffic values, and the trend of
traffic flow changes within a day is more closely matched.

FIGURE 7. RMSE for each model.

FIGURE 8. Traffic prediction results of each model.

TABLE 3. Comparison of MGCN-LSTM and MGCN-WOALSTM errors.

2) COMPARISON ANALYSIS OF BEFORE AND AFTER WOA
OPTIMIZATION OF MGCN-LSTM
Each neural network in MGCN uses the same parameters
and network structure, and optimizes the LSTM network
parameters through WOA. The error results of the original
MGCN-LSTMand the optimized predictionmodel are shown
in Table 3, which shows that the MGCN-LSTM prediction
model optimized by the whale optimization algorithm fur-
ther reduces the prediction error than the original prediction
model, and achieves better results than the initial MGCN-
LSTM prediction, proving that the prediction model with
optimized LSTM neural network structure parameters using
WOA has better performance.

3) COMPARATIVE ANALYSIS OF TRAFFIC FLOW PREDICTION
MODELS INCORPORATING WEATHER FACTORS
On the basis of MGCN-WOALSTM using the optimal com-
bination of parameters, the weather factor is introduced.
As can be seen in Table 4, the RMSE,MAE andMAPE errors
of the MGCN-WOALSTM prediction model are reduced
after considering rain and snow, two external factors affecting
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TABLE 4. Comparison of traffic flow prediction model errors with and
without integrated weather factors.

traffic flow. The experiment result indicates that the proposed
MGCN-WOALSTM prediction model considering weather
factors has better prediction performance, proving that the
incorporation of weather features helps to improve the traffic
flow prediction accuracy.

V. CONCLUSION
This paper proposes to build a regional traffic flow prediction
model based on MGCN-WOALSTM, using historical traffic
flow data and weather data, analyzing the spatial and tem-
poral correlation of traffic flow from multiple dimensions,
considering the correlation strength between weather factors
and traffic flow, integrating weather factors into the traffic
flow prediction model, and using the WOA to optimize the
LSTM network parameters, so as to achieve the effect of
reducing the prediction model error. Moreover, experiments
were conducted on the real data set, in which the error
metrics RMSE was reduced by 2.65, MAE by 2.82, and
MAPE by 5.36 compared to ASTGCN, indicating that the
prediction model proposed in this paper can better obtain
the dynamic change pattern of traffic flow and has better
prediction performance. In summary, MGCN-WOALSTM
can capture deeper spatial and temporal characteristics from
traffic data, and its prediction accuracy is verified to be better
than other models. In future traffic flow prediction research,
the impact of traffic accidents or more weather influencing
factors (such as visibility, temperature, etc.) on traffic flow
can be considered, and the optimal parameters of the model
under the demand of long-term traffic flow prediction tasks
can be further optimized and studied.
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