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ABSTRACT Due to the aggressive scaling down of logic semiconductors, the difficulty of semiconductor
component processes has increased. As the structure of components becomes more complex, the time and
cost of processes and simulations have risen. Machine learning is now being used to analyze the electrical
characteristics data of semiconductor components and apply the trained machine learning to next-generation
semiconductor development. Machine learning trained on process data and simulation results can quickly
and accurately predict which electrical characteristics change significantly when the component’s structure
changes and which parameters have a significant impact on the electrical characteristic changes. This paper
presents suitable machine learning models for analyzing and predicting the electrical characteristics (on-
current (Ion), off-current (Ioff ), threshold voltage (Vth), subthreshold swing (SS), and drain induced barrier
lowering (DIBL)) and statistical distribution (mean and standard deviation of the electrical characteristics)
resulting from geometrical variability (sheet thickness (Twire), sheet diameter (Dwire), oxide thickness (Tox),
gate length (Lg), spacer length (Lsp), gate metal work-function (WF)) in nanosheet field-effect transistor
(NSFET), which are a next-generation logic device. Machine learning models, including regulation-based
models (Ridge and LASSO) and tree-basedmodels (decision tree (DT), random forest (RF), extreme gradient
boost (XGBoost), and light gradient boost machine (LGBM)), are trained on technology computer-aided
design (TCAD) simulation data. The LGBM more accurately predicts the electrical characteristics and
statistical distribution of the NSFET than the other models. Additionally, we analyze the effect of geometrical
variability on the NSFET based on feature importance.

INDEX TERMS Nanosheet field-effect transistor, prediction, statistical analysis, technology computer-aided
design simulation, machine learning.

I. INTRODUCTION
Nanosheet field-effect transistors (NSFETs) were developed
to replace FinFETs, which have reached the scaling-down
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limits. NSFETs, which comprise a surrounding gate, present
a higher gate controllability than FinFETs. Consequently,
NSFETs suppress the short-channel effect (SCE) more effec-
tively than FinFETs [1], [2], [3]. However, as logic devices
become miniaturized and technologies evolve, the associated
process challenges increase. Problems arise at the front end
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of the line, such as local variability due to work function
variation (WFV), line edge roughness (LER), and random
dopant fluctuation (RDF). Furthermore, global variability
issues, specifically critical dimension problems, are observed
at the back end of the line [4], [5], [6], [7], [8]. These issues
result in a wide distribution of electrical characteristics on
wafers and lower yields. In addition, geometrical variability,
such as the thickness and width of the sheet in the NSFETs,
results in a wide distribution of electrical characteristics [9],
[10]. To increase the yield of wafers and achieve a narrow
distribution of electrical characteristics, the statistical distri-
bution of the wafer is predicted using a simulation prior to
the device fabrication process. However, as the device vol-
ume decreases, the time required for the simulation increases
because the quantum-mechanical phenomena of the carriers
must be considered [11], [12], [13]. Machine learning should
be utilized to reduce the device processing and simulation
costs and to determine the statistical distribution of the device
in the wafer with high accuracy and speed. In addition, the
device geometrical variability with the greatest effect on the
statistical distribution of the electrical characteristics must be
predicted and the importance of geometric variability must be
analyzed.

The electrical characteristics of logic devices have been
extensively investigated using machine learning. In another
study, the effects of point defects caused by cosmic radia-
tion on FinFETs using machine learning have been analyzed
[14]. Machine learning models such as random forest (RF),
extreme gradient boost (XGBoost), and light gradient boost
machine (LGBM) have been used to characterize logic
semiconductor devices [15], [16], [17], [18]. However, the
statistical distribution of electrical characteristics caused
by geometrical variability in NSFETs has not been com-
pared using various machine learning models. Therefore, the
prediction accuracy of machine learning models must be
compared and a model suitable for analyzing next-generation
logic devices must be identified.

In this study, we use machine learning to predict the
electrical characteristics and statistical distribution caused by
device geometrical variability (sheet thickness (Twire), sheet
diameter (Dwire), oxide thickness (Tox), gate length (Lg),
spacer length (Lsp), gate metal work-function (WF)). Two
types of machine-learning models are used: regulation-based
(LASSO, Ridge) and tree-based models (decision tree (DT),
RF, XGBoost, and LGBM). The six machine-learning mod-
els, which were trained using technology computed-aided
design (TCAD) simulation data, predicted the electrical
characteristics (on-current (Ion), off-current (Ioff ), threshold
voltage (Vth), subthreshold swing (SS), and drain-induced
barrier lowering (DIBL)) and statistical distribution (mean
and standard deviation of the electrical characteristics). The
feature (parameter of geometrical variability) importance is
extracted and analyzed using the machine learning model
with the highest prediction rate to understand the effect of
geometrical variability on the statistical distribution of elec-
trical characteristics.

II. SIMULATION MODELING METHODOLOGY
TCAD tool of Synopsys was used to generate an NSFET
dataset [19]. The control device was calibrated based on
the abovementioned dataset as a reference owing to the
realistic description of the NSFET (Fig. 1 (a)) [1]. The
Id–Vg of the calibrated control device is indicated by the
red lines in Figs. 1 (b) and (c). The channel, substrate,
and source/drain (S/D) doping concentrations of the control
device were 1017, 1017, and 1020 cm−3, respectively. The
process parameters of the control device are indicated in
bold in Table 1. To consider the physical phenomena in the
logic device, physic-models were initialized. The inversion
and accumulation layer mobility (IALMob) was used to
reflect the carrier mobility in the inversion and S/D exten-
sion layers within the channel [20]. Carrier recombination
at the recombination center in the energy band gap of sil-
icon, which is an indirect material, was applied using the
Shockley–Read–Hall and Auger models. The Hurkx tunnel-
ing model was used to consider gate-induced drain leakage
[20], [21], [22]. As the channel volume decreased, discontin-
uous sub-bands of silicon atoms appeared in the channel. The
quantum mechanical phenomenon observed when carriers
were inverted and transported in the sub-band near the Si–
SiO2 interface was represented using modified local density
approximation (MLDA) [23].

FIGURE 1. (a) Structure of nanosheet field effect transistor (NSFET). Id
–Vg graphs of 1728 data in (b) linear regime (Vdd = 0.05 V) and (c)
saturation regime (Vdd = 0.7 V, Simulated Id –Vg transfer characteristics
at Vdd = 0.7 V compared with measurement data).

We generated 1728 NSFET datasets (the number of
datasets = 4 × 3 × 3 × 3 × 4 × 4 = 1728) in each
regime (linear (Vdd = 0.05 V) and saturation (Vdd = 0.7 V))
by classifying the geometrical variability relative to the cal-
ibrated control device. The range of variation of the five
geometrical parameters and the gate WFs are shown in
Table 1. The total of 3456 NSFET datasets were used for
training and testing the six machine learning models (Five
months were required to create 3456 TCAD data). The six
machine learning models were organized into two categories:
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TABLE 1. Geometrical parameters and work function of NSFET.

regulation- and tree-based models. The regulation-based
models, i.e., Ridge and LASSO, perform linear regression
training using second-order and first-order formula models,
respectively [24]. Decision trees (DT) refer to models that
predict output values based on decision rules for various
combinations of given input values [25]. Random forest (RF)
is a type of ensemble learning method used for tasks such
as classification and regression analysis [26]. It operates by
producing classifications (for classification tasks) or aver-
age prediction values (for regression analysis) from multiple
decision trees created during the training process. Extreme
gradient boosting (XGBoost) is a model that significantly
enhances gradient boosting. It combines estimates from a
simpler and weaker set of models to accurately predict the tar-
get variable [27]. Light gradient boosting machine (LGBM)
is a gradient boosting framework based on decision trees that
enhancesmodel efficiency and reducesmemory usage, result-
ing in high prediction accuracy, alongside XGBoost [28].
The ‘‘Results and Discussion’’ section provides a detailed
description of each machine-learning model. Each machine
learning model was trained using optimal hyperparameters.
We normalized 3456 training data using the min–max scaler.
The training data were set to train the machine learning
using 10 %, 30 %, 50 %, 70 %, and 90 % of the total
data (training size = 10 %, 30 %, 50 %, 70 %, and 90 %).
We used the mean absolute percentage error (MAPE), which
is a metric that evaluates the percentage of prediction loss,
to determine the error of the machine learning model in
predicting the electrical characteristics and statistical distri-
bution based on training and test data. The specifications
of the hardware used for simulation and machine learning
were as follows: Intel CPU (4-threads (3.60GHz, i9-9900K)),
4 GB DRAM.

III. RESULT AND DISCUSSION
Fig. 2 shows the variation in Vth as the four geometric
parameters and WF vary in the linear and saturation regimes.
The trends in the Vth with Twire, Dwire, Tox , Lg, and WF
were the same in both regimes. In conditions where the
Dwire increases, the gate capacitance increases, leading to
an increase of the space charge in the channel and inverted
carriers. The increased gate capacitance, space charge, and
number of inverted carriers reduce the device’s Vth. Addi-

tionally, an increase in the cross-sectional area of the channel
lowers its resistance. The reduced resistance enhances current
conduction characteristics, increasing current. Conversely,
when the Dwire value remains fixed, increasing Twire reduces
the impact of the gate bias field at the center of the channel.
As the influence of the field at the channel center decreases,
the space charge within the channel and inverted carriers
decreases. This leads to a reduction in gate capacitance.
A higher gate voltage is required to generate sufficient space
charge within the channel for inverted carriers, increasing the
device’s Vth. This, in turn, weakens gate controllability and
causes higher leakage current and subthreshold swing within
the channel. A decrease in Lg reduces the voltage required
to accumulate charge in the channel and lowers channel
resistance, thereby reducing the Vth. With a decrease in Lg,
drain bias increases, leading to Vth roll-off phenomena and
enhanced short channel effects (SCE), ultimately impairing
gate controllability. When Tox decreases, the oxide capaci-
tance increases, and gate controllability rises as the gate bias
field on the channel increases. This reduces Vth due to the
effective inversion of carriers within the channel at lower
voltages. As gate WF increases, the accumulation of positive
charges near the Si-SiO2 interface is increased at the off-state.
This decreases the voltage required to form a flat band in the
channel, ultimately increasing the threshold voltage. Fig. 3
shows the distribution of electrical characteristics in the linear
and saturation regimes. The means and standard deviations of
the electrical characteristics in the saturation regime are listed
in Table 2.

TABLE 2. Statistical distribution of NSFET.

The six machine learning models were used with
1728 datasets in linear and saturation regimes to predict the
electrical characteristics. After training the training data, the
test was conducted using 10 %, 30 %, 50 %, 70 %, and 90 %
of the TCAD simulation data (1728 datasets). Figs. 4 and 5
show the prediction loss, which occurs to predict the electri-
cal characteristics. The MAPE saturated above the trainset
size of 70 %. In the case with the trainset size of 90 %,
undesired overfitting occurred during training because most
of the data were in the plot, which reduced the prediction
accuracy. Therefore, using the trainset size of 70 % was
suitable.

Based on a trainset size of 70 % with a low MAPE,
electrical characteristics prediction compares to the TCAD
simulation data. Figs. 6 (a) and (b) show the scatter plots
of the predicted electrical characteristics in the linear and
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FIGURE 2. Vth fluctuations with varying structure parameters. (a) Twire,
Dwire, and Lg, and (b) Tox , WF, and Lg fluctuation in linear regime.
(c) Twire, Dwire, and Lg, and (d) Tox , WF, and Lg fluctuation in saturation
regime.

FIGURE 3. Statistical distribution of electrical characteristics in (a) linear
regime and (b) saturation obtained via technology computer-aided design
(TCAD) simulation.

saturation regimes, respectively. The X -axis represents the
TCAD prediction of the electrical characteristics under
geometry variability. The Y -axis indicates the predicted elec-
trical characteristics using machine learning. The Ridge and
LASSO models demonstrated much lower prediction accu-
racies than the tree-based models. The Ridge and LASSO
models were regulated to prevent overfitting [24]. An ideal
linear regression uses data around the mean and generalizes
them to exclude noise. The LASSO model trains a linear
regression using a polynomial of degree one (linear function).
Ridge uses a polynomial of degree two (quadratic function)
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FIGURE 4. Mean absolute percent error (MAPE) based on training dataset
size for each machine learning model in linear regime.

FIGURE 5. Mean absolute percentage error (MAPE) based on training
dataset size for each machine learning model in saturation regime.

by excluding terms exceeding degree two in the prediction
formula. However, prediction of the electrical characteristics
using linear and quadratic functions is difficult owing to the
various types of geometrical variability. Consequently, the
Ridge and LASSO models became underfitting in the linear
and saturation regimes, and the prediction of electrical char-
acteristics, which is predicted by Ridge and LASSO models,
deviated from y = x. Tree-based models offer a higher
prediction accuracy than regulation-based models. The DT
categorizes data through a single tree and continuously gener-
ates branches in a downward direction [25]. However, unlike
other tree-based models, the DT presents an asymmetrical

FIGURE 6. Comparison of scatter plots and correlations of electrical
characteristics between the TCAD data and ML approach in the (a) linear
and (b) saturation regimes (The prediction accuracy of each model is
shown as an R2 score in the lower right corner of the graph).

FIGURE 7. Effects of variation in geometry parameters on electrical
characteristics in (a) linear and (b) saturation regime.

tree shape. Pruning variables such as the maximum depth of
the tree and the limit on the number of nodes in the tree can be
set in the hyperparameters of the DT model to prevent asym-
metric tree growth. However, limiting the maximum depth of
the tree and number of nodes can reduce the predictive accu-
racy of machine learning. Because of this tradeoff, the DT has
a relatively lower prediction accuracy than other tree-based
models. RF is an ensemble learning method that employs
various learning algorithms. The RF forms various decision
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FIGURE 8. Statistical distribution (mean and standard deviation (std. dev.)) of electrical characteristics predicted using machine learning model vs. TCAD.

FIGURE 9. Statistical distribution of electrical characteristics predicted
using machine learning vs. TCAD at the train size 70 %.

trees and passes data through each tree based on points to
select the decision tree with the most significant weight [26].
In contrast to the DT, some trees in the RF are over fitted, but
they prevent overfitting from affecting the results by generat-
ing many trees. Therefore, the RF offers a higher prediction
accuracy than the DT. XGBoost and LGBMenhancemachine
learning using a gradient boost algorithm based on the ensem-
ble learning method of multiple trees [27], [28]. Unlike the
general gradient boost machine (GBM) models, XGBoost
and LGBM are designed for parallel computation, enabling
rapid and accurate machine learning. Figs. 4 and 5 show
that the models based on the GBM algorithm offer a lower
prediction loss ratio than the other models. Unlike XGBoost,
LGBMhas higher prediction accuracy thanXGBoost because
it partitions nodes in a direction that reduces prediction
loss [28].

Fig. 7 shows the importance of input parameters (Twire,
Tox , Lg,Dwire, Lsp, andWF), which is the contribution of input
parameters to fluctuating electrical characteristics. LGBM,
with the highest prediction accuracy of the electrical char-
acteristics, is used to extract input importance. Figs. 7 (a)
and (b) are the importance (%) of the linear and saturation

FIGURE 10. Training time for machine learning model at the trainset size
of 50 %.

regimes, respectively. Twire and Lg affected the change in the
electrical characteristics in both regimes more significantly
than the other geometrical parameters. Owing to the nature
of the nanosheet structure, the gate around the interface of
the Si–SiO2 can be controlled well. However, gate control-
lability decreases in the center of the sheet due to the gate
electric field weakened by receding from Si–SiO2 interface.
The change in the gate electric field at the center of the
sheet owing to in Twire variation was more significant than
that in Dwire. The importance of Twire in changing the elec-
trical characteristics was higher than Dwire. Lg affected the
electrical characteristics to the same extent as Twire. As Lg
decreased, the Ioff , SS, DIBL, and Vth fluctuated significantly
because the SCE increased in the subthreshold region due
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to Vth roll off. In the saturation region, the resistance in the
channel changed depending on the channel length, which
significantly affected Ion. Tox affected the subthreshold region
because it is directly related to gate controllability. As Tox
changes, causing Cox variation, directly affecting the off-
state current, DIBL, and Vth. The WF primarily affected
the off- and on-currents because it contributed to the carrier
accumulation and inversion in the energy band of the sili-
con channel. As Lsp varied, the S/D length varied while Lg
remained the same; therefore, Lsp contributes primarily to Vth
roll-off and DIBL changes due to electric field changes in
the drain bias. However, because Lsp exerts an indirect effect
compared with the other geometric parameters, it imposes
a less prominent effect on the variation in the electrical
characteristics.

We compared the mean and standard deviation of the
electrical characteristics predicted using themachine learning
model with the mean and standard deviation of the TCAD
results at a trainset size of 70 %, which resulted in the lowest
prediction loss ratio. In Figs. 8 and 9, the mean and standard
deviation of the electrical characteristics are shown in a bar
graph and tabulated, respectively. In Fig. 9, when the differ-
ence in mean value and standard deviation between machine
learning and TCAD decreases, the background color of the
cell equalizes the background color of the TCAD section. The
mean value and standard deviation of the electrical charac-
teristics predicted using machine learning were significantly
less accurate for the Ridge and LASSO models than the
other models. The extremely low accuracy of Ridge and
LASSO in predicting the electrical characteristics resulted
in a significant error in the mean and standard deviation
of the TCAD results. The tree-based models predicted the
mean values and standard deviations more accurately than the
regulation-based models, primarily the ensemble tree-based
model using a gradient boost machine. The LGBM with the
lowest prediction loss ratio showed the lowest deviation from
the mean and standard deviation of the TCAD result because
it predicts the electrical characteristics more accurately than
XGBoost.

Fig. 10 shows the time for the six machine learning models
to learn based on the trainset size of 50 %. The average
training time of each machine learning (Ridge, LASSO, DT,
RF, XGBoost, and LGBM) trained through training data is
as follows: Ridge, LASSO, DT, RF, XGBoost, and LGBM
are 0.137, 0.181, 2.79, 629.6, 78.2, and 610 s. By fitting
the second- and first-order equations, Ridge and LASSO
required significantly less time than the other tree-basedmod-
els. DT requires less time than the ensemble-based models
because it prunes downward as a single tree, unlike RF,
XGBoost, and LGBM, which are ensembles. The training
time of the ensemble model is longer than those of the pre-
vious three models owing to the generation of various trees
and training due to the selection of the optimal tree. XGBoost
requires less training time than RF and LGBM due to the
pruning nature of XGBoost [27].

IV. CONCLUSION
This study used machine learning to predict electrical char-
acteristics and statistical distribution by varying the device
structure parameters. MAPE and R2 scores were used
to evaluate how well the machine learning models pre-
dicted electrical characteristics variation due to geometric
variability. In addition to the general machine learning pre-
diction evaluation, the statistical distribution of electrical
characteristics predicted by machine learning was qualita-
tively compared with the statistical distribution of TCAD
simulation results. Consequentially, in the regulation-based
models (Ridge and LASSO) and tree-based models (DT, RF,
XGBoost, and LGBM), LGBM showed the lowest prediction
loss ratio. The electrical characteristics and statistical distri-
bution were predicted with high accuracy. Additionally, the
high accuracy of the LGBM model confirmed the extent to
which the geometrical variability affects variation in electri-
cal characteristics. The training time of the machine learning
model is increased as more accurate prediction of mean and
standard deviation of electrical characteristics by the machine
learning. This study shows that the electrical characteristics
and statistical distribution owing to geometrical variability
in NSFET with complex structures can be predicted, and
input parameter importance can be analyzed using machine
learning.
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