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ABSTRACT In the domain of tunnel lining defect detection, object detection algorithms have been widely
employed. However, existing algorithms suffer from inadequate extraction of global information and low
detection accuracy. To address these issues, a novel algorithm called Tunnel Defect Detection You Only
Look Once (TDD-YOLO) is proposed, leveraging the YOLOv7 framework. The TDD-YOLO algorithm
incorporates several enhancements to improve global and local information extraction capabilities, thereby
enhancing defect detection accuracy. Firstly, MobileViT is utilized as the backbone feature extraction
network, augmenting the network’s ability to extract comprehensive information from both global and
local contexts. Secondly, a Coordinate Attention (CA) module is introduced after the upsampling and
downsampling stages of the feature pyramid network. This module highlights defect-related features while
eliminating background interference. Lastly, a convolutional module called TP Block is devised to further
enhance the network’s feature extraction capability with reduced computational complexity. To validate
the effectiveness of the proposed algorithm, a comparative analysis is conducted against five existing
algorithms: SSD, Faster-RCNN, EfficientDet, YOLOvVS5, and YOLOv7. Experimental results demonstrate
that the TDD-YOLO algorithm achieves superior performance with an F1 score of 77.43% and a mean
Average Precision (mAP) of 77.52%. These results surpass those of the other five algorithms, establishing
the TDD-YOLO algorithm as the most accurate and suitable solution for defect detection tasks in tunnels.

INDEX TERMS Tunnel defects, deep learning, defect recognition, object detection, neural network.

I. INTRODUCTION tunnel maintenance and safety management [3]. Traditional

As of the end of 2021, China operated 23,268 road tunnels
with a total length of 24,698.9 km and 17,532 railroad tun-
nels with a total length of 21,055 km, showcasing China’s
emergence as a significant force in tunnel infrastructure [1].

Tunnel lining plays a crucial role in safeguarding the sta-
bility and safety of tunnel structures. However, over time,
tunnel linings can develop various surface defects such as
cracks, lining detachment, and water leakage due to geologi-
cal, hydrological, and operational conditions [2]. The prompt
and accurate identification of these surface defects is vital for

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos

methods for identifying tunnel lining defects rely heavily on
manual experience and subjective judgment, resulting in low
identification efficiency and susceptibility to human factors
[4], [5], [6]. Moreover, minor defects may elude human eyes,
further diminishing the accuracy and timeliness of defect
identification [7].

With the rapid advancements in deep learning algorithms
[8], intelligent recognition of tunnel lining surface defects
based on deep learning has emerged as a promising research
direction. Deep learning algorithms surpass traditional meth-
ods by overcoming the limitations of human-designed defect
features and achieving more accurate and comprehensive
defect recognition through learning implicit features in the
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data. These algorithms exhibit strong generalization capabil-
ities and can handle images at various scales, angles, and
lighting conditions, thus enhancing recognition robustness,
making them well-suited for tunnel surface defect detection
[91, [10], [11], [12], [13].

In recent years, numerous scholars have utilized the pow-
erful data mining capabilities of deep learning algorithms
to achieve intelligent identification of structural defects. For
instance, Savino and Tondolo [14] employed the GooglLeNet
network to automate accurate classification of a wide range
of defects in bridges, tunnels, and pavements. Dung and
Anh [15] proposed a concrete crack detection method based
on the fully convolutional network (FCN), which demon-
strated excellent detection results on a self-constructed defect
dataset. Han et al. [16] developed a pavement defect detection
system using the You Only Look Once version 2 (YOLOV2)
network to automate the identification of cracks in pavement
images. Cheng and Wang [17] achieved high accuracy iden-
tification of cracks and water leakage in tunnels using the
Faster Region Convolutional Neural Network (Faster RCNN)
two-stage network.

While deep learning algorithms offer powerful feature
learning capabilities, their effectiveness heavily relies on the
quality of the dataset used for training. Models trained on
simple datasets may exhibit lower accuracy when applied to
images with complex backgrounds. Scholars have observed
that directly applying existing deep learning algorithms to
the task of tunnel defect identification is not entirely suitable,
as further improvements are required to adapt to the complex
environmental disturbances in tunnels and the multi-scale
characteristics of tunnel defects [18], [19]. To enhance
the accuracy and speed of tunnel surface defect identifi-
cation in complex environments, researchers have explored
improved network architectures. For instance, Zhu et al.
[20] enhanced the inception module and network structure
of the existing GoogLeNet network by introducing a new
convolutional kernel. The resulting tunnel lining defect clas-
sification model achieved an accuracy of over 95%. Liu et al.
[21] utilized a proposed image enhancement algorithm to
improve defect images, subsequently applying the Faster
RCNN network for defect detection. They found that the
image enhancement algorithm effectively enhanced the net-
work’s defect recognition accuracy. Zhou et al. [22] improved
the YOLOvV4 network and introduced a new tunnel defect
detection algorithm called YOLOv4-ED. They evaluated this
algorithm on a self-built multi-defect dataset, demonstrating
excellent detection results. Li et al. [23] proposed the inte-
gration of an adaptive spatial feature fusion module into the
YOLOVS framework to enhance the network’s capability to
detect tunnel defects. They further utilized network pruning
and knowledge distillation techniques to balance detection
performance and efficiency, resulting in high-accuracy detec-
tion of tunnel defects. Liao et al. [24] proposed a lightweight
CNN called LinkCrack, in which the encoder uses the
ResNet-34 network and the decoder uses up-sampling and
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convolution to achieve feature fusion of different scales of
feature maps, realizing high-precision segmentation of tunnel
lining cracks.

Il. CONTRIBUTION

Despite the significant progress made in practical applica-
tions of tunnel lining surface defect identification using deep
learning algorithms, there are still several shortcomings that
need to be addressed, which can be summarized as follows:

(1) Lack of global information: Existing tunnel surface
defect recognition algorithms based on convolutional neural
networks often focus on extracting local information from the
defect images, resulting in limited capability to extract global
information. As a result, minor defects may be overlooked by
these algorithms.

(2) Poor resistance to interference: Deep learning algo-
rithms may struggle with robustness and generalization when
faced with varying lighting conditions, scale changes, noise,
and occlusion in the tunnel environment. This limitation
reduces the effectiveness of defect identification under dif-
ferent conditions.

(3) Limitations in the number of tunnel defect images:
Acquiring a large-scale dataset of tunnel lining surface defect
images is challenging and requires substantial support from
tunnel engineering projects. The scarcity of sufficient defect
image data can hinder the detection performance of the
models.

To address these shortcomings, this paper proposes a novel
algorithm called TDD-YOLO for precise identification of
tunnel lining surface defects. The main contributions of this
study are as follows:

(1) Mobile-friendly Vision Transformer (MobileViT) net-
work is utilized as the backbone feature extraction network
in TDD-YOLO. This choice fully exploits the advantages of
the network and enables the comprehensive extraction of both
global and local information from the input image.

(2) The TP Block is introduced to facilitate fast and effec-
tive feature extraction from input images. Additionally, the
Coordinate Attention (CA) mechanism is incorporated to
enhance the network’s resistance to interference in complex
tunnel environments, improving its robustness and general-
ization ability.

(3) A high-quality image dataset comprising three types
of surface defects (cracks, water leakage, and lining detach-
ment) in tunnels is constructed. This dataset serves as the
foundation for the algorithm experiments conducted in this
paper.

(4) Among the tunnel defect datasets constructed in this
study, the TDD-YOLO network demonstrates the best overall
performance and achieves high accuracy in identifying tunnel
surface defects.

By addressing the identified shortcomings and leveraging
the proposed algorithm, the TDD-YOLO network presents a
promising solution for accurate tunnel surface defect identi-
fication.
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FIGURE 1. Structure of YOLOv7 network.

IIl. TUNNEL SURFACE DEFECT DETECTION ALGORITHM
A. YOLOV7 ALGORITHM

In YOLOV7 [25], the network architecture consists of three
main components: the backbone feature extraction network,
the feature pyramid network, and the output network. Figure 1
illustrates the overall structure of YOLOV7. Before inputting
the images into the backbone feature extraction network,
a pre-processing step is performed to resize the images
uniformly. Commonly used image sizes for the YOLOvV7
network are 416 x 416 and 640 x 640.

The primary purpose of the backbone feature extraction
network is to extract relevant features from the input image.
YOLOV7 incorporates a more complex backbone network
architecture compared to previous versions such as YOLOv4
and YOLOVS, which enables improved feature extraction for
images. When an image is fed into the backbone feature
extraction network, it undergoes multiple convolution oper-
ations, normalization processes, and activation functions to
extract meaningful features. In contrast to earlier YOLO itera-
tions, YOLOV7 introduces multi-concat blocks and transition
blocks, which further enhance the network’s recognition
accuracy. As aresult, the backbone feature extraction network
generates three feature layers with dimensions of 13 x 13,
26 x 26, and 52 x 52, respectively.

The feature pyramid network in YOLOV7 performs addi-
tional feature extraction on the three feature layers obtained
from the backbone network and combines features of dif-
ferent scales to extract more effective features. The feature
pyramid network outputs three feature layers with sizes of
13 x 13,26 x 26, and 52 x 52, respectively, after performing
the feature extraction process.
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The output network takes these three feature layers from
the feature pyramid network as input and predicts the type,
confidence, and location of the target objects. For each feature
layer, the network distinguishes the three anchors associated
with it to determine whether they contain the target objects or
not. It adjusts the anchors and removes redundant bounding
boxes using a non-maximum suppression method to obtain
the final prediction results [26], [27], [28].
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FIGURE 2. Multi-concat block.

The output network incorporates the RepConv structure,
inspired by the RepVGG network, before generating the pre-
diction results. During network training, a special residual
structure is introduced to assist in training. However, during
the prediction phase, the complex residual structure can be
simplified to an ordinary 3 x 3 convolution. This simplifica-
tion reduces the network complexity without sacrificing the
prediction performance of the network.
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Figure 2 illustrates the multi-concat block utilized in the
YOLOvV7 network. This block enables feature extraction
through multiple branches and facilitates effective integra-
tion of features by stacking them together. This architecture
increases the depth of the network, leading to improved
prediction accuracy. Additionally, the utilization of skip
connections helps mitigate the problem of gradient disappear-
ance, which can occur with deep neural networks.
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FIGURE 3. Transition block.

Figure 3 demonstrates the implementation of a transition
block for downsampling within the YOLOv7 network. The
left branch of the block consists of a 2 x 2 maximum pooling
operation followed by a 1 x 1 convolution. On the other hand,
the right branch comprises a 1 x 1 convolution followed by
a 3 x 3 convolution with a stride size of 2 x 2. The outputs
of these two branches are stacked together to achieve down-
sampling of the feature layer. These architectural components
contribute to the overall effectiveness and performance of the
YOLOV7 network [29], [30].

B. MOBILEVIT ALGORITHM

Convolutional neural networks (CNNs) excel at captur-
ing local feature information within input data and offer
advantages in terms of computational speed. However, their
limitation lies in the inability to effectively extract global fea-
ture information [31]. On the other hand, transformer-based
networks, such as the Transformer series, can capture global
contextual information by leveraging the self-attention mech-
anism, enabling information aggregation from all positions in
the input sequence. Nonetheless, transformer networks often
require significant computational resources, have slower
inference speeds, and can be more challenging to train.
MobileViT [32] is a network that combines the strengths of
both CNN and transformer architectures to extract both global
and local feature information from images simultaneously.
By integrating CNN, MobileViT accelerates network con-
vergence and enhances the stability of the training process.
Figure 4 provides an illustration of the MobileViT net-
work architecture, wherein the MV2 structure represents the
Inverted Residual block structure employed in the MobileNet
network [33]. MobileViT’s hybrid architecture offers a bal-
ance between efficient computation and capturing global
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contextual information, making it a suitable choice for var-
ious applications.

In MobileViT network, the input image goes through mul-
tiple MobileViT Block structures and MV2 structures for
feature extraction. In MobileViT Block, a 3 x 3 convolution
and a 1 x 1 convolution are used to achieve local feature
extraction, then unfold, transformer and fold are used to
complete global feature extraction, and finally the number of
channels is adjusted by convolution to get the output feature
layer. Among them, the unfolding structure is to divide the
feature layer into multiple 2 x 2 sized pixel blocks and
associate the pixels at corresponding positions in each block
for self-attentive feature extraction in Transformer, and the
folding structure is opposite to the unfolding structure. In the
MV?2 structure, feature extraction is performed through a
series of convolution, normalization and activation functions.

C. COORDINATE ATTENTION

Existing attention mechanisms, such as CBAM and SE, typ-
ically employ global maximum pooling or global average
pooling operations, which can result in the loss of spa-
tial information. In contrast, the Coordinate Attention (CA)
module [34] incorporates location information into channel
attention, allowing for the consideration of both channel and
location information. This integration effectively increases
the emphasis on the target to be recognized within the image.
The principle of the CA module is depicted in Figure 5. The
CA module consists of two parallel stages. In the first stage,
the input feature layers are globally averaged pooled along
the height and width directions. These pooled features are
then combined, transposed to match the same dimensions,
and stacked. Subsequently, convolution, normalization, and
activation functions are applied to obtain the intermediate
feature representation. In the second stage, the intermediate
feature representation is divided into two parallel stages. The
number of channels is adjusted using a 1 x 1 convolution,
and the Sigmoid function is applied to determine the attention
distribution in both the height and width directions. Finally,
the attention distribution is multiplied with the input feature
layer to obtain the output feature layer. The CA module’s
architecture allows for the effective integration of channel
and location information, enabling more precise attention and
enhancing the network’s performance in recognizing specific
targets within the image.

D. TP BLOCK

To enhance the network’s ability to rapidly and effectively
extract defect image features, a novel convolutional block
structure called TP Block is proposed, based on the concept
of Partial Convolution (PConv) [35]. The TP Block con-
sists of two components: a regular convolution block and
a partial convolution block. The process begins with the
input feature layer, which undergoes feature extraction using
regular convolution, normalization, and activation functions.
Next, fast feature extraction is performed using the PConv
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FIGURE 5. Coordinate attention module.

operation, resulting in the output feature layer. The PConv
operation conducts spatial feature extraction through regular
convolution, but only on a portion of the input channels while
keeping the remaining channels unchanged. This approach
minimizes memory access and enables quick and efficient
feature extraction. In comparison to regular convolution, the
TP Block exhibits superior feature extraction capabilities and
higher efficiency. The principles of regular convolution and
partial convolution are depicted in Figure 6. The TP Block
structure enhances the network’s feature extraction capability,
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FIGURE 6. Structures of regular convolution and partial convolution.

enabling it to efficiently capture relevant defect image fea-
tures. It contributes to the overall performance improvement
of the network in tunnel surface defect identification tasks.

E. TDD-YOLO ALGORITHM

The proposed TDD-YOLO tunnel defect detection algorithm
is built upon the YOLOvV7 network architecture, with several
key modifications and additions. The algorithm utilizes the
MobileViT network as the backbone network, incorporating
the CA module after the upsampling and downsampling oper-
ations of the feature pyramid network, and introducing the
new TP Block module. The algorithm’s principle is illustrated
in Figure 7. To enhance the dataset and reduce memory
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requirements, two data enhancement techniques, Mosiac data
enhancement [36] and mixup data enhancement [37], are
applied prior to inputting the images into the backbone net-
work. These techniques involve random cropping, stitching,
and scaling operations to enrich the dataset. The input images
are then size-normalized and uniformly resized to 416 x
416 pixels. It is important to note that direct resizing can dis-
tort the image, compromising recognition accuracy. To avoid
distortion, the images are resized by scaling them equally and
filling the remaining area with a solid color. The processed
images are input into the MobileViT network for feature
extraction, resulting in three feature layers: S1, S2, and S3,
with dimensions of 52 x 52,26 x 26, and 13 x 13, respectively.
The S3 feature layer is further expanded using the SPCSPC
module to enlarge the network’s perceptual field, generating
the P3 feature layer. Subsequently, feature layers S1, S2, and
P3 are convolved, downsampled, and fused to obtain feature
layers L1, L2, and L3. Next, a series of operations, includ-
ing convolution, upsampling, downsampling, normalization,
and activation functions, are applied for feature extraction
and fusion, resulting in the final three feature layers: F1,
F2, and F3. Finally, the RepConv module and YOLO head
module decode these feature layers to produce the tunnel
defect detection results for the input images. The proposed
TDD-YOLO algorithm combines the strengths of MobileViT,
CA module, and TP Block, offering improved feature extrac-
tion, robustness, and accuracy for tunnel defect detection
tasks.

IV. TUNNEL SURFACE DEFECT DATASET

A. DATASET COMPOSITION

Collecting a dataset of more than 1400 images for tunnel
defect detection is a significant accomplishment. The dataset
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includes three types of tunnel surface defects: cracking, water
leakage, and lining falling off. Some of the collected images
are depicted in Figure 8, providing a visual representation
of the dataset. To enhance the robustness of the training
model and improve its adaptability to the complex tunnel
environment, various methods were employed to augment
the dataset. These methods include rotation, cropping, noise
injection, and fuzzing, as illustrated in Figure 9. Data aug-
mentation techniques like these help increase the diversity of
the dataset, allowing the model to learn from a wider range
of scenarios and improve its generalization ability.

TABLE 1. Tunnel defects dataset.

Defect Total Training  Validation
Test set
categories amount set set
crack 1102 742 180 180
water
1004 688 158 158
leakage
lining
698 470 114 114
falling off

To ensure proper evaluation and comparison of the model’s
performance, the dataset was divided into three sets: a training
set, a validation set, and a test set, following a 6:2:2 ratio. This
partitioning scheme allows for model training on the training
set, hyperparameter tuning on the validation set, and unbiased
evaluation on the test set.

Table 1 provides the distribution of defect images in
each category, indicating the number of images available
for training and testing for each type of tunnel surface
defect.
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FIGURE 8. Example of tunnel surface defect images.
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FIGURE 9. Defect image enhancement methods.

B. DATASET ANNOTATION

The usage of the Labellmg annotation software to anno-
tate the tunnel defect images and convert them to the VOC
(Visual Object Classes) format is a common practice in object
detection tasks. The annotation process involves marking the
bounding box coordinates and assigning the corresponding
class label to each defect in the image. The labeling content
includes two main components:

1.Label frame coordinates: These coordinates represent the
position and size of the bounding box around each defect in
the image. They provide the spatial information necessary for
the model to locate and recognize the defects accurately.

2.Classification information: This information indicates
the class of each defect, distinguishing between different
types of tunnel surface defects. In Figure 10, the labels “C”
indicate cracks, “W” indicates water leakage, and “L” indi-
cates lining falling off.

Figure 10 presents a selection of annotated images,
showcasing the labeled bounding boxes and correspond-
ing class labels for the detected defects. These annotations
serve as ground truth data for training and evaluating the
network.
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FIGURE 10. Labeling method of tunnel lining defects.

V. EXPRIMENTS ON TUNNEL SURFACE DEFECT
DETECTION
The experimental setup in this paper includes four main parts:
1.Model Training: The networks used in the experiments
are trained using the provided dataset. During training, the
loss on both the training set and the validation set is mon-
itored to ensure that the networks are not overfitting. The
best-performing weights are selected for each network to be
used in the subsequent experiments.

2.Backbone Network Comparison Experiments: Several
classification networks with excellent performance are cho-
sen as the backbone networks for YOLOV7. The performance
of each network is evaluated using the tunnel defect test set
constructed in this paper. This comparison helps assess the
impact of different backbone networks on the tunnel defect
detection task.

3.Ablation Experiments: The improved methods proposed
in this paper are randomly combined, and ablation exper-
iments are conducted to analyze the effectiveness of these
methods. By selectively removing or modifying specific com-
ponents, the researchers can assess the contribution of each
improvement and determine their impact on the overall per-
formance.

4 .Model Comparison Experiments: The performance of
different networks, including the proposed TDD-YOLO
algorithm, is evaluated using the defect test set constructed in
this paper. This evaluation involves a comprehensive analysis
and comparison of the different models, considering factors
such as accuracy, precision, recall, and other relevant metrics.

By conducting these experiments, the researchers aim to
demonstrate the effectiveness of their proposed algorithm and
compare it with other existing models in terms of tunnel
defect detection accuracy and overall performance.

A. EXPERIMENT ENVIRONMENT

The experiments in this paper are conducted with Python
3.8 computer language and Pytorch 1.10.0 module. The sys-
tem used is Windows 10 and the GPU device is NVIDIA
GeForce RTX 3060.

B. EVALUATION INDICATORS

In order to evaluate the performance of the model for tunnel
multi-defect detection, Average Precision (AP), Mean Aver-
age Precision (mAP), the summed average of precision and
recall (F1 score), Frames per second (FPS), and Model size
(MS) are chosen as the evaluation indicators in this paper. The
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TABLE 2. Network training hyperparameters.

Learning rate Batch size
Networks Momentum Label smoothing
Max Min Frozen Unfrozen
SSD 6x10 6x107 16 8 0.93 0
Faster RCNN 1x10+ 1x10°¢ 16 8 0.90 0
EfficientDet 3x10+ 3x10°¢ 32 16 0.90 0
YOLOV5 1x1073 1x10 16 8 0.94 0.005
YOLOv7 1x1073 1x10° 16 8 0.94 0.005
TDD-YOLO 1x1073 1x10° 16 8 0.94 0.005

calculation formulas are shown as follows:

TP
P=— (D)
TP + FP
TP
R= —— )
TP + FN
| = 2xPxR 3
n="7x ®
Fl= 21 4)
n
1
AP = / P(R)dR Q)
0
mAP = 24P (6)
n
FPS = N 7
=7 (7

where TP represents the number of correctly identified defect
targets, F'P denotes the number of incorrectly identified
defect targets, FN signifies the number of undetected defect
targets, P is the precision rate, R is the recall rate, n is the
number of defect types, while P(R) represents a plot where
the horizontal coordinate corresponds to R, and the vertical
coordinate corresponds to P. N is the number of detecting
images and T is the total time used to detect all the images.

C. MODEL TRAINING PARAMETERS
In the paper, five object detection networks (YOLOV7,
YOLOVS, EfficientDet, Faster RCNN, and SSD) are selected
for comparison. All networks are trained on the same dataset,
and the training performance of each network is evaluated.
The training process is conducted for 200 epochs to ensure
convergence, and the training and validation errors are mon-
itored to prevent overfitting. To accelerate convergence and
save computational resources, the backbone network is ini-
tialized with pre-training weights obtained from training on
the COCO dataset using transfer learning. The first 50 epochs
use freeze training, where only the non-backbone parts of
the network are trained, while the backbone network weights
remain fixed. The subsequent 150 epochs use unfrozen train-
ing, where all weights of the network, including the backbone
network, are trained and updated.

To enhance network performance and prevent training
oscillation, a large training batch size is selected. The learning
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rate of the network is decayed using the cosine annealing
learning rate schedule, which adjusts the learning rate based
on a cosine function during training to prevent the network
from getting trapped in local optima.

Mosaic and mixup data augmentation techniques are ran-
domly applied during training to improve the network’s
adaptability to complex and variable environments. After
completing the training process, the weight with the smallest
validation error, while ensuring the network does not overfit,
is selected as the optimal model weight for further analysis.
The hyperparameters used in the network training process are
specified in Table 2 of the paper.

D. BACKBONE NETWORK COMPARISON EXPERIMENTS
In this paper, the performance of different backbone feature
extraction networks is evaluated by selecting various popular
classification networks, including both convolutional neural
networks and transformer series networks. The experiments
are conducted using consistent hyperparameters, and the
trained models are tested to select the best performing models
for each network. From the results presented in Table 3,
it can be observed that when five classification networks are
used as the backbone for YOLOv7, MobileViT achieves the
highest accuracy for crack and water leakage identification.
Additionally, MobileViT and ResNet demonstrate the highest
recognition precision for lining falling off, with MobileViT
outperforming ResNet in terms of overall performance.

Considering the comprehensive model performance,
MobileViT shows significant improvements over other net-
works. It achieves a 1.84% improvement in F1 score and
a 3.61% improvement in mAP compared to MobileNet.
Similarly, it outperforms GhostNet, ResNet, and Swin Trans-
former with improvements of 2.46%, 1.95%, and 1.45% in
F1 score, and 4.88%, 1.53%, and 1.35% in mAP, respectively.
Based on the comprehensive analysis, MobileViT is selected
as the best backbone feature extraction network for YOLOv7
due to its superior performance across various evaluation
metrics.

E. ABLATION EXPERIMENTS

To test the effectiveness of the MobileViT backbone net-
work, CA mechanism, and TP Block used in this paper,
ablation experiments are performed on the constructed tunnel
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TABLE 3. Backbone network evaluation indicators.

crack water leakage lining falling off
Backbone networks F1(%) mAP(%)
f1(%) AP(%) f1(%) AP(%) f1(%) AP(%)

MobileNet 74.43 75.54 74.85 75.74 65.66 62.33 71.65 71.20

GhostNet 73.64 73.60 74.12 75.31 65.32 60.87 71.03 69.93

ResNet 74.56 77.52 74.48 75.76 66.84 65.30 71.96 72.86

Swin transformer 74.48 76.97 75.03 78.61 66.91 64.49 72.14 73.36
MobileViT 75.83 79.58 76.32 79.62 68.32 65.24 73.49 74.81

TABLE 4. Results of network ablation experiments.

Networks MobileViT CA TP Block F1(%) mAP(%) FPS(frame/s) MS(M)

YOLOvV7 X X X 71.29 71.13 50.81 1423
YOLOv7+MobileViT N X X 73.49 74.81 51.39 113.9
YOLOvV7+CA X v X 71.55 71.71 51.43 142.6
YOLOv7+TP Block X X v 72.42 72.53 51.26 142.6
YOLOv7+MobileViT+CA N N X 74.61 75.72 52.50 1142
YOLOv7+MobileViT+ TP Block N X v 75.16 75.91 52.79 114.2
YOLOv7+CA+ TP Block X v N 74.05 73.60 52.44 142.9
YOLOv7+MobileViT+CA+ TP Block v N v 77.43 77.52 53.86 114.5

multi-defect dataset. The outcomes of the ablation experi-
ments are displayed in Table 4. To compare the impact of
different improvement strategies more clearly, F1, mAP, FPS,
and MS are used as evaluation indicators in this experiment.

1) IMPACT OF SINGLE IMPROVEMENTS
The results presented in Table 4 highlight the effectiveness of
the three improvement strategies individually applied to the
YOLOV7 network. The following observations can be made:

1.When the MobileViT backbone network is used in
YOLOV7 (row 3), there is a noticeable improvement of 2.20%
in F1 score, 3.68% in mAP and 0.58 frame/s in FPS compared
to the YOLOvV7 network without any improvement strategy
(row 2). This confirms that the MobileViT network effec-
tively captures both global and local features of tunnel defect
targets, leading to improved performance.

2.The inclusion of the CA modules after the upsampling
and downsampling operations in the feature pyramid network
(row 4) results in a modest improvement of 0.26% in F1 score,
0.58% in mAP and 0.62 frame/s in FPS. This indicates that
the CA module effectively increases the weights of the tunnel
defect target regions, enhancing the recognition precision of
the network.

3.When the TP Block is introduced by replacing the convo-
lution module in the feature pyramid network (row 5), there
is a significant improvement of 1.13% in F1 score. 1.40% in
mAP and 0.45 frame/s in FPS. This demonstrates that the TP
Block improvement strategy effectively enhances the feature
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extraction ability of the model for tunnel surface defects,
without significantly increasing the model parameters.

Overall, each of the three improvement strategies applied
individually contributes to the improvement of feature extrac-
tion ability, recognition precision and speed of the network
to some degree. The MobileViT backbone network improves
both global and local feature extraction, the CA module
enhances the weights of defect regions, and the TP Block
improves feature extraction ability specifically for surface
defects. The results emphasize the effectiveness of these
strategies and their positive impact on the overall perfor-
mance of the model.

2) IMPACT OF JOINT IMPROVEMENTS
The joint impact of the three improvement strategies on the
model performance is evaluated in rows 6-9 of Table 4.
The results highlight the combined effect of incorporating the
MobileViT network, CA module, and TP Block module in the
YOLOV7 network. The following observations can be made:
1.When the MobileViT network and CA module are com-
bined (row 6), there is a substantial improvement of 3.32% in
F1 score, 4.59% in mAP and 1.69 frame/s in FPS compared to
the YOLOV7 network without any improvement strategy (row
2). This demonstrates the complementary benefits of using
both the MobileViT network for feature extraction and the
CA module for enhancing defect region weights.
2.Similarly, when the MobileViT network and TP Block
module are combined (row 7), there is a significant
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TABLE 5. Model comparison experiment results.

crack water leakage lining falling off
Networks F1(%) mAP(%)
£1(%) AP(%) £1(%) AP(%) 1(%) AP(%)
SSD 69.43 69.97 71.80 74.00 4431 42.98 61.85 62.32
Faster RCNN 64.92 71.54 70.57 72.21 44.72 46.08 60.07 63.28
EfficientDet 64.42 70.78 74.93 76.02 56.37 57.43 65.24 68.08
YOLOV5 74.72 73.83 73.49 72.40 65.12 64.02 71.11 70.08
YOLOv7 74.97 76.53 73.55 74.71 65.35 62.15 71.29 71.13
TDD-YOLO 80.47 82.28 79.59 80.58 71.74 69.71 77.43 77.52
Original image TDD-YOLO YOLOV7 YOLOvVS EfficientDet  Faster RCNN SSDh

FIGURE 11. Defect detection results.
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(a) Results under simple bright environment
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Original image TDD-YOLO

YOLOvV7

YOLOvS

EfficientDet Faster RCNN SSD

(b) Results under

FIGURE 11. (Continued.) Defect detection results.

improvement of 3.87% in F1 score, 4.78% in mAP and
1.98 frame/s in FPS. This indicates that the MobileViT net-
work, along with the TP Block module, effectively enhances
the feature extraction ability of the model for tunnel surface
defects.

3.Introducing the CA module and TP Block module
together (row 8) results in a notable improvement of 2.76%
in F1 score, 2.47% in mAP and 1.63 frame/s in FPS. This
confirms that the joint utilization of the CA module and
TP Block module enhances both defect region weights and
feature extraction ability, leading to improved performance.

VOLUME 11, 2023

plex dim envir

4.Combining all three improvement strategies simulta-
neously (row 9) yields the most significant improvement
in model performance. The F1 score improves by 6.14%,
the mAP improves by 6.39% and the FPS improves by
3.05 frame/s compared to the YOLOvV7 network without
any improvement strategy (row 2). This demonstrates the
synergistic effect of integrating the MobileViT network,
CA module, and TP Block module, resulting in substantial
performance enhancements.

Overall, the joint improvement experiments confirm the
effectiveness of the three improvement strategies used in this
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paper. The combination of the MobileViT network, CA mod-
ule, and TP Block module leads to significant improvements
in feature extraction ability, recognition precision and speed,
and overall model performance for tunnel multi-defect
detection.

F. MODEL COMPARISON EXPERIMENTS

The comparison experiments in Table 5 evaluate the perfor-
mance of the TDD-YOLO network in comparison to five
other object detection models (SSD, Faster RCNN, Efficient-
Det, YOLOVS, and YOLOV7) on the test set constructed in
this paper. The results highlight the superior performance
of the TDD-YOLO model in terms of recognition accuracy
for the three surface defects (cracking, water leakage, and
lining falling off). The evaluation indicators, F1 score and
mAP, show significant improvements compared to the other
models.

The TDD-YOLO model achieves an F1 score of 77.43%,
which is higher than the F1 scores of the other models by
margins of 15.58% (SSD), 17.36% (Faster RCNN), 12.19%
(EfficientDet), 6.32% (YOLOVS), and 6.14% (YOLOV7).
Similarly, the mAP of the TDD-YOLO model is 77.52%,
surpassing the mAP values of the other models by 15.20%
(SSD), 14.24% (Faster RCNN), 9.44% (EfficientDet), 7.44%
(YOLOVS), and 6.39% (YOLOV7).

These results clearly demonstrate the effectiveness of the
three improvement strategies (Mobile ViT backbone network,
CA module, and TP Block module) implemented in the TDD-
YOLO model. These strategies enhance the feature extraction
capabilities of the network for detecting tunnel defects, result-
ing in improved performance in terms of defect recognition
accuracy. The TDD-YOLO model outperforms the other
models in terms of both F1 score and mAP, indicating its
superiority in tunnel defect detection tasks.

Figure 11 illustrates the detection results of the six mod-
els (TDD-YOLO, YOLOv7, YOLOVS, EfficientDet, Faster
RCNN, and SSD) for tunnel lining surface defect images.
The images are categorized into crack, water leakage, lining
falling off, and mixed defect images. The detection results
are shown in columns 2 to 7, with each column representing
a different model.

In Figure 11(a), under simple bright environment con-
ditions, all six models accurately locate individual defect
images with minimal wrong detections and omissions. How-
ever, for the detection of mixed defect images, all five
comparison models exhibit omissions. The TDD-YOLO
model demonstrates the highest detection confidence and
regional localization precision for defect targets among both
single and mixed defect images. This indicates that the
TDD-YOLO model achieves high accuracy detection of
defect images by effectively distinguishing different types of
tunnel surface defects in a simple environment.

Figure 11(b) presents the analysis of the detection results
under complex dim environment conditions, where the
detection precision of the five comparison models signifi-
cantly decreases due to the interference of dim lights and

125182

clutter. Misdetections and omissions occur in both single
and mixed defect images. For instance, in the seventh row
of Figure 11(b), the contrast models struggle to accurately
identify cracking and water leakage. The TDD-YOLO model,
while experiencing a slight decrease in detection precision
compared to the simple environment, still achieves pre-
cise location of the defect area. It effectively distinguishes
different types of surface defects in mixed defect images,
demonstrating its capability to resist the interference of com-
plex tunnel environments and achieve precise detection of
multiple surface defects.

In conclusion, the TDD-YOLO model proposed in this
paper can accurately distinguish various types of tunnel sur-
face defects and achieve high-accuracy detection in both
simple bright and complex dim environments. It is suitable
for detecting multiple lining surface defects in tunnels under
complex environmental conditions.

VI. CONCLUSION

Based on the YOLOV7 network framework, this paper intro-
duces several improvements to achieve accurate detection
of multiple surface defects in tunnels, leading to the devel-
opment of the TDD-YOLO tunnel lining surface defect
detection algorithm. The main conclusions of the paper can
be summarized as follows:

1. Backbone network selection: The experiment demon-
strates that the MobileViT classification network, com-
bining the advantages of convolutional networks and
transformer networks, outperforms other popular net-
works such as MobileNet, GhostNet, ResNet, and Swin
transformer in terms of evaluation indicators. There-
fore, MobileViT is chosen as the backbone network for
the TDD-YOLO model.

2. Ablation experiment analysis: The ablation experi-
ments confirm the effectiveness of the MobileViT
network, CA module, and TP Block module. Each of
these improvements contributes to an improvement in
the F1 score and mAP of the model, enhancing its
defect detection performance to some degree.

3. Performance comparison: The TDD-YOLO model
achieves an F1 score of 77.43% and an mAP of 77.52%,
surpassing the performance of the five comparison
models (SSD, Faster RCNN, EfficientDet, YOLOVS,
and YOLOV7) in various evaluation indicators. This
demonstrates that the TDD-YOLO model exhibits
superior defect detection accuracy compared to exist-
ing detection models.

4. Robustness in complex environments: The TDD-YOLO
model demonstrates its ability to resist interference
in complex tunnel environments. It maintains high
accuracy in detecting multiple surface defects even
under challenging conditions of low light and environ-
mental interference. Therefore, the TDD-YOLO model
is well-suited for the task of detecting multiple defects
in tunnels with complex environmental conditions.
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In summary, the TDD-YOLO algorithm, incorporating
the MobileViT backbone network, CA module, and TP
Block module, enhances the defect detection performance
and achieves accurate detection of multiple surface defects
in tunnels, making it a valuable approach for real-world
applications.
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