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ABSTRACT Addressing the issue of the lack of objective quantitative evaluation in training long jump
events, this study presents a normative analysis method based on human pose estimation and similarity
measures. By training a lightweight human pose estimation model, this method can run on low-delay
embedded devices. In line with key movements, the proposed method designs a normative analysis for
long jump actions, which yields a measurement of the movements’ adherence to the standard and provides
corrective suggestions. Experimental results indicate that the accuracy of this approach in analyzing the
standardization of long jump action reaches 91.3%. As a result, it holds significant application value
in various scenarios, including students’ long jump training and correction of long jump techniques.
Furthermore, it can be extended to other practical applications beyond sports.

INDEX TERMS Human pose estimation, similarity measures, action recognition and correction.

I. INTRODUCTION
In the realm of sports, the standardization of movements
plays a pivotal role in determining the effectiveness of our
training efforts. Failure to adhere to standardized actions can
result in several grave consequences, such as the development
of incorrect conditioned reflexes, heightened susceptibility
to sports-related injuries, compromised muscle coordination
transfer, diminished proprioceptive abilities, and a decline
in overall training efficiency. Unfortunately, in conventional
long jump training, teachers commonly resort to subjective
assessments of students’ actions, leaving students without
a tangible means to gauge the adherence of their actions
to the prescribed standards. Hence, there arises a pressing
need for an objective method to comprehensively evaluate
the standardization of long jump actions, bridging the gap
between subjective judgment and concrete, measurable cri-
teria in training assessment.

To analyze the standardization of long jump action, the
initial step involves capturing the action posture. Early human
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action recognition necessitated the use of external equipment
to perceive changes in human pose for action identification.
For instance, Dowling et al. employed inertial sensor equip-
ment to detect knee bending angles, trunk tilt, and thigh
coronal velocity, applying this approach to the detection
and recognition of ACL injuries [1]. Similarly, Pansiot et al.
proposed amicro-sensor based on an accelerometer for swim-
ming motion analysis [2]. This method involved recording
pitch angle and side angle features extracted from acceler-
ation to identify the posture and basic motion index of the
human body, culminating in the development of a system
to detect swimming performance, thus facilitating training
guidance. Although sensor-based approaches offer precise
inference of human actions, the inconvenience of having to
wear sensors for each analysis remains a notable limitation.

The normativity of an action is typically determined by
assessing its similarity to a standard action, and various meth-
ods have been proposed for calculating this similarity [3], [4],
[5], [6], [7], [8]. In a previous study [9], the Euclidean dis-
tance was employed to measure similarity, where differences
between nodes were compared based on the obtained coor-
dinates. However, this approach necessitates that the motion
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height of the two videos align at the same time point, and
variations in student height, weight, or build can significantly
distort the calculation results due to coordinate position
transformations. As a result, the Euclidean distance method
is gradually being supplanted by alternative approaches.
In another investigation [10], interpolating wavelet was uti-
lized to extract key frames from reference actions, and the
Dynamic Time Warping (DTW) algorithm was employed
to match reference and contrast actions. The DTW method
has been widely applied in various fields, including gesture
recognition, information retrieval, and language recognition
[11], [12], [13], [14], [15], [16]. Subsequently, the aver-
age distance between matched keyframes was normalized to
derive the similarity of the two action sequences. Although
DTW-based similarity calculation effectively assesses the
similarity between time series, it offers only a general indi-
cation of action similarity and lacks the capacity to provide
detailed action-specific recommendations.

This study addresses the aforementioned challenges by
introducing a normative analysis method for standing long
jump. A deep learning-based pose estimation algorithm is
employed to identify the key points of the long jump motion.
By comparing the similarity between each frame’s action and
the desired target action, four critical actions are extracted.
Subsequently, a comprehensive normative analysis method is
devised to assess the long jump action and offer suggestions
for improvement. This approach holds promise in enhancing
the training and performance evaluation of standing long
jump, contributing to the advancement of athletic techniques
and sports sciences.

II. HUMAN POSE ESTIMATION
Owing to the limitations of conventional motion recognition
techniques, this study adopts a deep learning-based human
body pose estimation algorithm to effectively capture motion
within video streams. In recent years, intelligent human pos-
ture estimation founded on vision has emerged as a highly
challenging domain within the realm of computer vision.
This approach enables the recognition of human behavior
within video sequences by detecting human actions and sub-
sequently extracting and learning relevant action features.
Notably, numerous human pose estimation methods have
been proposed in recent times [17], [18], [19], [20], [21],
which are mainly classified into two categories: top-down
methods, such as CPM [22] and AlphaPose [23], and bottom-
up methods, such as OpenPose [24] and PersonLab [25].
The detection of human key points plays a critical role

in describing human pose and predicting human behavior.
However, traditional human detection methods encounter
two major issues: imprecise localization of key points and
sluggish model performance. To address these challenges
effectively, this paper employs the following strategies.

1. This study utilizes a proprietary human pose estimation
dataset, which includes 1500 standing long jump samples.
Among these, 1362 samples were judiciously curated from
the COCO (2017) dataset [26], and the remainder were

FIGURE 1. Model structure.

collected and labeled by our research team. Furthermore,
to enhance the dataset’s diversity, some original images were
mirrored before labeling. By improving the quantity and qual-
ity of annotated images, the problem of misplaced keypoints
has been effectively minimized.

2. In model training, downsampling of the input images
was implemented to reduce training complexity and resource
consumption [26]. To facilitate thermal map-based training,
the coordinates of bone key points in the original images were
transformed to align with the resolution after downsampling.
This involved converting the coordinates to the thermal map
format, employing Gaussian fuzziness [27]. Once the thermal
map prediction was completed, the resolution of the down-
scaled image was restored to its original pixel dimensions,
and the predicted key point coordinates were mapped back to
the original coordinate space. This approach ensures accurate
localization and estimation of key points despite the initial
downsampling process.

3. The lightweight human pose estimation model was
trained using the innovative MoveNet algorithm, which
employs heat maps to accurately identify key points on the
human body. The proposed model structure of this study is
shown in Figure 1.

Where the MobileNet-v3 is utilized as the backbone net-
work [28], and features are extracted through a combination
of the feature pyramid (FPN) technique [29] and a 3-layer
Multi-Layer Perception (MLP), resulting in the generation of
four essential heat maps: The Center of the human body, the
set of all key points (Keypoints), the Offset of the key points
(Reg), and the quantization error of the key points (Offset).

Following the generation of the heat map, a series of
post-processing steps are executed to refine the key point
positions. First, 2K values corresponding to the coordinate
positions of the header_Reg channels are extracted, after
which the center point coordinates are added to yield a rough
key point position. Next, the header_Keypoints is divided by
a weight matrix, and the coordinates of the maximum values
are then computed through K channels, resulting in the final
refined coordinates of 17 key points. The 17 key points of the
human body are presented in Figure 2.

The key points encompass a comprehensive set of human
body landmarks, arranged from top to bottom, namely: the
left and right eyes, left and right ears, nose, left and right
shoulder joints, left and right elbow joints, left and right
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FIGURE 2. 17 key points of the human body.

FIGURE 3. The flow chart of the human pose estimation.

hands, left and right hip joints, left and right knee joints, and
left and right feet.

4. Different loss functions are used for each heatmap.
The loss function incorporates weighted MSE and L1 Loss,
as shown in equations (1) and (2). Keypoints and Center
use weighted MSE to balance positive and negative samples,
while Reg and Offset use L1 Loss. The weights assigned to
each loss function are equally distributed.

MSE =
1
n

n∑
i=1

(
Yi − Ŷi

)2
(1)

L1 =

∑n

i=1
|Yi − f (xi)| (2)

The flow chart of the whole human pose estimation process
is shown in Figure 3.

III. EXTRACT KEY ACTION
Sample video of the long jump practice consists of hundreds
of frames of action. Analyzing every action not only increases
the complexity of the system, but also reduces its robustness.
Therefore, it is necessary to extract the key actions of the long
jump before conducting normative analysis. Four key actions
are identified in the long jump: take-off action, air action,
landing action, and buffer action. A key point sequence is
constructed for each of these four actions, and then compared
frame by frame with the test video to select the key action.

After reviewing the previously published literature con-
cerning normative recommendations for the long jump
technique [30], [31], [32] and consulting with national-level

FIGURE 4. Standardized movement sequences of standing long jump.

sports educators, we have devised a set of standardized move-
ment sequences specific to the standing long jump, as shown
in Figure 4.

The following sections describes the movement require-
ments for the four key elements of the standardized move-
ment sequences:

Preparatory Action: The preparatory stance involves
positioning the feet at shoulder-width apart, arms oscillating
anteriorly and posteriorly in synchrony with the leg drive.
During the arm swing, a simultaneous flexion of the knees
occurs, lowering the center of gravity, and a slight forward
inclination of the upper body is assumed. The hands are
extended as far back as feasible while the legs apply rapid
force to the ground. Typically, the knees of the takeoff leg
undergo a flexion of approximately 90 degrees or more,
serving the dual purpose of energy storage and elasticity
provision. The alignment of the knees with the toes is metic-
ulously maintained to preserve equilibrium.

Aerial Action: Rapidly propelling the body upward and
forward is achieved through the forceful push-off of both
feet’s forefeet from the ground. Simultaneously, the arms
undergo a substantial anterior and superior swing, in con-
junction with the leg thrust. This phase entails a synchronized
combination of thrust and swing to achieve an elevated trajec-
tory while maximizing body extension. A linear body posture
is maintained, with an approximate 45-degree angle between
the legs and the ground.

Landing Action:Upon landing, a slight flexion at the hips
assists in attenuating the transmission of impact forces to the
upper body. Simultaneously, the arms are projected forward,
contributing to balance, and a slight anterior inclination of the
waist is observed.

Buffering Action: The knee joints undergo flexion as the
feet make deliberate and steady contact with the ground.
The landing is buffered through the coordinated use of both
feet and knees, reducing the impact. The thigh-to-leg angle
is approximately 30 degrees to mitigate impact. The upper
body maintains a slight flexion of approximately 5 degrees
at the shoulders and elbows, contributing to equilibrium
preservation.

The key action matching is guided by the application of the
following rules:

1. SequenceAlignment of StandardActions:Thematch-
ing process commences by aligning the sequence of standard
actions. Specifically, the takeoff action is initially matched,
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FIGURE 5. Key actions extraction.

and once successfully aligned during the air phase, any fur-
ther comparison for the takeoff action and any preceding
actions is dispensed with.

2. Prioritization of High Overall Similarity: The match-
ing priority is given to achieving a high overall similarity
between the test action and the standard action. To quantita-
tively assess this similarity, this study employs the Dynamic
Time Warping (DTW) method [33], which is a nonlinear
warping technique that combines distance measurement and
time warping. It can effectively calculate the global similarity
between action sequences.

3. Leg keypoint feature similarity prioritizedmatching:
When the overall similarity between several test actions and
standard actions is the same, the angle features of key leg
points between actions are compared, and the actions with
high angle feature similarity are matched as key actions. The
calculation equation is as follows:

1 = ω1 · x1 + ω2 · x2 + ω3 · x3 (3)

On the basis of the above rules, the DTWmethod is utilized
to measure the similarity between the unequal length series of
test video and key actions.

The equation for calculating DTW distance of the target
point (x, y) is defined as:

DTW (x, y) = min

(
1
K

(∑K

i=1
Wi

) 1
2
)

(4)

where K ∈ [max(x, y), x+y−1],Wi is the sequence distance
value of each path, and the optimal path W must satisfy the
following conditions:

Boundary: The starting point and ending point ofW must
be the starting point and ending point of the plane diagonal,
namely W1 = (1, 1), WK = (x, y).
Continuity: For two adjacent points Wi (xi, yi) and Wi−1

(xi−1, yi−1), where xi - xi−1 ≤ 1 and yi - yi−1 ≤ 1, the adjacent
points are continuous.

Monotonicity: For two adjacent pointsWi (xi, yi) andWi−1
(xi−1, yi−1), where xi - xi−1 ≥ 0, yi - yi−1 ≥ 0, and the elements
on W cannot be backtracked.

The DTW distance between the action sequence and the
standard action sequence are calculated for all frames. The
actions with minimum distance from the following four
curves are chosen as the corresponding key actions. Figure 5
presents the process of key actions extraction.

IV. ACTION NORMATIVE ANALYSIS
Upon the extraction of the key actions, a normative analysis
employing the standard actions becomes imperative. Con-
ventional action norms have been predominantly reliant on
subjective judgments, leading to inefficiencies in the assess-
ment process. Hence, there arises a pressing need to devise a
quantitative and objective calculation methodology to evalu-
ate action norms more effectively. In this study, we propose
a novel approach that combines joint angle difference and
feature index to ascertain the normalization of actions.

The devised method involves the segmentation of the test
time series based on joint angle differences, followed by the
utilization of DTWmethod to compute the distance disparity
between the test sequence and the standard sequence. This
computation allows us to determine the similarity between the
tester’s actions and the standard actions. To further heighten
the precision of similarity calculation, a feature index is intro-
duced in conjunction with joint angle calculation [34], [35].

To account for variations in human body types, a dynamic
programming method is employed to calculate the motion
similarity. The cosine similarity calculation method is used
to determine the angles of each joint. Cosine similarity is a
measure of the difference in direction between two vectors
[36]. For two n-dimensional vectors A= (a1, a2, . . . , an) and
B= (b1, b2, . . . , bn), the cosine similarity ranges from −1
to 1. The cosine value is inversely proportional to the angle
between the vectors. A value of −1 indicates that the vectors
are in the opposite direction, while a value of 1 indicates that
the vectors are in the same direction.

The equation for calculating cosine similarity cos(θ) is as
follows:

cos(θ ) =

∑n
i=1 Ai ∗ Bi√∑n

i=1 (Ai)2 ∗

√∑n
i=1 (Bi)2

(5)

Based on the characteristics of the standing long jump
event and in accordance with the priority matching rules, fea-
tures with higher priority are assigned larger feature indices.
Subsequently, the feature similarity is determined based on
the feature indices, serving as the evaluation result. This
approach allows for the calculation of the overall similarity
between the key point vectors of the measured posture and
the standard posture, thereby obtaining the final assessment
[37].

Ci = (1 − λ )wd + λ (|cos (αi)| + 1)q (6)

In the given context, Ci represents the characteristic sim-
ilarity of each joint, where a smaller value indicates a more
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FIGURE 6. Filtering keypoints.

standardized action. cos (αi) represents the cosine similarity
of each joint. The value of d corresponds to the DTW value
of two actions. Parameter λ lies between 0 and 1, denotes the
weight ratio of the overall similarity to the cosine similarity
of each joint. Experimental results have shown that a value
of 0.73 yields the best effect. The variables w and q are char-
acteristic indices. Due to variations in the activity angles of
each joint, there can be significant differences in the obtained
cosine similarity. Therefore, different values are assigned to
each joint of w and q to ensure equal weighting of the scores.
To achieve the standardization of the overall long jump

process, the trajectory of the key points of the foot is sub-
jected to a filtering process. Subsequently, the integral value
between the key points of the foot and the lowest horizontal
line is calculated, followed by the assessment of the abso-
lute difference from the standard action. Prior to conducting
these calculations, it is imperative to filter the key points of
the foot and exclude any non-long jump related key points
from the process. In summary, this method allows for the
establishment of a standardized long jump process by care-
fully analyzing the foot key point trajectories and accurately
measuring their deviations from the standard action. The
elimination of irrelevant key points ensures the accuracy and
reliability of the assessment procedure. Figure 6 shows the
filtering effect of keypoints.

Since each node is discrete, the parabola of the whole
is not a continuous smooth curve, and the standard answer
cannot be calculated directly through the existing equation.
The approximate value can be obtained through the definition
of Riemann integral, and the equation is as follows:

∫
a
bf (x) dx ≈

∑n−1

i=0
f (ti) (xi+1 − xi) (7)

The left side is the integral value of the continuous func-
tion, and the right side is the approximate integral value of the
discrete function. Where xi+1 − xi is the difference between
the horizontal coordinate values of adjacent points, and f (ti)
is a function value within the interval between xi+1 and xi.

TABLE 1. Comparison of different lightweight models.

In order to unify standards, the maximum value within the
interval is taken by default.

The final normative calculation of motion was performed
using a step scale, and the characteristic cosine similarity of
each joint was weighted with the integral difference of the
foot trajectory. The equation is as follows:

Si =


5,Ci > k3

10, k2 < Ci < k3

15, k < Ci < k2

20,Ci < k

(
k =

√
p+ q

)
(8)

Score = Sum (Si) −

∫ a

b
|1f (x)| dx (9)

In order to unify the score, Si is a cumulative score of all
joints, and the highest score of each joint is 20. The score of
each joint is accumulated and then the integral difference of
the whole action is subtracted to obtain the score of the key
action.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL RESULTS OF HUMAN POSE
ESTIMATION
To substantiate the feasibility of deploying this system on
intelligent edge devices, the proposed method is compared
with other lightweight models on a Raspberry 4B (1.8GHz).
The comparison result of different lightweight models is
presented in Table 1.

Figure 7 presents the pose estimation results of different
models using the same long jump sample.

The human body detection frame is determined by employ-
ing the maximum external matrix encompassing the key
points. For this specific long jump sample, the CPM, Cen-
terNet and MobileNet-v2 showed a large deviation in the
prediction of key points. Although the effect of LightWeight
OpenPose is still good, the device lags seriously during the
operation; PoseNet showed a situation in which the key points
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FIGURE 7. Visualization of pose estimation.

of the vacating action were not recognized. By comparing the
recognition effect of each model on the key points of the long
jump action, it can be seen that this experimental model has
the best effect for this specific sample.

B. EXPERIMENTAL RESULTS OF NORMATIVE ANALYSIS OF
ACTIONS
Based on the action normative analysis method proposed in
Section IV, 46 groups of standing long jump actions were
tested and analyzed, as shown in Table 2.

As a comparison, the subjective judgment of three physical
education teachers are also presented. The criterion for cor-
rectness is based on the standardized movement sequences
mentioned in Section III.

The average accuracy rate of the four key actions is 91.3%
with the proposed method, which indicates that it is a reliable
and unbiased method of assessing the standardization of the
long jump movement.

With the proposed method, the normalization suggestions
of a test long jump action are depicted in Table 3. Notably,

TABLE 2. Results of normative analysis and subjective judgment of three
physical education teachers.

TABLE 3. Results of normative analysis of long jump action.

the disparities between the standard action and test action are
observed in the pronounced deviation between the actions of
the tester’s upper and lower extremities when compared to the
established standard practices.

Encouragingly, the recommendations generated by the
system exhibit a remarkable alignment with the subjective
assessments rendered by human evaluators. This congruence
underscores the system’s potential utility as a valuable tool in
assisting athletes and coaches in the refinement of long jump
techniques, thereby fostering improvements in long jump
performance.

VI. CONCLUSION
In this study, we present a normative evaluation method
of long jump action based on human pose estimation and
similarity measures. Leveraging joint feature points extracted
from the image, the learner’s posture is deduced, and a nor-
mative calculation approach is devised to assess the variance
between the learner’s posture and the standard posture, con-
sequently determining the adherence to standard actions. The
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method facilitates the restoration of standard actions through
ladder similarity calculation, offering valuable feedback and
correction suggestions to learners, facilitating adjustments in
their actions and poses.

Experimental findings showcase the effectiveness of the
proposed method in analyzing the standard of long jump
actions, thereby exhibiting its practical significance in con-
texts such as physical testing training in primary and middle
schools and the correction of long jump techniques for ath-
letes. By introducing an objective evaluation index to the long
jump domain, our approach contributes to a more systematic
and reliable means of assessing and improving athletic per-
formance, thus holding promise for broader applications in
various training and coaching settings.
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