
Received 21 October 2023, accepted 4 November 2023, date of publication 7 November 2023,
date of current version 10 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3330783

Exploiting Hyperspectral Imaging and Optimal
Deep Learning for Crop Type Detection
and Classification
MASOUD ALAJMI 1, (Member, IEEE), HANAN ABDULLAH MENGASH 2,
MAJDY M. ELTAHIR 3, MOHAMMED ASSIRI 4, SARA SAADELDEEN IBRAHIM5,
AND AHMED S. SALAMA 6
1Department of Computer Engineering, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia
2Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
3Department of Information Systems, College of Science and Art at Mahayil, King Khalid University, Abha 62529, Saudi Arabia
4Department of Computer Science, College of Sciences and Humanities-Aflaj, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
5Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
6Department of Electrical Engineering, Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11845, Egypt

Corresponding authors: Mohammed Assiri (m.assiri@psau.edu.sa) and Ahmed S. Salama (a.salama@fue.edu.eg)

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large
group Research Project under grant number (RGP2/29/44). Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2023R114), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This study is supported via funding
from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444). This study is partially funded by the Future University
in Egypt (FUE).

ABSTRACT Hyperspectral imaging (HSI) plays a major role in agricultural remote sensing applications.
Its data unit is the hyperspectral cube that contains spatial data in 2D but spectral band data of all the
pixels in 3D. The classification accuracy of HSI was significantly enhanced by deploying either spatial
or spectral features. HSIs are developed as a significant approach to achieve growth data monitoring and
distinguish crop classes for precision agriculture, based on the reasonable spectral response to the crop
features. The latest developments in deep learning (DL) and computer vision (CV) approaches permit the
effectual detection and classification of distinct crop varieties on HSIs. At the same time, the hyperparameter
tuning process plays a vital role in accomplishing effectual classification performance. The study introduces
a dandelion optimizer with deep transfer learning-based crop type detection and classification (DODTL-
CTDC) technique on HSI. The DODTL-CTDC techniquemakes use of the Xceptionmodel for the extraction
of features from the HSI. In addition, the hyperparameter selection of the Xception model takes place using
the DO algorithm. Moreover, the convolutional autoencoder (CAE) model is applied for the classification
of crops into distinct classes. Furthermore, an arithmetic optimization algorithm (AOA) can be employed
for optimal hyperparameter selection of the CAE model. The performance analysis of the DODTL-CTDC
technique is assessed on the benchmark data set. The experimental outcomes demonstrate the betterment of
the DODTL-CTDC method in the crop classification process.

INDEX TERMS Hyperspectral imaging, convolutional neural network, crop classification, agriculture,
parameter tuning.

I. INTRODUCTION
Hyperspectral imaging (HSI) has received more importance
in recent times [1]. Particularly, HSI classification has been
an important source for real-world applications in domains
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namely mineral mapping, agriculture, environment, forestry,
and so on. RS technology increases by leaps and bounds,
the timeliness and resolution of RSIs are enhanced, and
hyperspectral RS data are extensively utilized [2]. In par-
ticular, hyperspectral data perform an excellent part in
agricultural surveys and are employed for monitoring crop
conditions, estimating agricultural yield, monitoring pests,
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etc. In agricultural surveys, fine classification of the HSI
offers information on crop distribution [3]. Fine classification
of crops needs images with high spectral as well as spatial res-
olution. Lately, airborne hyperspectral technology has grown
quickly, and the applications of airborne HSI solve the afore-
mentioned requirement. Several studies have been made on
analyzing and employing HSI in the agriculture domain [4].
Reliable data about developing crops with various climatic
conditions and agricultural resources and with distinct time
stamps are highly significant and beneficial for agricultural
expansion [5]. Improved RS technologies comprising HSI
can fill the gap with outcomes namely crop classification and
offer an appropriate performance [6].

Crop classification in RSI images is an important applica-
tion in agriculture and land-use monitoring. It identifies and
recognizes various kinds of crops or vegetation in satellite or
aerial images. This information can be valuable for various
purposes, including crop monitoring, yield estimation, land-
use planning, and precision agriculture. The classical crop
classification approaches depend on machine learning (ML)
such as support vector machine (SVM), random forest (RF),
and k-nearest neighbor (KNN) [7]. The classification method
was difficult, the classification accuracy was usually lower,
and the difficult spatial and temporal data of high-resolution
RSIs have not been efficiently used. The ML subclasses of
artificial intelligence (AI), and deep learning (DL) have a
new domain of ML research. DL utilizes a multilayer ANN
for performing several tasks, containing natural language
processing (NLP) and computer vision (CV). This is a robust
representation-learning method. The DL acquires multi-level
feature representations utilizing non-linear modules. When
compared to conventional SVM, RFs, and other techniques,
abstract and deep features could be extracted [8]. Recently,
several researchers have usedDLmethods for high-resolution
and hyperspectral RSI classification tasks. Mono-temporal
RSI classification depends on convolution neural network
(CNN) and time series classification depends on recurrent
neural network (RNN) are recently common techniques.
CNN is a class of deep neural networks (DNN) [9], which can
be particularly utilized for processing 2D shapemodifications
and has made breakthroughs in speech, video, audio, and
image processing. Due to their capability for automatically
identifying contextual features in image classification, CNN
is commonly used to target identification and semantic seg-
mentation tasks of high-resolution images [10].
This study presents a dandelion optimizer with a deep

transfer learning-based crop type detection and classification
(DODTL-CTDC) technique on HSI. The DODTL-CTDC
technique makes use of the Xception model for the extraction
of features from the HSI. In addition, the hyperparameter
selection of the Xception model takes place using the DO
algorithm. Moreover, the convolutional autoencoder (CAE)
model is applied for the classification of crops into distinct
classes. Furthermore, an arithmetic optimization algorithm
(AOA) can be employed for optimal hyperparameter selec-
tion of the CAE model. The design of the DO and AOA

models for hyperparameter tuning demonstrates the novelty
of the work. The performance analysis of the DODTL-CTDC
method is tested on a benchmark dataset.

II. RELATED WORKS
A squirrel search optimization with a deep TL-aided crop
classification (SSODTL-CC) approach on HSI was coined by
Hamza et al. [11]. The developed method mainly designs a
MobileNet with Adam optimizer to extract features. Addi-
tionally, the SSO technique with the BiLSTM approach
was used for crop type classification. Alahmari et al. [12]
developed a new HMAODL-CTC technique for crop-type
classification methods on HSIs. This technique mostly aims
to classify various types of crops on HSI. Further, this
approach predominantly performs image pre-processing to
enhance image quality. Moreover, the introduced method
designs dilated CNN for extracting features. The HMAO
method is employed for hyperparameter tuning. In [13], the
authors target crop mapping for agriculture. Primarily, bands
are divided based on their wavelength limits in near-infrared,
shortwave infrared, and visible areas.

Xie et al. [14] emphasise techniques depending upon
semantic segmentation and developed a novel transformer-
based algorithm (HyperSFormer) to classify crops. The
comprehensive approach adopts an easier and constant
transformer design. Furthermore, the hyperpatch embedding
(HPE) algorithm is utilized for extracting local spatial and
spectral data from the HSI. The transpose padding upsamples
(TPU) method was suggested for the model performance.
Wei et al. [15] recommended an accurate crop classifica-
tion approach utilizing spectral-spatial location fusion that
depends on the conditional random field (SSLF-CRF) for
UAV-borne hyperspectral RSI. The authors in [16] intro-
duced a kernel tensor slice sparse coding-based classifier
(KTSSCC) for crop classification of UAV H2 images. The
kernel tensor depiction model in KTSSCC will decrease the
non-linear distinction while maintaining the spectral as well
as spatial features of land cover.

In [17], the GLCM texture, morphological profiles and end
member abundance features are exploited using the spatial
data of the HSI. Later, the number of spatial data is com-
bined with the spectral information for making classification
outcomes by employing DNN with CRF (DNN+CRF) tech-
nique. The CRF regards both contextual and spatial data for
minimizing misclassification noises. Li et al. [18] analysed
and compared a crop classification application that depends
on DL techniques and various time-series information to use
the probability of enhancing the accuracy of crop classifica-
tion. Time series classification databases are built depending
on spectral stacking and vegetation indexes (VIs) usingmulti-
temporal Sentinel-2 images.

III. THE PROPOSED DODTL-CTDC MODEL
In this study, we have introduced an automatic crop recog-
nition model by the use of DL named DODTL-CTDC
technique on HSI. The goal of the presented model is to
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FIGURE 1. The overall flow of DODTL-CTDC methodology.

accomplish automated and accurate crop classification on
HSI. The DODTL-CTDC technique comprises four stages of
operations Xception feature extraction, DO-based hyperpa-
rameter tuning, CAE classification, and AOA-based hyper-
parameter optimization. Fig. 1 describes the entire process of
the DODTL-CTDC method.

A. OPTIMAL FEATURE EXTRACTION
In this work, the Xception method was executed for the
extracting of feature vectors. During the DODTL-CTDC
method, the Xception architecture has been harnessed for
feature extraction in hyperspectral images. Xception is a DL
approach that is generally designed for CV tasks, specifi-
cally image classification. Specific convolution layers like
depthwise separable convolutional are employed in the Xcep-
tion design to capture significant spectral data. These layers
perform spectral filters, discerning intricate patterns and fea-
tures from the hyperspectral data, so enabling the model to
efficiently extract spectral signatures connected with several
crop types. By leveraging the power of the Xception model,
the DODTL-CTDCmethodologymakes sure that meaningful
spectral features are extracted for precise crop classification
from the hyperspectral image.

The feature extraction of the baseline network consists of
36 convolution layers [19]. The Xception model is linearly
stacked on residual connection depthwise convolution layer.
Compared with Inception_v2 or Inception_v3, which are
considerably highly difficult to define, this makes it quite
easy to adapt and construct; using high-level frameworks
including TensorFlow. Transfer learning (TL) is to train the
Xception architecture. As said by Ian Goodfellow et al.
TL is an ML approach where a model constructed for one
work is transmitted to other corresponding activities, utilizing
previous information from the task related to speed up the
learning. In general, TL often takes place in DL since the
model should be trained on challenging and large datasets
that demand extensive resources. Francois Chollet presents
a complete description of the Xception architecture. Every
14 units including the 36 Conv layers encompass linear

residual connection. First, the input flow (8 Conv layers and
4 modules) processes the data, then the middle flow (3 Conv
layers and 1 module), and the exit flow (4 Conv layers and
2 modules).

The preparation and model design is explained in the fol-
lowing:

Binary-cross-entropy (log or logarithmic loss) is used to
evaluate the prediction probability for the binary classifi-
cation dataset based on Eq. (1) for Model Compilation.
Xception architecture is the baseline model, where TL is used
for training the last layer through image net weight.

LogLoss = −
(
(1 − y) ∗ log

(
1 − ŷ

)
+ y ∗ log

(
ŷ
))

(1)

In Eq. (1), y and ŷ denotes the expected and the predicted
values.

Here, the DO technique is exploited to fine-tune the hyper-
parameters of the Xception model such as learning rate,
number of epochs, and batch size. DO is a bio-inspired
optimization technique which mimics the proceeding of DO
fight to different places based on the wind; this procedure is
divided into three stages [20]. During the rising stage, the seed
rises in a spiral fashion due to the influence of drag force;
this can be attained during sunny weather. Moreover, in rainy
climates, the dandelion seed diffuses within the local region.
This alteration in rising provides two scenarios of searching,
such as randomly settling in various locations due to the
influences of wind as well as weather, eventually increasing
into a new dandelion.

The DO algorithm depends on the iterative evolution of the
early population like other metaheuristic approaches. D indi-
cates the variable dimension, and P denotes the population
size.

population =

X1
1 . . . XD1
...

. . .
...

X1
P . . . XDP

 (2)

In terms of the optimization algorithm, every individual
generated is signified as Xi and is subjected to the lower
bound (LB) and upper bound (UB) of the problems.

Xi = rand × (UB− LB) + LB (3)

In Eq. (3), rand is a random integer within [1, 2] and i
refers to the integer range from 1 to P.

In the initialization process, consider the optimum fitness
values as initial elite Xelite, as follows:{

Xelite = (find (fbest == f (Xi)))
fbest = min (f (Xi))

(4)

In Eq. (4), find() denotes the two indexes with equivalent
values.

In the rising stage, the behaviour of dandelion seeds
was affected by the climate condition, with two potential
instances. Dandelion seeds ascend to considerable height
during clear weather conditions:

Xt+1 = Xt + α×vx × vy × lnY × (Xs − Xt) (5)
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In Eq. (5), Xt denotes the location of the dandelion seed at t
iteration, α indicates the adaptive parameter for adjusting the
search step length, Xs shows the random location, lnY refers
to the log uniform distribution subjected toµ= 0 and σ 2

= 1,
and 0χ and 0y denotes the lift component coefficient of the
dandelion seed.

Xs = rand (1,D) × (UB− LB) + LB (6)

lnY =


1

y
√
2π

exp
(

−
1

2σ 2 (lny)2
)

y ≥ 0

0 y < 0
(7)

α = rand () ×

(
1
t2max

t2 −
2
tmax

t + 1
)

(8)
vx = r × cosθ
vy = r × sinθ

r =
1
eθ

(9)

From the expression, y denotes the uniform distribution
[0, 1], tmox indicates the maximal iteration count and θ shows
the randomly generated value within [−π, π].
During inclement weather, especially on rainy days, the

DO seeds can’t properly rise due to air resistance.

Xt+1 = Xt×k (10)

In Eq. (10), k denotes the regulator of the local search range.
q =

1
t2max − 2tmax + 1

t2 −
2

t2max − 2tmax + 1

t + 1 +
1

t2max − 2tmax + 1
k = 1 − rand() × q

(11)

During the descending stage, they steadily drop after the
DO seeds rise to a specific altitude as follows:

Xt+1 = Xt − α × βt × (Xmean−t − α × βt × Xt) (12)

In Eq. (12), βt denotes the Brownian movement and
Xmeasn−t shows the mean location of the population as
follows:

Xmean_t =
1
P

P∑
i=1

Xi (13)

In the seeds’ descent, individual evolution can be defined
by the mean location. Then, the dandelion seeds randomly
select where they will land is named as landing stage:

Xt+1 = Xelite + levy (λ) × α × (Xelite − Xt × δ) (14)

In Eq. (14), δ shows the linear increasing function between
[1, 2], Xelite denotes the optimum location of the dandelion
seeds, and levy(λ) indicates the function of Levy fight. The
DO algorithm designs a fitness function to attain improved
classification performance. It determines a positive integer to
represent the better performance of the candidate solutions.
In this study, the minimization of the classification error rate
is considered as the fitness function.

B. IMAGE CLASSIFICATION
For crop type classification, the CAE model is used. CAE
is a specific kind of autoencoder (AE) that integrates the
capability of CNNs to effectively extract image features and
the capability of AE to represent the input dataset [21].
In the DODTL-CTDC approach, the CAE roles a vital play
in crop classification. The CAEmodel contains convolutional
and deconvolutional layers, with max-pooling and activation
functions combined for dimensionality reduction and feature
extraction. In the training, the CAE acquires for encoding
hyperspectral data as a low-dimensional latent space while
maintaining vital spectral data. The CAE reconstruction task,
decreasing the difference between input and output, supports
it to capture discriminative features from the hyperspectral
data that are subsequently utilized for precise crop classifica-
tion. The number of layers and their certain configuration can
vary but are planned to efficiently distill spectral signatures
that separate various crop types in the hyperspectral image.

AE regenerate the input by fusing two neural networks
(NN) components: an encoder and a decoder. The encoder
units encode the input x to hidden output l viz., compressed
form of the input. The dimensionality of hidden output l is
smaller than the dimensionality of input x. Then, the decoder
relies on hidden output, l, and produces output x̃ to the input
x. AE was trained to minimise the reconstructed loss of the
network for reconstructing the original inputs. The AE com-
prises encoder f (x, θ) that compresses the data and decoder
g (l, φ) that reconstructs the input can be mathematically
modelled as follows.

l = f (x, θ) (15)

x̃ = g (l, φ) = g (f (x, θ) , φ) (16)

where θ and φ denote the trained parameter of the encoder
and decoder, correspondingly. This parameter was set by
training the AE to minimise the cost function.

C (x, x̃) = L (x, x̃) + regularization term (17)

Now, L(x, x̃) indicates a reconstructed loss function i.e.,
a binary cross-entropy (BCE) or mean squared error (MSE)
averaged over the overall amount of samples which are eval-
uated as follows:

LMSE =
1
N

N∑
i

(
x i − x̃ i

)2
(18)

LBCE =
1
N

N∑
i

−

[
x ilog

(
x̃ i

)
+

(
1 − x̃ i

)
log

(
1 − x̃ i

)]
(19)

In Eq. (17), the regularization term is essential for DNN
to prevent the network from learning identity function and
thereby improve the generalization capability of the model.
Shallow network AE needn’t include regularization terms
because the bottleneck architecture itself is adequate to
enforce the regularization. In CAEs, the pooling layer pre-
vents the over-fitting of the network and enhances the
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generalization capability. Therefore, the reconstructed loss
was used as a cost function. The encoder of CAE comprises
an alternative layer of convolution and pooling for the FC and
network layers. A hidden layer is signified as an FC layer (1D
layer). The decoder mainly comprises of a sequence of trans-
posed convolution layers with FC layers. A CAE includes
three major operations such as upsampling, convolution, and
pooling which are subsequently explained.

C. HYPERPARAMETER TUNING USING AOA
Finally, the AOA adjusts the parameters related to the CAE
algorithm such as learning rate, batch size, kernel size, and
number of layers. The fundamental AOA operation includes
initialization, exploitation, and exploration [22]. Fig. 2 illus-
trates the flowchart of AOA.

(a) Initialization. The candidate solution (XA) was ran-
domly generated. The existing population is signified as a
matrix xa. DM represents the dimension. NP denotes the
number of individuals y. The better solution is the optimal
solution achieved for all the iterations.

XA =


xa1,1 · · · xa1,DM−1 xa1,DM
xa2,1 · · · xa2,DM−1 xa2,DM

... · · ·
...

...

xaNP,1 · · · xaNP,DM−1 xaNP,DM

 (20)

Using the math optimizer accelerated (MOA) function, the
search phase was selected as an exploration or exploitation.

MOA (iter) = miniter + iter ×

(
maxiter−miniter

Miter

)
(21)

In Eq. (21),Miter refers tomaximum iteration. iter denotes
the present round. miniter and maxiter are the minimum and
maximum values of MOA, correspondingly. (b) Exploration.
When r1 > MOA, the Division or Multiplication operator is
implemented, as follows:

xai,j (iter + 1) =


best(xaj) ÷ (MOP+ ε) × ((UBj − LBj)
×µ+,LBj), r2 > 0.5
best(xaj) ×MOP× ((UBj − LBj)
×µ + LBj) r2 ≤ 0.5

(22)

where r2 denotes a random integer. best(xaj) shows the jth

location in the optimum solution. ε represents a small value.
The higher and lower boundaries of thejth location are

represented as UBj and LBj.µ is fixed as 0.5.

MOP (iter) = 1 −
iter

1
α

Miter
1
α

(23)

In Eq. (23), α shows the sensitive parameter set as 5.

TABLE 1. Description on dataset1.

(c) Exploitation. When r1 ≤ MOA, the Addition (A) or
Subtraction (S) operators are implemented.

xai,j (iter + 1) =


best

(
xaj

)
− (MOP+ ε) × ((UBj − LBj)

×µ+,LBj), r3 > 0.5
best

(
xaj

)
+MOP× ((UBj − LBj)

×µ + LBj) r3 ≤ 0.5

(24)

The present optimum fitness is compared with the prior
optimum fitness, and the lower value determines the last opti-
mum solution. Fitness selection is a key aspect of the AOA
methodology. An encoder performance has been deployed
to design the optimum result of candidate performance.
At present, the accuracy value is the major form deployed to
develop a fitness function.

Fitness = max (P) (25)

P =
TP

TP+ FP
(26)

w,FP and TP denote the false and true false positive values.

IV. RESULTS AND DISCUSSION
The experimental outcome of the DODTL-CTDC method
was carried out against 2 databases [23], namely dataset1
(WHU-Hi-LongKou) and dataset2 (WHU-HiHanChuan).
The dataset1 comprises a total of 9000 instances with nine
classes containing 1000 instances under all the classes as
shown in Table 1. Further, dataset-2 includes a total of
11,000 samples with 11 classes, holding 1000 instances under
all the classes as represented in Table 2.

Fig. 3 shows the classifier analysis of the DODTL-CTDC
approach on dataset1. Figs. 3a-3b represents the confusion
matrix achieved by the DODTL-CTDC technique at 70:30
of the training (TR) set/testing (TS) set. Similarly, Fig. 3c
reveals the PR curve and Fig. 3d depicts the ROC study of
the DODTL-CTDC methodology.

In Table 3 and Fig. 4, brief crop classifier results of
the DODTL-CTDC technique are reported on dataset1.
The results identified that the DODTL-CTDC technique
properly categorises all classes. With 70% of TR set,
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FIGURE 2. Flowchart of AOA.

the DODTL-CTDC technique offers an average accuy of
99.42%, precn of 97.45%, recal of 97.38%, and Fscore of
97.39%. Besides, with 30% of TS set, the DODTL-CTDC
approach offers an average accuy of 99.42%, precn of
97.45%, recal of 97.38%, and Fscore of 97.39%.
Fig. 5 illustrates the training accuracy TR_accuy and

VL_accuy of the DODTL-CTDC method on dataset1. The
TL_accuy is defined by the estimation of the DODTL-CTDC
system on the TR dataset whereas the VL_accuy is calcu-
lated by evaluating the performance on an individual testing
dataset. The outcomes exhibited that TR_accuy andVL_accuy
rise with an upsurge in epochs. Therefore, the performance of
the DODTL-CTDC algorithm gets enhanced on the TR and
TS dataset with an increase in several epochs.

In Fig. 6, the TR_loss and VR_loss analysis of the
DODTL-CTDC method on dataset 1 is demonstrated.
The TR_loss determines the error between the predicted
performance and original values on the TR data. The

VR_loss signifies the measure of the performance of the
DODTL-CTDC system on separate validation data. The
outcomes indicated that the TR_loss and VR_loss tend to
reduce with increasing epochs. It described the improved
performance of the DODTL-CTDC algorithm and its abil-
ity to generate accurate classification. The decreased value
of TR_loss and VR_loss shows the higher performance of
the DODTL-CTDC approach in capturing relationships and
patterns.

Fig. 7 shows the classifier analysis of the DODTL-CTDC
method on dataset2. Figs. 7a-7b represents the confusion
matrix attained by the DODTL-CTDC technique on 70:30
of the TR set/TS set. The simulation value signified that
the DODTL-CTDC system has recognized and classified
all 11 classes accurately. Similarly, Fig. 7c revealed the
PR curve of the DODTL-CTDC technique. The figure
reported that the DODTL-CTDC algorithm has obtained
maximal PR performance on 11 class labels. Eventually,
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FIGURE 3. Performances on dataset1 (a-b) Confusion matrices, (c) PR_curve, and (d) ROC.

Fig. 7d demonstrates the ROC analysis of the DODTL-
CTDC approach. The outcome value depicted that the
DODTL-CTDC method has led to able solutions with supe-
rior ROC outcomes on 11 classes.

In Table 4 and Fig. 8, a comprehensive crop classifica-
tion analysis of the DODTL-CTDC approach is reported on
dataset2. The outcomes identified that the DODTL-CTDC
method properly categorises all class labels. With 70% of
TR set, the DODTL-CTDC system offers an average accuy
of 97.66%, precn of 87.20%, recal of 87.15%, and Fscore
of 87.14%. Also, with 30% of TS set, the DODTL-CTDC
algorithm offers an average accuy of 97.65%, precn of
87.09%, recal of 87.02%, and Fscore of 87.02%.

Fig. 9 illustrates the training accuracy TR_accuy and
VL_accuy of the DODTL-CTDC method on dataset2. The
TL_accuy is defined by the estimation of the DODTL-CTDC
system on the TR dataset whereas the VL_accuy is calcu-
lated by evaluating the performance on an individual testing
dataset. The outcomes exhibited that TR_accuy andVL_accuy
rise with an upsurge in epochs. Hence, the performance of the
DODTL-CTDC approach gets enhanced on the TR and TS
dataset with an increase in the number of epochs.

In Fig. 10, the TR_loss and VR_loss analysis of the
DODTL-CTDC method on dataset2 is demonstrated. The
TR_loss determined the error between the predictive per-
formance and original values on the TR data. The VR_loss
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TABLE 2. Description on dataset2.

TABLE 3. Crop classifier outcome of DODTL-CTDC approach on dataset1.

signified the measure of the performance of the DODTL-
CTDC system on separate validation data. The outcomes
indicated that the TR_loss and VR_loss tend to minimize with
increasing epochs. It depicted the improved perfor-
mance of the DODTL-CTDC method and its ability to
generate accurate classification. The decreased value of
TR_loss and VR_loss exhibits the higher performance of
the DODTL-CTDC algorithm in capturing relationships and
patterns.

FIGURE 4. Average result of DODTL-CTDC approach on dataset1.

FIGURE 5. Accuy curve of DODTL-CTDC methodology on dataset1.

FIGURE 6. Loss curve of DODTL-CTDC methodology on dataset1.

In Table 5, a widespread comparative investigation of the
DODTL-CTDC technique is depicted on two datasets [11].
The results highlighted that the DODTL-CTDC technique
accomplishes effectual performance on both datasets.

In Fig. 11, a brief comparison study of the DODTL-CTDC
technique takes place on dataset1. The figure represented that
the SVM model exhibits the least accuy of 95.98%. Along
with that, the FNEA-OO, SVRFMC, CNN, and CNN-CRF
approaches demonstrate slightly improved accuy values of
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FIGURE 7. Performances on dataset2 (a-b) Confusion matrices, (c) PR_curve, and (d) ROC.

97.07%, 98.20%, 98.08%, and 98.80% correspondingly.
Nevertheless, the DODTL-CTDC technique reported better
results with a maximum accuy of 99.47%.

In Fig. 12, a detailed comparison analysis of the
DODTL-CTDC method takes place on dataset2. The figure
denoted that the SVM technique reveals the least accuy of
95.98%. Along with that, the FNEA-OO, SVRFMC, CNN,
and CNN-CRF algorithms show slightly enhanced accuy
values of 97.07%, 98.20%, 98.08%, and 98.80% corre-
spondingly. While the SSODTL-CC technique demonstrates
considerable outcome with accuy of 99.23%. However, the

DODTL-CTDC system reported better results with a greater
accuy of 99.47%.

These outcomes highlighted the effective crop classifi-
cation solution of the DODTL-CTDC methodology. The
DODTL-CTDC approach reveals higher outcomes related to
existing approaches because of their innovative combination
of deep TL, hyperparameter optimizer utilizing the DO, and
CAE for crop classification from the hyperspectral image.
The combination of the Xception method, renowned for its
feature extraction abilities, make sure the effectual extrac-
tion of relevant spectral data. Additionally, the employment
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TABLE 4. Crop classifier result of DODTL-CTDC approach on dataset2.

FIGURE 8. Average outcome of DODTL-CTDC approach on dataset2.

TABLE 5. Accuy outcome of DODTL-CTDC algorithm with other methods
on two databases [11].

of the DO improves hyperparameter tuning precision, con-
tributing to optimized model efficiency. The incorporation of
the CAE technique for crop classification provides a strong

FIGURE 9. Accuy curve of DODTL-CTDC approach on dataset2.

FIGURE 10. Loss curve of DODTL-CTDC approach on dataset2.

FIGURE 11. Accuy outcome of DODTL-CTDC algorithm on dataset1.

framework for distinguishing crop varieties correctly. This
holistic method outcomes in better classification accuracy,
making the DODTL-CTDC methodology a vital advance-
ment in the field of agricultural remote sensing and hyper-
spectral image analysis.
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FIGURE 12. Accuy outcome of DODTL-CTDC algorithm on dataset2.

V. CONCLUSION
In this study, we have introduced an automated crop classi-
fication model using DL named DODTL-CTDC technique
on HSI. The goal of the presented model is to accomplish
automated and accurate crop classification on HSI. The
DODTL-CTDC technique comprises four stages of opera-
tions Xception feature extraction, DO-based hyperparameter
tuning, CAE classification, and AOA-based hyperparameter
optimization. In this work, the hyperparameter selection of
the Xception model takes place using the DO algorithm.
Finally, the AOA can be employed for optimal hyperparame-
ter selection of the CAE algorithm. The performance analysis
of the DODTL-CTDC technique is tested on a benchmark
dataset. The experimental outcomes demonstrate the better-
ment of the DODTL-CTDCmethod in the crop classification
process. In the future, the crop classification accuracy of the
DODTL-CTDC technique can be improved by the feature
fusion process.
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