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ABSTRACT Recently, zero trust security has received notable attention in the security community. However,
while many networks use monitoring and security functions like firewalls, their integration in the design
of zero trust architectures remains largely unaddressed. In this article, we contribute with respect to this
aspect a novel network security architecture called Zero Trust Service Function Chaining (ZTSFC). With
ZTSFC, we achieve three main improvements over zero trust architectures: (1) the zero trust components
can directly integrate other monitoring and security functions into their access decisions, (2) an efficient
flow of information between zero trust components, monitoring, and security functions are achieved, and (3)
ZTSFC improves the performance with respect to hardware load and user experience. As proof of concept,
we implemented a publicly available ZTSFC prototype based on HTTPS and the policy language ALFA.
Using this prototype, we demonstrate the achievement of all three improvements in representative use cases.
In addition, our performance evaluation compares ZTSFC with a regular zero trust network without ZTSFC.
The results indicate that ZTSFC can reduce CPU usage by 25% for specificmonitoring and security functions
in certain scenarios. Overall, we also observed a 30% decrease in the time it takes to access services with
ZTSFC.

INDEX TERMS Network performance, network security, zero trust, access control, service function
chaining.

I. INTRODUCTION
Ever since Google published their Zero Trust (ZT) approach
BeyondCorp [2], ZT has been a much-discussed topic in
network security. ZT is motivated by the shortcomings of
perimeter security, which arise from its design assumption
that valid resource accesses originate from an internal trusted
network only and attacks always come from the outside.
The limitations of perimeter security became apparent with
issues like insider attacks and the growing trends of working
from home and bring your own device (BYOD) policies [3].
These challenges introduce new ways resources are accessed,
showing that the original design idea behind perimeter
security is now outdated. One of ZT’s core measures
to address the shortcomings of perimeter security is to
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strictly enforce authentication and trust-based authorization
(Auth*) for all resource access requests (RAR). These Auth*
procedures are executed no matter who sends the RARs or
where they are sent from. The foundational components of
a ZT architecture typically comprise the policy enforcement
point (PEP) located in the data plane, and the policy decision
point (PDP) positioned in the control plane. They are
responsible for the Auth* decisions where the PEP enforces
the decisions made by the PDP in-line [4]. Such an Auth*
decision can either result in allowed access, in which case
the PEP forwards the RAR to the resource, or denied access,
in which case the PEP rejects the RAR. Figure 1 shows a
simple ZT architecture commonly used in the literature [3],
[4], [5] that is composed of the components mentioned.
Additionally to strictly enforced Auth* decisions, the ZT

paradigm requires the logging and inspection of all network
traffic [6], [7]. In most ZT architectures, the PEP and PDP
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FIGURE 1. Example ZT architecture adapted from NIST [4] that consists of
the basic ZT components PEP and PDP separated by a control plane and a
data plane.

alone do not provide all these features. Therefore, to fulfill
the ZT paradigm, one needs to deploy additional monitoring
and security (MaS) functions. These are for example intrusion
prevention systems (IPS) for deep packet inspections (DPI),
multi factor authentication systems (MFA) for prompting
the client for additional authentication factors, or loggers
for packet logging in the network [6]. However, as shown
in Figure 1, most ZT architectures do not consider MaS
functions in their architectural design. As we will discuss in
detail in Section III, the integration of MaS functions into ZT
networks for efficient and synergistic operation remains often
unaddressed.

In this article, we introduce a novel ZT network architec-
ture named Zero Trust Service Function Chaining (ZTSFC)
that addresses the aforementioned lack of integration between
ZT components and MaS functions. ZTSFC enables a
dynamic and highly flexible orchestration and composition
of MaS functions by ZT components. To achieve this,
we combine the concept of ZT with service function chaining
(SFC) [8]. SFC is a technique to dynamically steer traffic
through a set of service functions, which can be any type
of MaS functions. In addition, it is possible to instruct MaS
functions to provide feedback to the PEP/PDP about the
packets they process, such as suspicious findings in a packet
header. Utilizing SFC, the ZT components have fine-grained
control over how traffic is steered through the MaS functions
and select the appropriate feedback, based on the level of
trust in the RAR. This is conceptually illustrated in Figure 2.
By this, we enable the ZT components to dynamically
and fine-granularly decide when and to which traffic MaS
functions are applied and which feedback they expect from
the MaS functions. We presented initial concepts of the
ZTSFC idea in [9]. In this article, we now present the refined
concept, a detailed architecture, and evaluation of benefits
and performance impact.

With ZTSFC we claim the following three main improve-
ments over common ZT architectures:

• Improvement 1 - The integration of MaS functions
into the PDP’s Auth* decision-making process:Based
on the established trust in the RAR, the PDP can obligate
a set of MaS functions for this RAR and the correspond-
ing response. Assuming a client initiating a RAR uses a
managed device. Such managed devices typically offer
strong device authentication and host-based intrusion

FIGURE 2. ZTSFC conceptual idea, which demonstrates traffic steering by
the ZT components PEP and PDP based on trust.

detection systemswith on-device packet inspection [10].
Together with other attributes, like the client’s usual
access time, this results in a high trust level. That leads to
the RAR being permitted. In contrast, if the same client
uses an unmanaged device, it lacks one authentication
factor and on-device packet inspection, resulting in a
lower trust level. With ZTSFC, utilizing MFA and IPS
functions can make up for this trust deficit. The MFA
might request an additional factor, such as a portable
authentication token, to compensate for the absent
device authentication. The IPS could perform a DPI on
the RAR’s packets to account for the missing on-device
inspection. Thus, the PDP can make permitted access
dependent on both IPS and MFA, steering the RAR’s
packets through these two MaS functions. By this, for
example, necessary resource access for users following a
BYOD policy can be permitted while ensuring security.
As discussed in Section III, such a mechanism is hard to
implement in a ZT architecture withoutMaS integration,
while ZTSFC can accomodate this in a straight forward
way.

• Improvement 2 - The implementation of a direct and
efficient information flow between MaS functions
and PDP: As previously noted, the Auth* decisions
depend on the degree of trust placed in the RARs. This
trust derives from various contextual information about
the RAR. Such information encompasses details about
the client that sent the RAR, such as its location and
typical access times, as well as data like the protocol
version used for the RAR [4]. A logger typically obtains
the latter. Using ZTSFC, the PDP can steer packets
through a logger function to collect such information,
which the PDP subsequently uses for future RARs from
the same source. This method establishes a direct flow
of contextual information between MaS functions and
PDP. As we will outline in Section III, how to ensure
such an information flow in ZT architectures is mostly
unaddressed so far.

• Improvement 3 - Reduction of hardware load and
improvement of user experience: MaS functions
such as an IPS are typically positioned at network
choke points, where they process all packets that
pass through them according to pre-configured set-
tings. However, security features, like DPI, demand
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significant computational resources. With the applica-
tion of ZTSFC, the PDP can make dynamic decisions
regarding traffic steering through specificMaS functions
based on trust levels. As a result, if a high level of
trust in a RAR is already established, certain resource-
intensive functionalities, such as DPI, can potentially be
saved. The IPS would then be reserved for RARs that do
not meet a specified trust threshold. This approach can
reduce the strain on the IPS. Concurrently, saving the
IPS lowers the access times. That leads to an improved
user experience. As we will discuss in Section III, this
can reduce the hardware load while maintaining security
considerations.

Contributions: Our goal in this article is to address the miss-
ing integration of MaS functions in existing ZT architectures.
To this end, we make three key contributions:

• We describe in detail our novel ZT network architecture
called ZTSFC.

• We provide a publicly available ZTSFC proof of concept
based on an HTTPS approach.

• We discuss with detailed use cases how improvement
one and two are achieved by ZTSFC. Regarding
improvement three, we conducted a detailed perfor-
mance analysis regarding the saved hardware load and
increased user experience.

The remainder of the article is structured as follows:
In Section II we provide the necessary technical back-
ground. Section III motivates the improvements based on
the state of the art. Section IV describes the ZTSFC
architecture. Subsequently, we introduce in Section VI a
ZTSFC proof of concept based on an HTTPS SFC approach
described in Section V. Based on this proof of concept,
we present the implementations of the three improvements in
Section VII.With regard to improvement three, we conducted
a comprehensive performance evaluation in Section VIII.
Subsequently, we discuss in Section IX various general
aspects of ZTSFC. The conclusion in Section X gives a
summary and discusses future work.

II. BACKGROUND
Before we discuss ZTSFC, we describe the core concepts of
ZT and SFC in this section.

A. ZERO TRUST
ZT security recoins the well-known IT security paradigm
trust but verify into never trust, always verify [6]. Trusted
LANs, as managed in the perimeter security concept, are
removed. Neither a device nor a user is attributed initial
trust based on inherent properties such as network location.
Instead, each RAR must be verified before it is permitted.
In ZT security, verifying is a process consisting of strictly
enforcing authentication, authorization and monitoring of all
RARs [4]. In the context of this article, we limit the granular-
ity of access decisions to service accesses, like web services,
rather than individual resources within that service. Several

ZT architectures have been proposed to ensure the strict
Auth* of all RARs. For example, in Google’s BeyondCorp
publications [2], [11], [12], in Gilman and Barth’s book Zero
Trust Networks [3], or in the NIST publication Zero Trust
Architecture [4].

Figure 1 depicts such a ZT architecture, where the NIST
naming scheme is adopted. Here the PEP acts as an access
control gateway for the clients. At the arrival of a client’s
RAR, the PEP requests the PDP for an Auth* decision
whether the requested access should be permitted or rejected.
The PDP’s Auth* decision is then enforced in-line by the PEP,
which either forwards or rejects the RAR.

1) AUTH* DECISIONS
The first step of the Auth* decision-making process is client
authentication. That includes often prompting the client for
multiple authentication factors. After the client authentica-
tion, the PDP proceeds to make an authorization decision.
With ZT security, this is based on the trust attributed to a
RAR. This trust is built from asmany data sources as possible.
That includes, for example, user and device attributes as well
as history and threat intelligence data. The latter provides
conclusions about the current security posture of the network
and the hosted services. Access is only permitted if the trust
in the RAR is sufficiently high. A widely-used approach
to assess if the trust level is adequate is the criteria-based
method, detailed in [4] and [5]. Criteria-based methods
define a set of binary criteria that must all be true for
access to be permitted; only then the trust is considered high
enough. Listing 1 depicts an example criteria-based access
policy expressed in the policy language ALFA.1 The showed
policy manages accesses to an example service. The keyword
target clause in ALFA checks the policy’s applicability for
specific RARs. Here, the rule getServiceAccess inside of the
exampleServiceAccess policy is applicable if the RAR wants
to get access (line 5) to service exampleService (line 2).
The conditions for permitted access require access within
the time range 9 a.m. and 5 p.m., a two-factor authenticated
user, and a RAR originated by a managed device. Each
condition represents a criteria, which can be either true or
false. Access is permitted if all conditions result in true.
Furthermore, the example policy shown uses the obligation
feature of ALFA. This feature adds additional requirements
to policy rules, like logging permitted accesses as shown in
the example. The PDP sends the obligation along with the
authorization decision to the PEP, which enforces it, i.e., the
PEP logs the access and forwards the RAR to the requested
service. Other possible policy languages suitable for ZT were
presented by Dimitrakos et al. [13], Colombo et al. [14], and
Lazouski et al. [15]. They combine features of the policy
languages XACML [16] and UCONABC [17]. That enables
granular and continuous trust-based authorization decisions.

1https://www.oasis-open.org/committees/download.php/55228/alfa-for-
xacml-v1.0-wd01.doc
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LISTING 1. Example ZT criteria-based policy that manages requested
accesses to an example service.

B. SERVICE FUNCTION CHAINING
Where ZT aims to increase service security, SFC wants to
achieve a more dynamic and flexible deployment of network
service functions (SFs) such as firewalls or NAT routers.
In a network without SFC SFs are tied to the underlying
network topology, which severely limits the flexibility and
dynamics. If an SF lies on the topological path of a packet,
it can be applied to it. In contrast, it is a non-trivial task
to apply network functions to packets traversing a network
path in the topology that does not contain that function.
To address this limited flexibility, RFC 7665 [8] describes a
standardized SFC architecture. Figure 3 depicts a simplified
SFC architecture based on RFC 7665.

FIGURE 3. SFC architecture based on RFC 7665 [18] that is separated into
a data plane and a control plane. The data plane consists of an SFC
classifier and SFs. The control plane connects the abstract control
elements.

The depicted architecture defines an SFC classifier as
the entry point into an SFC domain. It classifies incoming
traffic according to classification criteria such as network
packets 5-tuple (destination and source IP, destination and
source port, and the next protocol header). Based on this
criterion, the classifier determines which SFs must be applied
to these packets. All SFs defined in this way form an SFC.
However, the defined SFC only describes which SFs must be

applied and in which order. The SFC control elements derive
a concrete service function path (SFP) from this abstract SFC.
The SFP contains the actual used SF instances and defines the
network path the packets traverse. All affected packets are
forwarded through the network according to this SFP until
they reach the destined service. In Figure 3, an exemplary
SFC <Logger, IPS> could contain the logger SF and the
IPS SF. From this SFC an SFP such as <Logger Instance #1,
IPS Instance #1> is derived. Packets classified by the SFC
classifier are then forwarded through the defined SF instances
before leaving the SFC domain and eventually arriving at the
destination (either Service 1 or Service 2). Studies such as
those by Iffländer et al. [19] and Shameli-Sendi et al. [20] are
concerned with creating the most efficient SFCs and SFPs
possible.

The SFC control components described abstractly in [18]
define the classification criteria and specify the associated
SFCs and SFPs. This information is communicated with
the SFC classifier. In return, function-relevant data, such as
the SF’s load, or feedback about the processed packets is
received from individual SFs. Based on this input from the
SFs, the control components can adjust the affected SFPs
when necessary.

III. MOTIVATION AND STATE OF THE ART
As discussed in the introduction, the ZT components PDP
and PEP usually do not provide all the security functionalities
necessary for satisfying the ZT paradigm, such as packet
inspection. Therefore, the efficient and synergistic integration
of other MaS functions that provide these missing function-
alities, such as an IPS, into a ZT architecture is necessary
for our understanding. However, such an integration remains
often times unaddressed in the literature. That motivated the
design of ZTSFC, which addresses this lack of integration.
With ZTSFC, we achieve three main improvements over ZT
architectures. This section discusses the integration in current
ZT architectures and motivates the three improvements based
on the state of the art.

Motivation for Improvement 1 - The integration ofMaS
functions into the PDP’s Auth* decision-making process:
In the introduction, we outlined a scenario where applying a
well-defined set of MaS functions (here: MFA and IPS) to a
RAR can compensate for specific attributes (here: managed
device) that are not fulfilled. Let us assume an employee is
on a business trip without having a managed device with her
but still needs urgent access to a service. So the employee
is missing device authentication and a host-based intrusion
detection system with on-device packet inspection [10].
In such a case, we can permit access by applying the MaS
functionsMFA and IPS to her RAR. TheMFA prompts for an
additional authentication factor compensating for the device
authentication. The IPS performing a DPI compensates for
the missing on-device packet inspection. By doing this,
we can keep up her productivity while ensuring security. The
trust deficit created by the lack of a managed device can be
rebuilt through the targeted use of MFA and IPS.
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Such a scenario requires two things. First, the PDP
implements suitable policies that cover the integration ofMaS
functions in the policy rule set. And second, the PDP can
ensure at the time it makes the Auth* decision, that the set
of MaS functions specified in the policy is later applied to
the RAR’s packets before they reach the service.

The first requirement is the integration of MaS functions
into the policy rule sets. This could be implemented,
for example, by using the obligation feature supported
by most of ZT-suitable policy languages such as ALFA,
XACML, or UCON. In the literature, Dimitrakos et al. [13],
Colombo et al. [14], and Lazouski et al. [15] introduce pow-
erful ZT-suitable policy languages. However, the integration
of MaS functions is out of the scope of their work.

The second requirement, ensuring that specific sets ofMaS
functions are applied to packets, is difficult to achieve in
conventional network solutions. To illustrate this, Figure 4
shows a simplified example enterprise network. In this
example network, an IPS is deployed at a network choke
point where all traffic from external requestors such as client
1 flows through. However, since ZT eliminates intrinsic trust
from internal requestors like client 2, equivalent security
measures are also imperative here. To enable the PDP to apply
MaS functions, including the IPS, to all packets-even those
from client 2-the IPS must be integrated into all network
paths. This leads to a challenging and cumbersome task for
network administrators. Either costly IPS hardware must be
deployed to all network paths or time-consuming rewiring is
required [21]. Standard software-defined networking (SDN)
solutions also do not provide the necessary granularity as
they work with criteria such as the 5-tuple. The checking
for a managed device or specific authentication factors is
oftentimes not supported out of the box. It should be noted,
however, that SDN solutions are suitable for implementing
ZTSFC. In ZT grey literature like in [4] or [5], it is abstractly
described that MaS findings, as part of threat intelligence,
could be used in the PDP’s Auth* process. However,
it remains unaddressed how the PDP can dynamically apply
specific sets of MaS functions to RARs if needed. Previous
academic studies have also examined different methods that

FIGURE 4. Example enterprise network encompassing a point of
presence (PoP) router as network entry point and a top of rack (ToR)
switch connecting client and services internally, and an IPS right behind
the PoP router.

enable the PDP to orchestrate other security functions, but
often with a different focus. Eidle et al. [22] present a ZT
approach that enables an orchestration server to coordinate
an access gateway and firewall. This server can instruct
the firewall to block suspicious IP addresses as part of a
DoS defense. Vanickis et al. [23] introduce a new risk-based
policy enforcement framework that leverages firewalls to
enforce access decisions. Both works focus on firewall
security functions. However, both described approaches do
not directly consider the firewall in the trust establishment.
Also, it must be given that a firewall is physically inte-
grated on all packet paths so that the approaches work.
Ghate et al. [24] and Ramezanpour et al. [25] introduce new
ZT architectures in different domains. They consider input
from MaS functions as passive input for the trust evaluation.
However, the ability of the PDP to orchestrate the MaS
functions and in this way increase the trust or compensates
for missing attributes is out of the scope of the work.
In the area of software-defined networking, Yu et al. [21] and
Chen et al. [26] introduce adaptable SDN security architec-
tures. They allow the dynamic application of MaS functions
depending on the context. However, the integration of ZT
components is out of the scope of their work.

To the best of our knowledge, there is currently no
approach that integrates MaS functions directly into the
Auth* decision-making process. That allows the ZT compo-
nents, for example, to actively apply selected sets of MaS
functions to packets to compensate for a trust deficit of the
RAR.

Motivation for Improvement 2 - The implementation
of a direct and efficient information flow between MaS
functions and PDP: With ZT, Auth* decisions are trust-
based. Each RAR must proof the PDP that it is trustworthy.
The goal is to make Auth* decisions as accurately as possible.
That means ensuring that no unauthorized RARs are allowed
and that as few legitimate RARs as possible are rejected.
To make an accurate decision, the PDP needs comprehensive
information about the RAR and its context. That ensures
that the PDP can accurately determine the trust level of
the RAR. As stated in [3], [4], [27], and [5], important
sources of information for establishing trust in a RAR are
threat intelligence data and network logs both provided by
MaS functions. Therefore, a direct and efficient flow of
information between MaS functions and PDP providing this
data is desirable.

There are several publications on this topic in the field of
gray literature. Forrester, in their ZT studies [6], [27], [28],
[29], [30], suggests logging all network traffic by mirroring
it at a central gateway. However, they have not fully explained
how they handle encrypted traffic and how the results are
leveraged for trust-based decisions. Google’s BeyondCorp
solution [2], [11], [12], [31], [32], [33] discusses a mature
ZT framework, but the specifics of monitoring and data
collection were not the focus of their publications. Both [4]
and [34] highlight the need for security monitoring and
threat analysis. [35] emphasizes the importance of seeing
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everything on the network for making trust decisions, though
implementation details are not discussed. The Qi An Xin
Group [36] and VMware [37] introduce their own proprietary
solutions that use network information for trust decisions.
However, the authors leave room for details, like how they
handle encrypted traffic. In academic papers, Lee et al. [38]
discuss situational factors, such as enterprise security risks,
that influence decisions but the data collection methods were
not the focus of their paper. Tao et al. [39] have a ZT model
for big data and state the monitoring of all network traffic, but
they do not go into detail about how they use this in the Auth*
process or if they decrypt traffic. Yao et al. [40] introduce a
system that can log network traffic. Mehraj et a. [41] mention
the importance of monitoring everything in the ZT system.
However, they leave the technical specifics for subsequent
studies.

To the best of our knowledge, there is currently no
approach that provides all the necessary detail on how
to ensure a direct and efficient information flow between
PDP and MaS functions. The information provided by MaS
functions should be dynamically adaptable depending on the
situation. If the PDP is sure that the RAR is trustworthy,
for example, only access times and accessed services need
to be logged. If the RAR is less trustworthy, it may be
necessary to log the entire packet to ensure through packet
analysis that the RAR is indeed benign. Permanent logging
of the entire packet would place an unnecessarily high load
on the MaS components. The information collected about
packets should therefore be fine-granularly customizable on
the packet flow level. It should also be possible for MaS
functions to handle encrypted traffic in order to have access
to the payload. In addition, the PDP must have direct access
to all this collected data in order to be able to include it in the
Auth* process.

Motivation for Improvement 3 - Reduction of hard-
ware load and improvement of user experience: In our
discussion regarding improvement one, we talked about how
in conventional networks, the IPS is deployed at choke
points in the network. At these points, it checks all the
packets that pass through. As part of the motivation for the
second improvement, we highlighted the importance of a
direct information flow between MaS functions and PDP.
However, if we constantly log all packet details or apply
security functionalities like DPI to every packet, it leads to
a high load on the servers running the MaS functions. This
issue is amplified due to the continuous growth in network
speeds and the significant computational demands of security
functionalities like DPI. Servers with weaker hardware
are particularly affected by this issue, as it is especially
important here to save computing resources here [42]. Saving
computing resources often leads to security features being
disabled to maintain performance [43].
With eZTrust, Zaheer et al. [44] introduce a network-

independent way of parameterization of microservices.
By tagging packets with all contextual information that is
necessary for making Auth* decisions on a host basis, they

were able to implement these decisions efficiently. It leads to
a 1.5-2.5 times lower CPU overhead on the service hosting
servers compared to traditional parameterization schemes
such as those that are DPI-based. However, it was out of
scope to investigate the impact on otherMaS functions. It may
be also not applicable for some networks to abandon the
network-based MaS functions.

To the best of our knowledge, there are currently no
concrete approaches within the area of ZT to reduce the
load on the servers hosting the MaS functions through more
fine-grained packet handling. At the same time, excluding
MaS functions from packets’ paths where they are not
necessary has a positive impact on the user experience by
keeping the RAR latency as low as possible. This exclusion
is possible when the trust in the RAR is already sufficiently
high.

IV. ZTSFC ARCHITECTURE
In this section, we describe ZTSFC, all its components, and
its workflow. With ZTSFC, we make an attempt to integrate
MaS functions into ZT architectures and achieve all three
previously discussed improvements. The ZTSFC architecture
is depicted in Figure 5 and is rooted in the proven and widely
adopted XACML 3.0 flow model.2

A. OVERVIEW
In the architecture shown, each white rectangle represents a
ZTSFC component, such as the PDP. We designed ZTSFC
modularly. The components can run on the same physical
machine but can also run distributed. Different implemen-
tations of a ZTSFC component are interchangeable as long
as they provide the necessary interfaces for communication
with other ZTSFC components. The interfaces can be realized
via REST APIs, for example. Basic processes, such as
authentication or authorization, are handled by individual
components within ZTSFC to enhance its modular structure.
Additionally, each component must be scalable so that
multiple replicas of a single component instance can share
the work. That allows for adjustments to handle varying
workloads and helps prevent single points of failure. This
ability to scale is visually shown using overlapping rectan-
gles. The architecture enables one PEP to be responsible for
any number of services ormultiple PEPs for one service. Each
PEPworks independently from the other PEPs in the network.
However, other components such as the databases need to
ensure consistency between replicas. This and scalability
between replicas of distributed components is sufficiently
discussed in the literature, such as in [45]. The individual
components are presented abstractly to allow flexibility in
a concrete implementation. The architecture describes their
task and the interfaces they must offer.

The architecture is divided into a data plane and a control
plane. The data plane handles all user data whereas the control
plane is responsible for all management communication. All

2http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
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FIGURE 5. ZTSFC architecture with all its components and their communication with each other numbered in the order of
their processing. Overlapping rectangles symbolize the possibility to scale the components to any number of replicas. PEP,
SFs and services are part of the data as well as of the control plane. The components Basic Auth, PDP, SFP logic,
Monitoring&Analysing and all Databases only communicate within the control plane.

depicted communication channels must provide confidential-
ity, authenticity, integrity, and perfect forward secrecy (PFS).
PFS is a security feature that describes that the leakage of
a secret key does not affect past encrypted traffic. These
security goals can be achieved by using mTLS 1.3, for
example. However, this requires the management of X.509
certificates and impacts server performance. Additionally, the
integrity of all ZTSFC components must be checked regularly
using security tools such as malware scanners. MaS functions
are realized in the ZTSFC approach as SFs. Here it must be
ensured that the SFs implement a proof of transit, a technique
that proves that all SFs in an SFC are traversed [46]. In the
context of this work, we assume that the components are not
compromised and work correctly.

B. COMPONENTS
Below we will explain all the components of ZTSFC.
PEP: The PEP can be considered as core component of

the architecture. It acts as an access gateway for the services
and coordinates the complete workflow. In addition, the PEP
logs certain connection information that is not available for
SFs later in the network path, e.g., information about the TLS
handshake performedwith a client. These logs are exported to
theMonitoring&Analysing component (Conn. Logs Exporter
in Figure 5).
Basic Auth: It is responsible for client authentication.

Clients are authenticated on a per-session basis. A session
could, for example, include all packets with the same valid
session token. Basic Auth processes corresponding authenti-
cation requests from the PEP. This type of request contains the
client’s claimed identity including the authentication factor(s)
to be verified.
PDP: The PDP performs an authorization for each RAR.

For this, it checks compliance of the RARs with trust-based

LISTING 2. ZTSFC example policy expressed in ALFA. The policy consists
of a rule that handles the access to ZTSFC Service 2 as depicted in
Figure 4. The obligation included describes the application of an SFC to
the RAR.

policies based on the subject (client) that is requesting a
specific action (service access) on a resource (service) in a
given environment (e.g., date and time of the RAR). As in
the background chapter, we will explain the authorization
procedure using criteria-based access control. The PDP
can also implement a score-based approach. He et al. [42]
provide an overview of possible trust score algorithms.
However, attribute-based policy languages such as ALFA,
XACML, and UCON+ [13] are well suited to express
criteria-based policies. Each policy has a set of criteria that
all need to be satisfied to grant access. Listing 2 provides an
example of these criteria in ALFA format, where criteria are
called conditions.

The PDP then determines if all these criteria are met using
data from the databases as well as the RAR attributes such
as the access time. The RAR is permitted in case all criteria
are met. Then, the PDP extracts the SFC to apply to the RAR
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from the obligation part of the policy evaluated for this RAR.
An example obligation is shown in Listing 2. As described in
the introduction, the SFs included in the SFC could be chosen
to compensate for missing attributes. The concretely used
policy language, set of criteria, and applied SFs as well as
the SFC creation strategy depend on the particular application
scenario and must be specified by the responsible security
officer. A detailed use case describing the SFC strategy is
given in Section VI. Finally, the PDP informs the PEP about
the authorization decision and the specified SFC the PEP
must enforce.
SFP Logic: The SFP logic manages all SF instances in

the network. It creates and deletes instances if necessary.
For example, the SFP logic initiates a new instance if the
workload on the currently running instances of a type is
too high. To get all the necessary information for this job,
it receives heartbeat and operational data from all active SF
instances. These data provide information about the current
health status of the SF instances. Additionally, it processes
specific events, such as security alerts from an IPS SF,
and pushes those events to a threat intelligence database.
This behavior is inspired by [19]. In addition to the SF
management, the SFP logic derives concrete SFPs from the
abstract SFCs it receives from the PEP. This process is
based on the information about the available instances and
the SF policies. In the latter, further requirements for the
arrangement of the SFs are defined, such as specific SF
orders. Several concrete approaches to deploy and manage
SFs are discussed in existing literature, e.g., in [47] or [48].
The SFP derived in this way is then sent back to the PEP.
Databases (DBs): The DBs provide input for all performed

authentication, authorization, and SFP logic decisions. A user
and device DB must be available so that clients can be
authenticated. In addition, a policy databasemust be available
for authorization and SFC creation. For storing information
about SFs, an SF information DB must be used. There
should also be a threat intelligence and history DB that store
the analysis results from the Monitoring&Analysing compo-
nents. Any additional DB as further input for authorization is
possible.
Service Functions (SFs): SFs can be any network function

that is SFC-ready as described in the background section.
With ZTSFC, SFs are mainly represented by MaS functions.
Any arbitrary amount of different SFs can be implemented
and managed. In Figure 5, all depicted SFs are based on
the ZTSFC concept shown in Figure 1. The actions the
SFs apply to the packets are determined by the PEP via
metadata inserted into the packet headers. For example,
network service headers (NSH) [49], MPLS labels [50],
or HTTP headers (see Section V) can be used for metadata
transfer. Similarly, SFs can send feedback to the PEP in the
form of metadata. This feedback can be inserted into the
service’s response packets.
SF Logger: The logger function logs detailed information

about processed packets on its path. The level of detail

captured about processed packets is communicated to the SF
via metadata from the PEP.
SF Multi Factor Authentication (MFA): It prompts the user

for additional authentication factors. The factors to check is
included in the metadata. It checks for factors in addition to
the ones used by the Basic Auth component.
SF IPS: A function that can perform, among other actions,

a DPI on processed packets. It can send threat alerts to the SFP
Logic. The IPS can also drop packets if something malicious
is found in them. In this case, the IPS also sends feedback
about this to the PEP, which the PEP can then provide to the
client for better decision transparency.
Monitoring&Analysing: It monitors and analyses all log

data exported from, e.g., the PEP or the logger. Depending
on the scenario, arbitrary analysis approaches can be applied.
The results are then pushed to the respective DBs (here: threat
intelligence) where they can then be included into the Auth*
process.

C. WORKFLOW
The ZTSFC workflow is described based on the numbered
steps depicted in Figure 5. In the case of an incoming client
RAR, the components work together as follows: Before a
client’s RAR is permitted, all its packets are processed by the
PEP beforehand 1⃝. First, the PEP authenticates the client’s
RAR. For this purpose, the PEP sends an authentication
request to the Basic Auth component 2⃝. The Basic Auth
component then extracts the claimed client identity. To verify
the client’s identity, it queries the corresponding data from
the user and device DB 3⃝. According to the verification, the
Basic Auth pushes the result (successful or not) to the history
DB 4⃝. Finally, the Basic Auth component informs the PEP
about the authentication decision 5⃝. Depending on this
decision, the client’s RAR is rejected or is further processed.
Next, the client’s RAR is authorized. To achieve this, the
PEP sends an authorization request to the PDP 6⃝. This
authorization request includes all data about the RAR, namely
who is requesting which action on which resource in which
environment. The PDP is enriching this data with information
from the history and threat intelligence DBs 7⃝. This
information includes, for example, the usual access times for
this client or analysis results from theMonitoring&Analysing
component. According to the enriched data, the PDP queries
the matching policy from the policy DB 8⃝. In addition,
this enriched data serves the PDP as a trust source for trust
establishment in the client’s RAR. All criteria defined in
the matching policy are evaluated for the authorization of
the RAR. The authorization decision resulting from this
evaluation, either allowed if all criteria are met or denied,
is then pushed to the history DB 9⃝. Additionally, depending
on the policy’s obligation, an SFC and instructions about
how each SF must process the packets belonging to this
RAR are defined by the PDP. The PDP then sends the
authorization decision and the SFC obligation to the PEP 10⃝.
This obligation contains the defined SFC and the metadata
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that defines the actions the SFs apply to the affected packets.
Again, the PEP is either rejecting the client’s RAR or further
processing it. For the latter, it sends the SFC information
to the SFP Logic 11⃝, which then loads the corresponding
SF policies for the included SFs 12⃝ and transforms the sent
SFC into an SFP. This process includes the setting up of all
necessary SF instances if not already available. This process
involves creating any required SF instances if they aren’t
already set up. For traceability, this SFP is first saved to
the history DB 13⃝. After that, the SFP is shared with the
PEP 14⃝. The last job of the PEP is then the preparation of
the RAR’s packets 15⃝. This includes PDP’s metadata for
the SFs 16⃝ and the enforcement of the forwarding rules
to the packets. The SFs included in the SFP process then
forward all packets according to the included metadata 17⃝.
In case an SF does not successfully process a packet, e.g.,
when the IPS detects malicious payload in it, the packet is
dropped and the corresponding feedback is sent back to the
PEP. Eventually, the packet arrives at the requested service.
The service response is taking the sameway back 18⃝ through
the SFs and PEP to the client 19⃝.

V. HTTPS-BASED ZTSFC
For the PoC implementation of our ZTSFC architecture
presented in IV, we rely on an approach to SFC that is based
on HTTPS [9]. Figure 6 depicts the conceptual idea behind
the HTTPS-based approach, which we will describe in detail
in this section.

FIGURE 6. HTTPS-based ZTSFC approach showing an example SFP
consisting of a logger SF and an IPS SF with Service 1 as destination. Next
hop information (SFP), instructional metadata (Logger_MD, IPS_MD) and
SF feedback (IPS_FB, Logger_FB) are stored in the HTTP header as custom
header fields.

For HTTPS-based SFC, the PEP leverages custom HTTP
header fields to pass forwarding and metadata information
to the SFs contained in the SFP. The first SF in the SFP
is directly addressed by the destination address and port
fields in the IP and TCP header, respectively. Destination
addresses and ports of the remaining SFs and the service are
stored in a new SFP HTTP custom header field. Additional
custom header fields are used to pass metadata such as
operational instructions to the respective SFs. All SFs can
then extract their next hop information and the metadata

from the respective HTTP header fields. In the current
implementation, the next hop information in the SFP header
field is implemented as a list. The first element in the list
represents the next hop address. The SF, to which the next hop
address belongs, removes this field after it has processed it.

Figure 6 shows an exemplary SFP consisting of a logger
SF and an IPS SF with service 1 as the destination. Here, the
PEP modifies a RAR packet by adding the SFP header field
to it. This header field includes the destination information
of the IPS as well as from service 1. In addition, the PEP
adds the metadata fields Logger_MD and IPS_MD for the
respective SFs to the packet. After the preparation, the PEP
sends the packet directly to the logger. After the packet gets
there, the logger first extracts the Logger_MD metadata that
pertains to it and then deletes it. After that, it takes the next
hop information of the IPS from the SFP HTTP header field,
removes this list entry and, proxies the packet to the IPS.
The IPS repeats this procedure by extracting the respective
IPS_MD metadata and service 1’s address. In case the SF
(here: IPS) that processes the packet is the last in the SFP,
it removes the SFP header field completely. This allows the
original client RAR to be restored before it is proxied to
the eventual destination (here: service 1). The proxy chain
created in this way is also used to forward the service’s
response back to the PEP and then eventually to the client.
On the way back, each SF can modify the response packets
by adding feedback information as a new HTTP custom
header field (here: IPS_FB and Logger_FB) that can then
be processed by the PEP. This feedback header is used,
for example, to implement proof of transit. To achieve this,
an SF includes a security token in the feedback header, signed
using the same private key as for mTLS connections. The
PEP then validates this token using the associated public
key. After processing the feedback, the PEP removes the SF
HTTP custom header feedback fields to restore the original
response before forwarding it to the client. In the case the
RAR got denied, the PEP can send the client feedback about
the reasons for the denial.

All connections depicted in Figure 6 are mTLS encrypted,
which ensures confidentiality, integrity, mutual authentica-
tion, and PFS. By placing the metadata and SFC information
in the HTTP header, this data is also sent confidential and
integrity protected. By fine granular certificate management,
network components (here: PEP, SFs, and Service 1) only
communicate with a specifically defined group of other
network components. Thus, logical micro-segmentation can
be implemented.

Using HTTPS-based SFC brings several advantages. First,
it is rooted in TLS, the most common approach for providing
traffic security [51]. Basing the SFC approach on hop-by-hop
established TLS enables all SFs the option to look into the
packets’ payload. That capability is crucial for several SFs,
such as an IPS that performs a DPI. Second, this approach
offers location independence for all ZTSFC components
as long as all components are reachable via IP/TCP. That
provides a flexibility advantage over SFC approaches using
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TABLE 1. Hardware composition of the servers the testbed consists of.

lower ISO/OSI layers such as MPLS [52] for passing the next
hop and metadata information. Third, TLS and HTTP are
widely adopted, e.g., in BeyondCorp [2]. Fourth, a HTTPS-
based prototype can be implemented in the application layer
completely. Finally, such a prototype can run on almost
every off-the-shelf computer without having the need for
specialized and expensive hardware. On the other hand, the
HTTPS-based approach is limited to web-based services.
Additionally, all SFs must be ZTSFC-aware to be able to
process the custom HTTP header fields accordingly.

VI. PROOF OF CONCEPT
Based on the described HTTPS-based SFC approach, a pub-
licly available3 PoC of the introduced ZTSFC architecture
is presented in this section. Furthermore, we describe
implementations for a ZT architecture as well as for a direct
service access scenario. Both are used in the evaluation in
Section VIII to compare the performance of the ZTSFC PoC
against them.

A. TESTBED
Figure 7 depicts the hardware testbed in which the PoC
is implemented. The hardware testbed consists of eight
servers listed in Table 1. The operating system on all
servers is Ubuntu 22.04.2 with kernel version 5.15.0-76. All
processes that are not necessary for running the PoC were
stopped. The maximum number of open files is increased
via ulimit -n from 1021 to 100000. That is necessary to
not run out of available file descriptors during the test runs.
Additionally, the setting net.ipv4.tcp_tw_reuse is turned on.
This allows the system to reuse TCP connections that are
currently in the TIME_WAIT state, which would typically
prevent the associated port from being used. All servers are
connected via two 100G layer 2/3 switches. The system’s
data and control operations are managed in separate network
subgroups. Unless mentioned differently, all components
described below are compiled with Golang version 1.20.1.4

3https://github.com/vs-uulm
4https://golang.org/doc/devel/release

FIGURE 7. Overview of the ZTSFC PoC as well as the ZT and direct access
prototypes. The hardware included in each use case is marked with
colored labels (grey, black and red). All included servers and
implemented components are separated into data and control planes.

B. ZTSFC
In Figure 7, the hardware that makes up the ZTSFC PoC is
marked with red labels. Except the Monitoring&Analysing
and the threat intelligence, the reference architecture
described in Section IV is completely implemented. Details
about the components are described below:
PEP: The PEP implements all functions described in

the architecture. The multi-threaded Server type from the
Golang net/http package implements the client connections.
The Server enforces mTLS 1.3. For the communication
with Basic Auth, PDP, and SFP Logic, pre-established
mTLS 1.3 connections are used. These connections stay
established for the whole run-time. Due to this, only one TLS
handshake per connection during the initialization process of
the PEP is performed. For connections to the SFs as well
as to the service, the ReverseProxy type from the package
net/http/httputil is used. One new reverse proxy instance is set
up for each client RAR. A pre-establishment of these proxy
instances is not easily possible, since the PEP first learns the
actual next hop SF instance to use from the SFP logic and this
could change for each RAR in a productive setup.
MFA: The MFA is implemented as a PEP module. The

communication happens via function calls. The MFA can
prompt the user for a Passkey, a public key authentication
method.
Basic Auth: For the Basic Auth component, we use the

OpenLDAP docker image from rroemhild.5 At the arrival of
a RAR, the PEP checks if the RAR is already part of a valid
session. This check is based on Java Web Tokens using the
jwt-go package.6 If a valid token is present, the authentication
is not performed again. In any other case, the PEP prompts
the client for its user and password via a POST form and asks
the Basic Auth to authenticate the client’s RAR. The optional
certificate is provided during the TLS handshake between
PEP and the client.
PDP: Similar to the PEP, the PDP implements the Server

type from Golang’s net/http package for all connections to

5https://github.com/rroemhild/docker-test-openldap
6https://github.com/dgrijalva/jwt-go

125316 VOLUME 11, 2023



L. Bradatsch et al.: ZTSFC: A Service Function Chaining-Enabled Zero Trust Architecture

LISTING 3. Example PoC policy.

the PEP. The authorization requests happen in HTTP via a
REST API. The PDP authorizes all possible resource access
(here: GET and POST actions for the implemented service).
One policy consisting of specific rule sets is defined for
each possible RAR. Each policy rule represents a criteria
(in ALFA conditions) and obligation combination that leads
to permitted access. The following criteria are evaluated:
user, used authentication factors, the requested service and
action (GET or POST), device type, access time, the number
of RARs for this day, and the number of failed attempts.
The values for the criteria evaluation are extracted from the
RAR and forwarded by the PEP to the PDP. In the PoC,
we implemented criteria-based policies in ALFA. Listing 3
shows an example policy how it is implemented in the PoC.

In this example, the RAR originates from an unmanaged
but authenticated device. To compensate for this, the
obligation part includes the IPS in the SFC and instructs it to
perform a DPI on the packets. All used criteria-based policies
implemented in the PoC are described in the evaluation
section. The RAR is permitted if all criteria are met. After
the authorization process, the PDP sends the decision and the
SFC extracted from the policy’s obligation via HTTP to the
PEP.
SFP Logic: For the SFP logic, the HTTPS server is

implemented in the same way as for the PDP. It receives the
SFC from the PEP embedded into an HTTP custom header
field. Here the SFP logic derives the SFP from this given SFC
by replacing each SF with a known IP:Port combination for
this SF. In the prototype we use, one instance for each SF. The
determined SFP is then sent to the PEP in an HTTP custom
header field.
IPS: Server and reverse proxy functionalities are imple-

mented in the same way as in the PEP. The IPS performs
two attack detections: Path traversal and SQL injection
detection. The first one is a simple string pattern matching.
The latter consists of regexp-based pattern matching. The
regexp functionality is implemented by Golang’s regexp

package. Both types of attack detection are applied to all
processed packets. We chose an IPS as a representative for
security functions because it is a very widely used function
and the regexp pattern matching performed by it is at the
same time a very CPU-consuming action [53]. The latter
allows us to clearly investigate the performance impact that
saving security functions has on the server load and the user
experience. For the performance evaluation, the IPS performs
the string patternmatching aswell as the regexp-based pattern
matching on all processed packets.
Logger: The logger implements server and reverse proxy

functionalities in the same way as the PEP. During the test
runs, all available TLS as well as HTTP data including
the payload are logged for each processed packet. For
the logging itself, the logrus package from7 is used. All
collected data are written to a Samsung SSD 850 EVO.
We have chosen the logger as a representative for monitoring
functions, as packet logging is probably the most widely
used monitoring function. The task of forwarded packets
logging leads to high usage of disk devices to save the logged
data [54]. For the performance evaluation, the Logger logs
the whole TCP payload of all processed packets.
Service: The service is a Golang multi-threaded HTTPS

server using the net/http package for all connections. The
service can work in two different access modes: it can serve a
web resource of 1 Byte payload or provide a 1 GB sized file.

C. ZT
In Figure 7, the hardware involved in the ZT implementation
is marked with black labels. Structure-wise, the ZT imple-
mentation is quite similar to the ZTSFC PoC. It differs in
two aspects. First, the PDP does not specify an SFC but
just makes an authorization decision. Second, the SFP Logic
is not included into the workflow. All packets are always
forwarded through the Logger and the IPS, if the Auth*
decision was positive. Thus, it represents a ZT approach with
Auth* process and legacy MaS functions that process all
packets flowing through them.

D. DIRECT SERVICE ACCESS
The direct service access prototype is depicted in Figure 7
with grey labels. In this scenario, service access times can
be measured without any security features and functions
except a basic authentication. For this, the service that is
part of the ZTSFC PoC is extended by basic authentication
functionalities. It performs the same JWT checks for a valid
user session, checks whether a X.509 certificate is present,
prompts the client for its username and password and uses
the same LDAP image for authentication.

E. CLIENTS
For simulating realistic clients that continuously request the
service, the load testing tool k68 version 0.32.0 is used. In k6,

7https://github.com/sirupsen/logrus
8https://k6.io/docs/
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the option noVUConnectionReuse is set to true. Thus, for
each simulated client and each service access a new TLS
connection is established. For all packets that are part of one
service access, the same connection is reused. One complete
service access represents one session. Client data that are
evaluated during the Auth* process such as managed device
information are sent to the PEP by HTTP custom header
fields.

VII. IMPLEMENTATION OF THE IMPROVEMENTS
With ZTSFC, we make an attempt to integrate MaS functions
into ZT architectures effectively. This section explains
how we achieved the three improvements claimed in the
introduction. We discuss all improvements based on the
presented PoC.

Implementation of Improvement 1 - The integration
of MaS functions into the PDP’s Auth* decision-making
process: ZTSFC allows ZT networks to integrate MaS
functions in their Auth* decision-making process. The PDP
can apply MaS functions in a detailed manner to RARs based
on the trust level of that RAR. As mentioned in Section III,
this inclusion in the Auth* decision-making process needs
two steps: First, the PDP must manage policies that consider
MaS functions. Second, the PDP needs tomake sure that these
MaS functions are applied to the RARs. To illustrate this,
we use the example of the employee abroad from Section III
to show how ZTSFC, specifically the introduced ZTSFC
PoC, achieves the integration of MaS functions.

Regarding the first step, we need to create policy rules for
two scenarios: one for an employee using a managed device
and another for an employee accessing the service with an
unmanaged device. Listing 4 displays the ALFA policy in
our ZTSFC PoC covering both scenarios. The first policy
rule (line 4) covers the scenario where the employee is in
her office and uses her managed device to access the service.
In this case, strong device authentication and on-device
packet inspection are ensured. Therefore, the trust level is
already sufficient to get access. The second policy rule is for
when an employee is abroad and uses an unmanaged device to
make a RAR and, consequently, the device authentication and
on-device packet inspection are not in place. Compensating
for this trust deficit, the second policy rule (line 14) includes
an obligation that makes permitted access dependent on
applying a specific SFC to the RAR (line 25). This SFC
(line 26) contains an IPS for performing a DPI (line 28) and
MFA for prompting for an additional hardware token (line 27)
to the RAR. If neither of these two policy rules is applicable,
the request is automatically denied (line 32). Once all the set
criteria (expressed as conditions in ALFA) are evaluated, the
PDP sends the authorization decision and the obligation to
the PEP.

The next step is to ensure that the obligation is
enforced. The PEP takes charge of this in ZTSFC. The PEP
sends the SFC ‘‘MFA’’ and ‘‘IPS’’ to the SFP Logic. This
is done to get the actual SFP that provides the specific IP
address and port details for both the IPS and MFA, as well as

LISTING 4. Sample ALFA policy with three rules that demonstrates how
to decide which MaS functions to apply to a RAR.

the sequence in which they should be applied. It is reasonable
to use the MFA first. This is because if the employee can not
provide the required hardware token, the request is denied.
This way, we can avoid using the resource-intensive IPS.
In response, the SFP Logic provides the requested SFP
{‘‘MFA’’:‘‘127.0.0.4:443’’,‘‘IPS’’:‘‘127.0.0.5:443’’}. Taking
this SFP, the PEP enforces the obligation by leveraging
the HTTPS approach described in Section V. All necessary
metadata are embedded into the HTTP header as custom
header fields. The process tailored for the employee’s
scenario is shown in Figure 8.

FIGURE 8. Sample HTTPS-based ZTSFC workflow of a client with
managed device (green) and an unmanaged device (orange).

The example above illustrates how both employee access
scenarios, access with a managed device represented by
the green path and access with an unmanaged device and
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LISTING 5. Sample ALFA policy with two rules demonstrating how to
decide what information the logger collects.

obligation highlighted with the orange path, are covered.
This demonstrates how ZTSFC can integrate MaS functions
in its Auth* decision-making. It is possible, to react to a
trust deficit caused by the non-fulfillment of specific criteria
by applying specific SFs to the affected RAR. ZTSFC is
versatile, allowing for a variety of scenarios. Policies can
be defined so that requests from specific locations always
go through a firewall, or any access after 8 pm gets logged
by a logging SF. It is important to note that for each unmet
criterion, it is necessary to consider carefully how to react to
it. For instance, performing a DPI is not a suitable substitute
for a missing authentication factor.

Implementation of Improvement 2 - The implementa-
tion of a direct and efficient information flow between
MaS functions and PDP: In Section III, we discussed the
need for a direct and efficient flow of information between
MaS functions and ZT components. ZTSFC allows us to
achieve this. Depending on the level of trust of a RAR (in our
context, the criteria met), the PDP can determine what details
the MaS functions should gather about that RAR, which can
be expressed in policies. Listing 5 presents an example of
such a policy in ALFA, as used in our ZTSFC Proof of
Concept. This example has two policy rules. The first rule
(line 4) addresses access during regular office hours (from
9 a.m. to 5 p.m.). Since access during these hours is typical,
the associated logger function only logs the packet headers.
The second rule (line 17) deals with access outside regular
hours, which might occur in urgent cases but is less common.
Here, the rule specifies that the logger should log the entire
packet. This approach allows for precise decisions on what
details to collect about RARs. The rules, which include the

SFC and actions of the SFs as obligations, are then enforced
by the PEP, as discussed in the part about improvement one.

In Figure 9, we illustrate the two methods of information
flow in our ZTSFCProof of Concept. First, theMaS functions
can add custom HTTP headers to the service’s response
packets. That sends direct feedback to the PEP. For instance,
to confirm that a particular MaS function has processed the
request, a proof of transit is used. This proof is a signature
from the MaS function, signed with its private key, which is
also used for TLS connections. Second, the MaS functions
forward their data, like the collected packet headers, to the
Monitoring&Analysis component using a REST API. This
component then analyses the data and sends the results to
the appropriate databases. The PDP can fetch this data from
the database, giving it access to the MaS functions’ outputs
and findings. This information is then utilized in the Auth*
decision-making process.

FIGURE 9. Sample HTTPS-based ZTSFC information flow between MaS
functions and ZT components. First, information can send as feedback in
service response (blue line 1). Second, information flow from logger
through Monitoring&Analysis, DB to PDP (blue line 2).

As described above, the PDP can efficiently determine
what information is collected about the RARs based on the
trust level. This information flows back to the ZT components
in two ways. By this, ZTSFC can ensure an efficient and
direct flow of information between MaS functions and ZT
components.

Implementation of Improvement 3 - Reduction of
hardware load and improvement of user experience: In
a ZT network, all packets flow through the MaS functions
deployed on their network path. ZTSFC makes it possible
to decide which MaS functions are applied to packets in a
more fine-grained way than before. Furthermore, it can be
decided just as finely granular which operations the MaS
functions perform. These decisions are made based on the
trust level of a RAR and expressed in the PDP policies. That
can prevent too many packets from being forwarded through
MaS functions due to too coarse-granular treatment, e.g.,
when a MaS function is deployed at a choke point and all
packets flow through them. As we will show in Section VIII,
this reduces the load on the servers hosting theMaS functions.
At the same time, the access time for users is only increased
by MaS functions if the established trust level is too low.
This leads to an enhanced user experience for trusted users.
ZTSFC can thus reduce the hardware load and improve the
user experience.

VOLUME 11, 2023 125319



L. Bradatsch et al.: ZTSFC: A Service Function Chaining-Enabled Zero Trust Architecture

VIII. EVALUATION
Wenow evaluate the ZTSFC PoCwith regard to improvement
three. Therefore, themain objective of the evaluation is to find
out the impact of ZTSFC on the load of the servers that host
MaS functions as well as on the user experience. We measure
user experience by how long it takes for a user to access a
resource (resource access time). We also measure at what
point a higher number of such accesses simultaneously lead to
increased access times (saturation). In addition, we measure
the network throughput with which the users can download
a resource in the scenario of increasing numbers of parallel
accesses (average throughput). The load impact on the testbed
servers is quantified by measuring CPU usage, interrupt rate
and context switch rate (server load). The metrics mentioned
above are described in Subsection VIII-B.

A. USE CASES
The measured performance of the ZTSFC PoC is then
compared to that of the ZT network implementation and to
that of the direct service access scenario. Whereby, ZT and
direct service access each represent their own use case.
The ZTSFC scenario is split up into six separate use cases.
In all six use cases, the MFA prompts the client for a client
certificate and is therefore not mentioned any further. All
cases are described below:

• For the zt use case, the type of client used has a trust
level high enough to be allowed to access the service.
However, as no ZTSFC is available that would allow
flexible path reconfiguration, all packets run through the
logger and IPS in this order.

• The use case direct is used to measure the performance
of the direct service access implementation. All clients
are successfully authenticated and access the service
directly without PEP and SFs.

• no_sf describes the ZTSFC use case in which only
clients with a trust level high enough to access the
ZTSFC service with no SF included in the path.

• The ZTSFC logger use case includes only one type of
client with a trust level that results in a PDP decision
to include the logger into the packet’s path before the
service can be accessed.

• In the ZTSFC ips use case we see only clients that trigger
an SFP consisting of the IPS SF.

• logger_ips describes a ZTSFC use case with only clients
with a trust level resulting in an SFP that consists of first
logger and then IPS.

• For comparison reasons between different SF orders in a
SFP, ZTSFC ips_logger is used. Here all client packets
are forwarded first through the IPS and then through the
logger.

• The ZTSFCmixed use case represents the most realistic
use case. It includes 25% of clients from the use cases:
no_sf, logger, ips and logger_ips.

The policies representing the ZTSFC use cases are appended
in Appendix.

B. METRICS MEASUREMENT
All test runs to measure the metrics were conducted in the
testbed depicted in Figure 7. Each run lasted 1minute andwas
repeated 10 times. The data from the first 5 seconds ramp-up
phase were discarded to get the results from the steady state
of the systems. Stated average values are calculated over the
whole test duration excluding the ramp-up phase. Each run
was executed with a stable number of clients. Every client
is continuously requesting the web resource. The resource is
then received completely before the next RAR is sent without
a waiting time. The actual client numbers are stated in the
following:

• Service access time (SAT) [55], [56], [57] represents
the time it takes for a client to download a dummy web
resource of size 1 Byte. It starts with the first client
RAR and ends when the web resource is completely
transmitted. Each RAR passes through the Auth*
process, the SFP logic and the defined SFP; to the extent
they are implemented in the respective use case. The
SAT is measured by k6 via the metric iteration. One
iteration corresponds to one completed web resource
access. The metric is collected for different numbers of
concurrent clients, starting from 1. Thereafter, starting
at 10, the number of clients is increased by 10, up to a
maximum number of 250.

• The saturation [55] metric is measured to identify the
point at which an increase of concurrent web resource
accesses no longer leads to an increase in processed
resource accesses per second. The saturation test runs
were the same as the SAT runs. The metric itself,
accesses per second (a/s), was calculated based on the
k6 results.

• The goal of the average throughput [55], [58] test
case is to compare the effects of dynamic security
chaining in the case of ZTSFC to the use cases direct
and zt. To measure the average throughput metric, the
service provides a 1 GB file via HTTP download. The
metric is measured for the use cases zt, direct and
mixed. Over the test period of one minute, the file is
downloaded as often as possible.This is repeated for 1,
5, 10, 15 and 20 concurrent processes on srv5 and srv8.
The reached average throughput from both servers is
then aggregated. The average throughput is measured
with k6.

• The server load test comprises of the metrics CPU
usage [58], interrupt rate and context switch rate [59].
It is measured on the servers that host the PEP, the logger
and the IPS. The goal is to determine the influence of
leaving out different SFs on the load of the servers. The
loadwasmeasured during the SAT test runs for the zt and
ZTSFCmixed use cases. For this, dstat9 has exported the
data over the whole test runs with an reporting interval
of 1 second.

9https://linux.die.net/man/1/dstat
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FIGURE 10. Dispersion (minimum, maximum as well as the 25th, 50th,
and 75th percentiles) of the measured SATs for all evaluated use cases.

FIGURE 11. The average service access times for all evaluated use cases.

FIGURE 12. Saturation based on completed accesses per second for all
use cases.

C. SERVICE ACCESS TIME & SATURATION
Figure 10 shows the measured SATs based on their dispersion
(minimum, maximum as well as the 25th, 50th, and 75th
percentiles). The measured average values for all evaluated
numbers of concurrent clients are depicted in Figure 11. The
saturation results during the same test runs are plotted in
Figure 12.
First, the performance of the six ZTSFC use cases is

evaluated. Use case ips shows the worst performance. The
saturation point is reached at 70 concurrent clients with
381 a/s and an average SAT of 183 ms. This performance
can be explained by profiling the IPS’s CPU times during the
test runs. For the profiling, Golang’s package runtime/pprof
was used. At 70 concurrent clients, the CPU spends 56%
of the time doing cryptographic operations related to TLS.
Most of the remaining time was spent performing regexp
string matching (23%) and malloc system calls (21%) due

to regexp expanding operations. The latter one leads to
context switch intensive heap restructurings including heap
expansions. At the saturation point, the IPS caused 180k
context switches per second which leads to the bottleneck.
More concurrent clients do increase the access times but not
the amount of processed accesses per second. This result is as
expected, since the IPS is the most computationally intensive
function.

The use case ips_logger shows similar behavior since in
this case the first SF in the SFP, the IPS, slows down the
logger.

The logger use case, on the other hand, provides lower
SATs than the use cases ips, ips_logger and also logger_ips.
Furthermore, it saturates later at 150 concurrent clients with
an average SAT of 219 ms. It processes a maximum of
681 accesses per second. The bottleneck is here the CPU.
At the saturation point, the logger reaches 99% CPU usage.

Up to a number of 30 concurrent clients, the use case
logger_ips shows higher average SATs (130 ms) and a
lower amount of accesses per seconds (229 a/s) than use
case ips (126 ms and 237 a/s). However, starting from
40 concurrent clients, the logger_ips case performs better
although it includes one more SF. To see the reason for
this, we recorded the global run queue (GRQ) of the Golang
runtime every 10ms during the tests. The GRQ represents the
amount of jobs that ask for CPU time but are not yet assigned
to a virtual Go processor and a local run queue (LRQ) of such
a virtual processor. Every new incoming RAR results in such
a job in the GRQ. For the logger_ips case, we see a much
shorter and a less bursty GRQ for the IPS process. This means
that the RARs arrivemore evenly distributed and therefore the
individual RARs have to wait less time in the GRQ until they
are assigned to an LRQ. The GRQ is shown for a 5 s time
window in Figure 13. The logger, which can process more
accesses per second, in front of the IPS smooths the arrival of
the RARs at the IPS. This also results in a much lower amount
of context switches on the IPS server. At the saturation point
of 150 concurrent clients, the logger_ips case shows around
120k compared to 200k in the ips case. For a higher number
of clients, the level of context switching remains stable.

Starting from 150 concurrent clients, logger_ips behaves
the same as the logger case because the logger now becomes
the bottleneck.

FIGURE 13. GRQ length for the IPS during a 5 s time window and
measured every 10 ms during the test runs for the ips and logger_ips use
cases. The black line represents the floating average of the GRQ length
over the last 400 ms.
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Looking again at Figures 5 and 2, except mixed, the no_sf
use case performs best among the ZTSFC use cases. This
is as expected since no SFs are included into the packets’
path. At 70 concurrent clients it saturates with 694 a/s and
an SAT of 100 ms. The main reasons for this is mainly the
high number of context switches on srv2. The main cause for
this is explained in more detail during the comparison with
the mixed case.

The most representative ZTSFC use case mixed saturates
at 180 concurrent clients with 973 a/s and an average SAT
of 184 ms. Starting from 80 concurrent clients, mixed is the
best performing ZTSFC use case. In terms of performance,
from this point it also overtakes the use case no_sf. This is
unexpected since 75% of the RARs in the mixed case are
forwarded at least through one SF. In the no_sf case, the PEP
forwards all packets directly to the service, which results in a
bursty RAR arrival pattern at the service. In the mixed case,
the packets are distributed over different SFPs. This causes
a smoothness effect in terms of packet arrivals at the service.
Mentioned burstiness for the no_sf case is directly reflected in
the length of the GRQ. Figure 15 shows the GRQ progression
over time for an exemplary time window of 5 s. These bursty
arrivals result then in an inefficient handling of the high
amount of RARs arriving at the same time. This inefficiency
is caused by the high number of context switches per second
(153710) for 180 concurrent clients that are necessary to deal
fairly with all these RAR jobs that demand CPU time at the
same time. The smoothness effect in the mixed case leads to
a significantly lower number of context switches per second
(14977) at 180 concurrent clients. The progression of the rates
of context switches are depicted in Figure 14.

FIGURE 14. Measured context switches per second (incl. 95% confidence
intervals) on the server hosting the service in use cases mixed and no_sf.

Among all use cases, the direct case performs best. This
results from the fact that it does not include any SFs or PEP.
It saturates at 510 concurrent users with 1710 a/s and an
average access time of 297 ms.
Use case zt shows a comparable performance to case

logger_ips. In the ZT scenario all packets also run through
logger and IPS in the same order. The difference to the
logger_ips case here lies in the absence of the SFP Logic. But
since the PEP’s query to the SFP Logic only shows a RTT
of 0.363 ms on average, this is hardly noticeable. However,
this RTT depends on the complexity of the implemented SFP
Logic and whether a standing TLS connection to the PEP is
used or not.

Overall, the case with direct service access was the best
performing case in all metrics, but at the same time it is the
most insecure without ZT and SFC functionalities. However,
the realistic ZTSFC use case mixed could outperform the ZT
case. At 140 concurrent clients, which is the saturation point
of the mixed case, it has 30% lower SATs and processes also
around 30% more RARs per second. This is mainly due to
a traffic smoothing effect explained previously. This effect
is most pronounced when the distribution of packets across
different SFPs is most uniform. It also shows that having
only clients of one type leads to worse service access times
even when no SFs are applied. This illustrates the complex
performance interrelationship between different parts of a
network architecture.What has been described also applies to
normal SFC. For ZTSFC, this means that the trust thresholds
used for services and the chaining decisions made not only
have a decisive effect on security, but also on performance
and thus on the user experience.

FIGURE 15. GRQ length for the Service during a 5 s time window and
measured every 10 ms during the test runs for the no_sf and mixed use
cases. The black line represents the floating average of the GRQ length
over the last 400 ms.

D. AVERAGE THROUGHPUT
The average throughput results are shown in Figure 16. The
values in the direct case are significantly higher. ZT and
ZTSFC show both similar results with an advantage for
ZTSFC. At 40 concurrent clients, a cumulative throughput
of 18.4 Gbps in the ZTSFC case and 17.6 Gbps in the ZT
case is reached. The reason that direct is faster and ZT and
ZTSFC show similar results is the fact that the PEP here
represents a bottleneck. During the test with 2 concurrent
clients, it spent 48% of the time decrypting and encrypting
TLS records. In addition, 20% of the threads had to wait
for network interrupts to be processed. On the PEP server,
we measured 86144 interrupts per second. It thus slows the
packet rate down in a way that all following SFs in the SFPs
can also process it at that speed. An increase in the number of
clients was not possible due to RAM limitations on the used
hardware. All received data had to be buffered in RAM.

In summary, the PEP limits the maximum throughput.
This limitation results from the computational intensive
cryptographic operations related to traffic encryption.

E. LOAD
Measured on the servers that host logger, PEP and IPS, the
load results for mixed and zt are shown in Figure 17.

125322 VOLUME 11, 2023



L. Bradatsch et al.: ZTSFC: A Service Function Chaining-Enabled Zero Trust Architecture

FIGURE 16. Measured average throughput (incl. 95% confidence
intervals). The number of clients is evenly distributed between srv5 and
srv8. The measured values are then accumulated.

Starting at 140 concurrent clients at which both cases
saturate at the latest, the CPU usage on srv0 (logger) could
be reduced by 25% in the ZTSFC mixed scenario. The same
trend applies to interrupts and context switches which are in
the ZTSFC case around 5% and 50% lower, respectively.

The same effect does not occur on the server that hosts the
IPS. Here the mixed case causes similar interrupt rates and
CPU usage. At the same time the number of concurrently
processed RARs at the IPS is higher as it can be seen by
the higher number of context switches. For the mixed case
and with 140 clients, 191095 context switches per second are
recorded, which is 42% higher compared to zt.

For the mixed case, the CPU usage on the PEP is due to
the higher amount of processed accesses per second higher
than in the zt case. This is as expected. Also the higher
rate of interrupts results from the higher RAR rate but also
the network interrupts caused by the additional SFP logic
communication. At the same time, the PEP can work more
efficiently due to the lower number of context switches. This
results from the smoothness effect already explained in the
access time & saturation part. As the packets are distributed
over different SFPs, the arrival of the service responses at the
PEP are less bursty.

These observations show that it is not a trivial task to reduce
the load on the servers in general. Certain interrelationships
between SFs such as the smoothness effect lead to an overall
better performance in terms of SAT and saturation. This in
turn results in better utilized servers and thus higher loads.

F. RESULTS
In the evaluation, we compared three different network
architectures. The first architecture represented direct service
access without MaS functions. As expected, this architecture
performed best in terms of performance. However, due to the
lack of security functions, wewill not discuss this architecture
further. The second architecture was a ZT architecture with
security functions installed at network choke points. The third
architecture we evaluated was our novel ZTSFC architecture.

With ZTSFC, network traffic is classified based on the
trust established in a RAR. By this, we can achieve lower
SATs for clients with a high level of trust. That was shown
in the mixed test runs in Figure 10. With 150 concurrent
clients, the SATs for the 25% of the clients having a trust
level sufficient to be directly forwarded to the service was

FIGURE 17. Load test results based on measured CPU usage as well as
context switches and interrupts per second.

between 54ms and 152ms. In comparison, clients experience
SATs between 97 ms and 341 ms in the case of a ZT network.
This good result for RARs with high trust levels worsens
with more similar trusted RARs, as can be seen in the no_sf
case with SATs between 67 ms and 328 ms. The smoothness
effect shows a diminishing return the more clients of one kind
are requesting the service. With ZTSFC, clients with a high
level of trust can access a service directly or have shorter
SFCs. Individual SFCs can be used to meet just the required
level of trust for service access and thus affect the user
experience only to the minimum level necessary. At the same
time, different chaining decisions such as different orders of
MaS functions can have unforeseen effects on traffic and
sometimes even lead to better performance. That can be
seen when comparing use cases logger_ips and ips_logger
in Figure 11, where logger_ips achieves significantly better
SATs. The best results are achieved in a network with RARs
with different trust levels and thus different SFPs.

In summary, ZTSFC allows incoming RARs to be
classified in a fine-granular manner. This allows the network
to react dynamically to different trust levels. RARs with a
high trust level experience low access times. On the other
hand, we can avoid saving demanding MaS actions such as
DPI because of too high server load by selectively using
these security functions only where it is necessary due to a
insufficient trust level.

IX. DISCUSSION
After presenting ZTSFC and detailing its improvements,
we will discuss various other aspects of the ZTSFC
architecture in this section.
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We presented ZTSFC as an architecture to integrate the
MaS functions into a ZT architecture. We leverage SFC to
achieve this. All MaS functions implemented by this can run
in a distributed system. However, depending on the particular
network architecture, the same MaS functions can also run
on a single physical machine and communicate over a local
Linux network namespace, such as implemented in Docker.
However, inter-process communication, e.g., through Linux
pipes, is also possible. A scenario in which all functions run
together with the PEP on potent hardware is therefore just as
conceivable as all functions and the ZT components realized
in virtual machines distributed in a cloud.

We implemented our ZTSFC PoCwith the help of HTTPS.
As discussed in Section V, this HTTPS-based approach
has clear advantages, but also some disadvantages. It could
be arguably integrated into Google’s BeyondCorp architec-
ture [2], for example, because BeyondCorp also works with
HTTP. However, ZTSFC can also be implemented at lower
layers, e.g., with multiprotocol label switching, as shown
in the work of Bradatsch et al. [7] or with software-defined
networking similar to Yu et al. [21]. Both describe techniques
to steer traffic in a network on network layers two and three,
respectively.

ZTSFC decides which MaS functions should be used for
each RAR, based on how much trust is associated with that
RAR. In our ZTSFC PoC, we use a criteria-based approach,
similar to what is described in NIST’s ZTwhite paper [4]. For
access to be permitted, a RAR must satisfy all these criteria.
Once these criteria are evaluated, the PDP then decides which
MaS functions and actions are applied to that RAR. There
are alternative methods for making this decision, like using
score-based algorithms. These algorithms calculate a trust
score by considering attributes like the access time or which
authentication factors were used. In works such as those
by Tao et al. [39], Tian et al. [60], and da Silva et al. [61],
score-based methods have been examined. Based on the trust
score, it is decided which MaS functions should be applied.
ZTSFC is compatible with criteria-based as well as score-
based approaches.

For our criteria-based policies we used the ALFA policy
language. ALFA shows the advantage of easy readability
while having the same expressivness as XACML [16].
However, in ZTSFC it is equally possible to write the
criteria-based policies in UCON [17], UCON+ [13] or
similar policy languages.

Throughout this paper, we have used the example of an
employee trying to access a service with an unmanaged
device. To compensate for not having a managed device,
we relied on two MaS functions: MFA and IPS. Deciding on
the right MaS functions to use when certain criteria are not
met, or based on a specific trust score, can be challenging.
This holds true whether unmet criteria are being addressed
or a trust score is being interpreted. A systematic way to
choose the right MaS functions for each situation needs to
be established. Creating this systematic approach is a main
goal for our future studies.

While ZTSFC allows for greater granularity and flexibility
in access decisions by incorporating SFs, this also introduces
additional complexity to the creation of access control
policies. To prevent unintended access decisions, careful
consideration is necessary when integrating SFs into the
decision-making process. Master policies, as described by
Google’s BeyondCorp [2], which take priority over all other
policies, can help ensure that new policies incorporating
SFs do not unintentionally grant access if certain master
conditions are unmet.

X. CONCLUSION
In this paper, we introduced, implemented, and evaluated
a novel network security architecture called ZTSFC. It is
based on a concept from a previous work of ours [9].
ZTSFC integrates MaS functions and ZT components. In this
way, we achieve three main improvements over regular
ZT architectures: (1) The integration of MaS functions
into the PDP’s Auth* decision-making process, (2) the
implementation of a direct and efficient information flow
between MaS functions and PDP, and (3) the reduction of
hardware load and improvement of user experience.

To prove the feasibility of ZTSFC, we implemented
a ZTSFC prototype. That prototype leverages ALFA’s
obligation feature to specify under which conditions certain
MaS functions are applied to RARs. Traffic steering is
implemented with HTTPS-based SFC. In our discussion,
we argue that this is particularly useful in environments
where predominantly web-based apps and services are used,
as in Google’s BeyondCorp architecture. Our HTTPS-based
approach allowsMaS functions to access packet payloads and
ensures confidentiality, authentication, integrity, and perfect
forward secrecy for any communication. Using signed tokens
embedded in HTTP custom headers, proof of transit for MaS
functions is proven.

Using this PoC, we detailed the first and second improve-
ments with representative use cases. To assess the third
improvement, we compared the ZTSFC architecture to a
standard ZT architecture, looking at both hardware load and
user experience. While accessing services directly is faster,
ZTSFC achieves a balance between user experience and
security. It considers the needed security for a ZT approach
but can skip some MaS functions when the RAR is already
sufficiently trusted.

Our evaluation also points out the complex performance
interrelationships between different parts of a network
architecture where SFs modify and smooth traffic. Different
chaining orders of SFs have a significant impact on network
performance. That should not only be valid for ZTSFC but
for SFC in general.

In terms of future work, we see a number of open
challenges. For example, how to bring continuous autho-
rization to ZTSFC, as described in [13]. That enables us to
adjust the chosen SFC/SFP even while the service access
is in progress. To address this challenge, we currently
examine various strategies for how the involved control
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LISTING 6. ALFA policy used for the ZTSFC use cases in the evaluation.

plane components can trigger and communicate such re-
authorizations. As mentioned in the discussion section,
we see the need for a systematic approach to decide which

combinations of MaS functions can make up for specific
criteria or attributes that are not. Efforts are underway to
implement such an approach. Furthermore, in the introduced
ZTSFC architecture, MaS functions need to be arranged
behind the PEP. An open challenge is to enable the option
to orchestrate MaS functions that are logically positioned in
front of the PEP. For this, we investigate related research
works such as [22]. Lastly, another starting point for future
research is the integration of third-party service functions
that do not run in the company’s own network domain, for
example, and how their trustworthiness can be ensured.

APPENDIX
PROOF OF CONCEPT - EVALUATION POLICIES
For all ZTSFC use cases, we defined ALFA policies used
in the evaluation. The set of policy rules is shown in
Listing 6.
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