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ABSTRACT The capabilities of a parametric model for crack patterns simulation are presented. Planar
tessellations are partitions of the plane into convex polygons (called cells) without overlapping. The Voronoi
tessellations and Poisson line tessellations are the most prominent models; however, to model crack patterns,
it is more appropriate to deal with tessellations that are generated by a cell division process. We describe
the STIT tessellation as a reference model for crack patterns and introduce several modifications. Having
described a variety of 40 parametric models and appropriate simulation algorithms, we delineate and specify
tuning methods to optimize the adaption of the model to real crack pattern data. An example of a metalized
polydimethylsiloxane demonstrates the capability of our approach. The results indicate that this approach
yields a considerable improvement in modeling compared to previous studies.

INDEX TERMS Crack pattern, random tessellation, STIT tessellation, spatial statistics, metaheuristic tuning
methods.

I. INTRODUCTION
Crack patterns appear and are studied in nanotechnology,
materials science, soft matter, and geology. Their length
scales can vary widely, but they share some essential features.
Thismotivates the development ofmodels for such structures.
In several research areas, mathematical models are developed
for such patterns. Often, the features of these models can
be studied – up to now – by simulation only. Crack pattern
simulation is an approach designed to emulate the generation
and evolution of structures where different kinds of failures,
fissures, or cracks arise. Recently, such models are also of
growing interest in the context of machine learning, see [1]
and the references therein.

In the present paper, we start with the STIT tessellation as
a reference model and consider modifications to it. This was
already commenced in [2]. Now we add some further model
refinements, which we call ASA (‘avoid small angles’) and
RD (‘roundness optimization’).

The aim is to provide parametric models such that the
parameters have a geometric meaning and that efficient
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optimizationmethods can adapt a model to an actual structure
as well as possible.

First, we describe the planar STIT tessellation and then
explain its Monte Carlo simulation.

In the second part of the paper, we introduce the mentioned
modifications of the STITmodel, which aremore flexible and
thus potentially allow for a better adaption to actual crack
patterns. Furthermore, we define the statistics for random
tessellations used to evaluate a model’s adequacy.

For this variety of parametric models, a tuning process is
described, which allows for the best adaption of a model with
respect to given optimization criteria.

In the last part of the paper, we consider data of a
real crack pattern in a thin chromium/gold film on an
elastomer (polydimethylsiloxane, PDMS). A tensile stress in
the layered material leads to film cracking. We check how
well certain statistical features can be fitted by the introduced
models and the optimization of parameter values.

II. MATERIAL AND METHODS
The material we refer to in the present study is a real
crack pattern in a thin chromium/gold film on an elastomer
(polydimethylsiloxane, PDMS), see Figure 13. And we
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assume that the methods presented here can be applied to a
wide variety of crack patterns.

Various mathematical models have already been developed
for the simulation of crack patterns. The literature contains
numerous examples of cracking and fracturing, ranging
from geology and materials science to soft matter and
nanotechnology. Often, these papers focus on the genesis and
physics of an individual crack, e.g., [3], and [4]. However,
there are also approaches to whole crack patterns, e.g., [5],
[6], [7], [8], [9], [10], and [11]. A promising approach is
based on stochastic geometry, particularly on models for
random tessellations. A tessellation (mosaic) is a division
of the plane into polygons or of the three-dimensional
space into polyhedra [12]. A motivation for modeling crack
structures is to study the relationship between the geometric
structure on one side and the physical properties on the other.
Thus, models including quantitative parameters which have a
geometric or physical meaning are of particular interest. This
can also potentially support the design of new materials.

A. THE STIT MODEL
Denoting by R2 the Euclidean plane and by P the set of all
two-dimensional convex polygons, a subset T ⊂ P is called
a tessellation if:
(i) the polygons fill the plane, that means

⋃
z∈T

z = R2,

(ii) the polygons do not overlap; more precisely, for all
z, z′ ∈ T , if z ̸= z′, then int z ∩ int z′ = ∅, where int z
denotes the topological interior of z,

(iii) T is locally finite, that means the set {z ∈ T : z∩C ̸= ∅}

is finite for all compact sets C ⊂ R2.
A random tessellation is a random variable with values in the
set of all tessellations, see also [12].

The polygons forming a tessellation are called cells. The
Voronoi tessellations and Poisson line tessellations are the
most prominent models. To model crack patterns, it is more
appropriate to deal with tessellations that are generated by a
consecutive division of cells – a cell division process. Inspired
by [13], we focus on the class of processes that can be
characterized by
L The rule for the random lifetime of a cell that is the time

between the birth of a cell by division of a mother cell
and the division of the cell.

D The rule for the random division of a cell at the end of
its lifetime.

For such models, we will assume that an extant cell’s
lifetime and division depend only on the cell itself, neither
the adjacent cells nor the history of the division process.

The STIT model in a Euclidean space of arbitrary
dimension – a random tessellation whose distribution is
STable under the operation ITeration of tessellations – was
first introduced in [14]. This stochastic stability is an essential
property that allows for many theoretical results. Here we
consider the two-dimensional case only.

The main ingredient of a STIT tessellation is a directional
distribution, that is, a probability distribution ϕ on the interval

[0, π). Up to a scaling factor, the choice of ϕ determines a
STIT tessellation in the following way:

Let H denote the set of all lines in the plane. A line H =

H (α, r) ∈ H is parameterized by its normal direction α ∈

[0, π) and its signed distance r from the origin, where the
distance has a positive sign if the intersection of the line with
its orthogonal subspace is in the upper half-plane. For a line,
H that does not contain the origin, denote by H+ and H−

the closed half-planes generated by H , where H+ contains
the origin. In our context, the random lines contain the origin
with probability zero. For a set B ⊂ R2 denote by [B] :=

{H ∈ H : H ∩ B ̸= ∅} the set of all lines intersecting B.
Based on ϕ, a translation invariant measure 2 on H is

determined by∫
H
f (H )2(dH ) =

∫
[0,π)

∫
R
f (H (α, r)) dr ϕ(dα) (1)

for any non-negative measurable function f : H → [0,∞),
see Section 4.4 of [15]. An interpretation of this formula and
its application in the Monte Carlo simulation is given below.
Throughout the paper, it is assumed that ϕ is not concentrated
on a single value. This guarantees that the constructed object
is a random tessellation; see [15].

For a convex polygon z ∈ P we define a probability
distribution 2[z] on the set [z] of all lines which intersect
z by

2[z](·) := 2(· ∩ [z])/2([z]).

An informal description of the STIT tessellation process
is given by the following specifications of the lifetime
distribution L and of the division rule D:

• L-STIT: A cell z has a random lifetime that is
exponentially distributed with parameter 2([z]).

• D-STIT: At the end of its lifetime, z is divided by
a random line H with law 2[z], independent of the
lifetime, and conditionally independent, given z, of all
the dividing lines used before.

More precisely, we describe the planar STIT tessellations
in a convex polygonW ⊂ R2 called a window.

Let N := {1, 2, . . .} denote a set of positive integers. The
birth time of a cell z is denoted by β(z).
Definition 1: Let τ = (τn : n ∈ N) be a sequence

of independent and identically distributed (i.i.d.) random
variables, exponentially distributed with parameter 1. The
STIT tessellation process (Yt,W : t ≥ 0) in W , driven by
the measure 2 is defined by
(a) Initial setting.

Yt,W = {W } for 0 ≤ t < τ1/2([W ]), β(W ) = 0 and
z1 = W.

(b) Recursion.
For t > 0, let be Yt,W = {zi1 , . . . , zin},
that is β(zik ) < t and β(zik ) + τik /2([zik ]) ≥ t for
k = 1, . . . , n.
Define i∗ ∈ {i1, . . . , in} as the index of the cell which is
the next to be divided by

ti∗ = β(zi∗ ) + τi∗/2(zi∗ ])
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= min
{
β(zik ) + τik /2([zik ]) : k = 1, . . . , n

}
.

Then Yt,W remains constant until the jump at time ti∗ ,
when the process jumps, by division of the cell zi∗ into
the state

Yti∗ ,W =
(
{zi1 , . . . , zin} \ {zi∗}

)
∪ {z2n, z2n+1}

with z2n = zi∗ ∩ H+

i∗ , z2n+1 = zi∗ ∩ H−

i∗ , where
Hi∗ is a random line with law 2[zi∗ ] and independent
of τ and conditionally independent, given zi∗ , of the
n− 1 dividing lines used before.
The birth time of the dividing line and the new cells is
β(Hi∗ ) = β(z2n) = β(z2n+1) := ti∗ .

This definition looks rather involved, but its advantage is that
it provides an algorithm for the STIT construction.

Note that (Yt,W : t ≥ 0) is a random process, and for all
t > 0, the value Yt,W is the cutout for the window W , of a
STIT tessellation of the whole plane.

To see how the law 2([z]) for a cell division must be
implemented correctly, note the following. For a convex
polygon z and a fixed direction 0 ≤ α < π , let be
h0(z, α) < h1(z, α) the two values of the signed distances
of the tangential lines to z with normal direction α, which
are values of the support function of z. Formally, h0(z, α) :=

min{x cosα + y sinα : (x, y) ∈ z} and h1(z, α) :=

max{x cosα + y sinα : (x, y) ∈ z}. Hence, a line H (α, r)
divides z, that is H (α, r) ∈ [z], if and only if h0(z, α) <
r < h1(z, α). The width (or breadth) of z in direction α is
b(z, α) := h1(z, α)−h0(z, α) which is the distance of the two
supporting (tangential) lines to z with the normal direction
α. The maximum width of z is denoted by bmax(z) :=

max0≤α<π b(z, α), and the minimum width of z is denoted by
bmin(z) := min0≤α<π b(z, α). By 1{·}, we denote the indicator
function, which is 1, if the condition in {·} is satisfied and
0 otherwise. For 0 < α0 ≤ π and a convex polygon z,
equation (1) yields

2({H (α, r) ∈ [z] : 0 ≤ α < α0})

=

∫
[0,π )

1{0 ≤ α < α0} b(z, α)ϕ(dα) (2)

and in particular for α0 = π ,

2([z]) =

∫
[0,π)

b(z, α) ϕ(dα). (3)

Hence, 2([z]) can be understood as the ϕ-weighted mean
width of z. If ϕ is the uniform distribution on [0, π) then
2([z]) = P(z)/π , where P denotes the perimeter.
Remark 1: By (3), the directional distribution of a line that

intersects a polygon z is not ϕ itself, but it is ϕ endowed
with the density b(z, α)/2([z]). This must be taken into
account when a dividing line is generated in the Monte Carlo
simulation of a STIT tessellation. Given a direction α, the
position (shift or translation) of the dividing line is uniformly
distributed in the respective interval (h0(z, α), h1(z, α))

When a cell zi is divided, it is replaced by its two daughter
cells zi ∩ H+

i and zi ∩ H−

i with birth time β(zi ∩ H+

i ) =

β(zi ∩ H−

i ) = β(zi) + τi/2([zi]).

A crucial feature of the construction is that, by (b) of
Definition 1, the lifetime of a cell zi is τi/2([zi]), which
means that it is exponentially distributed with parameter
2([zi]). Thus by (3), the distribution of the lifetime of a cell
depends on its size – smaller cells have a longer expected
lifetime than larger ones. In the particular case when the
measure2 is isotropic, that is, ϕ is the uniform distribution on
[0, π), the parameter of the exponential lifetime distribution
of a cell z is 2([z]) = P(z)/π , the perimeter of z divided
by π .
Remark 2: Even if this construction is performed in a fixed

and bounded window W, it provides a spatially consistent
distribution in the following sense. Let W ′

⊂ W be a convex
polygon, (Yt,W ′ : t > 0) and (Yt,W : t > 0) the STIT
tessellation processes generated in W ′ and W, respectively.
The symbol D

= stands for the identity of distributions of
random variables. Then for all t > 0 we have that

Yt,W ′
D
= {z ∩W ′

: z ∈ Yt,W ,W ′
∩ int z ̸= ∅}, (4)

which means that the restriction of Yt,W to W ′ has the same
distribution as Yt,W ′ , see [14]. This consistency property
yields that, for any t > 0, there exists a spatially
stationary (or homogeneous, which means the invariance of
the distribution under translations of the Euclidean plane)
random tessellation Yt of R2 such that the restriction of Yt to
W has the same distribution as Yt,W for all polygons W ∈ P .
Note that this spatial consistency is lost when the STIT model
is modified, and hence the distribution of the tessellation
generated in a window depends on the choice of this window,
see [16].
The realizations of planar STIT tessellations suggest that

they can be potential models for crack or fracture patterns.
However, already tentative studies in [17] or [18] indicated
that the STIT tessellations are not appropriate for some real
patterns. This is not surprising because the STIT model
emerged from purely mathematical ideas. Thus an adaption
of the cell division model to such crack patterns is necessary.
We have chosen a ‘‘phenomenological approach’’, aiming to
model the geometric appearance, not focusing on the physics
of crack formation.

B. MODIFICATIONS OF THE STIT MODEL
Some modifications of the STIT model were introduced
in [2].
In all the models, at first, a directional distribution ϕ on

[0, π) has to be fixed. The following directional distributions
are used in the simulation study:

• ISO: The isotropic distribution, which means that ϕ is
the uniform distribution on the interval [0, π).

• DISCR: A discrete distribution with finitely many
directions, that is ϕ =

∑k
i=1 piδαi , 2 ≤ k , with 0 ≤

αi < π and probabilities 0 < pi < 1,
∑k

i=1 pi = 1.
By δα we denote the Dirac measure concentrated on a
single value 0 ≤ α < π , that is δα(B) = 1 if α ∈ B and
0 otherwise, for a subset B ⊆ [0, π). In the generated
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tessellation, segments with normal directions α1, . . . , αk
appear. Once the number k of directions is chosen, for
example, 2 ≤ k ≤ 32, one has to indicate the values
αi as the radian divided by π ; for example, the input
0.5 means the angle 0.5π = 90◦. And for each αi, its
probability pi has to be chosen as well.

• DDISCR: A disturbed discrete distribution, that is ϕ =(∑k
i=1 piδαi

)
∗ ψ , where ψ is the elliptic distribution

with parameter bellip, see ELLIP below. The ∗ denotes
the convolution of measures. This means that a random
‘disturbance’ with an elliptic distribution is added to a
direction chosen from a discrete distribution DISCR.

• RECT: The discrete distribution with horizontal and
vertical directions only, and both with the same prob-
ability, which means that ϕ = 0.5 δ0 + 0.5 δπ/2, which
is a particular case of DISCR. The tessellation consists
of random rectangles.

• DRECT: The discrete distribution RECT which is dis-
turbed by the elliptic distribution ELLIP with parameter
bellip. This is a particular case of DDISCR.

• ELLIP: An elliptic distribution. Consider an ellipse
with a horizontal half-axis of length 1 and a vertical
half-axis of length 0 < bellip < 1. Then the cumulative
distribution function of ϕ is defined as

Fϕ(α) =
area of ellipse sector [0, α]
half area of the ellipse

, 0 ≤ α < π.

Notice that we obtain the isotropic distribution ISO for
the value bellip = 1.

Then, based on the directional distribution ϕ, a division rule
is chosen.

• D-STIT: For a cell z, the direction α of the divid-
ing line is generated according to the distribution
b(z, α)ϕ/2([z]) which is the distribution ϕ, endowed
with the density b(z, α)/2([z]), see Remark 1. Then, the
signed distance from the origin of the dividing line is
uniformly distributed in the interval (h0(z, α), h1(z, α)).

• D-GAUSS: For a cell z, the direction α of the dividing
line is generated similarly for D-STIT. Then, the
signed distance r from the origin is distributed in
the interval (h0(z, α), h1(z, α)) according to a truncated
(to this interval) Gaussian distribution with a standard
deviation σ b(z, α) = σ (h1(z, α) − h0(z, α)) and mean
0.5 (h0(z, α)+h1(z, α)). The parameter σ is in the range
0 < σ < 1.

In contrast to D-STIT, the division rule D-GAUSS takes
into account the observation that the cracks in real structures
tend to be ‘central’ when they divide a cell. In D-GAUSS,
the parameter σ > 0 has to be chosen, and the smaller its
value, the more concentrated to the center of the interval
[h0(z, α), h1(z, α)] is the random position of the dividing line.
An alternative rule to L-STIT was introduced for the

lifetime distribution:
• L-STIT: A cell z has a random lifetime that is
exponentially distributed with parameter 2([z]).

• L-AREA: The lifetime of a cell z is exponentially
distributed with parameter A(z), where A denotes the
area.

The rule L-AREA is motivated by observation in [17], which
indicates that the coefficient of variance of the area, CV(A),
see III-A, of STIT tessellations, is much larger than that one
of data from crack patterns. Therefore, it seems reasonable to
base the lifetime rule on the area rather than on the width or
perimeter of the cells. Simulation results of [2] clearly shows
that CV(A) is indeed significantly reduced when L-AREA is
applied.

Whereas there are numerous theoretical results for STIT
tessellations, the modified models can – up to now – be
investigated by simulation studies only.

By Remark 1, the simulation of the direction α of the
line dividing a cell z requires special attention because it
is not correct to generate the direction of the dividing line
directly from ϕ. In our simulations, we apply a rejection
method. For a given cell z, generate a direction α according
to ϕ and a random number d which is uniformly distributed
in the interval [h0(z, α), h0(z, α) + bmax(z)]. The simulated
line H (α, d) is accepted as a dividing line if d < h1(z, α),
otherwise, it is rejected. Recall that h0(z, α) < h1(z, α)
are the two signed distances of the tangential lines to z with
normal direction α.
To simulate the lifetime of an extant cell z, the integral in

(3) is discretized and replaced by a sum using 128 equidistant
angles in [0, π).

In our simulation study, the window W is a square of side
length a ∈ N, and the process of consecutive cell division
runs to a fixed time tSTOP ∈ N, at which the construction
stops. To obtain a reasonable number of cells in a simulation,
the value of tSTOP should be chosen in an appropriate relation
to a. Furthermore, because the models with D-GAUSS are
not spatially consistent, the dependence on the choice of a is
essential. Therefore, we decided first to launch a cell division
process with D-STIT and L-STIT until time tSTOP and then to
switch to D-GAUSS and the chosen L-rule for a time interval
of length tMOD, see (ii) at the end of Subsection II-C.

Some examples of simulations for different directional
distributions and lifetime rules with D-STIT and D-GAUSS
are shown in Figure 1 and 2 respectively.

C. NEW MODIFICATIONS OF THE STIT MODEL
Observations of real crack structures appearing in material,
see Figure 3 motivate further modifications of the L- and
D-rules.

In the present paper, we introduce alternatives to D-STIT
and D-GAUSS. The aim is to generate cells with larger values
of the mean isoperimetric quotient (or roundness) RD and the
mean aspect ratio AR, see Subsection III-A.

• D-RDMIN: For a cell z and a direction α, the signed
parameter r of the dividing line is chosen in the interval
(h0(z, α), h1(z, α)) such that for the daughter cells z1 and
z2, that are generated by the division of z, the value of
min{RD(z1), RD(z2)} is maximized.
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FIGURE 1. Simulations of tessellations with division rule D-STIT and two different lifetime rules: L-STIT (a, c,
and e) with tSTOP = 40, and L-AREA (b, d, and f) with tSTOP = 650.

• D-RDSSQ:Analogous to D-RDMIN, but here the value
of the sum of squares RD(z1)2 + RD(z2)2 is maximized.

For a given direction α, consider a family of M parallel
lines hj for j = 1, . . . ,M that divide a cell z. Let zj1

and zj2 be the cells generated by the line hj and RD(zj1)
and RD(zj2) the roundness of each cell, respectively. Then,
in the case of D-RDMIN the line hj is chosen, where
min{RD(zj1),RD(z

j
2)} is maximal. In the case of D-RDSSQ,
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FIGURE 2. Simulations of tessellations with division rule D-GAUSS with σ = 0.1, and two different lifetime
rules: L-STIT (a, c, and e) with tSTOP = 40, and L-AREA (b, d, and f) with tSTOP = 650. In each simulation
tGAUSS = 40.

the line hj is chosen, where RD(z
j
1)

2
+ RD(zj2)

2 is maximal.
The method is illustrated in Figure 4. Panel (a) shows the
division by a particular line. Such a division is considered

for all the lines shown in (b). The blue line observed in (c)
is the optimal dividing line such that min{RD(zj1),RD(z

j
2)} is

maximized.
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FIGURE 3. Real crack patterns.

FIGURE 4. Roundness optimization. (a) Computing roundness RD(z j
1) and

RD(z j
2) for each cell. (b) A family of different dividing lines. (c) The

dividing line with the best roundness considering D-RDMIN.

Furthermore, all these division rules can be augmented
by a rejection method which we call ‘‘avoid small angles’’
(ASA). This modification is introduced to approximate the

FIGURE 5. A potential dividing line cuts a cell. Four angles are analyzed in
the rejection method ASA. The potential dividing line is accepted if the
four angles are greater or equal than the parameter ω.

phenomenon that a new crack tends to meet an already
existing crack almost orthogonally; see Figure 3.

• ASA: A parameter ω ∈ (0, π/2) is chosen. A potential
dividing line generated by someD-rule is accepted if and
only if all the four angles αA1 , αA2 , αB1 , αB2 , indicated
in Figure 5 are greater or equal ω. If a potential dividing
line is rejected, then a new potential line has to be
generated according to the respective D-rule.

Thus, for example, besides D-STIT or D-GAUSS, we also
consider D-STIT-ASA or D-GAUSS-ASA, respectively. The
cracks in real structures are often curved, which is not incor-
porated in our models – the ASA method is a compromise.
Note that the rejection method in ASA can cause a change
in the directional distribution ϕ, and the resulting directional
distribution of dividing segments can be quite different from
ϕ. Some simulations with D-STIT-ASA and D-GAUSS-ASA
are shown in Figures 6 and 7 respectively, and they indicate
the effect of increasing the lower bound ω.

If we consider the two L-rules and the two D-rules
D-STIT and D-GAUSS with and without ASA, and the
D-rules D-RDMIN-ASA and D-RDSSQ-ASA, then there
are 12 models. And for each model, one has the choice of
a directional distribution ϕ, see (1). A survey is given in
Figure 10. Our preliminary studies have shown that it is not
worthwhile to consider D-RDMIN and D-RDSSQ without
ASA.

The modifications of STIT lose the spatial consistency
property (4), see [16]. Therefore, in an arbitrarily given
window W , one cannot start the cell division process
appropriately, such that (4) is satisfied. Being aware of this
problem, one can choose one of the following options:
(i) Nonetheless launching the division procedure in W

with the chosen L- and D-rules. The division process
stops at time tMOD ∈ N.

(ii) Launching the division process with L-STIT and
D-STIT until a time tSTOP ∈ N and then, putting
the clocks back to 0, the simulation of the modified
model is launched until time tMOD ∈ N, but only in
those cells of the generated STIT tessellation which
do not intersect the boundary of the window W . The
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FIGURE 6. Simulations of tessellations with L-rule LSTIT, division rule D-STIT-ASA, directional distribution
DRECT, tSTOP = 20, bellip = 0.2 and different lower bounds ω.

cells that intersect the boundary of W have not been
taken into account further. Note that until time tSTOP,
the simulation yields an initial tessellation that is not
intended. In order to see the effect of the modification,
the value of tMOD should be large compared to tSTOP.

(iii) Launching the division process in a much larger
windowW ′′

⊃ W with the chosen L- and D-rules. This
can attenuate the systematic error appearing insideW .

In the present study, we apply (i), with the exception of
D-GAUSS, where we use (ii) and thus tSTOP and tGAUSS :=
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FIGURE 7. Simulations of tessellations with L-rule LAREA, division rule D-GAUSS-ASA, directional distribution
DRECT, tSTOP = 60, tGAUSS = 180, σ = 0.2, bellip = 0.1 and different lower bounds ω.

tMOD as additional parameters. The values of tSTOP and tMOD,
which we have chosen in our simulations, are given in
Tables 1, 2, 3 and 4.

Some simulations with D-RDMIN-ASA and D-RDSSQ-
ASA are shown in Figure 8 and 9.

III. THEORY
A. STATISTICS OF THE CELLS WHICH ARE USED FOR
COMPARISON
In order to adapt and evaluate a model that is suggested
with respect to some real data, the choice of criteria for the
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goodness-of-fit is crucial. This is not obvious in complex
geometric structures such as tessellations and can be rather
involved. In our study, we have focused on a few instructive
and feasible features of the cells z of a tessellation, namely
the area A(z), the isoperimetric quotient or roundness or
sphericity

RD(z) := 4πA(z)/P2(z), where P is the perimeter,

and the aspect ratio

AR(z) = bmin(z)/bmax(z).

The isoperimetric quotient RD and the aspect ratio AR are
invariant with respect to scaling, and they provide information
about the shapes of the cells.

The entities used for assessing the adequacy of a model
should be invariant with respect to scaling in space.
Therefore, the mean values are estimated for RD and AR.
For the area, we estimate the coefficient of variation CV,
which is scale-invariant and expresses the variability of cell
areas in a tessellation, which means that a small value of CV
indicates that the structure is more ‘homogeneous’; that is,
the differences between the individual cell areas are relatively
small.

The estimation of a cell statistic based on a realization
of a tessellation in a bounded window is biased. Edge
effects cause this. As the modifications of STIT are not
spatially consistent, the edge effects cannot be treated exactly
– even for cells completely contained inside the window.
Therefore, we cannot remove the bias, only reduce it.
To do this, we apply an edge correction, inspired by the
Miles-Lantuejoul method [12], [20]. Any cell that does not
intersect the window’s boundary is given a weight, which
is proportional to the reciprocal probability that this cell is
completely contained in the window. This compensates for
the different chances of the cells to appear completely inside
the window. In a square window of side length a, the size
of the window, and parallel to the horizontal and vertical axes,
the weight of a cell z ⊂ W is

w(z) =
1

(a− b(z, 0))(a− b(z, π/2))
.

The formula to estimate the mean area of the cells in a given
simulation is

MEAN(A) =
1∑

z⊂W w(z)

∑
z⊂W

w(z)A(z),

the estimated mean squared error is

MSE(A) =
1∑

z⊂W w(z)

∑
z⊂W

w(z) (A(z) − MEAN(A))2,

the estimated standard deviation is

SD(A) =

√
MSE(A),

and the estimated coefficient of variation is

CV(A) = SD(A)/MEAN(A).

The corresponding formulae are obtained for the other
entities by simply replacing the symbol A by P, RD, bmax,
bmin, and AR, respectively.
Summarizing our approach for model adaption by a tuning

process is based on the following three statistical entities for
tessellations.

• CV(A): The estimated coefficient of variation of the cell
area, see (III-A).

• MEAN(RD): The estimated mean isoperimetric
quotient.

• MEAN(AR): The estimated mean aspect ratio.

B. PARAMETRIC MODEL TUNING PROCESS
We consider the space of parametric models shown in
Figure 10. Our aim is to find models and the respective
parameters which yield the best approximation to the image
in Figure 13. The quality of the approximation is measured by

f1 =
∣∣TargetCV(A) − CV(A)

∣∣ (5)

f2 =
∣∣TargetMEAN(RD) − MEAN(RD)

∣∣ (6)

f3 =
∣∣TargetMEAN(AR) − MEAN(AR)

∣∣ (7)

The Target values are listed in Table 6. For a given stochastic
model and fixed parameters and a fixed window size a, the
values of CV(A), MEAN(RD), andMEAN(AR) are constants.
The purpose is either tominimize one of the quality functions,
which is referred to as themono-objective approach, or to find
models with parameters that for all three quality functions are
Pareto solutions or minimax solutions – the multi-objective
approach. This describes the tuning problems we deal with,
and the methods ParamILS and MO-ParamILS described
below are used to perform this tuning. If all the models
and parameters were considered, we would have theoretical
results to determine CV(A), MEAN(RD), and MEAN(AR)
exactly; we would have these pure tuning problems. The
exact values of CV(A), MEAN(RD) and MEAN(AR) are not
known for the models considered; with the only exceptions of
CV(A)=1.9836 for isotropic STIT tessellations; CV(A)=3 for
the STIT tessellation with RECT; CV(A)=1 for L-AREA, D-
STITwith RECT, see [21]. Therefore, the unknown values are
estimated based on simulations of the models. We emphasize
that these simulations are an auxiliary procedure (in the
‘background’), and they are not a part of the tuning, and we
do not address a tuning of these simulation algorithms.
The use of a parameter tuning method to understand and

analyze the capabilities of some tessellationmodels described
in Section II is now presented.

A parameter tuning process can be defined as determining
the best parameter values of a given tessellation model
according to some given quality measures. Figure 11 shows
the main components of a tuning process.

A parameter tuning process requires a tuning method
and a model to be tuned. In our case, the models being
tuned are the tessellation models described in the previous
sections. They communicate each time the tuning method
requires measuring the quality of a set of parameter values c,
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FIGURE 8. Simulations of tessellations with division rule D-RDMIN-ASA and the two different lifetime rules:
L-STIT (a) and L-AREA (b). Both simulations with window size a = 2, DRECT with p1 = p2 = 0.5, ω = 0.25 π and
bellip = 0.2.

FIGURE 9. Simulations of tessellations with division rule D-RDSSQ-ASA and the two different lifetime rules:
L-STIT (a) and L-AREA (b). Both simulations with window size a = 2, DRECT with p1 = p2 = 0.5, ω = 0.25 π and
bellip = 0.2.

usually referred to as parameter configuration. The measured
quality(es) is then returned to the tuning method. With
this, the tuning method computes the corresponding gain
measure. There are several types of tuning approaches in the
literature [22]. In [23], an updated review and classification
of tuning methods can be found.

The input of a parameter tuning process is a tuning
scenario composed by:

• A set of parameters to be tuned. A tuning method
requires the names and the specific sets of possible
values each parameter can take. In our experiments,
we tuned the parameters listed in Tables 1 to 5. The
window size is set to a = 1 except in the models
D-RDMIN-ASA and D-RDSSQ-ASA, where the size is
a = 2.
For example, Table 1 summarizes the four-dimensional
parameter space considered when the D-STIT model

is tuned. In square brackets, the initial value for each
parameter is shown.
The parameters lifetime and direction are categorical
parameters. Categorical parameters have finite domains
with no distance metric or ordering between values.
The parameter lifetime refers to the L-rule applied in
the simulation (L-STIT or L-AREA). The parameter
direction refers to the directional distributions applied
to the simulation; see Subsection II-B. Furthermore,
tstop and bellip are numerical parameters; that is, their
domains are subsets of N or of R. For these, selecting
a finite set of relevant values is necessary. In Table 1,
eleven values are considered for tstop, and four values
are considered for bellip. In Table 1, the parameter
bellip is a so-called conditional parameter because it
is relevant only when the parameter direction is set
to DRECT or ELLIP. In Table 2, which refers to
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FIGURE 10. Combining the division and lifetime rules with the directional distributions. In total, we consider
40 models.

FIGURE 11. Tuning process components of a tessellation model.

D-GAUSS, the additional parameters tmod and sigma
are considered. The first one refers to the construction
time for the division process with D-STIT and the
second one is the standard deviation σ of the Gaussian
distribution. The parameters in Table 3 are analogous
to Table 1 but also considering omega as the parameter
which refers to the angle in the rejection method of

ASA, see Subsection II-C. The parameters in Table 4
are analogous to Table 2 but also consider omega. The
parameters in Table 5 are analogous to Table 1, but the
directional distribution RECT is not considered because
ASA is dispensable if, a priori, only right angles appear.
There are two construction times tmod; one is considered
for lifetime rule L-STIT (tmod1), and the other one is
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FIGURE 12. Multi-objective parameter tuning approach.

TABLE 1. Parameter search space definitions: D-STIT.

TABLE 2. Parameter search space definitions: D-GAUSS.

TABLE 3. Parameter search space definitions: D-STIT-ASA.

considered for lifetime rule L-AREA (tmod2). These
parameters are chosen differently in order to generate
approximately the same number of cells (approximately
2000 cells).
The values for sigma are based on the preceding analysis
for CV(A) presented in [2]. The values for tstop and
tmod are based on the values of tSTOP, and tGAUSS used
in [2], respectively. The discretization of the values
is selected by simple inspection according to different
simulations considering the number of cells. In the
case of bellip, the variation of CV(A) is not significant

TABLE 4. Parameter search space definitions: D-GAUSS-ASA.

TABLE 5. Parameter search space definitions: D-RDMIN-ASA and
D-RDSSQ-ASA.

TABLE 6. Statistical data for Fig. 13.

for bellip > 0.2, see [2], therefore, we consider only
bellip ≤ 0.2. The parameter omega is bounded by
0 < ω < π/2. For the D-rules D-RDMIN and
D-RDSSQ, we consider tmod1 and tmod2 values with
L-rules L-STIT and L-AREA, respectively.

• Quality measures. The tuning algorithms use quality
measures to evaluate the quality of a specific parameter
configuration. In our case, three quality measures, given
in (5), (6) and (7), are considered, which are based on
target values for CV(A), MEAN(RD), and MEAN(AR).
Given the stochastic nature of the tessellation models,
tuning methods estimate the ‘‘real’’ performance of
parameter configuration using gain measures Gq(c),
where q indicates the associated quality measures. The
gain measure summarizes the performance of several
simulations for a parameter configuration c. The most
common gain measures use the average (which is the
arithmetic mean) and the median. For example, the
gain measure associated with parameter configuration
c executed n times considering the average coefficient
of variation of the area as quality measure computed by
Gq(c) = av(q, n).

• A budget. The budget of a tuning process limits the
computational effort invested. It could be measured as
the maximum execution time and the maximum number
of runs. In our study, we have chosen a maximum budget
of 10,000 simulations of tessellation models.
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FIGURE 13. Optical microscopy image of cracking of metalized
(Cr/Au – 20/100 nm) PDMS, reproduced from [2].

The output of the parameter tuning process is a set of
one or more parameter configurations that optimize the gain.
In our analysis, we use two tuning methods:

• The first tuning method used is ParamILS.
ParamILS, see [24], is an iterated local algorithm
searching for better quality parameter configurations in
the neighborhood of the current one. The FocusedILS
version of ParamILS increases the number of sim-
ulations of tessellation models when more accurate
comparisons are required. The output of ParamILS is the
best parameter configuration found under the restriction
of the given budget.
In our experiments, we used ParamILS to tune the tes-
sellation models in {D-STIT, D-GAUSS, D-STIT-ASA,
D-GAUSS-ASA, RD-MIN-ASA, RD-SSQ-ASA} con-
sidering three quality measures based on a target value
for CV(A), MEAN(RD), MEAN(AR)}. In this case,
we aim to find an appropriate tessellation model for
a real crack structure as it is given, for example,
in Figure 13. The quality measure for the coefficient
of variation of the area, mean of roundness, and
mean aspect ratio are shown in Equations (5), (6)
and (7) respectively. Gains for these qualitymeasures are
computed by the averages Gf1 (c) = av(f1, n), Gf2 (c) =

av(f2, n) and Gf3 (c) = av(f3, n).
For each tuning procedure, the best parameter config-
uration found was stored. A total of 6 × 3 = 18
ParamILS runs were executed. The same budget of
10,000 tessellation model simulations was considered in
all these tuning procedures.

• The second tuning method is MO-ParamILS.
The MO-ParamILS method, see [25], is a multi-
objective parameter tuning method based on the
ParamILS approach by [26]. A multi-objective tuning
method uses a set of quality measures – and their
associated gains – concurrently to evaluate parameter
configurations. The intended output of a multi-objective

TABLE 7. Mono-objective results. 500 simulations are executed with the
respective parameters for each division rule and target. The average of
the respective target value is shown in the last three columns.

tuning method is a set of high-gain and well-distributed
non-dominated parameter configurations.
The dominance relationship can be defined considering
a multi-objective tuning problem that minimizes all
of the m gain measures. In this case a parameter
configuration c1 dominates a parameter configuration
c2 iff Gi(c1) ≤ Gi(c2),∀i ∈ {1, . . . ,m}, and
there is at least a gain measure i where Gi(c1) <

Gi(c2). All these parameter configurations that are not
dominated by any other configuration are known as non-
dominated parameter configurations. Furthermore, the
Pareto optimal set can be defined as the set of non-
dominated configurations, and the Pareto front is the set
of all values of the gain measures on the Pareto optimal
set.
MO-ParamILS executes an iterated local search process
that works with an archive of non-dominated parameter
configurations. At each iteration, a single parameter
configuration from the current archive is selected and
submitted to a sequence of s 1-exchange that changes the
value of one parameter each time; see [25]. The resulting
configuration is stored as a new archive from which the
next local search phase starts.
In this paper, we use MO-ParamILS to obtain a
Pareto front regarding the gains associated with quality
measures in equations (5), (6) and (7).
Figure 12 shows an example of a set of three
non-dominated parameter configurations. For simplic-
ity, the example shows only two of the three gain
measures. In this case, Configuration 1 allows the
corresponding tessellation model to obtain the best
average of f1 but the worst average of f2. Configuration
3 is the best in the average of f2 but the worst in
the average of f1. Configuration 2 shows a balance
concerning these two gain indicators. We can observe
that improving a measure can generate a loss in
another one. In our experiments, we expect to observe
this behavior between different parameter sets in the
tessellation models. Furthermore, we can determine
each measure’s minimum and maximum values that
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FIGURE 14. Simulations for the best parameters using mono-objective
tuning.

each tessellation model can obtain. Or we can choose
a minimax solution, see Subsection V-B.

TABLE 8. Multi-objective results: 500 simulations are executed with the
respective parameters for each division rule and target. In the columns
CV(A), MEAN(RD), and MEAN(AR) are shown the average of the respective
target value.

In our experiments, a multi-objective tuning process
was executed for each model of the set {D-STIT,
D-GAUSS, D-STIT-ASA, D-GAUSS-ASA, RD-MIN-
ASA, RD-SSQ-ASA} considering the three gain mea-
sures associated to equations (5), (6) and (7) all together.

The tessellation models implementation is available
in [27].

IV. CALCULATION
The crack structure shown in Figure 13 was obtained
by metalizing polydimethylsiloxane (PDMS), which was
already presented and studied in [2]. The image analysis
result is shown in Table 6. The statistical data of the image is
reported in [2]. The area A(z) of the cells is estimated by pixel
counting in z, i.e., Â(z) = nc2, where n is the pixel number,
and c is the side length of a pixel. Even if the cells are not all
convex, the accuracy of Â(z) can be approximated as follows

A(z) −
c
12
P(z) ⪅ Â(z) ⪅ A(z) +

c
12
P(z) +

π2

144
(8)

where P(z) is the perimeter. The perimeter P(z) estimation is
usually based on a discrete version of one of Crofton’s inter-
section formulae [28], where the discretization is induced
by sampling the continuous set z on a square point lattice
of spacing c. For more details, see [2]. The minimal and
maximal widths are estimated using the convex hull C of the
set of pixels belonging to z. The convex hull is effectively
determined using Graham’s scan algorithm [29].

We are interested in the CV of Area, mean of Isoperimetric
Quotient (roundness), and mean of Aspect Ratio. Thus,
we consider the following target values for the tuning process:

TargetCV(A) = 0.794

TargetMEAN(RD) = 0.787

TargetMEAN(AR) = 0.644

V. RESULTS
A. MONO-OBJECTIVE APPROACH
Table 7 shows results for the mono-objective optimization.
We fixed a division rule, indicated in the left column. For this,
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FIGURE 15. Multi-objective radial chart.

we optimized the following parameters: lifetime distribution,
directional distribution (with their respective quantitative
parameters), and the times tSTOP and tMOD, respectively. The
values emphasized by boldface indicate which was the
target parameter of optimization, and they show the best
value found. Thus, for example, in the second line of the
table, the value 0.531 is, with restriction to D-STIT, the
best approximation for the target MEAN(RD) = 0.787,
and L-AREA, directional distribution RECT reach it with
tSTOP = 192.

Fig. 14 shows simulations for the best parame-
ters concerning CV(A), MEAN(RD), and MEAN(AR),
respectively.

B. MULTI-OBJECTIVE APPROACH
Table 8 shows results for the multi-objective optimiza-
tion. The three objectives are CV(A), MEAN(RD), and
MEAN(AR). We fixed a division rule, indicated in the left
column. For this, we tuned the following parameters: lifetime
distribution, directional distribution (with their respective
quantitative parameters), and the times tSTOP and tMOD,
respectively. All the lines show values of triples that belong
to the Pareto front. The values emphasized by boldface

indicate that in this line, a triple of the Pareto front was
chosen, providing the best approximation of the target value.
Thus, for example, in the second line of the table, the triple
(0.960, 0.530, 0.336) is an element of the Pareto front
(under the restriction to D-STIT). Among all elements of this
Pareto front, this triple yields the best approximation for the
target MEAN(RD) = 0.787, and L-AREA reaches it, with
directional distribution RECT and tSTOP = 128.

The column N of Table 8 indicates the number of
parameter configurations – in the respective discretized
parameter spaces described in Tables 1 to 5 – which
belong to the Pareto front. For each division rule, these N
elements of the Pareto front were sorted by increasing order
considering the absolute distance to the CV(A) target value.
The column M indicates the numbers of the configurations
with the best approximation to one of the three target
values. For example, in the division rule D-GAUSS, there
are N = 54 Pareto front configurations, and the best
approximations for the targets CV(A), MEAN(RD), and
MEAN(AR) correspond to the configurations 1, 50, and
16, respectively. Fig. 16 (a), (b), (c) show simulations for
the best parameters concerning CV(A), MEAN(RD), and
MEAN(AR), respectively.

The radial charts in Figure 15 illustrate the complete
records of the N Pareto front values for the six division rules
and the respective discretized parameter spaces. Each radial
line is labeled with the solution number. The red, green, and
blue thick lines indicate the absolute distance to the CV(A),
MEAN(RD), and MEAN(AR) target values, respectively. See
formulae (5), (6), (7).

For example, the radial chart for D-STIT-ASA shows the
N = 25 Pareto front values of the triple (CV(A), MEAN(RD),
MEAN(AR)). As given in Table 8, the solutions with numbers
1, 22, and 25 are those for which one of the objectives
reaches the best approximation among all Pareto front values.
Solutions 22 and 25 are extremely bad regarding CV(A). This
example also shows that the choice of a ‘good-compromise’-
solution within the Pareto front should not be restricted to
those particular solutions emphasized in Table 8.

The minimax principle is a standard criterion for a choice
within the Pareto front. In our context, a minimax solution
is a parameter configuration for which max{f1, f2, f3} is
minimized. For each considered division rule, the minimax
solution is shown in the respective fourth row in Table 8. For
instance, the configuration M = 20 is the minimax solution
for the D-GAUSS division rule. Comparing the minimax
solutions for the different division rules, we find the overall
minimax solution by D-RDSSQ-ASA, L-AREA, DRECT,
tSTOP = 320, bellip = 0.1, and ω = 0.2. This yields CV(A) =

0.776, MEAN(RD) = 0.688 and MEAN(AR) = 0.545, see
the last line of Table 8. Fig. 16 (d) shows a simulation for this
overall minimax solution.

In the previous study, [2], a modeling of the same
crack data was performed, and it was based on simulations
and an intuitive search in a smaller class of models (in
particular without RDSSQ and without ASA) without a

125436 VOLUME 11, 2023



R. León et al.: Parameter Optimization on a Tessellation Model for Crack Pattern Simulation

FIGURE 16. Simulations for the best parameters using multi-objective tuning. For the indicated D-rules, M
refers to the last but one column of Table 8.

formal optimization. There, it was suggested to choose
D-GAUSS, L-AREA, DRECT, bellip = 0.1, σ = 0.1, tSTOP =

500, and tMOD = 2 000 with the result CV(A) = 0.789,
MEAN(RD) = 0.576 and MEAN(AR) = 0.439.

VI. CONCLUSION
In the present paper, the variety of models introduced in [2]
is extended, and a systematic search for a best-adapted model
to real crack pattern data by a tuning process is performed.

The results, in particular the overall minimax solution, see
the last line of Table 8, indicate that the extension of the
considered models by the division rules ASA and RDSSQ,
as well as the application of a tuning method, yield an
improved model adaption to real crack data. This concerns
mainly a better approximation of the shape of the cells,
quantitatively expressed by MEAN(RD) and MEAN(AR).
And also, intuitively, panel (d) of Figure 16 seems to be a
reasonable approximation to the structure shown in Figure 13.
In [2] the parameters to fit the model are chosen by simple
inspection. In our current work, the parameters are found by

well-known tuning procedures, which means an advantage if
we want to change the real data we are using.

However, our study is restricted to the analysis of single
cells, not regarding, for example, relations between adjacent
cells or, more generally, the arrangement of cells in the
plane. A standard approach to this topic is based on the pair
correlation function; see [30], [31], and [32].

Furthermore, boundaries emerge in the division of cells
curved. To our knowledge, there is not yet a feasible
parametric model.

We assume that the methods presented here can be applied
to a wide variety of crack patterns and a wide range of micro
to macro structures.
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