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ABSTRACT The user association algorithm for 5G ultra-dense heterogeneous networks (UD-HetNets)
comprising multi-tier base stations is becoming increasingly complex. In UD-HetNets, small base stations
(SBSs) play an important role in offloading data traffic of user equipments (UEs) requiring high data
rate from macro base stations (MBSs) to enhance the quality of services (QoS) of them. However,
the traditional cell range expansion (CRE) scheme poses a risk of congestion in certain SBSs and the
emergence of UEs monopolizing resources in less congested SBSs, which causes SBS load imbalance
and decreases fairness performance. At the same time, determining the optimal user association result
for load balancing, considering all possible combinations of associations between UEs and SBSs, leads
to prohibitively high computational complexity. To obtain a near-optimal user association solution with
manageable computational complexity, in this paper, we propose a heuristic algorithm based on Monte
Carlo tree search (MCTS) for user association in UD-HetNet. We model the user association problem
as a combinatorial optimization problem and provide a detailed design of the MCTS steps to solve this
NP-hard problem. The MCTS algorithm obtains a near-optimal UEs-SBSs combination in terms of load
balancing and maximizes the fairness of the overall network. This combination derived from the proposed
algorithm aims to achieve load balancing among SBSs and mitigate resource monopolization among UEs.
The simulation results show that the proposed algorithm outperforms conventional user association schemes
in terms of fairness. As a result, compared to traditional CRE schemes, the proposed method can provide
good performance to the UEs receiving data rates of the bottom 50%. Furthermore, the gap between optimal
and heuristic solutions does not exceed 4%. Due to its manageable computational complexity, the proposed
algorithm can be implemented as an xApp on the O-RAN near-real-time RAN intelligent controller (RIC).

INDEX TERMS User association, ultra-dense heterogeneous network, load balancing, Monte Carlo tree
search, cell range expansion.

I. INTRODUCTION
In the 5G era, the ultra-dense heterogeneous network
(UD-HetNet) architecture is in the spotlight as an essential
technology for increasing mobile network capacity by
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densely deploying multiple small cell base stations (SBSs) in
a macrocell [1], [2], [3]. The density of user equipment (UE)
and volume of mobile traffic are extremely high in hotspot
areas [4]. The network capacity and spectral efficiency
can be dramatically improved through the densification of
mobile networks, and the UD-HetNet can accommodate the
explosive increase in mobile traffic. However, UD-HetNets
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make the user association problem much more complex than
homogeneous networks [5].

User association is important for achieving load balancing
and improving the spectral efficiency of 5G networks [6].
Because of the high density of base stations (BSs) and UEs
in UD-HetNets, the number of UEs-BSs association com-
binations becomes extremely large, and the computational
complexity increases significantly. For example, for N BSs
and M UEs, the number of possible combinations is NM .
Among these combinations, the network must determine
the optimal association result that maximizes the overall
network capacity using a new user association algorithm with
reasonable computational complexity.

In homogeneous networks, the max-RSS (received signal
strength) user association algorithm, where the UE associates
with the BS providing maximum received power, is widely
used [7]. However, this algorithm leads to a strong load
imbalance in the HetNet due to the transmit power disparity
between the macro base station (MBS) and SBS [8]. In the
max-RSS user association, the UE may not select the SBS,
although many other UEs are already associated with the
MBS because the transmit power of the MBS is much larger
than that of the SBS. The user’s data rate is determined by the
serving BS’s received power and load [9]. Because max-RSS
does not consider the load of the BS, the UEs experience
poor data rates, and the overall network capacity is degraded.
Therefore, the UEs must be distributed to the proper SBSs to
achieve load balancing and maximize the network capacity.

To manage load imbalance, a biased received power-based
user association algorithm has been proposed [10], [11], [12].
This association scheme expands the range of SBSs and
enables the offloading of UEs from MBSs to SBSs. This
algorithm is called cell range expansion (CRE), which is an
effective scheme for tractable networkmodels with uniformly
distributed UEs [9].

FIGURE 1. Load imbalance between SBSs.

In the CRE scheme, the UEs are offloaded to the
SBSs, serving the highest biased received power. However,
applying CRE in the practical network environment with
non-uniformly distributed UEs will overload some SBSs
and result in severe load imbalance, as shown in Fig. 1.
CRE results in UEs-SBSs combinations where some UEs are
consuming excessive resources while others are experiencing

resource scarcity. In other words, CRE can pose a risk of
load imbalance with congestion in certain SBSs while also
leading to the emergence of UEs monopolizing resources
in less congested SBSs. As a result, the data rates of UEs
in congested SBSs are severely degraded. To address this
load imbalance problem, we propose a sophisticated user
association scheme that aims to distribute these UEs to
neighboring SBSs with lower biased received power but
smaller loads. We present a heuristic approach to increase
the data rates of UEs in congested SBSs while concurrently
reducing the data rates of UEsmonopolizing resources within
resource-constrained SBS networks. A heuristic algorithm
can efficiently handle the real-time changing and dynamic
channel status of 5G SBS networks [13]. This will improve
the load fairness among the SBSs and the quality of services
(QoS) for UEs in a dynamic wireless network.

A. RELATED WORK AND OUR APPROACH
In recent years, many studies have suggested user association
algorithms for load balancing in 5G networks. A millimeter
wave (mmWave) user association scheme that achieves load
balancing in the reconfigurable intelligent surface (RIS)
networks with multi-player multi-armed bandit is proposed
in [14]. In [15], a traffic prediction-based load-aware user
association scheme to maximize the utility function of the
load balancing index has been suggested. The authors in [16]
formulated a multi-objective optimization problem for load
balancing while tackling the blockage problem in mmWave
networks. However, the computational complexity of the
schemes in [15], and [16] makes their practical implemen-
tation challenging and less feasible for real-time operation
in dynamic network environments [5]. Furthermore, the
solutions obtained may be suboptimal or even inaccurate
by solving the dual problem instead of the primal problem
and relaxing the combinatorial constraint. In addition, [17]
proposed a deep reinforcement learning-based distributed
algorithm for load balancing utilizing local information with
a simple static network environment and a limited number
of UEs.

This paper aims to introduce a novel, centralized user
association strategy for efficient offloading and load balanc-
ing with reasonable computational complexity. The future
networks are envisioned to be configured based on the
O-RAN architecture, in which the radio access network
(RAN) intelligent controller (RIC) manages multiple BSs
and UEs [18]. The centralized approach is suitable in the
O-RAN architecture because the RIC has all the information
about the networks it manages [19]. Centralized schemes
exhibit superior performance compared to other schemes,
such as distributed and hybrid schemes, but they have high
computational complexity [20]. To overcome the high com-
putational complexity of centralized schemes, the proposed
algorithm is based on Monte Carlo tree search (MCTS).
MCTS is a heuristic tree search method for determining a
near-optimal solution by repeating random sampling several
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times instead of exploring all cases [21]. Therefore, the
user association algorithm based on MCTS can achieve
near-optimal association results in terms of load balancing
with a lower computational overhead. This result represents
the near-optimal UEs-SBSs combination, ensuring that each
UE is associated with the most suitable SBS. This approach
increases load fairness and improves the data rates for
UEs suffering from severe load imbalance. In other words,
unlike the one-shot algorithms (e.g., CRE), the MCTS-based
scheme employs a sophisticated approach to achieve load
balancing among SBSs with reasonable complexity.

The authors of [22] proposed a distributed radio access
scheme using MCTS. They divided this scheme into two
processes: user association and resource allocation. The
MCTS was used for resource allocation and not for user
association. During resource allocation, each UE employed
MCTS-based Q-learning to search for an optimal scheduling
strategy. However, while the MCTS operation is supportable
by the central entity, it is a significant computational burden
for the UEs, which have a limited energy budget. In addition,
as UEs find their optimal strategy using the MCTS, each UE
becomes more selfish and does not consider fairness within
the overall system. Furthermore, the number of UEs in the
simulation was very small (less than eight). Efficient user
association algorithms should be applicable to places with
many UEs (e.g., hotspot areas). In places with few UEs,
each UE can obtain a data rate above a certain level without
a sophisticated scheme. In our algorithm, the centralized
RIC employs MCTS to formulate the entire user association
problem in detail, considering the fairness of the overall
network. We present the simulation results for hundreds of
UEs in Section IV, demonstrating that our algorithm can be
applied to numerous UEs.

B. CONTRIBUTIONS
The major contributions of this paper are summarized as
follows:

• We define a combinatorial optimization problem to
model a user association problem and design an
MCTS-based algorithm to solve this NP-hard problem
without any modifications of objective function or
relaxation of constraint while maintaining reasonable
computational complexity. We can optimize user asso-
ciation for numerous UEs by leveraging RIC with
sufficient computing capabilities. Furthermore, with a
slight modification, the MCTS-based algorithm can
effectively solve other binary programming problems
in the field of mobile communication, e.g., admission
control in network slicing [23].

• To the best of our knowledge, this is the first manuscript
on user association and load balancing based on the
MCTS framework. Since achieving data rates above a
certain threshold does not significantly increase user
satisfaction, the proposed algorithm distributes the
resources of UEs that have been allocated too many

radio resources to UEs with significantly lower data
rates through SBS load balancing.

• We consider a realistic network scenario where multiple
UEs with different service requirements coexist. In fact,
UEs that demand low data rates (e.g., voice call, SMS)
only need to maintain network connectivity and thus
may not require sophisticated user association algo-
rithms. The MCTS-based user association algorithm
is selectively applied to UEs that require high data
rate services, such as file transfer protocol (FTP) and
video streaming (hereafter abbreviated as HDR UEs).
RIC detects the HDR UEs in the network and offloads
them to SBSs. First, using the max-RSS algorithm, all
UEs are associated with the macrocell as an anchor
cell. Consequently, UEs requiring low data rate services
maintain their connection with the macrocell, while
UEs requiring high data rate services (i.e., HDR UEs)
are offloaded to SBSs. The proposed user association
algorithm is employed for the offloading process.

The remainder of this paper is organized as follows.
Section II presents the system model of UD-HetNet,
including network architecture and optimization problem
formulation. In Section III, an MCTS-based user association
algorithm is proposed. The performance of the proposed
algorithm is evaluated in Section IV using simulation
results, and the conclusions are presented in Section V.

II. SYSTEM MODEL
A. NETWORK ARCHITECTURE BASED ON O-RAN
In order to implement the UD-HetNet in practice, we adopt
the O-RAN architecture proposed by the O-RAN Alli-
ance [24]. Standardized open interfaces enable the interop-
erability of RAN elements from different vendors, reducing
capital expenditures and making the O-RAN architecture
a suitable model for UD-HetNets with numerous SBSs.
For example, the radio units (RUs) from vendor A are
interoperable with the distributed units (DUs) produced by
vendor B. To minimize the cost of deployment, a network
operator’s SBS networks are expected to be composed of
equipment from various vendors. Traditionally, the lack of
standardized specifications for gathering information from
equipment produced by different vendors made it difficult
to deploy an authorized controller to monitor the overall
network status [25]. Thanks to the open interfaces of
the O-RAN architecture, operators can utilize the RIC to
gather information from SBSs created by different vendors
(Fig. 2). The RIC can assess the SBS network’s status and
derive the optimal user association results from the gathered
information, achieving load balancing.

The additional technologies of the O-RAN architecture
that enable efficient control and scalable management of
UD-HetNet include virtualization and intelligence. As shown
in Fig. 3, the system model for evaluating the performance
of the proposed algorithm in O-RAN-based UD-HetNet
is developed. The management functions in RIC can be
implemented as virtual network functions (VNFs) [26].
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FIGURE 2. An SBS network consists of equipment from different vendors
controlled by RIC and open interfaces.

FIGURE 3. System model with RIC and SBS clusters.

Thanks to the scalability and flexibility of VNFs, one RIC
can efficiently control multiple SBS networks. The RIC
can isolate computing resources that manage different SBS
networks and dynamically adjust the allocation of resources
according to the network situation. The proposed heuristic
algorithm can be applied independently to each SBS network.
Considering that the computational complexity and execution
time of the algorithm depend on the number of UEs and
SBSs, the RIC can appropriately cluster the number of SBSs
and UEs within one SBS network. The MBSs are assumed
to function as anchor cells for basic communication, such
as voice and SMS. In contrast, SBSs are used as capacity
boosters that serve HDR UEs using services like FTP, video
streaming, and so on. The percentage of HDRUEs is assumed
to be 30%, which means that the proposed user association
algorithm is applied to 30% of UEs [27].

The RIC contains multiple VNF components to serve
intelligent services for SBSs and UEs. Specifically, the RIC

has monitoring/logging systems, databases, and software
applications formanagingmobile networks. O-RANAlliance
defines two kinds of RIC based on the different time scales:
near-real-time RIC (10 milliseconds to 1 second) and non-
real-time RIC (more than 1 second). The custom software
applications for radio resource management running in the
near-real-time RIC and the non-real-time RIC are called
xApps and rApps, respectively [28], [29]. In the dynamic 5G
SBS networks, user association must be performed near-real-
time. Therefore, this paper focuses on the near-real-time RIC
and develops the proposed algorithm as an xApp. The near-
real-time RIC and xApps can utilize the databases named
Radio-Network Information Base (R-NIB), UE-Network
Information Base (UE-NIB), and the interface named shared
data layer (SDL) to perform user association [28]. The R-NIB
can contain information relating to RANs (i.e., SBSs), and
the UE-NIB stores a list of UEs and maintains tracking of the
UEs’ association. The xApps can subscribe to these databases
andmonitor the user association situation of SBS networks by
using SDL.

B. OPTIMIZATION PROBLEM FORMULATION FOR USER
ASSOCIATION
In the SBS networks, we aim to maximize the utility function
of load balancing and find the optimal association in terms of
network fairness. We model this problem as a combinatorial
optimization problem [30] and solve it using anMCTS-based
heuristic algorithm. The sets of SBSs and HDR UEs are
denoted by S and hU, respectively. The optimization problem
that involves determining the variable xij ∈ {0, 1}, which
represents the association result between HDR UE i ∈ hU
and SBS j ∈ S, can be formulated as

max U =

∑
i∈hU

∑
j∈S

xij log(Rij) (1a)

s.t.


∑
j∈S

xij = 1, ∀i ∈ hU,

xij ∈ {0, 1}, ∀i ∈ hU, ∀j ∈ S,

(1b)

where Rij is the data rate of HDR UE i received from SBS j.

Rij =
Ws∑
i∈hU xij

log2(1 + SNRij), (2)

SNRij =
PjGij
σ 2
s

, (3)

where Pj is the transmit power of SBS j, Gij indicates the
channel gain betweenHDRUE i and SBS j, including antenna
gain, path loss, and shadowing. σ 2

s indicates the noise power
of SBSs. The SBS networks are assumed to be noise-limited,
which implies that HDRUEs are affected by noise rather than
interference due to the low transmit power and higher radio
channel attenuation of SBSs. The simulation results in [31]
confirm this assumption.
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We introduce Jain’s fairness to evaluate load fairness
among SBSs in the same cluster,

J =

(∑
i∈hU

∑
j∈S xijRij

)2
|S|

∑
j∈S

(∑
i∈hU xijRij

)2 ,
1
|S|

< J < 1. (4)

The path loss model is based on Recommendation ITU-
R P.1411-10, which is available in the millimeter-wave
bands [32]. It can be applied to the propagation environment
of the 0.8-73GHz bands in urban, suburban, and residential
areas. We use the urban high-rise ABG path loss model,
which corresponds to a hotspot urban environment with many
high-rise buildings. This model is applicable to the 0.8-
38GHz bands and is represented by the following equation:

PL(d, f ) = 10α log10(d) + β + 10γ log10(f ) + Xσ , (5)

where d is the distance between the BS and UE, f is the
carrier frequency of the BS, and Xσ is the shadow fading
term, which follows a log-normal distribution with a standard
deviation of σ (dB). The line-of-sight (LOS) and non-line-of-
sight (NLOS) parameters are listed in Table 1. To simplify
the analysis, we assume that all HDR UEs are in the LOS
channel.

TABLE 1. Factors for ITU-R P.1411-10.

III. ALGORITHM
Algorithm 1 shows one iteration of the MCTS-based user
association algorithm, which consists of four steps. The
algorithm is iterated to determine the optimal solution.

Algorithm 1 One Iteration of Proposed Algorithm
Selection:

Select the best expandable child node by tree
policy

Expansion:
Expand the tree by making a child node on the
selected node

Simulation:
Run a Monte Carlo method-based simulation
(playout) in the expanded node until all UEs
are connected to BS

Backpropagation:
Update the simulation results to upper nodes

The greater the number of iterations, the deeper the tree
expands from the root node. A deeper tree implies that more
UEs-SBSs combinations can be sampled, increasing the prob-
ability of obtaining near-optimal UEs-SBSs combinations.

Initially, the root node corresponds to the state in which no
HDR UE is offloaded to an SBS. The root node does not
yet have a child node, and the expansion step is executed
immediately when the root node creates a child node. This
child node represents a situation in which an HDR UE (UE1
in Fig. 4) is associated with an SBS.

FIGURE 4. Fully expanded root node (number of N-SBS = 3).

UE1 associates with one of its neighboring SBSs (N-SBSs)
that provide high received power. The number of N-SBSs
is adjustable and should be preliminarily determined before
the algorithm is executed. The expanded child node contains
UE1 and one of its N-SBSs. This child node immediately
runs the simulation step. In this step, under the condition
that UE1 associates with the selected N-SBS, all other HDR
UEs associate with one of their N-SBSs via random sampling
using the Monte Carlo method. Then, we can obtain the
network state in which all HDR UEs are associated with one
of their N-SBSs. This network state is a random combination
of UEs-N-SBSs that does not consider load balancing. The
child node stores the network utility in this combination
during the backpropagation step.

Next, the root node creates other child nodes, indicating
that UE1 is associated with other N-SBSs through expansion.
Simulation and backpropagation are also repeated in these
child nodes. Then, suppose the root node creates as many
child nodes as the predetermined number of N-SBSs. In that
case, it becomes a fully expanded node (Fig. 4) and
selects a child node to expand according to the tree policy
(selection step). High performance is guaranteed when upper
confidence bounds for trees (UCT) is applied as a tree
policy [21].

UCT = X̄j + 2Cp

√
2 ln n
nj

(6)

X̄j is a value between 0 and 1, which indicates the average
reward of child node j. In our proposed algorithm, X̄j is the
ratio of the utility value of the corresponding node to the sum
of the utility values of all child nodes for which the parent
node is the same, including itself. If we ignore the bias term√
(2 ln n)/nj, then higher values of X̄j are associated with a

higher probability of the node being selected (exploitation).
However, even though the selected child node exhibits good
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performance, it may not be the best choice when considering
the associations of all other HDR UEs. Therefore, the tree
must be expanded by exploring multiple nodes (exploration).
n is the number of visits to a fully expanded parent node, and
nj in the denominator of the bias term is the number of visits
to child node j. The value of the bias term of the less-visited
child node increases, and the UCT ensures the exploration of
all child nodes. Thus, we can expand the tree while balancing
exploitation and exploration using UCT as a tree policy.
The exploration constant Cp can be adjusted to encourage
or discourage exploration. In Section IV, we determine the
optimal Cp value for user associations.
In the selection step, the child node with the highest UCT

value is selected, which then becomes the current node.
The current node creates a child node through expansion.
This child node contains UE2 and one of its N-SBSs.
Similarly, this node runs simulation-backpropagation. By this
time, the UE1-N-SBS (represented by the parent node)
has already been determined, and the association of UE2
(represented by the current node) has been tested. Under
these conditions, all remaining HDR UEs are associated with
one of their N-SBSs, creating a UEs-N-SBSs combination.
In this combination, the network utility of the current node
is calculated. In backpropagation, the current node stores this
utility value and updates that of all upper nodes, including
its parent node. However, the upper nodes already have
previously calculated utility values. In this case, in the
proposed algorithm, the upper nodes replace their utility
values with the average of existing and updated values. The
average value is obtained by dividing the cumulative utility,
which is the sum of the utility values generated each time
backpropagation occurs, by the number of visits.

Starting at the root node, the tree is expanded by
the predetermined number of iterations (nIter). However,
as mentioned previously, before the root node becomes
a fully expanded node, iterations are performed without
selection. Fig. 5 shows an example of an expanding tree.
After expansion by nIter is completed, the tree returns the
child node of the root node with the highest capacity. In other
words, among the child nodes containing UE1 and one of its
N-SBSs, the tree returns the child node containing the optimal
N-SBS in terms of load balancing. If we denote the N-SBS of
the returned child node as SBS1*, UE1-SBS1* becomes a
new root node and repeats the same MCTS operation. This
implies that the MCTS operation is executed, while UE1 is
associated with its optimal N-SBS (i.e., SBS1*). In this case,
the tree returns to UE2 and its optimal N-SBS. We can obtain
the optimal UEs-N-SBSs combination when these operations
are repeated for all HDRUEs. The flow chart for the proposed
algorithm is summarily shown in Fig. 6.

Thanks to the properties of the MCTS, we only need to
explore some combinations of HDR UEs and their N-SBSs.
Simultaneously, we can obtain a near-optimal combination
that achieves network-wide load balancing. Therefore, our
algorithm can significantly reduce the computational com-
plexity while obtaining a near-optimal solution.

FIGURE 5. Example of an expanding tree.

IV. SIMULATION RESULTS
In this section, we evaluate the performance of our algorithm
using Monte Carlo simulations. We perform 1,000 simula-
tions for random networks. In each simulation run, UEs and
BSs are randomly distributed according to the simulation
scenario. We consider a scenario where the RIC performs
user association for one of the SBS clusters it manages using
the proposed algorithm. To evaluate the effectiveness of load
balancing, we present the average data rates of the bottom
50% of HDR UEs (B-50 HDR UEs) and that of the top 50%
of HDRUEs (T-50 HDRUEs) instead of showing the average
data rates of all UEs. This is because the overall average
data rates can be influenced by UEs monopolizing resources,
making it challenging to reflect accurately the load balancing
effect.

We compare the performances of the proposed scheme
with two conventional user association schemes: CRE and
random association. In the simulation scenario, an RIC
controls an SBS cluster, and UEs are distributed inside it.
The comparison and performance analysis of our algorithm
are conducted in different network environments. The
simulation parameters are summarized in Table 2.

A. PERFORMANCE COMPARISONS WITH
CONVENTIONAL SCHEMES
We compare our algorithmwith CRE and random association
by changing adjustable parameters. 10 SBSs are randomly
distributed in an SBS cluster, and the number of UEs is
changed. First, we change the number of N-SBSs (called
load balancing level and abbreviated as LBL hereafter) of
the proposed scheme and random association. Since CRE
does not consider several N-SBSs, the LBL of CRE can
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FIGURE 6. Algorithm flowcharts of MCTS for user association.

TABLE 2. Simulation parameters and values.

assumed to be 1. The nIter of the tree is set to LBL ×100.
This ensures that the trees for each LBL have similar depths
and guarantees the fairness of the performance for different
LBLs. Second, we increase the value of nIters for the best
LBL and compare it with the result of the optimal solution.

In Fig. 7(a) and 7(b), the average data rates of B-50
HDR UEs and T-50 HDR UEs for different LBLs are

FIGURE 7. Average data rates for different LBLs against the number of
UEs using 10 SBSs.

shown versus the number of UEs in an SBS cluster for
these three schemes, respectively. As shown in Fig. 7(a),
the proposed scheme outperforms the benchmark schemes
and achieves higher average data rates of B-50 HDR UEs,
where random association shows the worst performance. The
proposed scheme shows the best performance when LBL=3
and slightly decreases when increasing the number of LBLs
beyond 3. This is because the HDR UEs can be offloaded to
more distant N-SBSs. Fig. 7(b) presents that by decreasing
the LBL, more resources are allocated to T-50 HDR UEs,
and their average data rates are also increased. We can
realize from these figures that the proposed algorithm with
appropriate LBL can effectively distribute resources from
T-50 HDR UEs to B-50 HDR UEs.

Fig. 8 shows the SBS load fairness indices against the
number of UEs. As shown in Fig. 8, the proposed algorithm
has significantly higher fairness indices than other schemes.
Also, for LBL = 3, unlike the benchmark schemes, which
show rapid changes in the number of UEs, our scheme
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FIGURE 8. SBS load fairness indices for different LBLs against the
number of UEs using 10 SBSs.

maintains near-optimal fairness. The CRE scheme has the
lowest SBS fairness indices because it associates UEs with
the N-SBS providing the highest biased power without
considering the loads of N-SBS. The random association has
slightly higher fairness indices than CRE. However, there
are substantial gaps compared to the proposed algorithm that
derives the near-optimal UEs-N-SBSs combination in terms
of fairness.

Fig. 9 represents the effect of nIters on the HDR UEs
for LBL = 3 against the number of UEs using 10 SBSs.
As shown by Fig. 9, as nIter of the proposed algorithm
increases, the average data rates of B-50 HDR UEs and T-50
HDR UEs increase significantly at nIter = 300 and converge
to the optimal value. The nIter = 300 and optimal solution
are compared in Table 3 and Table 4. The performance
gaps between the optimal solution and nIter = 300 for
B-50 UEs and T-50 UEs do not exceed 4% and 2%.
Therefore, the simulation results prove that we can obtain
a near-optimal solution just by using nIter = 300 and that
the proposed algorithm can solve the NP-hard combinatorial
optimization problem with reasonable complexity. Also, this
result indicates that nIter = LBL ×100, as applied in Fig. 7,
is appropriate. Fig. 10 presents the impact of nIters on the
SBS load fairness. We can see that the proposed scheme
always outperforms the conventional schemes.

TABLE 3. Numerical analysis of Fig. 9(a).

Fig. 11 depicts the average data rates of B-50 HDR UEs
and T-50 HDR UEs for five different Cp values versus the
number of UEs with LBL = 3 and nIter = 300. The Cp = 0

FIGURE 9. Average data rates for different nIters against the number of
UEs using 10 SBSs and LBL = 3.

TABLE 4. Numerical analysis of Fig. 9(b).

implies that the tree expands without exploration. It is
interesting to note that even with Cp = 0, it shows better
performance than CRE. The Cp values greater than 0.01 sig-
nificantly improve performance, with Cp = 0.01 indicating
optimal performance. The average data rates are slightly
degraded when the Cp value is above 0.01. It is demonstrated
that the proposed algorithm requires an appropriate Cp value
for optimal user association.

In Fig. 12, the average data rates are shown according to
the number of SBSs for three schemes. From Fig. 12(a), even
in denser SBS deployment scenarios, we can see that the
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FIGURE 10. SBS load fairness indices for nIters.

FIGURE 11. Average data rate comparisons of Cp value against the
number of UEs using 10 SBSs, LBL = 3, and nIter = 300.

proposed algorithm delivers superior performance to B-50
HDR UEs. Fig. 12(b) depicts the average data rate of T-50

FIGURE 12. Average data rate comparisons against the number of SBSs
using 100 UEs (30 HDR UEs), LBL = 3, and nIter = 300.

HDR UEs in densely deployed SBS clusters. Interestingly,
this figure presents that as the amount of resources increases,
the average data rates of the proposed scheme are greater
than that of conventional schemes with the number of SBSs
above 20. This result indicates that the proposed algorithm
will be useful in future network configurations for THz
communications that require numerous SBSs [33]. Fig. 13
shows that the SBS load fairness indices of all compared
schemes are decreased as the number of SBSs increases.
This is because an increase in the number of SBSs leads
to a corresponding increase in the number of vacant SBSs
and high variety of loads [14]. In Fig. 13, with any number
of SBSs, the proposed scheme always outperforms the
conventional user association schemes.

B. TIME COMPLEXITY ANALYSIS
MCTS-based algorithms can consider a subset of the search
area so that the time complexity is much less than full
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FIGURE 13. SBS load fairness indices for the number of SBSs.

search [34]. The time complexity of MCTS depends on three
parameters: nIter, the number of child nodes (i.e., LBL),
and the number of HDR UEs. Thanks to the scalability
and flexibility of RICs, we can adjust these parameters
according to the desired performance, as shown in the above
simulation results. It is also worth mentioning that increasing
the available RIC resources can significantly expand the
number of UEs by effectively managing the SBS clusters.
Table 5 shows the running time for the number of HDR UEs
within one SBS cluster when our algorithm is executed on an
AMD Ryzen 9 5900X 12-Core Processor 3.70 GHz. Despite
the limited computing resources, the computation time for
nIter = 300 is less than one second. We expect that our
algorithm will be applicable to O-RAN architecture as an
xApp for near-real-time RIC [35].

TABLE 5. Running time of proposed algorithm with LBL = 3, nIter = 300.

V. CONCLUSION
In this paper, we proposed a centralized user association
scheme based on MCTS to achieve load balancing and
maximize load fairness. Our goal is to maximize the
average data rate of B-50 HDR UEs by distributing the
resources consumed by the T-50 HDR UEs. The network
environment with an SBS cluster managed by RIC and the
performance for the number of UEs and SBSs are considered.
The problem is an NP-hard combinatorial optimization
problem that is solved by an MCTS-based user association
algorithm with appropriate parameters. The performance of

our proposed method was compared with the CRE scheme
and random association scheme. Numerical results showed
that the proposed scheme outperforms conventional user
association schemes while providing near-optimal solutions
with reasonable computational complexity. In addition, our
algorithm showed better performance than CRE and random
association schemes, even in the network with more densely
deployed SBSs. Computation time analysis indicated that the
time complexity of our scheme can be sufficiently supported
by the near-real-time RIC of the O-RAN architecture and
that our algorithm can be deployed in practical systems of
the future network. We hope our algorithm will provide
a practical solution to the long-standing user association
problem.
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