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ABSTRACT Sleep is an essential criterion for health. However, sleep disorders degrade the sleep quality.
Hence, to diagnose sleep disorders, sleep monitoring is crucial. The cyclic alternating patterns (CAP) phases
describe the sleep quality. However, CAP detection is a time-consuming, hectic, and uncertain process.
Therefore, an automatic detection of CAP phases is necessary. This study proposes a hierarchical approach
to identify sleep disorders and classify CAP phases. Single-channel EEG recording provided by the CAP
sleep database has been utilized in this study. The proposed approach classifies CAP sequence into healthy
or unhealthy. Further, it identifies sleep disorder of unhealthy sequence among periodic leg movement
(PLM), rapid eye movement behaviour disorder (RBD), nocturnal frontal lobe epilepsy (NFLE), narcolepsy
(NARCO), and insomnia (INS). Further using our prior work, the CAP phase of the sequence can be
identified. The best model was obtained by long short-termmemory (LSTM) alongwith convolutional neural
network (CNN) for healthy-unhealthy, and disease classification with an accuracy of 91.45% and 90.55%,
respectively. The same models gave an accuracy of 92.79% for healthy-unhealthy and 93.31% for disease
classification when evaluated using dataset of only phase B, highlighting the importance of phase B for
identifying sleep disorders.

INDEX TERMS Convolutional neural network (CNN), cyclic alternating patterns (CAP), deep learning,
electroencephalogram (EEG), long short-term memory (LSTM), sleep disorders classification.

I. INTRODUCTION
Sleep is an important aspect of restoring and renewing human
energy. Sufficient quality sleep is important for a healthy
lifestyle. Sleep has been ignored for a long time, despite
the fact that humans sleep for roughly 33% of their lives
[1]. Obstructive rest apnea (OSA) and insomnia might lead
to serious medical issues like obesity and strokes [2]. In the
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United States of America, it is observed that 35% of adults
have insomnia [3]. Not just in the United States of America,
sleep disorders affect people throughout the world. Madrid-
Valero et al. [4] investigated the prevalence of sleep problems
in Spain and discovered that 38.2% of individuals had poor
sleep quality. Similar worldwide research from 56 countries
by Koyanagi and Stickley [5] found that the total prevalence
of sleep disorders was 7.6%. The recent trend indicates that
by 2030 this figure will rise to 260 million [6]. To minimize
the figure, a reliable diagnostic method for a sleep disorder is
required [7].
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FIGURE 1. A CAP waveform example describing the phases, CAP cycle, and CAP sequence.

Subject polysomnogram (PSG) recordings are physiologi-
cal signals recorded at night for sleep study and assessment.
PSG is a multimodal signal, which means it is made up
of distinct components such as electrooculogram (EOG),
electroencephalogram (EEG), electromyogram (EMG), and
electrocardiogram (ECG). When the PSG recordings are
finished, the sleep stage is scored. A sleep expert typi-
cally analysis a PSG signal in a specific time, generally
30 seconds, and then estimates the sleep score based on
numerous parameters [8], [9]. Visualizing PSG signals and
manually assessing sleep stages is a time-consuming, costly,
and demanding procedure requiring specialized knowledge.
Furthermore, EEG signal variations are difficult to perceive
visually due to their chaotic and unpredictable nature. As a
result, experts are working on automatic detection and
identification technologies to help them.

Sleep comprises non-rapid eye movements (NREM),
a duration of inactivity, followed by rapid eye movements
(REM), which are times of intense activity. Sleep is classified
into five categories, according to the American Academy of
SleepMedicine (AASM) [10]: wakefulness (W), N1, N2, N3,
and REM. NREM is composed of N1, N2, and N3. Numerous
studies have explored sleep stages classification [11], [12],
[13], [14], [15]. However, Sathapathy et al. [15] introduce
an approach that combines CNN with LSTM, resulting in
significantly improved accuracy.

A microstructure-based sleep scoring system was intro-
duced in 2001 as an alternate way to define NREM sleep
and incorporate phasic events such as delta bursts and
K-complexes. This system is known as the cyclic alternating
pattern (CAP) [16]. CAP is characterized by transient
electrocortical events that occur at 1-minute intervals and
differ from baseline electroencephalogram (EEG) activity.
It consists of cyclic sequences of brain activity (phase A)
followed by intervals of inactivation (phase B). A CAP cycle
is defined as a phase A period followed by a phase B period,

and a CAP sequence consists of two or more CAP cycles.
Fig 1 depicts phases A, B, and CAP cycle [16]. Several
studies have been performed to classify CAP phases [17],
[18], [19], [20], [21], [22], [23], [24], [25].

In this study, we considered sleep disorders like NFLE,
INS, NARCO, RBD and PLM. NFLE is a neurological
disorder induced by the frontal lobe and causes its patients
to suffer from seizures, majorly affecting their lifestyles [26].
Symptoms of NFLE usually start showing within 30 minutes
of falling asleep. It is challenging to diagnose NFLE as its
symptoms are similar to that of psychiatric problems. Hence
detecting NFLE using our proposed method can be very
useful in diagnosing this disease. INS is widely described as
either qualitative or quantitative discomfort with sleep. This is
commonly associated with difficulties going asleep, staying
asleep due to repeated awakenings or problems returning to
sleep, and early morning awakenings [27]. The prevelence of
insomnia in older adults is up to 75% [28]. Several studies
have documented an increased risk of depression in older
patients with persistent insomnia [29], [30]. Narcolepsy is
defined by extreme tiredness and, cataplexy, and sleep-wake
symptoms such as hallucinations, sleep disturbances, and
sleep paralysis [31]. It is a rare neurological condition caused
by the selective loss or malfunctioning of hypocretin (also
known as orexin) neurons in the lateral. RBD is recognised
by dream portrayal and a lack of muscular atonia while
REM sleep [32]. In some cases, it can lead to major
damage, forcing individuals to seek medical help, but in
others, it is non-symptomatic and hence can be detected only
during polysomnography. Periodic limb movement disorder
is constantly jerking or cramping of the legs while in sleep.
‘‘Periodic’’ means that the leg movements are rhythmic,
occurring every 20-40 seconds. PLM disorder disrupts
sleep and also causes daytime sleepiness [33]. The sleep
disorders discussed above directly affect sleep quality and
an individual’s mental health. As the number of individuals
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suffering from sleep disorders (such as PLM, insomnia, and
narcolepsy) is multiplying, it is extremely critical to detect
these difficulties by frequent sleep monitoring correctly.

The highlights of this work are:

• We propose a unified two-stage, 1-D CNN and
LSTM-based approach for classifying healthy and
unhealthy CAP signals.

• Our proposed model further identifies various sleep
disorders, including insomnia, NFLE, RBD, narcolepsy,
and PLM using CAP EEG signals’.

• The study is performed phase-wise using datasets of
phase A and phase B individually and combined.

• The proposed approach does not require any pre/
post-processing steps involved and only uses one
channel’s signal, minimizing its complexity for practical
implementation.

• The incorporation of the LSTM layer in the model
endows it with the capability to retain patterns within
EEG signals, leading to enhanced accuracy compared to
prior research.

In our knowledge, this is the first study to present a
hierarchical strategy for the categorizing of both healthy and
unhealthy (insomnia, nfle, rbd, narcolepsy, and plm) and
CAP phases for all individuals. Also this is the first study
to use the CAP sleep database to classify individuals as
healthy or unhealthy and to use CAP data from an EEG signal
(C4-A1) to diagnose sleep disorders. This study is the first
to use sequential model on EEG signal leading significant
improvement in accuracy of sleep disorder classification.

II. MATERIALS AND METHOD
A. DATA ACQUISITION
We have used publicly available polysomnographic record-
ings from the Sleep Disorder Center [16], [34]. The
waveforms in the dataset include atleast three EEG (elec-
troencephalogram) channels (F3 or F4, O1 or O2, and C3 or
C4), two EOG channels, respiration signals, bilateral anterior
tibial EMG (electromyography), EKG (electrocardiogram)
and EMG of the submentalis muscle. 16 subjects from
108 participants were free of neurological diseases and
medicines that influence the central nervous system. The
remaining 92 subjects include 40 subjects affected by NFLE
disorder, 22 suffering from RBD disorder, 10 with PLM
disorder, 9 with insomnia disorder, 5 from narcolepsy,
4 from SBD (sleep-disordered breathing), and 2 affected by
bruxism.

Data from participants were obtained at various sampling
rates, such as 512 Hz, 200 Hz, 128 Hz, and 100 Hz. For
consistency, we have considered the participants whose data
were collected at the rate of 512 Hz. We have considered
only one channel, i.e., the C4-A1 or C3-A2 channel, out of
many available channels in the dataset for simplicity and
convenience. Only NREM sleep data was considered as CAP
phases are insignificant in other stages. These recordings
were segmented into two-second chunks. The summary of

FIGURE 2. Stage-wise model for classification of sleep disorder and CAP
phases.

the total number of samples available for each disorder after
segmentation is given in Table 1.
To safeguard the precision of our classification and

minimize the possibility of erroneously labeling unwell
patients as healthy, our classification process is bifurcated
into two sequential stages. The initial stage is dedicated
to distinguishing between individuals in a healthy state
and those with health concerns, while the subsequent
stage categorizes individuals with sleep disorders into one
of the five specific diagnostic categories. This two-stage
approach ensures accurate classification and minimizes the
risk of misclassification. We denote classification problems
of healthy-unhealthy as CP1 and sleep disorder as CP2. For
CP1, we consider disordered participants’ data as unhealthy.
The available data is severely unbalanced. To balance the data
1550 samples of each A1, A2 and A3 phases are considered
for healthy subjects. Hence total of 4650 samples of phase A
and equal samples of phase B were considered for a healthy
dataset. The 930 samples of both phase A and phase B were
considered for five disordered participants to balance the total
samples of unhealthy data with healthy. Phase A of each
disordered data consists of 310 samples of each A1, A2 and
A3 phases. The summary of the dataset for CP1 is given in
Table 2
Table 3 summarises the total number of samples used

for CP2. Phase A2 of narcolepsy has the minimum number
of samples available (table 1). Hence to balance the data
1593 samples of each sub-phases of A and 4779 samples of
phase B are considered. The same method is followed for
other disorders. This study did not consider SBD and bruxism
disordered participants due to insufficient data.

B. PROPOSED APPROACH
Fig 2 shows the general hierarchical model of proposed
approach. In the first stage, CP1 is performed by feeding an
input segment is fed to proposed model (M1). If the sequence
is predicted as unhealthy, in the next stage, CP2 is performed
by feeding sequence to M1, identifying the sleep disorder
corresponding to the input segment. Further another model
(M2) performs the CAP phase classification irrespective of
the health disorder as discussed in [17].

The extracted data for each model was split into training
and test data according to a standard ratio of 80% and
20%, respectively. Further, 20% of the training data was
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TABLE 1. Total number of samples available after segmentation.

TABLE 2. Total number of samples used for CP1 classification.

TABLE 3. Total number of samples considered for CP2 classification.

reserved for validation purposes. The training and validation
data were initially utilized for determining layers of the
model architecture and hyperparameter tuning. The models
were trained until training was stopped by an early stopping
callback [35]. This prevents the model from overfitting
by stopping the training at a point where a model stops
improving on the validation dataset. The hyperparameters
were tuned to obtain the best possible performance using the
validation dataset.

C. PROPOSED MODELS
Manual feature extraction from data is required for traditional
classifiers. On the other hand, feed-forward neural network
or artificial neural networks (ANNs) classifiers require many
parameters to train and have a fuzzy architecture. A CNN
eliminates the need for manual processing by automatically
extracting features using various filters [36]. Furthermore
in CNN, a kernel is convoluted with the whole signal,
i.e, it shares kernel parameters, requiring fewer parameters
to train and demanding less processing than traditional
classifiers [37]. A recurrent neural network (RNN) is recog-
nized for handling data from the present and the immediate
past, acquiring memory and knowledge of context by
thoroughly comprehending sequences [38]. To differentiate
the morphological traits and temporal patterns for each sleep

condition from the EEG signal, we propose a convolutional
recurrent neural network (CRNN). The convolutional layer’s
characteristics can be expressed by the equation (1) as,

vlk = blk +

nc−1∑
c=0

n−1∑
j=0

wlc,ju
l−1
c,k+j

ulk = f (vlk ) (1)

where, superscript l and subscripts c, k denotes the layer,
channel index and index position, respectively. The 1-D input
signal and kernel are represented by U and W , respectively,
while the output signal (U ∗ W ) is represented by V . The
nc and n variables represent the number of channels and
kernel length, respectively. When the kernel passes over the
input signals, each CNN layer’s bias (b) and weights (W ) are
updated. The kernel creates feature maps after processing the
input signals.

The output feature map (O) given by [39] the equation (2)
as,

Oln =
(
U|W (i,j)

)
n ∗ (W (i, j))n (2)

where the elements of (U|W (i,j))n represent the elements of U
from n to the dimension of W (i, j). The restricted matrix of
the input matrix to the weight matrix is denoted by (U|W (i,j))n.

LSTM is a recurrent neural network and has better
memorizing of specific patterns and also solves the problem
of vanishing gradients [40]. Each LSTM unit or cell consists
of the input gate, forget gate, and output gate. The equations
for the forward pass of an LSTM cell can be given by
equation (3),

ft = σ (Wf [ht−1, xt ] + bf )

it = σ (Wi[ht−1, xt ] + bi)

ot = σ (Wo[ht−1, xt ] + bo)

c̃t = tanh(Wc[ht−1, xt ] + bc)

ct = ft ∗ ct−1 + it ∗ c̃t
ht = ot ∗ tanh(ct ) (3)

where xt is the input vector at the current instant and ht−1
is the hidden state at the last instant. The assigned weight,
Wq, can have one of the following subscripts: i (input gate),
f (forget gate), o (output gate), or c (cell state). Candidate
values vector is represented by c̃t and cell state vector by
ct , where t stands for the time step. The initial values of
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TABLE 4. Architecture details of proposed 1D-CNN with LSTM based model for CP1 and CP2.

FIGURE 3. Visualisation of proposed 1-D CRNN model.

hidden state and cell state are h0 = 0 and c0 = 0. b denotes
the biases for each of the gates, respectively. A forget gate
eliminates information from the cell state. The input gate is
responsible for updating the cell’s state with new information.
The output gate is in charge of obtaining information from
the present cell state. The sigmoid function (σ ()) sets the
activation vector values for each of the three gates to a value
between 0 and 1. The value 1 signifies that the new/current
information is important and should be retained, whereas
the 0 value indicates that it should be discarded. The new
information to be added in the cell state is stored in c̃t using
the tanh function, which outputs between -1 to 1. The cell
state is updated using candidate values (c̃t ) and old cell state
(ct−1). The output ht is a filtered version of the cell state.

The visualization of the proposed model M1 for CP1
and CP2 is shown in fig 3. The model extracts required
features using three 1-D convolutional layers with stride one.
Consider a 2-second input having 1024 samples. The network
begins with a convolutional layer with 32 filters of kernel
size 7, generating 32 feature maps of length 1024. The second
layer comprises 16 filters with kernel size 9 that construct
16 feature maps of the same length using features retrieved
by the previous layer. This set of features is then processed
through a third convolutional layer with 32 filters with kernel
size 5, yielding 32 feature maps of length 1024. Following the
convolutional layers is the ReLU activation function. In our
model, the LSTM layer consists of 100 units, which implies
there will be 100 LSTM cell in parallel, and the output of this
layer will have the same dimension as the number of units,
which in this model is 100. The input given to the LSTM

TABLE 5. Details of hyperparameters in the proposed 1D-CRNN model.

FIGURE 4. Hyperparameter optimization for the LSTM layer.

layer is a vector of size (1024, 32). Hence the timestamp
(t) will take values from 1 to 1024. Thus at each instance,
a vector of size 32 will be simultaneously passed through
each LSTM unit, and there will be 1024 such instances. The
feature maps are then condensed to a single column vector
and classified with ultimately linked dense layers. This is
then passed through the model’s final layer, a dense layer
with five neurons and softmax activation for the CP2 and
a single neuron with sigmoid activation for the CP1. The
model may be holistically trained using just one loss function,
although composed of two different types of neural networks.
Tables 4 and 5 provides the details of the proposed model.

Dataset was generated from edf and txt files provided by
Goldberger et al. [34] using MATLAB R2021a [41]. Google
Colab [42] was used to train models which use the Google
Compute Engine backend written in Python 3. It gives access
to 13 GBRAM, 107.72 GBmemory, and GPU. The proposed
models were developed using Keras (v2.7.0) and Tensorflow
(v2.7.0) backends which are python-based deep learning
technologies. Training time for the CP1 is 45:38 mins, and
for the CP2, it is 4:28:49 hrs.
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FIGURE 5. Performance graphs for CP1 during training.

The number of layers and parameters of proposed model
are tuned by brute force method. Fig 4 shows the model’s
performance when the LSTM layer is adjusted to 16, 64,
100, and 256 for CP1. The mean and standard deviation
of each parameter is shown using a box plot in fig 4.
The parameter 100 has the highest classification accuracy
with a low standard deviation compared to other considered
parameters. Hence it is selected for the LSTM layer. With
the change of parameters, the validation performance curve
of the model is also updated continuously. Similarly, other
layer parameters and hyperparameters are tuned, and the
optimal model is selected that produces the best result. The
final model and parameters obtained after hyperparameter
optimization are given in Tables 4 and 5. The Adam optimizer
having default values from Keras was used to optimize the
model [43].

III. RESULTS
A. CP1
The proposed model achieved training, validation, and test
accuracies of 97.51%, 90.86% and 91.45%, respectively.
Fig 5 shows the accuracy graph and loss graph on training
and validation dataset over the 100 epochs. Throughout
the epochs, both training and validation losses exhibit a
decreasing trend; however, a point is reached where the

FIGURE 6. Confusion matrix for healthy-unhealthy classification.

FIGURE 7. ROC for healthy-unhealthy classification model.

validation loss plateaus. To prevent overfitting, the decision
was made to select the final model at the juncture where it
ceased to exhibit improvements in terms of the validation
loss. This strategy ensures that the model generalizes well
without excessively fitting the training data. The confusion
matrix for the proposed model is given in fig 6.
The sensitivity of the given model is its ability to

accurately identify sick subjects, whereas specificity is its
capacity to correctly identify healthy subjects [44]. The
model’s precision is measured by its ability to refrain
from categorizing healthy as unhealthy subjects [44]. The
performance parameters for the proposed model and 10-fold
cross-validation are summarised in Table 6. A probability
curve called the receiver operator characteristic (ROC)
compares the true positive rate (TPR) and false negative rate
(FPR) at various threshold levels. The classifier’s ability to
differentiate between classes is determined by the area under
the curve (AUC) [45]. The ROC curve for the model is shown
in Fig 7. The AUCwas obtained as 0.9683. The 10-fold cross-
validation performed on the proposed model using a dataset
of both phases gave training, validation, and test accuracies
as (91.53 ± 1.07)%, (83.60 ± 0.57)% and (83.94 ± 0.99)%,
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TABLE 6. Model accuracies and performance parameters for CP1 using 1D CNN + LSTM.

FIGURE 8. Confusion matrix for healthy-unhealthy classification using
dataset of B & A phases.

respectively. While Precision, Specificity, Sensitivity, F1 and
AUCwere obtained as (85.35±1.27), (85.90±1.51), (81.98±
1.90), (83.61 ± 1.08) and (92.16 ± 0.95), respectively.
The study is further extended to evaluate the model using

data consisting of samples of only one phase, i.e. either
phase A or phase B. The same model architecture has been
used to train and evaluate both models. Fig 8(a) shows the
confusion matrix for the dataset of phase B and fig 8(b)
shows the confusion matrix for dataset of phase A. For data

TABLE 7. Model accuracies for CP2 using 1D-CNN + LSTM.

TABLE 8. Performance parameters for CP2 using hold-out validation.

TABLE 9. Performance parameters for CP2 for 10-fold cross-validation.

with phase A, the model gave training accuracy of 92.28%
and validation accuracy of 73.73%. When the model was
evaluated on 1860 test samples, we obtained test accuracy of
73.38%. While for the data with phase B, a training accuracy
of 96.53%, validation accuracy of 91.34% and test accuracy
of 92.79% were obtained. The comparison of these three
models is shown in table 6. The significantly higher accuracy
for data with phase B compared to data with phase A signifies
that distinctive features required to predict diseases are higher
in phase B than in phase A.

B. CP2
80% of the dataset was used for training, and the remaining
20% was used for testing the model. 20% of the training
dataset was utilized for validation purpose. The performance
was evaluted for different architectures, namely 1D-CNN,
1D-CNN with skip connections, LSTM, and convolutional
recurrent neural network (CRNN). Table 7 summarizes
different accuracies of proposed model.

The best model obtained a training accuracy of 93.21%
and validation accuracy of 89.83%. Fig 9 shows the accuracy,
training dataset loss and validation dataset loss while the
model was being trained. The loss of training and validation
dataset are very close to each other implying the model is
not overfitted. This model was then evaluated on test dataset
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FIGURE 9. Performance graphs during training for disease dataset.

FIGURE 10. Confusion matrix for disease classification using dataset of
both phases.

consist of 9558 samples to get an overall accuracy of 90.55%.
Fig 10 shows the confusion matrix for the proposed model.

Table 8 summarises the precision, recall and f1-score of the
proposed model. The f1-score for insomnia, nfle, narcolepsy,
rbd and plm are 90.23%, 92.26%, 90.33%, 93.26% and
86.61%, respectively. The high values of f1-score indicate
the model’s ability to correctly distinguish between sleep
disorders. The 10-fold cross-validation has been performed

FIGURE 11. Confusion matrix for disease classification using dataset of
B phase.

FIGURE 12. Confusion matrix for disease classification using dataset of
A phase.

on the proposed model using dataset including both phases
which gave training, validation and test accuracies as (91.11±
0.82)%, (83.12± 1.08)% and (83.05± 1.19)%, respectively.

The study is further extended to evaluate the model using
data consisting of samples of only one phase, i.e. either
phase A or phase B. The same model architecture has been
used to train and evaluate all models. The confusion matrix
for disease classification using phase B data is shown in
Fig 11 and the confusion matrix for phase A data is shown
in fig 12. For phase B data, the model gave a test accuracy of
93.31% while for phase A data, the model gave test accuracy
of 67.77%. The comparison of the three models is shown in
table 7.

IV. DISCUSSION
Efficient sleep analysis is a critical aspect of diagnosing
sleep disorders. Dimitriadis et al. [8] employed EEG data
for sleep problem detection using a random forest model
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TABLE 10. Comparison of studies on sleep disorders classification.

in a recent research. However, they have used a non-
CAP dataset. Recently, Erdenebayar Urtnasan et al. [52]
suggested a sleep disorder network based on a convolutional
neural network for ECG input. Reference [47] have used
optimal antisymmetric biorthogonal wavelet filter bank and
[48] have used scalogram with CNN on ECG signals.
However they have only identified the insomnia disorder. In a
different recent investigation, Sharma et al. [51] introduced
a methodology for the automated differentiation of both
healthy and six sleep disorder signals using EEG data
from two channels. Their approach utilized the optimal
triplet half-band filter bank (THFB) for feature extraction
and relied on supervised machine learning algorithms for
the classification task. However, it’s worth noting that the
F1 score for the healthy class was observed to be 83%,
suggesting a relatively higher likelihood of misclassification
between individuals classified as healthy and those with
health concerns. The paper [53] provides an extensive
comparison of various studies related to automated sleep
disorder classification. The studies utilizing the CAP dataset
are briefly compared in Table 10.
In this work, we propose a unified and multistage

hierarchical approach to diagnose the CAP sleep disorders of
a patient and identify the CAP phase using EEG recordings
having CAP phases. In the first stage, the proposed model
classifies a CAP sequence into healthy and unhealthy with a
classification accuracy of 91.45%. At the next stage, the same
model diagnoses the unhealthy CAP sequence into various
sleep disorders with a classification accuracy of 93.21%.
When model M1 was evaluated using a single-phase dataset
for CP1, the model performed better for the phase B dataset
with an accuracy of 92.7%. A similar observation was made
when the model M1 was evaluated for CP2, which performed

better on the phase B dataset with an accuracy of 93.3%.
The significantly higher accuracy for data with phase B
compared to data with phase A signifies that distinctive
features required to predict diseases are higher in phase B
than in phase A.

Conventional machine learning models rely on features
extracted from PSG recordings, and overfitting is likely
when training on high-dimensional PSG records [54], [55].
However, when PSG recordings are translated to a feature
vector with a lower dimension [54], feature extraction may
cause information loss. Furthermore, the features must be
manually retrieved, which is a cumbersome and subjective
task [56]. As a result, by reducing the need for feature
extraction, our proposed model successfully solved these
constraints.

Our study’s primary characteristics and advantages are as
follows:

• All models are trained using single channel EEG
signal with balanced data to obtain unbiased and robust
categorization.

• The model comprises an LSTM layer, allowing it to
recognize and retain patterns within EEG signals.

• The proposed model requires no pre/post-processing
stages and has end-to-end architecture.

• The study is performed using the dataset of phase A and
phase B individually as well as combined.

However, this study is performed on dataset collected from
one sleep disorder centre in Italy. The study can be expanded
by evaluating the models on more datasets collected from dif-
ferent regions. In the future, the exploration of more advanced
DL algorithms for intricate feature extraction, enhancing
model accuracy is a compelling avenue. Furthermore, the
integration of these models with development libraries to
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create intuitive user interfaces for medical professionals
shows significant promise.

V. CONCLUSION
This work proposes a hierarchical approach to identifying
a given EEG signal’s sleep disorder and CAP phase.
Model in the first stage of hierarchy classifies input signals
into healthy or unhealthy participants (CP1). The next
stage classifies unhealthy subjects into five different sleep
disorders (CP2), namely insomnia, NFLE, narcolepsy, RBD,
and PLM. We evaluated the proposed model on a balanced
dataset to train models, i.e., the dataset contained an equal
number of samples of each class and equal samples of
phase A and phase B in every class. The proposed model
achieved the highest classification accuracy of 91.45% using
the dataset of both phases, 92.79% using the dataset of
phase B only, and 73.38% using the dataset of phase A
only for CP1. While for CP2, the proposed model obtained
the highest accuracy of 90.55% using the dataset of both
phases, 93.31% using the dataset of only the B phase, and
67.77% using the dataset of only the A phase. For both
the cases, higher accuracy is obtained for phase B only
based classification. It indicates that the B phases, generally
intervals of inactivation, contain more distinctive features to
identify sleep disorders. The proposed approach can be a
helpful tool for medical professionals in categorizing CAP
phases and diagnosing sleep disorders.
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