
Received 18 October 2023, accepted 31 October 2023, date of publication 6 November 2023, date of current version 13 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3330652

Multidrone Mission Execution With
EAMOS: From Text to Mission
MARKUS GUTMANN AND BERNHARD RINNER , (Senior Member, IEEE)
Institute of Networked and Embedded Systems, University of Klagenfurt, 9020 Klagenfurt, Austria

Corresponding author: Bernhard Rinner (bernhard.rinner@aau.at)

ABSTRACT Existing software tools for specifying and executing multidrone missions are limited to
route planning or tightly coupled to specific drone hardware. We introduce EAMOS (Execution of Aerial
Multidrone Missions and Operations Specification Framework), which allows us to specify missions
intuitively, text-based, and provides a mission compiler, a mission middle layer, and a distributed drone
execution environment. The middle layer wraps the control of individual drone-specific capabilities, such as
launch, fly to position, or perform a maneuver, into a public API that transparently utilizes the capabilities
of numerous drone platforms. We exploit the Go programming language to implement critical components
of the framework and provide an interface for ROS-based drone platforms. EAMOS automates the mission
execution on real, virtual, and even hybrid robotic setups involving real and virtual drones. We demonstrate
the successful deployment of EAMOS with four missions executed on Pixhawk/PX4-equipped quadcopters
and virtual drones simulated with Airsim.We assess the performance of our proposed approach by analyzing
the number of nodes and arcs of themission graphs, which are an essential artifact of ourmission compilation,
the utilization of ROS service calls during mission execution, and the duration of compilation, deployment,
and mission execution. Overall, our experiments showed that our drones correctly behaved during mission
execution as expected and specified by their mission, the generated mission artifacts were efficiently
manageable, and processing times allowed for a fluent workflow.

INDEX TERMS Multi-robot missions, software framework, mission execution, drones, ROS, Airsim.

I. INTRODUCTION
Over the past years, unmanned aerial vehicles (UAVs)
or commonly called drones have proven to be a capable
tool in diverse civil domains [1] such as agriculture [2],
construction [3], inspection [4], meteorology [5], surveil-
lance [6], photography [7], cinematography [8], consumer
entertainment [9], search and rescue [10] and even space
exploration [11]. Applications of drones are accordingly
manifold and range from exploratory tasks such as visual
image mosaicking [12] or simultaneous environment cov-
ering tasks [13] to more interactive ones such as fruit
harvesting [14] or parcel delivery [15], to name just a few.
As a consequence of the comprehensiveness of this

field, a large variety of unmanned aerial systems (UAS),
encompassing different drone platforms and diverse software

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Shu .

tools, already exists. Many approaches are tailored for end
users withmedium- to expert-level experience.While a single
human operator can typically handle single drone flights,
teams of drones require the support of automation because
it is usually not realistic to have one human operator for each
drone involved in a mission.

A. CHALLENGES OF MULTIDRONE SYSTEMS
What a drone mission is depends on the concrete use
case and the application domain of a UAS. While battery
utilization and onboard computer performance are typical
challenges for multidrone systems from a platform perspec-
tive, uncertain weather conditions and dynamic environments
are challenging to manage from a drone mission perspective
(cf. [16]). A user study that involved drone users from an
emergency response service (cf., [17]) revealed that having
appropriate control and monitoring devices that are usable
in harsh outdoor conditions is an essential challenge of

125460

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0003-8212-679X
https://orcid.org/0000-0002-8793-3828
https://orcid.org/0000-0002-6700-9347

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

multidrone systems, together with the ability to efficiently
handle multiple video feeds that are cast to multiple screens
simultaneously. Furthermore, a strong support of the end
user’s situational awareness of what each drone is doing
and how the embedding environment affects the drones
was identified to be a critical challenge. Study participants
mentioned that it is desirable to keep the autonomy level
of missions flexible, which means that end users should be
able to switch between manual and autonomous control if
necessary.

As described in [18], it is of paramount relevance for a
multidrone system, whether the communication network is
based on a centralized or decentralized architecture. While
the former makes the survival of the whole system dependent
on a single node, such as the ground control station, the latter
is much more resilient against the failure of individual nodes.

B. MOTIVATION FOR THIS WORK
To tackle theses challenges and limitations, an open and
extendable mission specification and execution system that
can adapt to different use cases and applications is needed.
While building blocks of drone missions must be as generic
as possible, the specification of specific mission scenarios in
custom contexts should be possible at the same time. In our
opinion, high-level (imperative) programming languages
such as C/C++, Java, or Python exactly provide this synergy
of putting together simple and generic blocks to form com-
plex and specific mission scenarios. Although it is popular
to use such languages (and their surrounding programming
environments) to specify multidrone missions, it has the
price of requiring skilled software developers. Thus, the
overarching challenge is to develop a text-based multidrone
mission specification approach with a flat learning curve
for a target user group of domain experts with little to no
programming skills. We further see a simple-to-create and
easy-to-comprehend specification of multidrone missions as
key to unleashing the full potential of a UAS and its drones.

C. CONTRIBUTIONS OF THIS WORK
We introduce the EAMOS Framework (Execution of Aerial
Multidrone Missions and Operations Specification), which
aims to provide both a user-friendly tool for specifying mul-
tidrone missions and a decentralized platform for executing
those missions (see Figure 1). EAMOS supports any number
of real and simulated drones and even supports hybrid setups
involving both types of drones. We placed our execution
stack on top of the middle layer framework ROS (Robot
Operating System1), which is today’s de-facto standard for
robotic application developments. This allows us to use a
large and growing number of supported hardware devices and
utilize a rich pool of software tools to interface and work
with diverse drone platforms. While the application of ROS
usually requires experienced experts, mission specifications
in EAMOS entirely hide technical aspects from the end

1https://www.ros.org/

FIGURE 1. Overview of the Multidrone Mission Framework EAMOS. The
Mission Compiler (MC) generates missions that are deployed onboard
drone platforms on top of the Drone Execution Environment (DEX) and
the Mission Middle Layer (MID). DEX executes the missions and interacts
with the drone platforms via MID’s Adapter APIs (blue arrows). SWIG
provides a bridge between Go and C++.

user by providing a domain-specific mission language that
entirely focuses on the objective of the multidrone mission
rather than including code that is salient but irrelevant and
introducing much syntactic overhead to the mission. The key
contributions of this work can be summarized as follows.

1) Mission Specification: EAMOS provides a domain-
specific approach for describing missions that use the
syntax of the modern programming language Go and
introduces mission control structures, which allows
to specify missions that can deal with changing and
uncertain contexts.

2) Mission Compiler: EAMOS compiles multidrone
mission specifications into several mission graph
structures and further into an intermediate mission
representation, eventually compiled into executable Go
programs.

3) Mission Execution: EAMOS provides its fully dis-
tributed mission execution environment, which is
entirely written in Go to provide a high degree
of compatibility with the mission specification and
compilation.

4) Decentralized Architecture: The user easily specifies
multidronemissionswithin a single file, while EAMOS
distributes the mission only to those drones involved
in it, avoiding a centralized entity for controlling the
mission execution.

5) Explicit Concurrency: The author of multidrone
missions in EAMOS explicitly states which actions
are meant to be run sequentially and which should be
executed in parallel. EAMOS then takes care of the
scheduling and synchronization of all actions.

6) Middle Layer: EAMOS provides its own mid-
dle layer tier that wraps the control of individual

VOLUME 11, 2023 125461

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

drone-specific capabilities, such as taking off, flying to
a position, or applying onboard sensors, into a uniform
and public mission API (Application Programming
Interface), which covers the capabilities of numerous
heterogeneous robotic platforms.Moreover, theMiddle
Layer can be extended to enrich the API and support
more drone platforms.

Our approach puts the user in charge of writing a mean-
ingful and correct mission and handling critical situations.
Checking the correctness and feasibility of missions is
beyond the scope of this work. Since the EAMOS framework
is designed generically and openly, such checks can be
integrated as a preprocessing step, which would improve the
usability of EAMOS even further.

While our previous work [19], [20] provided an intro-
duction of the mission specification, an overview of the
framework, and an initial demonstration with the Air-
sim2 simulation environment, this paper comprehensively
describes the complete EAMOS framework. It demonstrates
its successful usage in single and multidrone missions on
real and hybrid platforms. In particular, we present details on
the mission compilation, the drone execution environment,
the mission execution model and the interface to ROS-based
drone platforms, and the experimental evaluation using four
different experiments. To the best of our knowledge, EAMOS
is the first multidrone mission specification and execution
framework that facilitates an intuitive, text-based approach
for describing multidrone missions that support explicit con-
currency with automatic synchronization, advanced control
structures, and transparent mission execution in a simulation
environment, on real ROS-based drone platforms, and hybrid
settings.

D. OUTLINE
The remainder of the paper is organized as follows.
Section II provides an overview of the relevant related work.
Section III briefly discusses the methods applied during the
life cycle of a multidrone mission. Section IV presents the
overall architecture of EAMOS with its major components.
Section V details the essential components of EAMOS’
Mission Compiler, which processes a textual mission into
an executable drone deliverable. Section VI provides a
detailed insight into EAMOS’ Execution Environment, which
ultimately executes the drone mission deliverable onboard
drones. Sections VII and VIII report on the experimental
setup and the results of four experiments. Section IX
compares the results with related approaches. Section X
concludes the paper with a summary and discusses future
steps of EAMOS.

II. RELATED WORK
Our review of practically applied multidrone mission
approaches revealed that missions are usually defined using
high-level programming languages like C/C++ or Python.

2https://microsoft.github.io/AirSim/

The expressiveness of those languages enables mission
authors to easily define highly custom and use-case-oriented
missions for real-world situations, as long as the mission
author is an expert in using the specific language (i.e.,
is a software developer). Moreover, such mission programs
tend to provide many verbose code fragments that require
the mission author to write much code to achieve minor
functionalities. This introduced syntactic overhead makes the
encoding of a mission more dominant than its actual use
case. In short, such missions are unusable by non-experts.
Examples are the C++ or Python APIs for the simulation
tool Airsim2, which are already tailored to their multidrone
context but still require a programmer if the mission specified
goes beyond pure take-off and landing actions.

A. INVESTIGATED APPROACHES
To avoid requiring a software developer to specify robot
missions in general or drone missions in particular, several
new languages and dialects were already proposed as part of
text-based mission specification approaches. Most of those
introduce dialects of the popular data description and encod-
ing markup language XML (Extendable Markup Language).
While some related work introduced entirely custom domain-
specific languages, many existing approaches use graphical
maps, which come with a graphical user interface (GUI)
to specify robot missions. While GUIs support the user
experience and graphical maps are highly appropriate for
specifying drone missions, those approaches usually hide
their internal logic responsible for compiling and processing
missions, so it is often unclear what models and processes
are in place ‘‘under the hood’’. Therefore, extending the
mission specification capabilities becomes difficult or even
impossible. To analyze the state of the art, we focused on
the qualitative aspects presented in Table 1. The investigated
approaches are summarized in Table 2.

1) ‘‘TML’’ (Task-based Mission specification Lan-
guage): This approach by Molina et al. [21] expresses
missions by using the concept of tasks, which aggregate
atomic drone capabilities called actions, to context-
related meaningful units of execution. Furthermore, the
concept of skills is used for intrinsic drone capabilities.
The equally named concept supports conditions that
control the execution flow. All concepts in TML are
available as XML tags and are used to specify static
mission descriptions with XML-based markup syntax.
The execution of TML missions is performed by the
existing Aerostack3 framework for which the authors
wrote a specific TML interpreter. However, the XML
base syntax degrades readability, making longer mis-
sion specifications verbose and hard to handle. Though
multi-vehicle support seems supported, an explicit
synchronization among agents or their actions seems
unsupported. Conditions are supported in terms of an

3https://github.com/aerostack/install/wiki

125462 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

TABLE 1. Qualitative aspect used for describing mission specification approaches.

TABLE 2. Summary of related mission specification approaches and comparison with our EAMOS framework. The qualitative aspects used to characterize
the approaches are detailed in Table 1. Since this work focuses on purely text-based approaches, the discussion of internal (hidden) mission syntax,
mission processing, and intermediate forms of GUI-based approaches is omitted.
Superscripts: aThe authors wrote an interpreter for the Aerostack framework (https://github.com/aerostack/install/wiki). bThe authors describe potential translations into Petri Nets,
Goal and task plans, and behaviors. Though, it is not clear, which representation was the main choice. cThe authors describe CoolBOT as the used system framework and T-REX
and MOOS as candidates for execution engines. However, it is not clear which system was used. d n/a means that the information was either unavailable or not clearly described in
the literature. eThe Task Description Language is created by / inputted into a GUI planner, which sends the mission directly to the AUV. f Although the literature mentions group
tasks, it is unclear whether/how the approach supports multiple vehicles. gNo particular form is supported. The approach describes model-generators for arbitrary target
representations. hTaskplans are fed into the approach’s Planning Module, which is in charge of mission execution.

VOLUME 11, 2023 125463

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

event handling functionality but without supporting
arbitrary conditions or control structures.

2) ‘‘MDL’’ (Mission Description Language): Silva et al.
introduced a similar markup-based approach which is
based on four languages, namely Scenario Descrip-
tion Language, Team Description Language [25],
Disturbance Description Language [24], and Mission
Description Language (MDL) [23]. The authors devel-
oped this framework to provide a rich set of vocabu-
laries and verbosely describe a multidrone mission’s
different aspects, such as vehicular characteristics,
geographical sites, or the compositions of so-called
drone teams. However, it exhibits the same drawbacks
even if the approach offers a higher expressiveness
compared to the TML approach presented above due
to a richer set of predefined vocabularies.

3) Approach by Fernández-Perdomo et al.: This
work [26] aims to simplify mission specifications for
unmanned underwater vehicles (AUV). The authors
define a mission to consist of several mission plans:
a Logging Plan, a Navigation Plan, a Communication
Plan, a Measurement Plan, and a Supervision Plan.
While these plans are supposed to be exchangeable,
each takes care of a particular aspect of the overall
mission. This approach does not support multiple
vehicles and is tightly coupled to its application domain
of AUVs. Conditions seem to be supported in a rather
inflexible manner by binding them directly to tasks.

4) ‘‘AVCL’’ (Autonomous Vehicle Command Lan-
guage): Davis et al. [27] propose a mission specifica-
tion approach for AUVs, which is based on ontologies
for tasking, communications, and results wrt. an AUV
mission. Their approach defines a task-based speci-
fication comprising a catalog of AUV primitives for
controlling the vehicle (e.g., hovering, loitering, mov-
ing, or waiting). Furthermore, missions are declarative
goal-based specifications, which can be represented
and processed by finite state machines (FSM). The
authors created the XML-based DSL named AVCL,
which is used to notate a declarative FSM that expresses
anAUVmission.Moreover, a GUI namedAutonomous
Underwater Vehicle Workbench [28] was developed,
enabling the end-user to edit the task and goal-based
levels of a mission. Even the term ‘‘Rendezvous’’
is mentioned wrt. AUVs, the mission specification
language does not seem to support multiple vehicles.
The application domain is restricted since this approach
addresses AUVs. Moreover, the language does not
seem to support any control structures.

5) Approach by Bagnitckii et al.: Bagnitckii et al. [29]
introduce a domain-specific task description language
for specifying vehicle missions that allow the use of
navigational parameters, enable AUV group configu-
rations, and support the description of task groups for
AUVs. To favor readability and usability, the authors
avoided using XML syntax. A multi-vehicle mission

plan can be represented as a finite state machine
providing a designated start and end configuration.
The presented DSL follows a hierarchical structure
and declares high-level mission elements such as
mission events, mission goals, forbidden areas, and
time limits. By avoiding the verbose syntax of XML,
the approach provides a custom and easy-to-read
syntax for the mission specification. The approach
comes with a feature-rich GUI for end-users. However,
since targeting AUVs, the approach is restricted to
the corresponding application domain. It is unclear
whether the approach supports multiple vehicles, and
no control structures are described.

6) ‘‘DRESS-ML’’: The custom domain-specific language
DRESS-ML,whichwas developed byAlves et al. [30],
focuses on the description of exceptional scenarios for
drones and the specification of how to handle them
such as hardware component failures, detection of
suspicious events (such as smoke), or drone emergen-
cies (such as a loss of height or GPS-signal). Such
situations are described with a SQL-similar syntax
using the clauses ‘‘Given’’, ‘‘When’’ and ‘‘Then’’ (cf.
‘‘Select’’, ‘‘From’’ and ‘‘Where’’ of SQL). Although
the described exceptional scenarios are mission frag-
ments rather than complete drone missions, they are
passed through a pipeline that encodes their source
code by a so-called ‘‘ModelToText-generator’’ and
then translates it for different target drone platforms.
DRESS-ML is not a complete mission specification
approach because it just covers exceptional scenarios
that might occur during a UAV mission. Compared to
all other investigated approaches, its syntax is tailored
to its mentioned scope. However, its mission snippets
offer good readability, and its integration into existing
platforms seems lightweight.

7) ‘‘Director Tools’’: Montes-Romero et al. [31], [32]
propose an approach to facilitate the capturing of cin-
ematographic shots and scenes with multiple drones.
They also claim that approaches to utilize multiple
drones already exist, but the expertise required to
apply them exceeds those of a pure domain user.
In their approach, which they simply refer to as a
set of ‘‘Director Tools’’, they introduce a Mission
Controller and a graphical user interface to assemble
multidrone cinematographic shootings, which is first
output as standard XML markup and then fed into
a mission planner creating an executable schedule of
drone actions from it. This approach is tailored to
photographic and cinematographic productions that
utilize multiple drones and is thus heavily domain-
dependent. Moreover, the used XML-dialect makes
missions hard to handle and more dependent on the
GUI tools.

8) Approach by Paula et al.: To support the monitoring
and controlling of multiple drones, Paula et al. [33]
propose a GUI-based approach that covers aspects

125464 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

such as drone telemetry, connected sensors, geographic
coordinate-based drone control, mission execution,
drone collaboration, and event logging. Missions are
configured through a web interface using actions such
as taking off, waiting, and landing. Even if the approach
introduces a user-oriented and modern GUI, the
number of actions formissions seems limited. Thus, the
approach seems to be very restricted in its applicability.
Moreover, the suggested system architecture describes
an essential ground station for running the multidrone
missions, making it a centralized approach.

9) ‘‘FLYAQ’’: the authors of this work [34], [35], [36], [37]
propose a family of three (main) DSLs, forming an
approach that claims to be technology-independent,
analyzable, executable and testable via simulations,
extensible wrt. new application areas, and closer to
the problem domain than previous approaches. The
Monitoring Mission Language (MML) addresses the
end-user, who is assumed to be a domain expert.
The Robot Language comprises the capabilities and
properties of a particular robot platform and covers
to support all robot types (i.e., not necessarily all
particular robots). The Behavioral Language defines
atomic movements of all supported robots that can
be used through the MML, such as Start, HeadTo,
or Circle. MML specifications are translated into
the intermediate text-based language QBL, which
can then be inputted into the framework’s mission
execution engine. FLYAQ provides a user-friendly
GUI for specifying multidrone missions, supports
numerous heterogeneous platforms, and even provides
a reconfiguration engine to increase the resilience of its
missions. However, FLYAQ does not seem to support
control conditions, nor does it allow to explicitly
synchronize multiple drones, while utilizing multiple
drones is supported. Moreover, looking at the FLYAQ
system architecture, the approach seems to be fully
centralized.

10) Approach by Besada et al.: This highly end-user-
oriented and map-based approach from Besada at
al. [38] proposes a comprehensive environment for
managing drone fleets, resources, and missions. The
architecture comprises two main microservices for
monitoring and defining a multidrone mission and
several smaller microservices for managing resources,
environmental data (e.g., weather), drone sensor data
(e.g., video), and user data. Moreover, the centralized
approach provides four databases to store all kinds
of data generated or transmitted during missions. The
authors developed a multi-modal GUI (for desktops,
mobile devices, and video walls), where sensors and
actuators of the drones are selected, and the location,
radius of the operation zone, and landing point are set.
Once defined, the GUI uses the MAVLink protocol to
transmit a generated mission plan to the drones. Even
if this approach comes with a user-friendly GUI, it is

basically a pure waypoint orchestrator. In particular,
it does not support explicit synchronization among
drones or provide control structures. Moreover, this
approach does not seem to be tested, neither in
simulation nor with real drones.

11) ‘‘FlyMASTER’’: This work by Lamping et al. [39]
covers thewhole stack formanagingmultidrone flights.
FlyMaster is developed as a ROS package built upon
ROS, MAVLink, and MAVROS and uses an onboard
computer (OBC) attached to the drone’s flight con-
trollers. It further uses a ground control station (GCS),
which communicates with the ROS-based companion
computers through the ROS packages ROSbridge and
ROSlibJS. The most significant features of FlyMaster
are to support resource-intensive computations, the
freedom to choose where to execute ROS nodes (on
the GCS or the OBC), to support telemetry streaming
to the GCS, as well as relaying of commands from the
GCS to the drones. The GCS is a user-friendly GUI,
which serves to edit and launch multidrone missions.
Once a mission is launched, the GCS is claimed to
transition to a passive role and monitor the mission as it
unfolds. FlyMASTERwas evaluated through software-
in-the-loop (SITL) tests and an actual experiment
involving a single drone. However, it does not provide
control conditions and explicit drone synchronization.

It is important to note that the presented ‘‘Mission Syntax’’
is not necessarily the syntax used for an intermediate
mission representation (if any), nor is it necessarily used for
implementing any system components, such as the mission
compiler. However, in EAMOS, we used the language Go for
all of the aspects of mission description, mission intermediate
form, implementation of the mission compiler, as well as for
the implementation of one of the two main parts of mission
execution, which is the Drone Execution Environment (the
other part, the Mission Middle Layer is implemented in
C++).

B. COMPARISON WITH EAMOS
Dragule et al. [40] extensively reviewed existing mission
specification approaches, focusing on visual and end-user-
oriented mission specification environments and the pro-
vided features of the individual approaches. They analyzed
30 approaches and identified 23 that have characteristics
of mission specification environments with block-based
languages. At the same time, 13 belong to purely text-based
mission specification languages (such as domain-specific
languages Aseba [41] and PROMISE [42]). They further
identified C/C++, Python, JavaScript, and Basic as the most
commonly used target languages to compile the mission
specification languages.

Our analysis of the related work reveals that GUI-based
approaches offer a better user experience than text-based
approaches but tend to reduce drone missions to pure
waypoint flights with little space for custom scenarios.

VOLUME 11, 2023 125465

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

FIGURE 2. Overview of the applied methods in EAMOS. In Phase P1, the end user writes the multidrone mission specification (MMS) as Go-based text
into a text file, which is then forwarded to the EAMOS Mission Parser. The parser uses functionalities from the Golang libraries to generate an abstract
syntax tree. Phase P2 first generates one Abstract Mission Tree (AMT) and one Mission Execution Graph (MEG) (i.e., two .graphml files) from the overall
multidrone mission. The MEG is then sliced into an individual Mission Dependency Graph (MDG) for each drone (i.e., multiple .graphml files), according
to the drone’s mutual dependencies that emerged from the multidrone mission. Phase P3 automatically synthesizes an Intermediate Mission File (IMF)
(cf., Listing 4) from each MDG as plain Golang source code that is then compiled by the Golang compiler to executable Go programs and deployed as
Drone Mission Programs (DMP) on the target drones. Phase P4 executes the drone-specific parts of the multidrone mission onboard the corresponding
target drones, which use a ROS network for synchronization and data exchange.

On the other hand, many text-based approaches offer rather
specialized capabilities, making them only applicable to
a narrow range of use cases. While most approaches
introduce their system architecture, the expandability to add
or customize capabilities is neglected to a great extent.
Allowing users to synchronize concurrent drone activities
explicitly is a significant aspect of our work. While most
approaches support multiple drones, most do not put the user
in charge of synchronizing drone activities, or the respective
tools perform the synchronization internally. A distributed
execution architecture is another important aspect of our
work that is not supported in most investigated approaches.
Moreover, we did not find any indication that any approaches
can handle simulated and real drones in the same multidrone
mission (i.e., supporting hybrid, real, and virtual drone
missions).

III. METHODOLOGY
The development and application of the EAMOS frame-
work encompasses static and dynamic aspects. The applied
methods can be grouped into the four successive phases
Mission Specification & Parsing (P1), Mission-to-Graph
Conversion (P2),Mission Translation & Deployment (P3)
andMissionExecution (P4). Each phase takes a set of files as
input and produces a set of files as artifacts, which are handed
over to the succeeding phase. Figure 2 illustrates the applied
methods and the generated artifacts.

As described in Section VI-B and depicted in Figure 9,
EAMOS uses the idea of the Communicating Sequential
Processes (CSP) concurrency model [43], which essentially
states that individual threads of execution synchronize and
exchange data through inter-connecting channels. While
Occam [44] is a famous but old example of a programming
language using CSP for inter-process synchronization and
communication, EAMOS uses the modern programming
framework Go,4 which builds upon the same CSP fun-
damentals. Go provides Goroutines, which are lightweight
threads of execution managed by the Go runtime. Channels
in Go have two terminals and are permanently attached to a
variable on either side, which are typically hosted by different
Goroutines. Channels are used to send data from one of their
attached Goroutines to the other and block the receiving end
if no data is sent through the channel. Thus, Go channels
make maintaining concurrent implementations very simple
and lightweight.

EAMOS’ execution model is based on a distributed
graph of drone actions that span over all involved drones,
in which multiple actions execute simultaneously at different
positions within the graph and automatically trigger other
actions according to the multidrone mission. Since all
drone actions are blocked threads that get unblocked by other
actions during the mission, the underlying model is similar
to classical Petri nets [45]. Classical Petri nets consist of

4https://go.dev/

125466 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

FIGURE 3. Overview of the components (black) of the EAMOS framework and their most important relations (blue). (A) parses multidrone missions from
the user. (B) creates AMT and MEG. (C) creates MDGs. (D) creates IMF. (E) compiles and packs IMFs to deployment packages. (F) instantiates different
objects that represent mission objects. (G) establishes all links among nodes and launches the initial mission node. (H) manages communication via the
In- and Out-Bridge of a node to and from remote drones. (K) monitors preceding action nodes, performs the blocking, and triggers succeeding nodes.
(M) provides the public API, instantiates, and controls US actions. (N) instantiates and controls AS actions. (L) implements US and AS actions as ROS
action_lib server/client pairs. (1) Abstract syntax tree of the parsed mission forwarded to create graphs. (2) The MEG is forwarded to slicing (3). The MDGs
for the drones are forwarded to synthesize intermediate programs. (4) The IMFs are forwarded for packaging. (5) Deployed drone programs are forwarded
to create runtime objects. (6) Runtime objects are forwarded so that the mission can be launched. (7) Executor uses In- and Out-Bridges to interact with
remote drones. (8) Executor uses Uniform Space to call actual actions. (9) US actions interact with their counterpart AS actions. (10) AS and US controller
manage the lifecycle of their actions.

so-called transitions that move tokens through a network
of so-called places. They represent frequently occurring
patterns in the context of concurrent processes, such as simple
sequences, resource (token-) conflicts, token multiplication
(concurrency), process synchronization, or process (token-)
merging. Many extensions to Petri nets were introduced, and
the mathematical foundation is well established. We adopted
colored Petri nets [46] to model action synchronization in
EAMOS, but used a simpler notation where transitions and
tokens are not modeled explicitly (cf., Section VI-B and
Figures 9 and 11).

IV. FRAMEWORK OVERVIEW
EAMOS covers the complete processing stack of providing
a mission specification environment, compiling specified
missions into an intermediate representation, compiling and
deploying these missions for specific target drone platforms,
and executing compiled missions onboard drones. Figure 3
provides a high-level overview of the components of the
EAMOS framework together with their most important
relationships. While the Drone Execution Environment
was implemented entirely using the language Go to take
advantage of Go’s concurrency model, we also used Go for
implementing the Mission Compiler to make these compo-
nents easily compatible and to simplify the processing of the
mission specifications and their intermediate representations,

which are also encoded in Go. On the other hand, we decided
to implement theMiddle Layer entirely in C++ becausemost
ROS interfaces and tools use C++, which also significantly
supports compatibility. While Listings 4 and 5 give an insight
into the Action Factory component (cf., (F) in Figure 3),
Listings 6, 7, 8, and 9 illustrate the key aspects related to
mission execution of the Action Executor component (cf.,
(K) in Figure 3). Furthermore, Listings 2 and 3 give a glimpse
of how drone actions manifest within the Drone Execution
Environment and especially show the calling of actual drone
actions from the public Middle Layer in Lines # 5 and 2 of
these listings, respectively.

In general, any mission creation starts with writing a
textual mission specification, which is inputted into the
framework’s Mission Compiler (MC). The MC converts the
multidrone mission into an intermediate mission represen-
tation while also generating several graphs that reflect the
structure and the execution flow of the mission. The MC is a
stand-alone Go application that can be used on any machine,
making it an off-board EAMOS component.

As the name suggests, the Drone Execution Environment
(DEX) is in charge of executing an individual drone mission
onboard a specific drone. The DEX is compiled and deployed
with the drone mission within a single executable file that
does not need installation or further configuration. Launching
a drone’s mission also launches its mission execution

VOLUME 11, 2023 125467

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

FIGURE 4. Illustration of EAMOS’ Middle Layer showing the Uniform
Space (US) and one Adapter Space (AS) for one drone platform. The US
defines public API methods of drone actions that end users or the
execution environment can use. Each uniform action has a counterpart
adapter action. Both actions communicate through an action client-server
pair provided by ROS’ action_lib. Actions of the AS have a goal definition
used by the action client of the action_lib communication to tell the
server what it shall do. Action clients send or cancel a goal towards the
server (blue and red solid arrows), while the server provides feedback for
ongoing actions or results for finished actions (green and blue dashed
arrows). AS actions further have a specific implementation that interacts
with the drone and calls the actual capability needed for the US action
called in the first place.

environment, which is embedded in the same binary file.
Like the MC, the DEX is implemented entirely in Go, which
supports compatibility among these two components.

EAMOS provides a middle layer tier (MID), which wraps
the technical details of a drone’s specific hardware interface
into a uniform drone API, which is supposed to look and
behave alike for every user within the framework. The MID
contains a Uniform Space (US) that defines the generic
uniform API and different adapters for different hardware
platforms bound within an Adapter Space (AS). US and AS
interact with each other by utilizing the action_lib library
from the ROS ecosystem. This involves Action Servers
and Action Clients that are attached to all individual drone
capabilities and data providers. Using this design enables a
loosely coupled mapping between uniform and specific API
calls or data flows. TheMID is entirely implemented in C++

to facilitate hardware compatibility.
Figure 4 illustrates the architecture of EAMOS’ Middle

Layer as follows. The Uniform Space (blue boxes) is
primarily intended for drone action calls from within drone
missions executed by the DEX. Due to its public API, it can
also be used by any user (top users). It defines several public
uniform actions that form EAMOS’ public API and is thus

FIGURE 5. Illustration of the EAMOS action ‘‘Move’’ and the EAMOS
Broker ‘‘Status’’ wrt. to Figure 4. The uniform Move action (left, blue box)
defines several public API calls for moving drones (using either latitude,
longitude, altitude, or local XYZ locations). The exemplified
corresponding Move adapter action (left, green box) defines in its overall
goal definition: goal–the format of the global LLA- and local
XYZ-Location; result– a flag on whether the stated location was reached
or not; feedback–the current location is continuously sent back until the
target location was reached. Similarly, the uniform status action consists
of a single public API call, which is expected to state which status to
request. Depending on the kind of status, the Status adapter action
returns several status values. This broker is a single-request-and-return
action and thus provides no continuous feedback.

common to all drones. Each uniform action provides a private
action client, which interacts with its counterpart adapter
action and its public action server. The Adapter Space (green
boxes) on the drone side defines a publicly visible action
server for each action and an individual ROS action_lib-
Goal definition to specify the parameters for the action to
execute. To trigger adapter actions, uniform actions define
and send goals through their action client downwards (solid
blue arrow). Goals can also be canceled while the adapter
action is alreadyworking on it (solid red arrow). The ability to
cancel already executing actions is vital for EAMOS’mission
control structures (cf. Section VI-D).

The action server keeps returning a constant feedback
(dashed green arrow) and a final result (dashed blue arrow) to
the calling action client. The implementation of each adapter
action interacts with the underlying drone hardware, whose
set of individually provided and implemented capabilities
form the Drone Space (bottom box). For simplicity, Figure 4
shows only the actions of an adapter for one drone
platform. The EAMOS brokers work in a similar way to the
actions.

Figure 5 shows how the public API and the public goal
definition for an EAMOS action and a broker are defined
by using the Move-Action and the Status-Broker. EAMOS’
‘‘Move’’ defines five public methods that can be used by any
user (blue top box) as an example. Each call and its arguments

125468 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

get converted into a goal defined by the corresponding
adapter action. The arrows illustrate the communication (see
Figure 4). The goal for ‘‘Move’’ either sets global (in GS84
format) or local locations (in NED format) to be reached,
defines further that the constant feedback consists of the
current location in both formats, and provides a success
flag for reaching the goal. In contrast to triggering actions,
a broker acquires data and provides it to its caller. EAMOS’
‘‘Status’’ broker has just a single uniform API method for
getting the current status. Its adapter goal defines a set of
information returned as a goal result. Since most broker
executions are instant, no constant feedback is defined.
ROS’ action_lib library provides all communication between
action clients and the action server. It manifests in the ROS
environment as ROS topics, which could be used to interact
with the action server.

Since the DEX uses API calls from the US and data is
pushed back and forth between these two components during
runtime, they must be compatible. To avoid introducing
another interface or mapping component, EAMOS utilizes
the SWIG5 language interface framework to build a language
bridge between DEX and US, letting the DEX directly call
C++ methods from within Go-code and vice versa without
any cross-compilation.

V. MISSION COMPILER
EAMOS’ Mission Compiler is responsible for reading a sin-
gle textual multidrone mission specification and converting
it into a form the framework onboard drone platforms can
execute. Since this conversion is done prior to executing
a mission, mission compilation is considered to belong to
the framework’s off-board processing. The overall purpose
of the compilation is to extract all components from the
multidrone mission together with their intra- and inter-drone
dependencies (also referred to as internal and external
dependencies) and to only deploy them to drones to which
the dependencies are relevant.

Mission compilation undergoes the consecutive stages of
parsing a multidrone mission specification (Section V-A),
constructing the Abstract Mission Tree and the Mission
Execution Graph, which both reflect the overall multidrone
mission (Section V-B), extracting drone-relevant components
and dependencies for every drone in the form of separate
Mission Dependency Graphs (Section V-C), creating high-
level human-readable code files that represent individual
drone missions (Section V-D) and deploying these drone
missions as executable programs to their dedicated drones
(Section V-E).

A. MISSION PARSING
To support simplicity and readability, multidrone mission
specifications conform to standard Go syntax. This also
enables the mission author to utilize inbuilt Go language
features for parsing Go source code files and constructing

5https://www.swig.org/

LISTING 1. Illustration of a simple three-drone mission specification.
‘‘SEQ’’-prefixes indicate sequential execution flows, and ‘‘PAR’’-prefixes
indicate parallel execution flows. In this example, all three drones are
turned on in parallel. Then, Drone1 and Drone2 perform a pre-flight check
followed by a calibration in parallel. Finally, Drone2 first turns on its
camera and then adjusts it. light-blue–particular drones to call actions
on; dark-blue–drone types; light-orange–drone actions;
green–comments; dark-orange–Go keywords and syntax.

and working with abstract syntax trees (AST). Mission
Listing 1 shows an example of an EAMOS multidrone
mission specification for two drones performing several
parallel and sequential actions, such as turning on and
performing a preflight check. These mission files are parsed
using inbuilt libraries of the Go framework to create an AST,
which represents the hierarchy of the mission in terms of its
nested Go function calls and that further consists of all the
mission’s Go statements.

B. MISSION GRAPH PROCESSING
An integral part of the mission compilation is constructing
the internal mission representation, which describes drone
actions, control structures, execution branches, and the
dependencies among drone actions in the form of directed
graphs. The first graph produced during mission compilation
is the Abstract Mission Tree (AMT), which is then converted
to the Mission Execution Graph (MEG).

VOLUME 11, 2023 125469

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

1) ABSTRACT MISSION TREE

FIGURE 6. Abstract Mission Tree of the multidrone mission in Listing 1.
squares–sequential executions; diamonds–parallel executions (i.e.,
forks); triangle–initial mission node; circles–drone actions. Node indices
are shown within nodes. Children of sequential nodes are numbered to
reflect their sequential execution order. grey–initial node; white–not yet
assigned to a drone; yellow–Drone1; green-Drone2; red–Drone3.

The Abstract Mission Tree (AMT) reflects the structure of
the multidrone mission as a tree whose leaves are actions,
whose non-leafs are either sequential branches, parallel
branches, or conditions, and whose root is the initial mission
node. Parallel branching nodes result from parallel blocks
within the multidrone mission and are named forks. The
initial node is a unique and required node artificially added
to the mission representation as a predecessor of the first
mission statement of the multidrone mission.

Figure 6 depicts the AMT of our simple three-drone
mission. Labels for nodes provide information about the
name and the type (condition-type or action-type). Labels
at sequential branches indicate the order of the subsequent
nodes. Since no order is implied for parallel branches,
labeling is omitted for these branches. Action and condition
nodes are already assigned to drones at this stage while
branching nodes are assigned to nodes during the slicing
phase of the mission compilation (cf. Section V-C).

2) MISSION EXECUTION GRAPH
The Mission Execution Graph (MEG) reflects the dynamic
execution flow of the multidrone mission as a directed graph,
whose syntax is the same as for an AMT. The key difference
is that sequential executions of actions are now depicted
as chains of actions reflecting the true sequence of actions.
This makes dedicated sequential branching nodes (depicted

FIGURE 7. Mission Execution Graph that corresponds to the multidrone
mission in Listing 1. diamonds–parallel executions (i.e.; forks);
triangle–initial mission node; circles–drone actions. Node indices are
shown within nodes. In contrast to the AMT, the MEG has no sequential
nodes anymore (cf. squares in the AMT in Figure 6). The only dangling
node in the MEG is node 5 (‘‘AdjustCamera’’, <Drone2>), which terminates
the multidrone mission. grey–initial node; white–not yet assigned to a
drone; yellow–Drone1; green-Drone2; red–Drone3.

as squares in the AMT) obsolete. TheMEG results fromwhat
we refer to as ‘‘closing’’ the sequential nodes of the AMT
or ‘‘closing’’ the AMT, respectively. The term ‘‘closing’’
refers to the process of connecting leave nodes of the AMT
according to the imposed execution order so that the resulting
directed graph has no ‘‘open’’ leaves anymore, except those
that terminate the overall mission. Figure 7 shows the MEG
of Listing 1.

C. MISSION SLICING
Mission Slicing marks the stage where individual mission
graphs for every drone are generated from the overall
multidrone mission. These drone mission graphs, referred to
as Mission Dependency Graphs (MDG), consist of all action
nodes of a particular drone and all dependencies of these
nodes to and from other internal and external nodes. Since
all drone operations defined by nodes within an MDG are
eventually to be physically executed onboard a particular
drone, all of their nodes are required to get the appropriate
associated drone. This is a non-trivial procedure because
some structural and conditional nodes, such as forks, need
to be replicated for different drones, thus becoming so-called
node proxies.

A node proxy is any node that is a replicated clone of
another node that physically belongs to and exists onboard
another drone. An example is node 1 (‘‘n1’’, <Drone2>) in
Figure 8 (c), which has the two node proxies node 2 (‘‘n2
Fork’’, <Drone1>) and node 2 (‘‘n2 Fork’’, <Drone3>), since
they are adjacent but on remote drones. Here, Drone2 has two
replicated copies of these node proxies in its MDG. Similarly,
node 0 (‘‘n0’’, <GCS>) has node 1 (‘‘n1’’, <Drone2>) as a
node proxy. This relationship is also represented by external
arcs and indicated by dashed lines. Here, the GCS has a
replicated copy of its node proxy in its MDG.

Forks are more challenging to replicate than non-forks
for two reasons: First, forks might have multiple children
that can be assigned to different drones, which means that

125470 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

Algorithm 1 EAMOS’ Slicing Algorithm. For Each Drone of
the Multidrone MEG, a Separate MDG Is Created and Each
MEG Node That Corresponds to That Drone Is Processed by
Three Consecutive Steps
Input: MEG m
Output: MDGDrone_1, MDGDrone_2, . . .
1: for all distinct drones d occurring in MEG do
2: create empty MDGDrone_d m
3: for all nodes n in MEG do
4: if n is assigned to drone d then
5: for all successors s of n do
6: ForwardForkProcessing(n, m)
7: end for
8: CurrentNodeProcessing(n, m)
9: for all predecessors p of n do

10: BackwardForkProcessing(p, m)
11: end for
12: end if
13: end for
14: end for

all of them need to exist as native nodes and as proxy
nodes. Second, forks can be nested within each other,
forming multi-level hierarchies of forks resulting from nested
parallel function calls in themultidronemission specification.
EAMOS processes forks through forward and backward
algorithms to tackle these challenges, yielding an overall
three-step procedure for slicing aMEG into its corresponding
MDG.

The idea of the procedure (see Algorithm 1) is to iterate
over each node of the MEG wrt. the drones involved and to
apply the three steps described below depending on whether
the current node’s predecessors and successors are either
forks or not. Figure 8 shows an example MEG and its
resulting MDG for Drone1, Drone2 and Drone3.

1) STEP 1: FORWARD FORK PROCESSING
This step aims to determine what we call fork-proxies for
action nodes. Fork-proxies are any nodes that are no forks
by themselves but are immediate successors of forks, which
follow the respective action node. Identifying fork successors
for action nodes is trivial if an action node is succeeded by not
more than a single fork in a row. However, it becomes more
challenging when considering hierarchies of forks consisting
of Fork 2, Fork 3, and Fork 4 in Figure 8 (a). Forward fork
processing is illustrated in Algorithm 2.

The MDG of Drone2, for example, must provide the
information which successor node needs to be triggered once
node 1 (‘‘n1’’, <Drone2>) finished executing. Now, when
looking at Figure 8 (a), we see that node 1 (which belongs to
Drone2) is supposed to trigger all six leaf nodes of the MEG
in parallel, whereas some of them are internal to Drone2 and
some are external to it. Thus, the MDG of Drone2 needs to
link its native node 1 to internal and external successors for

Algorithm 2 Forward Fork Processing Algorithm: Probe All
Initially Reachable Non-Forks From a Node n and Create for
All of Their Distinct Drones a New Fork-Proxy for the New
MDGThat Is Connected From the Current Node n. Link(p, n)
Links Node p to Node n With an Internal or External Arc
Depending onWhether They Have the Same Drone Assigned
Input: current node n, MDG g for drone d
1: for all succeeding forks s of n do
2: starting at s as root and considering non-forks as leafs:

apply DFS and store all encountered leafs in L
3: for all distinct drones d ′ that are assigned to leafs in

L \ d do
4: create new fork f ′ and assign it drone d ′

5: Link(n, f ′)
6: end for
7: end for

every external drone affected by node 1 (the so-called node
proxies). If node proxies are forks rather than action nodes,
we need to introduce a separate node proxy for every external
node the fork is pointing to. This is where fork proxies come
into play. From all the fork proxies of a particular fork,
we consider one representative for each different drone and
attach it as a node proxy to the preceding node of the fork
considered in the first place.

Figure 8 (c) shows the MDG of Drone2, and here, node
1 points to a node-proxy representing all fork-proxies of
Drone1 (the orange Fork 2) as well as to one node-proxy
representing all fork-proxies of Drone3 (the red Fork 2). The
green successor Fork 2 is no proxy, but a local successor that
results from processing step 3 described further below.

2) STEP 2: REGULAR NODE PROCESSING
This step handles a current node’s neighboring non-fork
nodes (i.e., all predecessors and successors). It links them
together using internal or external arcs depending on whether
the current node and its particular neighbor are on different
drones. Regular node processing is illustrated in Algorithm 3.
The MEG in Figure 8 (a) only has one pair of neighboring

non-fork nodes, which are node 0 (‘‘n0’’, <GCS>) and node 1
(‘‘n1’’, <Drone2>). Thus, the MDG for Drone2 needs to
consider node 0 as external and node 1 as internal. This can be
seen in Figure 8 (c) by the dashed arc from node 0 to node 1
(external arc) and the solid arc from node 1 to fork 2 (internal
arc).

The MDG for the GCS (not shown here) only consists of
the initial node 0 and node 1, which are connected by an
external arc from node 0 to node 1 and by considering node
1 as the external node.

3) STEP 3: BACKWARD FORK PROCESSING
This step aims at assigning the appropriate drone to the path
of all preceding forks of a particular current node, which goes

VOLUME 11, 2023 125471

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

FIGURE 8. Example of another mission illustrated by its Mission
Execution Graph (a) involving three drones and their corresponding
Mission Dependency Graphs: (b) MDG Drone1; (c) MDG Drone2; (d) MDG
Drone3; (e) MDG Drone ‘‘GCS’’; grey–initial node; white–not assigned to a
drone yet; yellow–Drone1 (b); green–Drone2 (c); red–Drone3 (d). External
links (and nodes) are drawn with dashed lines, and internal ones have
solid lines.

Algorithm 3 Current Node Processing Algorithm: Link All
Non-Fork Predecessors and All Non-Fork Successors of a
Non-Fork n Together by External or Internal Arcs
Input: current node n, MDG g for drone d
1: replicate n and add it to g
2: for all succeeding non-forks s of n do
3: Link(n, s)
4: end for
5: for all preceding non-forks p of n do
6: Link(p, n)
7: end for

all the way backward to the first non-fork node. Backward
fork processing is illustrated in Algorithm 4.

Considering, for example, node 5 or node 6 from
Figure 8 (a) as current nodes (while constructing theMDG for
Drone1), we assign preceding Fork 3 and Fork 2 to Drone1,
which is taken from node 5 (see Figure 8 (b)). If this is done
for node 5, node 6 already has properly assigned preceding
forks, and no new backward processing is performed. The
same backward processing assigns Fork 3 and Fork 2 to
Drone2 because of node 7, Fork 4 to Drone2 because of either
node 8 or node 9 (see Figure 8 (c)), and Fork 4 and Fork 2 to
Drone3 because of node 10 (see Figure 8 (d)).

Algorithm 4Backward Fork ProcessingAlgorithm: If a Non-
Fork n Has Fork Parents, Iterate From Parent to Parent Until
a Fork Has No More Fork Parents. Every Fork of This Chain
Is Replicated for the New MDG and the Parents of the Last
Fork Are Linked With It
Input: current node n, MDG g for drone d
1: while parent p of n is of type fork do
2: replicate p and add to g
3: link p to n (int. arc)
4: n = p
5: end while
6: for all non-fork predecessors p′ of n do
7: Link(p′, n)
8: end for

D. MISSION SYNTHESIS
After generating Mission Dependency Graphs, the next step
is to convert each MDG into a form that can be executed
onboard the target drone. For this purpose, EAMOS utilizes
the programming language Go and its execution environment
for several reasons.

First, EAMOS’Mission Execution Environment is entirely
implemented in Go, which provides a high degree of
compatibility between the execution environment and the
drone missions to be executed. Second, Go is a modern,
syntactically lean, feature-rich programming language, mak-
ing it very suitable as an intermediate representation for

125472 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

EAMOS’ drone missions. Third, Go’s runtime environment
is lightweight and well-supported on different embedded
computer platforms, which makes it ideal for our use onboard
the companion computers of drones.

The core of this compilation stage is synthesizing a Go
source code file for each MDG, referred to as Intermediate
Mission File (IMF). This file represents the drone missions
as a human-readable and easy-to-understand text file, which
is eventually compiled by the Go compiler to an executable
Go binary that executes the drone mission.

The structure of the IMF is separated into a declaration
and an execution part. The declaration part implements
two significant aspects. First, each node of the MDG is
instantiated as a mission object that provides individual
properties and capabilities (see Listings 2 and 3). Second,
all mission objects are linked according to their connections
within the MDG. Internal links connect two local mission
objects, while external links connect remote mission objects
wrt. the drone they are assigned to. The Mission Execution
Environment implements links using Go-channels, which
belong to the conceptual core of EAMOS’ execution
model.

Listing 4 shows a snippet of the IMF for Drone2 that
corresponds to the MDG in Figure 8 (c). Lines #1-#11
instantiate mission objects that correspond to the graph nodes
of the MDG. The arguments of the (orange) factory methods,
such as CreateAction0, are as follows: argument 1 is the drone
this object originally belonged to; argument 2 defines the
textual identifier; argument 3 specifies the actual drone action
that gets executed when this mission object is triggered; and
argument 4 specifies the predecessor-mission object. While
the signatures of factory methods differ wrt. the types of
mission objects, the drone that hosts the drone action built
by the corresponding factory method and the predecessor
argument are part of the declaration of every mission
object.

Once all mission objects are instantiated, line #15 triggers
a linking algorithm that uses the predecessor of every mission
object to link all internal mission objects to a consistent graph
structure. External links from a remote origin to a mission
node are implemented by attaching the object to the In-
Bridge (#line 18), and external links from a mission object
to a remote target are handled by attaching the object to
the Out-Bridge (#line 19). Finally, all mission objects get
activated, enabling them to execute automatically when all
their predecessors have finished executing (line #23).

E. MISSION SETUP
The last step of the mission compilation is the mission setup,
which prepares all file assets and arranges all required files in
the necessary directory environment for later mission rollout.
The most important file assets are:

1) Drone Execution Environment: This bundle of Go
source code files comprises all logic needed to execute
individual drone mission files onboard drones. The
files are arranged together to be compiled later.

LISTING 2. Example definition of an IMF drone capability using a Middle
Layer drone interface capability. Colors indicate: light-orange–name of
the capability that is attached to the particular drone (cf. drone actions in
Listing 1); light blue–the drone object for which the capability is defined;
dark blue–drone type; green–the Go-interface object that was generated
by SWIG and which provides access to the Uniform Space API of EAMOS’
Middle Layer; red–method from the Uniform Space API of the Middle
Layer; purple–input parameters for this capability; dark-orange–Go
keywords and syntax.

LISTING 3. Example definition of an IMF drone property using a Middle
Layer drone interface property. Colors indicate: light-orange–name of the
property that is attached to the particular drone; remaining colors as in
Listing 2.

2) SWIG Interface Environment: This file bundle
specifies how the drone missions interface with the
underlying EAMOS Uniform Space. The bundle con-
sists of the SWIG interface file (defining some type
conversions between EAMOS mission and EAMOS
Uniform Space), the EAMOS Uniform API header file
(the file that defines the important EAMOS Uniform
API), and two building scripts that support the building
during the later mission rollout.

The result of this stage is the EAMOS Mission Setup
Space, which is ready to be copied to the external mission
compiler and compiled to eventually produce executable
drone mission files (cf. Section VI-E).

VI. DRONE EXECUTION ENVIRONMENT
EAMOS’ Drone Execution Environment (DEX) is in charge
of instantiating and managing mission nodes, linking them
within drones and among drones, and executing them
through managing their inter-dependencies. These tasks are
encoded to be done by the IMF as exemplified in Listing 4,
which corresponds to the MDG of Drone2 in Figure 8 (c).
Considering that the variable ‘‘Drone’’ in Listing 4 represents
the Drone Execution Engine for a particular drone, the three
tasks above are described as follows.

Create methods such as CreateAction0 or CreateFork
instantiate new mission nodes. The last argument of these
Create-Methods simply states all predecessors of the corre-
sponding node. After calling these methods for each node, the
whole structure of the MDG can be resembled. The methods
AttachRcvActionExecution and AttachSndActionExecution
attach remote nodes to In- andOut-ROS bridges, respectively,
which realizes the linking of mission nodes across remote

VOLUME 11, 2023 125473

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

LISTING 4. Intermediate Mission File snippet for Drone2. The IMF encodes a particular MDG and is automatically synthesized by EAMOS. Colors indicate:
blue–mission objects instantiated through the IMF; red–utility objects that provide mission object instantiating and that are provided by the IMF
environment; light-orange–factory methods to first instantiate different mission objects and to then link and activate them; purple–drone action as
provided by EAMOS’ Middle Layer; dark-green–mission object identifiers; light-green–code comments; dark-orange–Go keywords and syntax.

drones. Once the Activate method activates mission nodes,
they are ready to launch when their prerequisites are satisfied
automatically.

A. GO-CHANNELS
Since EAMOS’ execution model relies on Go channels,
the following briefly describes their basic application.
Go channels can either be bidirectional (as declared by
channel chan string)6 or unidirectional (as declared by
channel chan<- string or channel <-chan string) and
either read and send data from a variable (as in channel

<- x)7 or assign a received value to a variable (as in
x <-channel). Channels transfer data from one end to the
other (i.e., from one thread to another) and block the receiving
thread until data is received, which brings the sending thread
in charge of blocking and releasing the receiving side.
The throughput of channels can be limited (i.e., buffered
channels), and the select clause allows to listen to multiple
incoming channels simultaneously. These and many more
lightweight features of Go’s programming model allow us
to realize the interactions among drones through an intuitive
and appropriate computational model. EAMOS even extends
the concept since it uses channels to effectively interconnect
physical machines by attaching Go channels to ROS topics
(cf., Section VI-C) rather than just local threads.

B. EXECUTION MODEL
EAMOS’ execution model follows the simple concept
that any mission node automatically starts executing its
embedded drone action when all its preceding mission

6channel is the name of a channel, chan is the Go channel keyword
7channel is a channel name and x is any variable.

nodes have finished executing. Once a mission node finishes
executing, it triggers all its successors, ultimately performing
a controlled chain reaction of executions among all activated
nodes. The core idea to realize this scheduling of executions
is using uni-directional Go-channels to either block or trigger
the execution of mission nodes. By writing a multidrone
mission, any mission node’s preceding and succeeding
nodes are implicitly defined by specifying their order and
embedding them in sequential or parallel execution blocks.
Preceding nodes are referred to as node preconditions, and
succeeding nodes are referred to as node consequences.
Preconditions are connected to their target node through
in-going Go-channels, and any node connects to its node
consequences through outgoing channels.

1) LINKING
Each mission node in EAMOS monitors all in-going
Go-channels and keeps track of how many have already
signaled the execution of their preceding mission node on
the other side of the channel. Once all in-going preconditions
of a mission node are satisfied (i.e., all preceding mission
nodes have finished executing), the node executes its mission
action. Then, it triggers all of its consequences (i.e., signaling
all successive mission nodes). Thus, two mission nodes
are interconnected by a Go-channel if the execution of
one node depends on the execution of the other node.
This ultimately builds an execution network in which
mission nodes can have any number of preconditions and
consequences and which are always in a defined state, either
describing untriggered, partially triggered, or triggered nodes
(cf. Figure 9).
The linking procedure performed at drone mission

startup (cf. Listing 4 line #15) establishes the execution

125474 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

LISTING 5. Linking method that establishes execution interconnections
between a node and its predecessors. Colors indicate: light blue–the
node that is currently linked; dark blue–the base struct for that node;
purple–the set of in-going and out-going channels of the current
node; green–the set of predecessors and successors of the current node;
orange–Go keywords and utilities.

interconnections of a mission node by creating a new
Go-channel for each of its predecessors and installs these
channels between a new out-going-port of each predecessor
and a new in-going-port of its own (cf. example the
interconnection C6 between N0 and N3 in Figure 9, which
adds N0 as precondition to N3 and N3 as a postcondition to
N0). Listing 5 shows this simplistic linking algorithm.

2) EXECUTION
Mission node execution involves the three simple steps of (1)
waiting until all preconditions are satisfied (cf. Listing 7),
(2) executing the actual drone action, and (3) triggering all
preconditions (cf. Listing 8). The first step is started by
initially activating the mission nodes (cf. Listing 9). Once
a node has been activated, an infinite loop takes care that
it repeats, starting its execution whenever all preconditions
are satisfied. The ability of a node to repeat its executions
is essential for supporting mission control structures such as
RepeatWhile or DoUntil.

EAMOS realizes the idling or blocking of a mission node
until its preconditions are satisfied through Go-channels,
which simply block or unblock the corresponding thread of
execution. Although Go supports simultaneous listening to
multiple channels and automatic handling of incoming data,
the number of channels needs to be known at compile-time.
The number of preconditions of a mission node (and thus
Go-channels) not only varies from node to node but is also
unknown for the execution engine without a particular drone
mission to compile (i.e., during compile-time of the execution
engine). Thus, a unique channel-selection mechanism that
enables the automatic execution of a variable number of
channel-select branches is necessary. The corresponding
algorithm extends Go’s standard channel-selection mech-
anism by using Go’s reflection utilities and is shown in
Listing 6. In this listing, the node execution states mentioned
before are reflected by the number of channels within the
cases slices in line #3, which contains all precondition
channels of a node (node state: untriggered), containing
any number of channels between all and one (node state:
partially triggered), and containing none channels (node state:
triggered).

FIGURE 9. Example of four mission nodes, which are either fully or
partially triggered. For example, for the fully triggered node N0, all
in-going channels C0 and C1 (green in-going arcs) signaled that their
attached preceding node finished executing, making N0 unblocking
(green labeled node), triggering its successors N1, N2, and N3 by
out-going channels C4, C5, and C6 (green out-going arcs). Similarly, node
N3 blocks (red labeled node) because its in-going channels C8 and C9 did
not yet signal the execution of their attached nodes (red in-going arcs)
while having its in-going channel C6 (in-going green arc) being signaled.

C. GO-ROS BRIDGES
While pure Go-channels can only be used to realize the
execution-blocking and triggering of mission nodes within
a single drone, EAMOS extends the scope of Go-channels
by connecting them with ROS topics to go beyond the
edge of drone platforms. For this purpose, each drone
execution environment provides an In-Bridge and an Out-
Bridge, a Drone Service Provider, and a Drone Service
Client. The latter’s responsibility is to either subscribe to
ROS services and connect their service providers with in-
going Go-channels or to publish the payload forwarded by
outgoing Go-channels into ROS service clients. Figure 10
illustrates the interplay of a drone’s Out-Bridge and its
Service Client to forward the triggering of mission object
executions from one drone to another using the embedding
ROS network.

This approach differentiates between mission nodes with
dependencies to local neighbors onboard the same drone and
those with dependencies to mission nodes on other drones.
Both nodes use Go-channels to handle pre- and postcondi-
tions, but the latter group is attached to either the drone’s
In- or Out-Bridge. An outgoing channel receives the name
of its mission node as a payload. It is attached to the local
drone’s Out-Bridge, which provides ROS service clients that
forward the data signal to the subscribed ROS topic by the
target drone. Since all drones are in the same physical ROS
network, data and signals are sent back and forth among
drones following the same execution model as if they were
onboard a single drone. Figure 11 illustrates how mission
nodes of one drone are attached to their In- and Out-Bridges
to enable them to receive execution triggers from remote
drones and send triggers to remote drones.

D. MISSION CONDITIONS
To realize a conditional execution flow through missions,
EAMOS provides Mission Control Structures, which are
syntactic constructs that provide conditions, loops, and

VOLUME 11, 2023 125475

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

LISTING 6. Code snippet that implements monitoring a drone node’s in-going Go-channels and blocking the node if not all preconditions are satisfied.
This code extends Go’s standard Select-clause functionality to receive from various channels simultaneously. Colors indicate: green–the passed set of
channels and the currently iterated channel, respectively; blue–created dynamic select-cases; purple–utilities of Go’s reflect-library; light-orange–channel
and data once it sends data; dark-orange–Go keywords and syntax.

LISTING 7. Method for entering the automatic channel-reading of all
in-going channels of the mission node. Colors indicate: blue–the mission
node; green–set of in-going channels coming from predecessors;
light-orange–the automatic and dynamic channel selection procedure (cf.
listing 6); purple–type of data that is passed through the channels;
dark-orange–Go keywords and utilities.

LISTING 8. The method that triggers the postconditions of a mission node
by sending data into the node’s out-going channels. Colors indicate:
green–a set of out-going channels into which data is sent; blue–the
mission node; purple–type of data sent into the channels; orange–Go
keywords and utilities.

waiting mechanisms in various forms. Table 3 provides
an overview of currently implemented control structures.
Though being integrated into EAMOS’ set of features, the
ability of the Do-control structure to interrupt executing

LISTING 9. The Method that initially activates each mission node. Once
activated, execution runs into an infinite loop of waiting until all
preconditions are satisfied, executing the actual drone action, and
triggering the postconditions as a separate thread of execution. Colors
indicate: light-blue–action that is activated; dark-blue–action type
(declaring a drone action with two parameters); light-orange–methods
that wait until all preconditions are satisfied and that trigger all
postconditions; green–set of in-going and out-going Go-channels of the
action; red–method that encapsulates the actual drone action using the
parameters of the action; dark-orange–Go keywords and syntax.

actions is not yet implemented and will be added at a later
development stage.

E. MISSION ROLL-OUT
Mission roll-out refers to all steps involving physical file
transfers among computers (copy- and deploy steps), the
compilation of the multidrone mission (compilation step),
and the building of binaries (build step). Since the drones
we used for our experiments (cf. Section VII-D) have a

125476 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

FIGURE 10. Illustration of how Go-channels of a drone’s (Drone1) local
MDG are connected to ROS-topics to enable communication with remote
drones (e.g., for triggering remote mission nodes). Mission nodes that
trigger remote mission nodes (yellow nodes) are attached to the drone’s
Out-Bridge (red dots), which forwards the messages to be sent to the
drone’s service client, where they get fed into ROS-topics that are sent to
the remote ends of Drone2, Drone3, Drone4, and Drone5 by triggering
ROS-service calls. The Out-bridge is also in charge of correctly distributing
the node’s out-going channels to appropriate individual service clients by
merging, splitting, or forwarding messages.

Raspberry Pi companion computer, compilations currently
target the ARM64-architecture. We use a small external
Raspberry Pi as an external compilation unit to supersede
the need to cross-compile from an x64 architecture (since
mission editing is most conveniently done on a desktop or
notebook computer). Mission roll-out is triggered by the user
on demand whenever the mission changes.

1) Copy Mission: This step transfers the multridrone
mission source file to the external compilation unit by
a simple file transfer (via WiFi) and initially sets up the
remote directory environment needed for the next roll-
out steps.

2) Compile Mission: On the compiling unit, the mul-
tidrone mission is then compiled by the EAMOS
Compiler following all steps described in Section V.

3) Build Mission: On the compiling unit, once the
synthesized individual drone mission source code files
from the previous compilation stage are available, the
files are compiled by the Go-Compiler to produce exe-
cutable Go binary files. Moreover, the SWIG-Compiler
is used to join the drone mission files with the EAMOS
Uniform Space files during mission compilation to
produce a compound executable drone mission binary
for each target drone of the multidrone mission (SWIG
Compilation only needs the Uniform Space C++

header files, because for usability reasons the Uniform
Space is assumed to be already compiled and available
as C++ binaries).

4) Deploy Mission: The final step is the physical file
transfer of the compiled individual drone mission files

(just a single file per drone) to the target drones (via
WiFi).

F. MISSION LAUNCH
Since EAMOS is embedded in a ROS environment,
launching missions onboard drones requires some subsys-
tems to be up and running. Thus, the mission launch
involves the following steps and systems to be launched
onboard each drone. All following steps are automatically
launched with a single executable batch file for ease of
use.

1) Sourcing ROS Environment: Initially, all involved
ROS packages need to be sourced, and several
environment variables must be set for the mission to
run.

2) LaunchMAVProxy: We use the tool MAVProxy8 that
receives MAVLink9 packages from the Pixhawk flight
controlling unit (FCU) and forwards it to whoever
needs them. We forward them to the MAVROS
program and the monitoring tool QGroundControl.10

3) Launch MAVROS: We use MAVROS11 to wrap
MAVLink messages into ROS topics, which makes the
FCU (its sensor data, its telemetry, and its capabilities)
available within our ROS environment and thus for our
ROS-based EAMOS Adapter Space.

4) Launch EAMOS Adapter Space: Each drone’s indi-
vidual adapter must run onboard the drone. The adapter
receives mission action requests from the EAMOS
Uniform Space, which is embedded in the drone’s
mission file and processes the requests toward the
drone’s hardware.

5) Launch Mission: The actual drone mission incorpo-
rates EAMOS’s Uniform Space and runs together once
launched.

6) VRPN Client (optional): Since we conducted indoor
flights, a tool was necessary to receive position data
from the motion capturing system and wrap it into ROS
topics that MAVROS can read. This tool is optional
if conducting outdoor flights since the localization is
provided through satellite data.

G. MISSION TRIGGER
An EAMOS multidrone mission is launched by starting all
individual drone missions. This brings them into an initial
ready state, where each drone waits for its first action trigger
according to the multidrone mission. EAMOS introduces
a ‘‘Ground Control Station’’ (GCS) as a virtual drone and
adds an initial mission node as the first mission statement
to each mission. The multidrone mission is launched by
sending triggers from the GCS drone to all initial mission
nodes.

8https://firmware.ardupilot.org/Tools/MAVProxy/
9https://mavlink.io/en/
10http://qgroundcontrol.com
11http://wiki.ros.org/mavros

VOLUME 11, 2023 125477

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

FIGURE 11. Illustration of the communication (e.g., triggering of mission nodes) among four remote drones, Drone2, Drone3, Drone4, and Drone5, with a
local drone, Drone1 using In- and Out-Bridges. Red arcs are Go-channels, blue arcs are received service calls, and green arcs are sent service calls. While
Out-Bridges simply pack the triggering information into service calls and send it to the corresponding remote end, In-Bridges receive remote service calls,
read the included node triggering information and forward it to the corresponding local node.

TABLE 3. Overview of Mission Control Structures in EAMOS.

VII. EXPERIMENTAL SETUP
A. EXPERIMENTS
To demonstrate the applicability and correct functionality of
our EAMOS framework, we conducted four experiments12

(experiments A, B, C, D) that highlight different aspects of the
framework. The experimental scenarios range from simple
to complex and target both single drone (experiment A) and
multidrone missions (experiments B, C, D). To emphasize
the abstraction and generalization capabilities of EAMOS’
Middle Layer to support heterogeneous drone platforms,
we set up two hybrid experiments (experiments C, D)
that involve two real drones and one simulated drone in
the same multidrone mission. Furthermore, experiment D
involves the most complex scenario, through which we
demonstrate EAMOS’ mission control structures by setting
up an interactive (as well as hybrid) multidrone mission,
which enables the user to influence mission execution
manually.

We also tested EAMOS by executing missions using
Microsoft’s Airsim2 in its 2023 version simulation

12A video of the experiments is available at https://youtu.be/
JfVlbXMdh90.

environment, which provided us with a highly accurate and
appropriate drone vehicle and environment simulation. Our
ROS-based and platform-agnostic architecture allowed us to
easily use the Software-in-the-loop approach, where we ran
the same flight controller firmware on our simulated drones
as on the real quadcopters. Moreover, the EAMOS drone
mission programs could be deployed and executed in the
simulation similarly to the real drones.

Table 4 summarizes the experiments, and Table 7 provides
an overview of the results of all experiments. Section VIII
presents details of the four experiments, explaining the
purpose, the mission, and the results.

B. EVALUATION
We examined the following mission aspects to analyze the
experiments and evaluate the performance.

1) Mission Compilation Duration: Mission compila-
tion is part of mission roll-out and comprises the
actual mission compilation and its stages of parsing,
graph processing, slicing, synthesizing, and setup (cf.
Section V).

2) Mission Deployment Duration: Mission deployment
refers to the physical file transfers of the compiled

125478 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

drone deployment packages from the external mission
compiler (the external Raspberry) to the target drones.

3) Total Roll-Out Duration: In addition to compilation
and deployment duration, the completemission roll-out
comprises the file transfers to the external mission
compiler, the setup of remote directories, and the
removal of potentially existing files.

4) Assessment of Mission Execution: To assess whether
the drones performed exactly as specified by the
corresponding mission, the movements of the drones
during the experiments were tracked and recorded by a
motion tracking system, mirrored into several detailed
log files, and observed by multiple human testers.

5) Number of MDG Nodes: Each node of a drone’s
Mission Dependency Graph is synthesized to an
executable mission statement in the Go drone mission
file by the EAMOS’Mission Synthesizer (cf. lines 2-11
in Listing 4).

6) Number of internal MDG Arcs: Internal arcs of
a drone’s MDG represent local actions onboard the
same drone that are linked together by Go-channels
(cf. Listing 5 and Figure 9).

7) Number of external MDGArcs: Action triggers from
remote drones are represented by in-going external
arcs and are dispatched through EAMOS’ In-Bridge.
In contrast, triggers to remote drones are represented
by outgoing external arcs and are dispatched through
EAMOS’ Out-Bridge (cf. Figure 11). Both bridges use
ROS service calls and EAMOS’ Service Clients and
Service Providers for the underlying communication
(cf. Figure 10).

8) Mission File Size: The file size of the single binary
mission file, which is the main deliverable of the
mission roll-out for a particular drone, is executed to
start the drone’s mission onboard that drone.

9) ROS Service Calls: As mentioned before, action
triggers from a remote drone or to a remote drone are
realized by ROS service calls, where the number of
received service calls of a drone needs to match the
number of in-going external arcs of its MDG, and the
number of sent service calls needs to match the number
of outgoing external arcs of its MDG.

Table 6 provides an overview of the evaluated aspects and
from where their values are obtained.

C. DATA ACQUISITION
To consistently track all activities during mission execution,
EAMOS maintains three kinds of detailed log files that
make the internal processes traceable and documentable.
In contrast, every drone involved in the mission maintains its
own log files to have a clear separation of concerns regarding
drone activities:

1) Mission Log File: Logs high-level mission activities,
such as internal action nodes triggering other nodes,
external node triggers passing through the In- and
Out-bridges by receiving and sending service calls,

and monitoring the state of pre- and post-conditions of
action nodes.

2) Middle Layer Uniform Log File: Logs which actions
were triggered by a particular drone’s mission file and
how they were passed further to the Adapter Space of
the drone.

3) Middle Layer Adapter Log File: Logs all activities
of EAMOS’ Adapter Space onboard a particular drone,
which makes the actual execution of mission actions
visible and includes interesting sensor information such
as drone locations.

Furthermore, the experiments were video recorded to
document the exact development of each experiment. Since
experiments B and C involve a simulated drone, the screen
that showed the virtual drone in its simulated environment
(as well as the real drones in the background) was filmed
simultaneously to the camera that primarily filmed the
real drones. Finally, the ‘‘motion takes’’ from Optitrack’s13

Motive14 were also recorded and precisely showed the
movements of the real drones in the drone hall. Table 5
provides an overview of EAMOS’ data acquisition during the
experiments.

D. ENVIRONMENT
We conducted our experiments at dronehub Klagenfurt15

which provides a large drone hall with a flight volume ofmore
than 1300m3. Drone motions can be precisely captured with
a 360Hz Optitrack13 motion tracking system composed of 37
‘‘Prime17W’’ infrared-detecting cameras (cf. Figure 12).

EAMOS was evaluated indoors because the experiments
were more manageable and safer to carry out and observe.
Since the drones were secured by thin ropes in the drone hall,
all waypoints of the missions were within a few meters of
the starting positions. EAMOS can be applied for outdoor
missions without any modifications; only drone positioning
must be changed from motion capturing to GPS positioning,
which is the standard position method for most drones.

To set up and perform our four experiments consisting
of single drone, multidrone, and hybrid scenarios, we used
a setup essentially consisting of the following components
(cf. Figure 13):

1) two Pixhawk416/PX4-equipped quadcopters with an
on-board Raspberry-Pi v4 companion computer

2) a mission notebook for setting andmonitoringmissions
remotely onboard individual drones

3) a desktop computer for executing the SITL drone
simulation with its 3D-realistic Airsim2 simulation (for
experiments C and D)

4) a Raspberry-Pi v4 computer in an external cooling case,
used for ad-hoc compiling and deploying missions

13https://optitrack.com/
14https://optitrack.com/software/motive/
15https://uav.aau.at
16https://docs.px4.io/v1.12/en/flight_controller/pixhawk4.html

VOLUME 11, 2023 125479

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

TABLE 4. Overview of the experiments conducted to demonstrate the applicability of the EAMOS framework. # Actions: total number of actions called
from EAMOS’ Uniform API (number of Pause-Actions used for evaluation stated in parentheses). # Par- or Seq-Blocks: total number of sequential and
parallel execution blocks in the mission. Conditional: states whether the mission involves mission control structures. Hybrid: states whether simulated
drones are involved in the mission.

TABLE 5. Overview of the data acquisition during the conducted
experiments to document the results.

TABLE 6. Overview of the aspects that were evaluated wrt. each
conducted experiment.

5) two remote controls for the drones to be able to take
over manual control for safety reasons

6) a Microsoft X-Box-controller to manually control the
simulated drone (for experiment D)

7) the Optitrack13 desktop computer running Optitrack’s
Motive14 GUI for motion capturing

8) the WIFI-infrastructure of the drone hall

E. DRONES
For our experiments, we used two identical quadcopters,
‘‘twinFOLD SCIENCE v2’’ customized by ‘‘twins GmbH’’
(see Figure 14). The length of one rotor arm is 414mmand the
overall beam has a length of 520mm. Its maximum take-off-
and landing weight is 1700 g while using a 4-cell battery with
14.8V and 5500mAh. The used propellers had three blades
with a 153.07mm diameter, a 4.7 in incline, and a weight of
6.46 g. The propellers were actuated by four brushless ‘‘T-
MOTOR F40 PRO V FPV’’ motors with 1950KV.

Each drone was equipped with a Holybro Pixhawk
416 flight controlling unit (FCU) and an electronic speed

FIGURE 12. The drone hall of the dronehub Klagenfurt has
150 m2 ground area, 10 m height, and the 1300 m3 capturing volume.
A protective cage in the background protects the operators while
conducting drone flights [Daniel Waschnig (AAU)].

FIGURE 13. Overview of the computer systems we used in our
experimental setup. One notebook with two screens (A) was used to
remotely access the Raspberry Pi computers onboard the drones to
monitor diverse drone states and to launch the missions. A desktop
computer showed the 3D real-time position data of the drones by
Optitrack’s Motive on two screens (D). Another desktop computer ran
Airsim and the 3D virtual drone simulation on one screen (B) and the
attached PX4 software-in-the-loop flight controller simulation on another
screen (C). An external Raspberry Pi was used for mission compilation
(D). One camera (F) filmed the virtual drone in the foreground and the
real drones in the background. Another camera (E) was placed next to the
real drones (G).

controller (ESC) of type ‘‘FlyColor X-Cross BL-32 / 35A’’.
We used the most recent PX417 firmware (v1.13.3) for the
Pixhawk boards. Additionally, each drone was equipped with

17https://px4.io/

125480 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

FIGURE 14. twinFOLD SCIENCE quadcopter equipped with a mounted
battery (center, red), GPS antenna (with blue LED light), antenna for
telemetry (left, small ant.), WiFi antenna (left, long ant.), and one
IR-reflective marker for the mocap-system (right, small gray bulb).

a Raspberry Pi 4 B onboard computer that was linked to
the FCU by a USB-to-serial TTL adapter, whose source was
the TELEM2 port of the Pixhawk FCU with a baud rate of
1000000 b/s. The onboard computer had WiFi connectivity
and ran Ubuntu 20.4.05 LTS (focal fossa). To increase WiFi
connectivity for the flights, each drone was equipped with an
external WiFi antenna.

VIII. EXPERIMENTS
A. EXPERIMENT: SINGLE DRONE MISSION
1) PURPOSE
Experiment A aims to test and evaluate the roll-out and
execution of a single drone mission with one real drone.
The compilation was performed on our external EAMOS
mission-compilation unit (i.e., the external Raspberry Pi)
and took approximately 2-3 minutes for the overall roll-out
(including file transfers over WiFi).

The mission is a simple fly-to scenario in which the
drone takes off and flies to four positions that describe a
rectangular flight path before it lands at its starting position.
Without loss of generalization, any mission actions can
be used to demonstrate EAMOS’ capability to correctly
execute both single- and multidrone missions by synchro-
nizing action executions wrt. sequential or parallel action
arrangements within a mission. Hence, the scenarios in the
experiments described here use simple fly-to actions in their
missions.

2) MISSION DESCRIPTION
In the following, Listing 10 shows the EAMOS mission
specification for experiment A, and Figure 15 shows its
Mission Execution Graph. To clearly interpret the drone’s
movements for human observers, we let the mission pause
for five seconds between each mission action using the
EAMOS Pause-action (i.e., PauseFor(5)). We removed
these Pause-actions from the mission specification and

the mission graphs shown in this section to not degrade
readability.

3) RESULTS
The results of experiment A are summarized in Table 7 in
column ‘‘A’’. The presented values include 8 Pause-actions
of the mission executed in experiment A, which were not
included in the listing, and the figures of this section to favor
readability. Since this is a single drone mission, the only
external in-going arc and received service call is the initial
trigger from the ground control station to begin the mission.

B. EXPERIMENT: TWO-DRONES MISSION
1) PURPOSE
The purpose of experiment B is first to demonstrate full
mission roll-out (i.e., file transfers, compilation, setup,
deployment) and, in particular, the execution of an EAMOS
multidrone mission involving two real drones. This scenario
is more complex than experiment A because it involves
sequential and parallel executions. As stated before, the
kind of the actual actions is not essential for demonstrating
correct mission execution, but the synchronization of the
drones among themselves wrt. the sequential and parallel
action executions as specified in the multidrone mission
is of paramount importance for demonstrating EAMOS’
multidrone capabilities.

2) MISSION DESCRIPTION
After both drones have armed themselves one after another,
they take off in parallel to a height of 1.5m. Once both
drones reach their take-off height, both keep performing
simultaneous flight maneuvers by starting with a simulta-
neous flight for 1m into positive X-direction. Once both
have reached their target points, both fly simultaneously
1m into positive Y-direction. Once they have reached their
target points, both fly 1m into negative X-direction. Finally,
when both have reached their target points, both fly 1m
in negative Y-direction. After reaching their target points,
they hover above their respective starting points. As a final
sequential maneuver, one drone ascents by 0.5m, and when
this position has been reached, the other drone performs the
same ascent. When both drones hover at a height of 2m,
both start their landing descent simultaneously and disarm
themselves after landing simultaneously. Listing 11 shows the
multidrone mission specification, Figure 16 shows the Mis-
sion Execution Graph for the multidrone mission, and Fig-
ures 17 and 18 show theMissionDependencyGraphs for both
drones.

3) RESULTS
The results of experiment B are summarized in column B
in Table 7. The presented values include 11 Pause-actions
of the mission executed in experiment B, which were not
included in the listing, and the figures of this section to
favor readability. Note that the number of external in-going

VOLUME 11, 2023 125481

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

arcs of each drone’s MDG matches the number of received
service calls of each drone and that the same holds for
outgoing external MDG arcs and sent service calls per
drone.

C. EXPERIMENT: THREE-DRONES HYBRID MISSION
1) PURPOSE
The purpose of experiment C is to demonstrate the capability
of EAMOS and its Middle Layer, respectively, to incorporate
different drone platforms within the same multidrone mis-
sion. To emphasize EAMOS’ possibilities, we chose a hybrid
experiment involving a virtual drone (Drone3) and two real
ones (Drone1 and Drone2).

In this experiment, the PX4 flight controller of Drone3
is fully simulated in a Software-in-the-Loop setup, while
Microsoft’s Airsim simulator 3D realistically simulates the
drone itself. Both simulation environments and the deployed
EAMOS drone mission for Drone3 run on a separate desktop
computer, which is connected to the same WIFI-network as
the other real drones and thus acts as if it would be another
physical drone.

2) MISSION DESCRIPTION
In this scenario, Drone1 and Drone2 fly along the same
rectangular flight path as in experiment B, but their move-
ments depend on the movements of the virtual Drone3.
Drone3 takes off and flies a 5m×5m rectangular path.
While arming and take-off for all drones happen both in
parallel and sequentially, respectively, at mission start, the
real drones’ individual movements only start when Drone3
finishes its appropriate movement. This is achieved by simply
positioning the separate movements of Drone3 before the
parallel movements of the real drones within a sequential
block in the mission. In the end, all drones land and disarm
in parallel. Listing 12 shows the mission specification for the
scenario, Figure 19 shows the Mission Execution Graph, and
Figures 20, 21, and 22 show the Mission Dependency Graphs
for both drones.

3) RESULTS
The results of experiment C are summarized in column
C in Table 7. As expected, it was irrelevant for the
EAMOS framework that one drone was virtual and two were
real. The multidrone mission18 and their sliced individual
drone missions controlled the corresponding drones they ran
onto, independent of whether it was a real or simulated
drone. As in the previous experiments, the number of
received and sent service calls matches the number of
in-going and outgoing MDG arcs of each of the three
drones.

18Due to the Pause-actions inserted into the mission, the virtual drone was
too long in the offboard mode and performed a short landing-and-launch
maneuver between mission actions. However, the overall mission execution
was not affected by this unspecified behavior.

D. EXPERIMENT: THREE-DRONES INTERACTIVE HYBRID
MISSION
1) PURPOSE
This most complex scenario aims to demonstrate the two
EAMOS mission control structures, Repeat-While and Wait-
Until, and how they can provide a simple conditional
execution flow. To make the scenario even more expressive,
we added the virtual Drone3 to the mission and connected it
with an additional remote control, which a person operated
during the experiment. The idea of the mission is now that
the location of the manually controlled Drone3 affects the
movements of the two real drones. This added interactivity to
the mission because the real drones were directly affected by
the virtual drone, which was directly affected by the human
operator, who indirectly affected the real drones.

2) MISSION DESCRIPTION
The mission involves the real drones Drone1 and Drone2 and
the simulated Drone3. While the real drones fly in our drone
hall, the virtual drone flies in a 3D-simulated environment,
providing four square-shaped areas on the ground that are
clearly separated by a couple of meters. Each of these
squares now affects the real drones’ movements differently
if the simulated drone hovers over them. The squares are
clearly marked and labeled as ‘‘Drone1 X+’’, ‘‘Drone1
X−’’, ‘‘Drone2 X+’’ and ‘‘Drone2 X−’’. If Drone3 hovers
over square ‘‘Drone1 X+’’, the real Drone1 flies 20 cm
into positive X-direction, and if Drone3 hovers over square
‘‘Drone1 X−’’, Drone1 flies 20 cm into negative X-direction,
which results in a controlled movement of Drone1 of flying
back and forth in the drone hall. The same holds for the other
two squares wrt. the real Drone2.

Listing 13 shows the mission specification for the scenario,
and Figure 23 shows the Mission Execution Graph.

3) RESULTS
As in experiment C, the ensemble of virtual and real drones
within the same multidrone mission worked faultlessly.
In particular, the interplay of Drone3 with the real drones
through themission control structures resulted in the expected
movements of Drone1 and Drone2.

Table 7 in column D summarizes the results of experiment
D. This time, the number of in-going and outgoing external
arcs of the MDG of the drones does not match the number of
received and sent service calls because due to the interactive
character of the mission, the dynamic runtime of the mission
deviated from its static specification.

During mission execution, the manually remote-controlled
Drone3 flew over square ‘‘Drone1 X+’’ and stayed there
so long that Drone1 flew three times in positive X-direction
(3 service calls from Drone3 received by Drone1), followed
by flying to the square ‘‘Drone1 X−’’, where it stayed so
long, that Drone1 flew two times back in negative X-direction
(2 service calls from Drone3 received by Drone1). Next,
Drone3 flew to square ‘‘Drone2 X+’’ to let Drone2 fly two

125482 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

TABLE 7. Results of the experiments A-D, presented per drone and showing all relevant evaluation criteria as described in Table 6. Yellow, green, and
orange represent the drone-related results for Drone1, Drone2, and Drone3.

times in positive X-direction, followed by flying to the square
‘‘Drone2 X−’’ to let Drone2 fly back two times in negative
X-direction (both squares resulted in 2 service calls each from
Drone3 received by Drone2).

E. STRESS-TEST
Moreover, we investigated the scalability of the EAMOS
mission compiler wrt. the size of the mission specification.
While experiments A–D missions were compiled and exe-
cuted on embedded Raspberry Pi platforms, we conducted a
separate stress test on a standard desktop computer. We used
the Go profiler pprof19 to asses the runtime and memory
requirement, firstly, of the EAMOS mission compiler during
compilation, and secondly, of the runtime environment during
the start of a multidrone mission.

We assessed two missions: a small single-drone mission
with a 34-node MEG and a huge 20-drone mission with more
than 5 000 nodes. Compilation of the first mission required
4 368.78 kB of memory and took 50ms. Launching this
mission for Drone1 (with 22 nodes) required 3 749.50 kB of
memory and took 916.63ms. Compiling the second mission
required 23 979 kB ofmemory and took 2.34 s. Launching the
mission on a randomly selected drone (with an MDG with
634 nodes) out of the 20 drones required 4 257.45 kB and took
733.64ms. Since each drone, once it received its deployed
drone mission program, executes independently in an action-
by-action manner on its own, we conclude from this stress
test that the EAMOS space and runtime requirements scale

19https://github.com/google/pprof

FIGURE 15. Experiment A: Mission Execution Graph and Mission
Dependency Graph for the EAMOS mission of Drone1 (yellow). Since this
is a single drone mission, MEG and MDG are identical. The graph is
compiled from the specification of Listing 10.

well and thus do not impose limitations regarding the size of
practically relevant multidrone missions.

IX. DISCUSSION
This section discusses our experiments compared to related
approaches as presented in Section II. First of all, it should
be noted that a direct, qualitative comparison with the
related approaches is hardly feasible due to the significant
deviations between some of the approaches and the lack of
availability of functional software. Most of the investigated
text-based approaches use the declarative paradigm (mostly
XML dialects) for mission specification, which does not
support the specification of sequential or parallel orders of
actions. This is in contrast to the imperativemission paradigm
used by EAMOS.

Since EAMOS is also text-based, we focus in the following
discussion only on the text-based approaches ‘‘TML’’,
‘‘MDL’’, ‘‘Perdomo’’, ‘‘AVCL’’, ‘‘Bagnitckii’’, ‘‘DRESS-
ML’’ and ‘‘Director Tools’’ as presented in Table 2.

• Action Synchronization: As stated in Section II-B,
none of the investigated approaches offer an explicit
action synchronization as EAMOS does. However,

VOLUME 11, 2023 125483

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

LISTING 10. Experiment A: mission specification. After arming, the single
drone takes off, flies along a rectangular path, lands at its starting point,
and disarms. Pause-actions that were originally placed between actions
were removed to favor readability.

LISTING 11. Experiment B: mission specification. After arming
sequentially, both drones take off in parallel and fly along a rectangular
path. The drones fly along one side of the rectangle simultaneously and
wait until both reach the corresponding corner point before continuing
with the next side. Pause-actions that were originally placed between
actions were removed to favor readability.

‘‘TML’’ provides event handlers and event tags, which
might be used for synchronizing events, but these are
not intended to synchronize actions on such a detailed
level as we did in our experiments (e.g., drones wait
for each other until they reach a particular point).
Although ‘‘MDL’’ supports multiple drones, there
seems to be no way to control the execution order of
drone actions. MDL’s team description language and
mission description language define groups of drones

LISTING 12. Experiment C: mission specification. After taking off, the real
drones, Drone1 and Drone2, make four movements along a rectangular
path. At the same time, Drone3 is also flying along a rectangular path
within its virtual world. By using the parallel blocks within the sequential
block, the multidrone mission synchronizes the movements of the real
drones with the ones of the virtual drone, such that the real drones do
not make their moves before Drone3 has finished its move.

and assign tasks (e.g., extinguishing a forest fire).
Still, individual drone synchronization is out of the
scope of ‘‘MDL’’. ‘‘Director Tools’’ behave similarly by
defining camera shooting objectives, which result in a
mission specification that is fed into a mission planner,
which then determines how many drones are required
to perform the mission and how the drones fly without
involving the user in the drone’s synchronization. The
other approaches do not support multiple drones.

• Specification Syntax: ‘‘TML’’, ‘‘MDL’’, ‘‘Perdomo’’,
‘‘AVCL’’ and ‘‘Director Tools’’ use XML dialects,
which make their mission specifications syntactically
lengthy and complex to write without a supporting
syntax editor. Using any of these notations, the length

125484 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

FIGURE 16. Experiment B: Mission Execution Graph for Drone1 (yellow) and Drone2 (green). Nodes not yet assigned to a drone are kept in white. The
graph is compiled from the specification of Listing 11.

FIGURE 17. Experiment B: Mission Dependency Graph of Drone1 (yellow) indicating the dependencies to Drone2 (green). Solid lines represent local
dependencies, while dashed lines represent external dependencies. The graph is compiled from the specification of Listing 11.

FIGURE 18. Experiment B: Mission Dependency Graph of Drone2 (green) indicating the dependencies to Drone1 (yellow). Solid lines represent local
dependencies, while dashed lines represent external dependencies. The graph is compiled from the specification of Listing 11.

of the missions of our experiments would significantly
increase, and their readability would suffer. Although
the ‘‘Director Tools’’ GUI helps to increase usability,
it is so specialized that it is not applicable to domains
other than media productions. In contrast, ‘‘Bagnitckii’’
clearly supports the usability of its missions and offers
a clean and concise notation that allows one to focus
on the mission content rather than on the syntax of
the mission. The special Given-When-Then notation of

‘‘DRESS-ML’’ favors the readability of their mission
fragments, aiming for good mission editing usability.
Nevertheless, this notation is tailored to exceptional
situations rather than regular mission flows, making
it barely applicable to standard scenarios as in our
experiments A–D.

• Architecture and Platforms: ‘‘TML’’ seems to be
based on a central execution architecture. However,
since it uses the generic Aerostack3 framework, it can

VOLUME 11, 2023 125485

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

FIGURE 19. Experiment C: Mission Execution Graph for Drone1 (yellow), Drone2 (green) and Drone3 (orange). Nodes not yet assigned to a drone are kept
in White. The graph is compiled from the specification of Listing 12.

be used with heterogeneous drone platforms. All other
approaches use a centralized architecture or do not
indicate a distributedmission execution. ‘‘AVCL’’, ‘‘Per-
domo’’ and ‘‘Bagnitckii’’ target underwater vehicles
only, which makes it hard to compare them with
our experiments and the aspect of drone platform
interoperability. While ‘‘DRESS-ML’’ does not provide
any information on compatible platforms, the ‘‘Director
Tools’’ only describe a single drone platform in the
context of their work. None of the discussed text-based
approaches mention ROS in any context.

• Positioning: As EAMOS, ‘‘TML’’, ‘‘Perdomo’’,
‘‘AVCL’’ and ‘‘Director Tools’’ allow using absolute
coordinates for specifying locations, while the other
approaches use geographic coordinates in the WGS84-
format (latitude, longitude, altitude), which affects the
resolution of the activity space of the drones and makes
it rather inconvenient to use locations on a centimeter or
meter scale.

• Virtual Drones: ‘‘MDL’’ and ‘‘Bagnitckii’’ have neither
been tested in simulations or real experiments. All other
approaches have been tested in at least simulations.
However, none of the approaches indicate that an effort-
less switch between a simulated and a real environment
is supported. In particular, no approach indicates that
hybrid missions, such as those presented in experiments
C and D, are supported or envisioned. The ability
to incorporate virtual drones would open interesting
possibilities regarding test and research simulations
wrt. using digital twins (cf., [47]).

Overall, we draw the following conclusions from the
experiments wrt. the investigated approaches.

• While EAMOS’ syntax is concise, comparable mission
specifications from the investigated approaches (using
XML-like and similar notations) would be much more
lengthy and could not be written quickly in an out-of-
the-box manner.

• None of the investigated approaches provide an easy-to-
read and graphical representation of the overall mission
that is automatically provided by the framework, such
as EAMOS provides its different graph representations
that show the mission from its beginning to its end.

• Due to the fully decentralized architecture in EAMOS,
we observed during our experiments that if any drone
fails to continue for whatever reason, the remaining
drones not dependent on the failing drone are unaffected
and could continue with their part of the multidrone
mission. For the few investigated approaches that offer a
decentralized execution, it is not always clear how such
problems would affect the overall mission.

• To the best of our knowledge, we assume that experi-
ments B, C, and D could not be realized with any of the
investigated approaches due to the described reasons.

X. CONCLUSION
To our knowledge, EAMOS20 is the first multidrone
mission-execution framework facilitating an intuitivemission
specification with advanced control structures and supporting
transparent mission execution in a simulation environment,
on real ROS-based drone platforms, and in a hybrid setting.
With EAMOS, we have developed a complete mission
execution framework consisting of a compiler that processes
text-basedmultidronemissions, an execution engine that runs
onboard drone platforms and executes dronemissions, as well
as a middle layer tier that sits on top of ROS and enables the
incorporation of different drone platforms.

We successfully showed the feasibility and correctness
of our approach by conducting four different experiments
with real and virtual drones, each demonstrating different
aspects and capabilities of our framework. Through the
experiments, we demonstrated that the size of the resulting
mission graphs (in terms of the number of nodes and arcs) was
reasonably small and in accordance with the input mission
specifications. Moreover, we showed that the numbers of
internal and external arcs of the statically generated MDGs
exactly corresponded to the number of received and sent ROS
service calls. All mission actions were precisely executed as
defined in the mission specification. The mission execution
times were almost constant for repeated experiments, with
only slight variations due to the physical drone movement.
While conducting the experiments, compiling and deploying
multidrone missions was reasonably short for performing

20The entire source code of EAMOS is available as a research prototype
on GitHub. Contact the first author to get access.

125486 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

LISTING 13. Experiment D: mission specification. The real drones Drone1 and Drone2 take off and move only when the virtual Drone3 is above one of
four quadrants within its virtual world, which are named as follows: upXD1–let Drone1 move forward; downXD1–let Drone1 move backward; upXD2–let
Drone2 move forward; downXD2–let Drone2 move backward. The mission control structure RepeatWhile is used to loop the mission logic as long as
Drone3 is above the overall test area (defined by the rectangle (-30/-30/0) to (30/30/0) that includes the four mentioned quadrants). Another mission
control structure, WaitUntil, is then used to issue the movement of a real drone whenever Drone3 is above one of the quadrants (also defined by their
rectangles).

re-compilations and continuous deployments in an ongoing
workflow. Finally, our decision to implement EAMOS from
scratch was based on its key capabilities, such as explicit
synchronization, distributed execution engine, platform ver-
satility, and the limited software availability of related
approaches.

A. REAL-WORLD APPLICATIONS
Though this work has focused on fundamental concepts
and prototypical implementation of mission specification
and execution, we briefly discuss implementation aspects
of potential real-world applications with EAMOS. First,
a strength of our framework from an end user’s perspec-
tive is the ability to aggregate basic actions into special
activities through reusable functions. Since EAMOS mission
specifications are Go source code, mission specifications
can be imported by other mission specifications to use
their functions, similar to external program libraries for
a computer program. Second, drone platforms provide a
steadily increasing set of hardware and software capabilities

that can be integrated via the EAMOS Middle Layer.
Naturally, the actions provided by the public API strongly
influence the scope of potential applications.

We foresee several real-world applications that can be
specified and executed with EAMOS. Monitoring and
inspection applications often require multiple drones with
specific actions that must be synchronized. Coordination
and synchronization are typically required at a higher level
and triggered by conditions achieved from the actions.
Search and surveillance missions are another application
domain with specific (search) actions for multiple drones and
condition-based synchronization. Regardless of the specific
application, a real-world deployment will definitely require
implementation effort for additional EAMOS functionality
and the integration of drone capabilities into the middle layer.

B. LIMITATIONS
To round up the discussion, we enlist some limitations of
the current EAMOS implementation and reflect on dynamic
drone environments and mission deviations.

VOLUME 11, 2023 125487

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

FIGURE 20. Experiment C: Mission Dependency Graph of Drone1 (yellow) indicating the dependencies to Drone2 (green) and Drone3 (orange). Solid lines
represent local dependencies, while dashed lines represent external dependencies. The graph is compiled from the specification of Listing 12.

FIGURE 21. Experiment C: Mission Dependency Graph of Drone2 (green) indicating the dependencies to Drone1 (yellow) and Drone3 (orange). Solid lines
represent local dependencies, while dashed lines represent external dependencies. The graph is compiled from the specification of Listing 12.

1) EAMOS has been developed as a research prototype
with a small set of implemented actions that naturally
limit the functionality and complexity of missions.
However, additional actions can be easily integrated via
EAMOS’ Middle Layer.

2) EAMOS does currently not support adaptations of
missions during execution. EAMOS compiles and
deploys complete missions prior to execution and
executes them until they terminate or are shut down
forcefully.

3) For increased flexibility and portability, EAMOS is
built upon several external components and libraries,
such as MAVProxy, MAVROS, and ROS’ action_lib
packages. EAMOS’ functionality depends on the
availability and evolution of these external entities.

4) Although EAMOS is designed as a decentralized
framework, the current implementation based on
ROS version 1 requires a dedicated primary node,
which puts one drone (or, optionally, a base sta-
tion) in charge of maintaining the ROS network.
An upgrade to ROS version 2 would remove this
limitation.

In its current state, EAMOS deals with uncertainties in the
drone’s environment through its palette of mission control
structures (cf., Section VI-D). Loops and conditions, if used
in concurrent execution branches of a mission (), easily
resemble the functionality of event handlers, which are run-
ning in the background and respond to external events. This

was demonstrated by experiment D (cf., Section VIII-D),
in which the RepeatWhile and WaitUntil structures were
used to test whether the virtual drone was within a
particular region, what was then responded by the real
drones.

Partial deployment of the multidrone mission can handle
mission deviations that might occur during the runtime of a
mission. This is possible because EAMOS supports replacing
drone mission programs onbord drones while the overall
mission executes. This means that if a mission changes, the
mission specification can be adapted and newly compiled,
and then only those drone mission programs that contain
changed mission parts might be deployed to the drones.

C. FUTURE WORK
Overall, we envision promising potential in EAMOS and see
several examples for further advancing our framework.

1) Advanced Actions: A natural next step is to add more
powerful actions to the Uniform API and implement
them for one or more drone platforms. Examples of
actions include handling onboard cameras (e.g., data
capturing, processing, and data delivery) or realizing
advanced flight maneuvers (e.g., orbiting and specific
flight patterns).

2) Action Interruption: Currently, ROS’ action_lib lets
us use custom execution feedback and the ability
to send a cancellation request from an action client
to an action server. However, adapter actions can

125488 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

FIGURE 22. Experiment C: Mission Dependency Graph of Drone3 (orange) indicating the dependencies to Drone1 (yellow) and Drone2 (green). Solid lines
represent local dependencies, while dashed lines represent external dependencies. The graph is compiled from the specification of Listing 12.

FIGURE 23. Experiment D: Mission Execution Graph for Drone1 (yellow), Drone2 (green), and Drone3 (orange). Nodes not yet assigned to a drone are
kept in white. Right-arrow nodes indicate condition beginnings (repeat_while and wait_until), and left-arrow nodes indicate terminations of conditions
(e.g., terminal_repeat). Dotted lines indicate loops. The graph is compiled from the specification of Listing 13.

receive cancellation requests, but since each adapter
action requires its individual cancellation handling
to guarantee sound action control, the cancellation
mechanisms are not yet implemented.

3) Event Handlers: An introduction of real event han-
dlers that replace the ‘‘busy waiting’’-logic of the
mission control logic shown in Experiment D that were
used to react on external events will support usability
and improve runtime performance.

4) Exception Handling: The integration of mission
exception handling would improve the reliability of
EAMOS mission execution. This enables mission
authors to specify actions in case of unexpected events,
improving the robustness and safety of executing
missions.

5) Dynamic Mission Adaptations: Changes to a run-
ning mission are envisioned to be supported by
EAMOS on the mission action level rather than
on the mission graph level. This means that the
drone execution environment shall be able to adapt
individual MDGs of executing drone mission pro-
grams according to requests to the program from
outside.

6) Source Code Injection: Integrating arbitrary Go code
into mission specifications would improve flexibility
for expert mission authors. The injected code must be
transparently compiled and deployed on the drone’s
intermediate mission file.

7) User Interface: Since EAMOSmissions conform with
Go syntax, writing them is already convenient using the

VOLUME 11, 2023 125489

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

integrated development environment (IDE). However,
a dedicated EAMOS IDE with syntax highlighting,
code completion, and mission monitoring features
would further enhance the user experience of mission
authors.

To conclude, we are confident that EAMOS will help
to simplify mission specification and automate mission
execution, enabling novel multidrone applications.

ACKNOWLEDGMENT
The authors would like to thank Hermann Zunter for his
assistance with the drone software and Rockson Agyeman,
Kyriakos Lite, and Vitali Korzhun for their support with the
drone experiments.

REFERENCES
[1] B. Rinner, C. Bettstetter, H. Hellwagner, and S. Weiss, ‘‘Multidrone

systems: More than the sum of the parts,’’ Computer, vol. 54, no. 5,
pp. 34–43, May 2021.

[2] D. C. Tsouros, S. Bibi, and P. G. Sarigiannidis, ‘‘A review on UAV-based
applications for precision agriculture,’’ Information, vol. 10, no. 11, p. 349,
Nov. 2019.

[3] S. Guan, Z. Zhu, and G. Wang, ‘‘A review on UAV-based remote sensing
technologies for construction and civil applications,’’Drones, vol. 6, no. 5,
p. 117, May 2022.

[4] S. Jordan, J. Moore, S. Hovet, J. Box, J. Perry, K. Kirsche, D. Lewis,
and Z. T. H. Tse, ‘‘State-of-the-art technologies for UAV inspections,’’ IET
Radar, Sonar Navigat., vol. 12, no. 2, pp. 151–164, Feb. 2018.

[5] D. Sziroczak, D. Rohacs, and J. Rohacs, ‘‘Review of using small UAV
based meteorological measurements for road weather management,’’ Prog.
Aerosp. Sci., vol. 134, Oct. 2022, Art. no. 100859.

[6] N. Dilshad, J. Hwang, J. Song, and N. Sung, ‘‘Applications and challenges
in video surveillance via drone: A brief survey,’’ in Proc. Int. Conf. Inf.
Commun. Technol. Converg. (ICTC), Oct. 2020, pp. 728–732.

[7] V. C. Hollman, ‘‘Drone photography and the re-aestheticisation of nature,’’
in Decolonising and Internationalising Geography. Cham, Switzerland:
Springer, 2020, pp. 57–66. [Online]. Available: https://link.springer.
com/book/10.1007/978-3-030-49516-9#bibliographic-information

[8] I. Karakostas, I. Mademlis, N. Nikolaidis, and I. Pitas, ‘‘Shot type
feasibility in autonomous UAV cinematography,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2019, pp. 1937–1941.

[9] M. DeMarsico and A. Spagnoli, ‘‘Using hands as an easy UAV joystick for
entertainment applications,’’ in Proc. 13th Biannual Conf. Italian SIGCHI
Chapter, Designing Next Interact., Sep. 2019, pp. 1–9.

[10] J. Scherer, S. Yahyanejad, S. Hayat, E. Yanmaz, T. Andre, A. Khan,
V. Vukadinovic, C. Bettstetter, H. Hellwagner, and B. Rinner,
‘‘An autonomous multi-UAV system for search and rescue,’’ in Proc.
1st Workshop Micro Aerial Vehicle Netw., Syst., Appl. Civilian Use,
May 2015, pp. 33–38.

[11] E. Allak, C. Brommer, D. Dallenbach, and S. Weiss, ‘‘AMADEE-18:
Vision-based unmanned aerial vehicle navigation for analog Mars mission
(AVI-NAV),’’ Astrobiology, vol. 20, no. 11, pp. 1321–1337, Nov. 2020.

[12] M. Quaritsch, R. Kuschnig, H. Hellwagner, and B. Rinner, ‘‘Fast aerial
image acquisition and mosaicking for emergency response operations
by collaborative UAVs,’’ in Proc. Int. Conf. Inf. Syst. Crisis Response
Manage., 2011, pp. 1–5.

[13] P. Mazdin, K. P. Kolleg, and B. Rinner, ‘‘Efficient and QoS-aware drone
coordination for simultaneous environment coverage,’’ inProc. IEEEConf.
Multimedia Inf. Process. Retr. (MIPR), Mar. 2019, pp. 333–338.

[14] E. Vrochidou, V. N. Tsakalidou, I. Kalathas, T. Gkrimpizis, T. Pachidis,
and V. G. Kaburlasos, ‘‘An overview of end effectors in agricultural robotic
harvesting systems,’’ Agriculture, vol. 12, no. 8, p. 1240, Aug. 2022.

[15] T. Benarbia and K. Kyamakya, ‘‘A literature review of drone-based
package delivery logistics systems and their implementation feasibility,’’
Sustainability, vol. 14, no. 1, p. 360, Dec. 2021.

[16] G. Gugan and A. Haque, ‘‘Path planning for autonomous drones:
Challenges and future directions,’’Drones, vol. 7, no. 3, p. 169, Feb. 2023.

[17] M.-T.-O. Hoang, N. van Berkel, M. B. Skov, and T. R.Merritt, ‘‘Challenges
and requirements in multi-drone interfaces,’’ in Proc. Extended Abstr. CHI
Conf. Hum. Factors Comput. Syst., Apr. 2023, pp. 1–9.

[18] W. Chen, J. Liu, H. Guo, and N. Kato, ‘‘Toward robust and intelligent
drone swarm: Challenges and future directions,’’ IEEENetw., vol. 34, no. 4,
pp. 278–283, Jul. 2020.

[19] M. Gutmann and B. Rinner, ‘‘Mission specification and execution of
multidrone systems,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Feb. 2021, pp. 451–456.

[20] M. Gutmann and B. Rinner, ‘‘EAMOS: Execution of aerial multidrone
mission operations and specifications framework,’’ in Proc. Int. Conf.
Unmanned Aircr. Syst. (ICUAS), Jun. 2023, pp. 761–768.

[21] M. Molina, A. Diaz-Moreno, D. Palacios, R. A. Suarez-Fernandez,
J. L. Sanchez-Lopez, C. Sampedro, H. Bavle, and P. Campoy, ‘‘Specifying
complex missions for aerial robotics in dynamic environments,’’ in
Proc. Int. Micro Air Vehicle Conf. Competition (IMAV), 2016, pp. 1–8.

[22] M. Molina, R. A. Suarez-Fernandez, C. Sampedro, J. L. Sanchez-Lopez,
and P. Campoy, ‘‘TML: A language to specify aerial robotic missions for
the framework aerostack,’’ Int. J. Intell. Comput. Cybern., vol. 10, no. 4,
pp. 491–512, Nov. 2017.

[23] D. C. Silva, P. H. Abreu, L. P. Reis, and E. Oliveira, ‘‘Development of a
flexible language for mission description for multi-robot missions,’’ Inf.
Sci., vol. 288, pp. 27–44, Dec. 2014.

[24] D. C. Silva, P. H. Abreu, L. P. Reis, and E. Oliveira, ‘‘Development of
a flexible language for disturbance description for multi-robot missions,’’
J. Simul., vol. 10, no. 3, pp. 166–181, Aug. 2016.

[25] D. C. Silva, P. H. Abreu, L. P. Reis, and E. Oliveira, ‘‘Development
of flexible languages for scenario and team description in multirobot
missions,’’ Artif. Intell. Eng. Design, Anal. Manuf., vol. 31, no. 1,
pp. 69–86, Feb. 2017.

[26] E. F. Perdomo, J. C. Gámez, A. C. D. Brito, and D. H. Sosa, ‘‘Mission
specification in underwater robotics,’’ J. Phys. Agents, vol. 4, no. 1,
pp. 25–33, Jan. 2010.

[27] D. Davis, ‘‘Automated parsing and conversion of vehicle-specific data
into autonomous vehicle control language (AVCL) using context-free
grammars and XML data binding,’’ in Proc. 14th Int. Symp. Unmanned
Untethered Submersible Technol., 2005, pp. 1–11.

[28] D. Davis and D. Brutzman, ‘‘The autonomous unmanned vehicle
workbench: Mission planning, mission rehearsal, and mission replay tool
for physics-based X3D visualization,’’ in Proc. 14th Int. Symp. Unmanned
Untethered Submersible Technol., 2005, pp. 1–12.

[29] A. Bagnitckii, A. Inzartsev, and R. Senin, ‘‘Facilities of AUV search
missions planning,’’ in Proc. OCEANS MTS/IEEE KONA, Sep. 2011,
pp. 1–7.

[30] L. Alves, J. D. Pereira, N. Aragão, M. Chagas, and P. H. Maia, ‘‘DRESS-
ML: A domain-specific language for modelling exceptional scenarios
and self-adaptive behaviours for drone-based applications,’’ in Proc.
IEEE/ACM 44th Int. Conf. Softw. Eng., Softw. Eng. Soc. (ICSE-SEIS),
May 2022, pp. 56–66.

[31] A. Torres-González, A. Alcántara, V. Sampaio, J. Capitán, B. Guerreiro,
R. Cunha, and A. Ollero, ‘‘Distributed mission execution for aerial
cinematography with multiple drones,’’ in Proc. Workshop Signal Process.
Comput. Vis. Deep Learn. Auto. Syst., 2019, pp. 1–5.

[32] Á. Montes-Romero, A. Torres-González, J. Capitán, M. Montagnuolo,
S. Metta, F. Negro, A. Messina, and A. Ollero, ‘‘Director tools for
autonomous media production with a team of drones,’’ Appl. Sci., vol. 10,
no. 4, p. 1494, Feb. 2020.

[33] N. Paula, B. Areias, A. B. Reis, and S. Sargento, ‘‘Multi-drone
control with autonomous mission support,’’ in Proc. IEEE Int. Conf.
Pervasive Comput. Commun. Workshops (PerComWorkshops), Mar. 2019,
pp. 918–923.

[34] D. Bozhinoski, D. D. Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli,
‘‘FLYAQ: Enabling non-expert users to specify and generate missions of
autonomous multicopters,’’ in Proc. 30th IEEE/ACM Int. Conf. Automated
Softw. Eng. (ASE), Nov. 2015, pp. 801–806.

[35] F. Ciccozzi, D. D. Ruscio, I. Malavolta, and P. Pelliccione,
‘‘Adopting MDE for specifying and executing civilian missions of
mobile multi-robot systems,’’ IEEE Access, vol. 4, pp. 6451–6466,
2016.

125490 VOLUME 11, 2023

M. Gutmann, B. Rinner: Multidrone Mission Execution With EAMOS: From Text to Mission

[36] D. Di Ruscio, I. Malavolta, and P. Pelliccione, ‘‘Engineering a
platform for mission planning of autonomous and resilient quadro-
tors,’’ in Software Engineering for Resilient Systems. Berlin, Germany:
Springer, 2013, pp. 33–47. [Online]. Available: https://link.springer.
com/chapter/10.1007/978-3-642-40894-6_3#citeas

[37] D. Ruscio, I. Malavolta, and P. Pelliccione, ‘‘A family of domain-specific
languages for specifying civilian missions of multi-robot systems,’’ in
Proc. 1st Int. Workshop Model-Driven Robot Softw. Eng. (MORSE), 2014,
pp. 13–26.

[38] J. A. Besada, A. M. Bernardos, L. Bergesio, D. Vaquero, I. Campaña, and
J. R. Casar, ‘‘Drones-as-a-service: A management architecture to provide
mission planning, resource brokerage and operation support for fleets of
drones,’’ in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops
(PerCom Workshops), Mar. 2019, pp. 931–936.

[39] A. P. Lamping, J. N. Ouwerkerk, and K. Cohen, ‘‘Multi-UAV control and
supervision with ROS,’’ in Proc. Aviation Technol., Integr., Oper. Conf.,
Jun. 2018, p. 4245.

[40] S. Dragule, T. Berger, C. Menghi, and P. Pelliccione, ‘‘A survey on
the design space of end-user-oriented languages for specifying robotic
missions,’’ Softw. Syst. Model., vol. 20, no. 4, pp. 1123–1158, Aug. 2021.

[41] S. Magnenat, V. Longchamp, and F. Mondada, ‘‘ASEBA, An event-based
middleware for distributed robot control,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (Workshops Tutorials), Nov. 2007, pp. 1–6.

[42] S. García, P. Pelliccione, C. Menghi, T. Berger, and T. Bures, ‘‘PROMISE:
High-level mission specification for multiple robots,’’ in Proc. IEEE/ACM
42nd Int. Conf. Softw. Eng., Companion Proc. (ICSE-Companion),
Oct. 2020, pp. 5–8.

[43] C. A. R. Hoare,Communicating Sequential Processes. Upper Saddle River,
NJ, USA: Prentice-Hall, 1985.

[44] C. A. R. Hoare and A. W. Roscoe, The Laws of OCCAM Programming.
Oxford, U.K.: Oxford Univ. Computing Laboratory, 1986.

[45] C. A. Petri, Kommunikation mit Automaten. Bonn, Germany: Rheinisch-
Westfälisches Institut für Instrumentelle Mathematik an der Universität,
1962.

[46] K. Jensen, ‘‘A brief introduction to coloured Petri nets,’’ in Proc. Int.
Workshop Tools Algorithms Construct. Anal. Syst. Berlin, Germany:
Springer, 1997, pp. 203–208. [Online]. Available: https://link.springer.
com/chapter/10.1007/BFb0035389

[47] T. Souanef, S. Al-Rubaye, A. Tsourdos, S. Ayo, and D. Panagiotakopoulos,
‘‘Digital twin development for the airspace of the future,’’ Drones, vol. 7,
no. 7, p. 484, Jul. 2023.

MARKUS GUTMANN received the B.Sc. and
M.Sc. degrees in applied informatics from the Uni-
versity of Klagenfurt, in 2012 and 2015, respec-
tively, where he is currently pursuing the Ph.D.
degreewith the Institute of Networked and Embed-
ded Systems. He is a Research Assistant with the
Institute of Networked and Embedded Systems,
University of Klagenfurt. He was formerly with
the Transportation Informatics Research Group,
University of Klagenfurt, focusing on software

development for vehicle simulations. He has several years of experience as
a professional software developer. Since 2015, he has been a ‘‘Confirmed
Software Engineer’’ in a company specializing in factory automation,
where he develops solutions in the context of manufacturing processes for
semiconductors, focusing on test automation and software quality assurance.
His research interests include exploiting usability, drone synchronization,
and platform independence for multidrone systems and their missions.

BERNHARD RINNER (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in telematics
from the Graz University of Technology, Graz,
Austria, in 1993 and 1996, respectively. He held
research positions with the Graz University of
Technology, from 1993 to 2007, and The Uni-
versity of Texas at Austin, Austin, TX, USA,
from 1998 to 1999. He is currently a Professor
of pervasive computing and the Vice Dean of
the Faculty of Technical Sciences, University of

Klagenfurt, Austria. He has authored and coauthored more than 250 articles
for journals, conferences, and workshops, and has led many research
projects. His current research interests include sensor networks, multirobot
systems, self-organization, and pervasive computing. He has served as a
reviewer, a program committee member, the program chair, and the editor-
in-chief. He is currently an Associate Editor of the Ad Hoc Networks journal
and a member of the board of the Austrian Science Fund.

VOLUME 11, 2023 125491

