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ABSTRACT In the operation of large-scale manufacturing equipment, accurate tracking of the desired
trajectory and overall motion synchronizations are the keys to ensuring the products’ high quality. These
multi-axis plants are highly coupled nonlinear systems with a range of uncertainties (parametric uncer-
tainties, unmodelled dynamics, cross-coupling between axes, and external disturbances). That makes the
control design for such systems a challenging task. In this paper, a Lyapunov-based design for motion
tracking and/or cross-coupling synchronization control for multi-axis systems is proposed. The aim is to
develop a general framework for the design of motion tracking and/or cross-coupling synchronization. The
proposed design is based on a specific structure of the generalized control error and design of control which
enforces a predefined form of the Lyapunov function time derivative. The structure of the generalized error
allows the application of the same controller design procedure for motion tracking and/or cross-coupled
synchronization control in either configuration or operation space. In the proposed design compensation of
uncertainties and the convergence of the generalized error are treated separately. The compensation for the
uncertainties is realized by the application of an unknown input observer within the controller structure.
That yields efficient compensation of the projection of the system uncertainties to the generalized error.
In ensuring the desired convergence and stability the Lyapunov function time derivative is used as a design
parameter. It could be selected so that closed-loop dynamics exhibits asymptotic or finite-time convergence.
The proposed design results in a simple easy-to-implement controller structure with a small number of design
parameters. The details of the design procedure and the proposed controller are evaluated in simulation and
experiments for a coupled 4-axis system.

INDEX TERMS Motion control, motion synchronization, cross-coupling control, sliding mode, robust
control, disturbance observer.

I. INTRODUCTION
Modern industrial equipment is highly coupled nonlinear sys-
tems with a range of uncertainties (parametric uncertainties,
unmodelled dynamics, cross-coupling between axes, external
disturbances), which makes a control design for such plants
a challenging task. The operation of such complex multi-
axis systems or systems realized by multiple motors driving
a single load with high inertia in addition to standard motion
tracking loops requires a cross-coupling control to realize
synchronization requirements. Specific problems appear in
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the system with time delay which acts as disturbances to
the cross-coupling control. In current literature, a variety
of solutions addressing the cross-coupling synchronization
problem are presented. Most of these are developed as an
addition to the control design for specific machine or axis
configurations.

The Lyapunov approach for synchronization of a two-
slider system is discussed in [1] with a nonlinear force
coupling model as a basis for the control design. The
robust synchronization controller is discussed in [2]. Here
the cross-coupling error is defined as a difference in the
position error of each axis and its two adjacent axes. Such
selection makes the cross-coupling synchronization matrix
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singular and imposes restrictions on the controller parame-
ter. A system with a centralized motion tracking controller
and a decoupling synchronization controller for each axis
is discussed in [3]. The decoupling controllers are designed
based on mean deviation while unmeasurable states and non-
linearities aremanaged by a neural network. A cross-coupling
structure applicable for the accurate contouring control is
discussed in [4]. In [5] a continuous sliding mode controller
is applied for synchronization of the dual spindle system. The
tracking error is augmented by the synchronization error and
the sliding mode controller is designed for the augmented
system. A hierarchical sliding mode control discussed in [6]
for a multi-axis hydraulic servo-drive system consists of an
adaptive backstepping tracking controller, a neural network
synchronization controller, and a higher-order sliding mode
controller working in parallel. In [7] an adaptive motion con-
trol based on position averaging and decentralized adaptive
controllers for each axis is proposed for synchronization of
the multi-axis system. In [8] synchronization based on cross-
coupled control is applied to a 2-axis gantry system. The
solution is based on a combination of the tracking and syn-
chronization errors and the cascade controller. It is claimed
that the control design does not require information on the
detailed plant model. In [9] a robust synchronization control
with the possibility to use position, velocity, or acceleration
as a synchronization error and H∞ controller is discussed.
The key idea is to shape the position reference by a pre-
filter in each axis combined with H∞ a mixed sensitivity
method. The application of a fuzzy PID controller for syn-
chronization of a multi-axis system is discussed in [10]
and applied to a hydraulic dual-axe system. The synchro-
nization of a 3-dof planar parallel robotic manipulator with
uncertain dynamics using terminal sliding mode is shown
and simulation results are presented in [11]. The effects of
chattering are suppressed by the introduction of the syn-
chronization integral action in the system. Teleoperation as a
specific arrangement that requires synchronization of motion
and implemented forces is discussed in some works. The
synchronized bilateral teleoperation system with predefined-
time convergence is discussed in [12] and [13] the Q-learning
algorithm is applied for the synchronized teleoperated system
with cognitive guiding force. In [14] independent adaptive-
fuzzy compensation of friction is applied for each axis and
a sliding mode synchronization controller is proposed. The
control input has a feed-forward term and a discontinuous
term that may cause chattering. The proposed synchroniza-
tion error matrix is singular, and the synchronization error
gain should be carefully selected. Recent work in the syn-
chronization of networked control systems [15] discusses
the compensation of the uncertainties induced by network
and cooperative distributed model predictive control strategy.
The discrete-time synchronization control of a dual-motor
networked manipulator is discussed in [16]. The main contri-
bution is the explicit consideration of sampled data coupling
and transmission delays among coordinated manipulators.

In [17] an application to networked manipulators tracking
trajectories in operation space is discussed. The discrete-time
sliding mode is applied combined with distributed operation-
space tracking control to guarantee stability and dynamic
performance. The cross-coupling control of dual motors in
the networked control framework is discussed in [18]. The
feasibility and stability of the proposed cross-coupling con-
trol system are verified theoretically.

As shown above, several robust and adaptive control strate-
gies dealing with the problem of motion synchronization are
reported in the literature. Along with the application of the
different control frameworks, the problem of the formulation
of the cross-coupling error is one of the issues that attracts
attention. Cross-coupling is perceived as a supporting mech-
anism tightly dependent on the structure of the system under
control and the cross-coupling is studied for the structure
of the system under analysis. The work in which a general
solution is discussed often has a specific structure of the
cross-coupling error. All of this shows that the search for a
solution that would have a straightforward design procedure,
fever design parameters, and could be applied for various
problems in motion control is still an open problem.

In this paper, a Lyapunov-based design framework for
motion tracking with or without cross-coupling synchroniza-
tion control in multi-axis systems is proposed. The proposed
design is based on the formulation of a generalized control
error as a linear or nonlinear combination of the position
tracking or synchronization error and its derivative. Such a
selection of the generalized error yields a relative order one
of the generalized error dynamics. That provides a basis for
the application of the same procedure in controller design
for motion tracking and/or cross-coupling synchronization
in either configuration or operation space. The Lyapunov
function is selected as a quadratic form of the general-
ized error. Its time derivative is used as a design parameter
allowing selection that would yield asymptotic or finite-
time convergence of the generalized error. In the design, the
compensation of uncertainties and the convergence of the
generalized error are treated separately. The application of
an unknown input observer within the controller structure
yields efficient compensation of the projection of the system
uncertainties to the generalized error. A separate term of the
control input that enforces the specified Lyapunov function
derivative thus ensures the convergence and stability of the
closed-loop system. This term enforces the desired general
error convergence as well. It is shown that such a design
procedure could be applied to wide-range motion tracking
problems with or without cross-coupling synchronization.
The different problems could be implemented by coupling
control errors or by coupling the control outputs. The former
solution is applicable for systems requiring redundancy if
some axis controllers have failed. The main contribution of
this work is in proposing a general framework that allows
consistent design of motion control systems that results in
a simple easy-to-implement controller with a small number
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of well-defined design parameters. The details of the design
procedure and the proposed controller are evaluated in simu-
lation and experiments for a coupled 4-axis system.

The rest of the paper is organized as follows. In Section II
the dynamics of the system, the compensation of uncertain-
ties, and the dynamics of the motion tracking, synchroniza-
tion, and coupled motion tracking and synchronization errors
are formulated. In Section III Lyapunov-based control system
design is discussed and the structure of the control input for
systems with asymptotic and finite time convergence (sliding
mode motion) are derived. In Section IV the effectiveness
of the proposed algorithm is confirmed by presenting the
simulation and experimental results.

II. PROBLEM STATEMENT
In this section, the system dynamics and compensation of
uncertainties along with dynamics of the control errors for
motion tracking, synchronization, and coupled error are
derived and formulated in a way that would allow consistent
control design.

A. PLANT DESCRIPTION
A general motion system of n- actuators with uncertain
dynamics is considered. The configuration space dynamics
is given by

A (q) q̈ + b (q, q̇) +g (q) + τ ext = τ (1)

Here qT =
[
q1 . . . qn

]
stands for the actuators position

vector; A (q) is a positive definite system inertia matrix;
τT =

[
τ1 . . . τn

]
stands for the input control vector;

bT (q, q̇) =
[
b1 .. bn

]
stands for the vector of Corio-

lis and centripetal forces;gT (q) =
[
g1 .. gn

]
stands for

the vector of gravitational forces;τText =
[
τ ext1 . . . τ extn

]
is

the vector of external forces acting on actuators. The vec-
tors τ ,b (q, q̇) g (q) , τ ext and their components τk bk (q, q̇),
gk (q), τ extk , k = 1, 2, . . . , n are assumed bounded by known
upper and lower bounds consistent with the operation domain
(q, q̇) ∈ D of the system. The inertia matrix has bounded ele-
ments aij (q), 1 ≤ i, j ≤ n, hence matrix A (q) is bounded by
known lower and upper bounds. This matrix can be expressed
as a sum of its nominal value and uncertainties A (q) =An +

1A (q). The An is assumed known. The 1A (q) stands for
bounded inertia matrix uncertainties. If dynamics (1) stands
for the description of n− individual axes, then A (q) as well
as An are positive definite diagonal matrices. The dynamics
of the system (1) could be written in the following form{

Anq̈ = τ − τ dis

τ dis = b (q, q̇) + g (q) + τ ext + 1Aq̈
(2)

Here τ disT =
[
τ dis1 .. τ din

]
stands for the system‘s

bounded generalized disturbance. In (2) the disturbances are
decoupled but the coupling due to the inertia matrix A (q)

may remain if the nominal matrix An is not diagonal.
Let pair (q̇ = ω, τ ) is measured, the dynamics of the gen-

eralized disturbance is assumed as τ̇ dis = 0 and an auxiliary

variable is defined as ξ = τ dis + LqAnω. As shown in [19]
and [20] an observer estimating generalized disturbance τ dis

could be expressed as
˙̂
ξ = −Lqξ̂ + Lq

(
τ + LqAnω

)
τ̂
dis

= ξ̂ − LqAnω;Lq > 0;
˙̂τ dis + Lqτ̂

dis
= Lqτ dis

(3)

The observer (3) yields the dynamics of the estimated gen-
eralized disturbance as ˙̂τ dis+Lq ˙̂τ dis = Lqτ dis. Here matrix
Lq > 0 is the design parameter. The more complex observer
could be designed [20], [21], [24] but (3) usually works well
in motion control systems.

Insertion of the system input τ = τ con+τ̂
dis into (2) yields

the dynamics of system with disturbance observer as

τ = τ con + τ̂
dis

⇒


Anq̈ = τ con − p

(
τ̂
dis

)
τ̂
dis

+ Lτ̂
dis

= Lτ dis;L > 0

p
(
τ̂
dis

)
=

(
τ dis − τ̂

dis
)

→
t→∞

0

τ conq =
[
τ con1 . . . τ conn

]T
; τ dis =

[
τ dis1 . . . τ disn

]T (4)

Here the τ con stands for the control input generated by the
control system; p

(
τ̂
dis

)
stands for generalized disturbance

estimation error with bounded components pk = τ disk −

τ̂ disk , k = 1, . . . , n. The compensated system (4) stands for
the n− double integrators with known inertia and n- order
dynamics of the estimation error. Selection of the design
parameter Lq > 0 guarantees convergence of the estimation

error p
(
τ̂
dis

)q
and should be selected such that the separa-

tion of dynamics of the observer and closed loop system is
satisfied. The dynamics (4) is similar to the system dynam-
ics (2). This similarity points out that the estimation error
p

(
τ̂
dis

)
could be treated as an uncompensated disturbance

and should be considered in the design of the closed-loop
controller [19]. This way the compensation of the uncertain-
ties in the system will be realized in part by the estimation
of generalized disturbance and in part by the selection of the
closed-loop control.

If the nominal inertia matrix An and observer gain matrix
Lq are diagonal with elements ankk ̸= 0 and lk > 0, k =

1, .., n respectively the components of the observer (3) could
be written as

˙̂
ξ = −lk ξ̂k + lk (τk + lkankkωk) ,

τ̂ disk = ξ̂k − lkankkωk ; lk > 0; k = 1, . . . , n
˙̂τ disk + lk τ̂ disk = lkτ disk

(5)

Expressing the components of the control input as τk =

τ conk + τ̂ disk the dynamics of the actuators could be
described as 

q̇k = ωk ; k = 1, 2, . . . , n

ankk ω̇k = τ conk − pk
(
τ̂ disk

)
pk

(
τ̂ disk

)
= τ disk − τ̂ disk

(6)
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The dynamics (2) or (4) could be used as a starting point in
the motion control design. The difference is just in the struc-
ture of the system’s uncertainties τ dis (in (2)) and p

(
τ̂
dis

)
(in (4)). That allows the application of the same design for
both descriptions.

B. THE MOTION AND TASK ERROR DYNAMICS
In multi-axis systems with independent axis controllers, the
desired relationship is kept by the selection of the configura-
tion space references based on the system task.

By assumption, from the task description, the unique ref-
erence qref ∈ Rn×1 with elements qrefk , k = 1, . . . , n could
be determined. The dynamics of the tracking error eTq =[
eq1 .. eqn

]
, eqk = qk − qrefk for the system dynamics (2)

and (4) could be expressed as{
eq = q − qref

ëq = τ q − τ dis
q

τ q =

{
A−1
n τ for dynamics (2)

A−1
n τ con for dynamics (4)

τ dis
q =

{
A−1
n τ dis

+ q̈ref for dynamics (2)

A−1
n p

(
τ̂
dis

)
+ q̈ref for dynamics (4)

(7)

The coupling between axes is defined by the system struc-
ture and the task specification. In such system arrangements,
possible deviations in the individual axis are not ‘‘shared’’
with other control loops directly but are reflected to the other
axes via system-coupled dynamics.

Another way to execute the desired task is by designing the
control directly in the operation space. Let the operation task
for a system be defined by h(q) = href . Here h(q) could be
a linear or nonlinear continuous function. The dynamics of
the task error eh for the system dynamics (2) and (4) could be
expressed as{

eh = h(q) − href

ëh = fh − fdish

fh =

{
JA−1

n τ for dynamics (2)
JA−1

n τ con for dynamics (4)
;

J =
∂h(q)
∂q

∈ ℜ
n×n

fdish =


JA−1

n τ dis
− J̇q̇ + ḧref

for dynamics (2)

JA−1
n p

(
τ̂
dis

)
− J̇q̇ + ḧref

for dynamics (4)

(8)

Here J ∈ Rn×n is assumed full-rank matrix with bounded
elements in the operational domain of the system; fh stands
for the control input and fdish stands for the disturbance. In (8)
the cross-coupling is realized due to the formulation of the
task h(q) but, similarly, as in the independent axes control,

there is no cross-coupling on the error level. Note that the task
could also be formulated as h(q) = Thq = href , where Th ∈

ℜ
n×n is assumed constant full rank matrix. Then dynamics

(8) holds with J = Th ∈ Rn×n task tracking error eh =

Thq − href .
The dynamics (5) and (8) have the same form and usage

of the dynamics (2) or (4) is reflected in the structure of
the control input and disturbance in the error space. Fur-
ther in the paper only expressions for dynamics (2) will be
given. The derivations for dynamics (4) are straightforward
by changing the control input τ by τ con and the disturbance
τ dis by the error in disturbance estimation p

(
τ̂
dis

)
.

C. THE SYNCHRONIZATION ERROR DYNAMICS
For a system with configuration or operation space control
the synchronization task could be interpreted as the addition
to the motion tracking with cross-coupling realized in such
a way that control errors converge to zero synchronously.
The cross-coupling error could be defined in both the con-
figuration and the operation space. Let esq = Tsqeq stands
for the cross-coupling error in the configuration space and,
esh = Tsheh stands for the task cross-coupling error in the
operation space. Matrices Tsq ∈ ℜ

n×n and Tsh ∈ ℜ
n×n are

assumed regular. If cross-coupling relationships esq = 0 or
esh = 0 are enforced by control then, due to the structure
of the cross-coupling matrices Tsq and Tsh the eq = 0
and/or eh = 0 will be enforced as well. This shows that
synchronization andmotion tracking or task tracking could be
enforced concurrently. If the synchronization and the motion
or task tracking are applied together then the system may
exhibit a certain level of redundancy.

The dynamics of the cross-coupling error in configuration
space could be expressed as{

esq = Tsqeq
ësq = fsq − fdissq{
fsq = TsqA−1

n τ

fdissq = Tsq
(
A−1
n τ dis + q̈ref

) (9)

where fsq and fdissq stand for the synchronization control and
disturbance inputs, respectively.

The dynamics of the cross-coupling error in operation
space esh with task h (q) = Thq = href and cross-coupling
defined by esh = Tsheh could be determined as{

esh = Tsheh
ësh = fsh − fdissh{
fsh = TshJA−1

n τ

fdissh = Tsh
(
JA−1

n τ dis − J̇q̇ + ḧref
) (10)

where fsh and fdissh stand for the synchronization control and
disturbance inputs, respectively.

The dynamics (7), (8), (9) and (10) point out to the possi-
bility to formulate the synchronization of the motion control
of multiple axes in a few ways:

125442 VOLUME 11, 2023
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i. formulation of synchronization control as a task control
in operation space with the task error esh = Thq−href

expressed as in (8) with J = Th ∈ ℜ
n×n. In this case,

cross-coupling of systemmotion is realized by a choice
of matrix Th ∈ ℜ

n×n;
ii. the configuration space design based on the usage of the

motion tracking error eq and the cross-coupling error
esq = Tsqeq. The realization could be implemented:
(a) by establishing the coupled configuration space
control error eqsq(eq, esq) or (b) by merging control
inputs obtained from the motion controller τ q and the
control input fsq obtained from the cross-coupling syn-
chronization controller to form coupled control input
fqsq

(
τ q, fsq

)
;

iii. the operation space design based on the usage of the
task error eh and cross-coupling error esh = Tsheh.
The realization could be implemented, similarly as in
configuration space, (a) by establishing the coupled
configuration space control error ehsh(eh, esh) or (b)
by merging the control inputs obtained from the task
controller fh and the control input fsh obtained from
the cross-coupling synchronization controller to form
coupled operation space control input fhsh (fh, fsh).

In both configuration and operation spaces, a certain level
of redundancy could be obtained if the motion and the cross-
coupling are merged at the control input level.

D. THE COUPLED ERROR DYNAMICS
Before discussing the control design let us closely examine
the dynamics of the coupled errors in configuration space
eqsq(eq, esq) and operation space ehsh(eh, esh) defined as in
(11) and (12) respectively.

(
eq&esq

)
⇒

{
eqsq = eq + αSqesq = �qseq
�qsq = I + αSqTsq; α > 0

(11)

(eh&esh) ⇒

{
ehsh = eh + βShesh = �hseh
�hsh = I + βShTsh; β > 0

(12)

Here gains α > 0 and β > 0 stand for the weight of the
cross-coupling synchronization error and could be scalars or
diagonal n × n matrices. Matrices Sq

(
Tsq

)
and Sh (Tsh) are

diagonal with elements sqkk
(
Tsq

)
and shkk (Tsh) equal to the

sign of the corresponding diagonal elements of the matrices
Tsq and Tsh respectively. The transformation matrices �qsq
and �hsh are regular by construction.
The dynamics of the coupled error in configuration space

eqsq(eq, esq) could be expressed as{
eqsq = eq + αSqesq = �qsqeq
ëqsq = fqsq − fdisqsq{
fqsq = �qsqA−1

n τ

fdisqsq = �qsq

(
A−1
n τ dis + q̈ref

) (13)

where fqsq and fdisqsq stand for the control and disturbance
inputs, respectively.

The dynamics of the coupled error in operation space
ehsh(eh, esh) could be obtained as{

ehsh = eh + βShesh = �hsheh
ëhsh = fhsh − fdishsh{
fhsh = �hshA−1

n τ

fdishsh = �hsh

(
JA−1

n τ dis − J̇q̇ + ḧref
) (14)

where fhsh and fdishsh stand for the control and disturbance
inputs, respectively.
The dynamics (13) and (14) have the same form as error

dynamics (7) - (10), thus the control for all these cases could
be designed in the same way.

III. CONTROL INPUT DESIGN
The dynamics of the motion tracking errors (7), the task
tracking error (8), the cross-coupling synchronization errors
in configuration (9) and operation (10) space, and the coupled
errors (13) and (14) could all be written in the following form

ëz = fz − fdisz (15)

Here the control error ez takes values from the set
Sz =

{
eq, eh, esq, esh, eqsq, ehsh

}
; the control input takes

values from the set Fz =
{
τ q, fh, fsq, fsh, fqsq, fhsh

}
and the disturbance takes values from the set Fdisz ={
τ disq , fdish , fdissq , fdissh , fdisqsq, f

dis
hsh

}
. The elements of the sets Sz,

Fz, Fdisz are defined in corresponding equations (7) - (10),
(13) and (14). The dynamics (15) describe the decoupled
n− double integrators with two inputs: the control fz and the
disturbance fdisz .
The main goal of the design is to select a control input

fz that enforces the attractiveness and stability of the zero
solution of the generalized error σ z (ez, ėz). In equilib-
rium, σ z (ez, ėz) = 0 the relationship between ez and ėz
is determined by the solution of the differential equation
σ z (ez, ėz) = 0. This opens a range of possibilities in select-
ing σ z (ez, ėz) such that specific requirements are met. Here
generalized error σ z (ez, ėz) is selected as a linear function:

σ z (ez, ėz) = Czez + ėz; σ z ∈ ℜ
n×1Cz > 0 (16)

For σ z (ez, ėz) = 0 the convergence rate of error ez is defined
by the design parameter Cz usually selected as a constant
diagonal matrix.
From (15) and (16) the dynamics of the generalized error

could be expressed as

σ̇ z = fz − feqz
feqz = fdisz − Czėz (17)

Here feqz stands for the so-called equivalent control. For
fz = feqz the σ̇z (ez, ėz) = 0. To enforce the convergence to
equilibrium the control input should have two terms. One to
compensate for feqz and another to enforce attractiveness and
stability of σ z (ez, ėz) = 0. The attractiveness and stability
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of the equilibrium σ z (ez, ėz) = 0 could be guaranteed if the
Lyapunov function candidate and its derivative are selected as vlyz =

σ Tz σ z

2
v̇lyz = σ Tz σ̇z = −σ Tz 9z (σ z) < 0

(18)

To satisfy (18) the components of the vector function
9z (σ z) should have the same sign as the corresponding
components of the generalized error, thus could be expressed
as 9zk (σ z) = |9zk (σ z)| sgn (σzk) k = 1, . . . , n. Such a
selection of the components 9zk (σ z) yields the Lyapunov
function derivative as in (19), thus the stability conditions are
satisfied. 

9zk (σ z) = |9zk (σ z)| sgn (σzk)

v̇lyz = −σ Tz 9z (σ z)

v̇lyz = −

∑k=n

k=1
|9zk (σ z)| |σzk | < 0

(19)

The control input for dynamics (17) that enforce stability
conditions (18) and (19) can be derived as

fz = feqz − 9z (σ z) (20)

Plugging (20) into (17) yields the generalized error dynam-
ics to

σ̇z + 9z (σ z) = 0 (21)

The convergence is determined by the selection of the vec-
tor function 9z (σ z). To demonstrate the variety of solutions
in the selection of 9z (σ z) below some of the possibilities are
listed:

• 9z (σ z) = Kzσ z, Kz > 0 a positive definite diagonal
matrix, yields asymptotic convergence to σ z = 0. The
dynamics (21) becomes σ̇z + Kzσ z = 0. By proper
selection of design parameters (Cz,Kz) > 0 the
asymptotic convergence to ez = 0 is guaranteed;

• 9z (σ z) = Usgn (σ z) ,U > 0 yields dynamics (21)
as σ̇z = −Usgn (σ z) and sliding mode motion is
enforced [19], [22]. The control input is discontinuous,
and chattering may occur in the system. After reaching
the equilibrium σ z = 0 the convergence to ez = 0 is
governed by Czez + ėz = 0. The convergence rate and
the stability of ez = 0 are guaranteed by the selection
of the matrix Cz > 0;

• finite-time convergence and sliding mode motion in
the manifold σ z = 0 with continuous control could
be realized by selecting 9z (σ z) = Kz ∥σ z∥

ρ sign (σ z)

with 0 < ρ < 1 [22].

A. APPLICATION OF THE EQUIVALENT CONTROL
ESTIMATION
Implementation of control (20) requires information
about feqz . For systems with uncertainties, the calculation feqz
is not practical. Instead, the estimation f̂eqz could be used.
The dynamics (17) has the same form as the plant dynamics
(2) thus the design of the equivalent control observer could
follow the same procedure as the design of the disturbance

observer (3). Assuming the pair (σ z, fz) is measured, the
dynamics of the equivalent control is ḟ eqz = 0 and an auxiliary
variable ξ = feqz + Lzσ z of the equivalent control observer
could be constructed as

˙̂
ξ = −Lzξ̂ + Lz (fz − Lzσ z)

f̂eqz = ξ̂ − Lzσ z

}
˙̂feqz + Lz f̂eqz = Lzfeqz (22)

HereLz > 0 is a diagonal positive definite matrix with ele-
ments lzkk > 0. The observer (22) estimates the components
of the equivalent control vector feqz . Using f̂eqz instead of feqz in
control (20) yields the closed loop system dynamics to

fz = f̂eqz − 9z (σ z) ⇒


σ̇ z + 9z (σ z) = pz

(
f̂eqz

)
˙̂f
eq

z + Lz
˙̂f
eq

z = Lzfeqz
pz

(
f̂eqz

)
= f̂eqz − feqz

(23)

Dynamics (23) describes an 2n− order system. If the sepa-
ration of dynamics between observer and generalized error is
realized then after reaching pz

(
f̂eqz

)
= 0 the dynamics (23)

becomes the same as the ideal one described in (21).
With 9zk (σ z) = |9zk (σ z)| sgn (σzk) the control as in (23)

yields the derivative of the Lyapunov function (18) as{
fz = f̂eqz − 9z (σ z)

9zk (σ z) = |9zk (σ z)| sgn (σzk)

v̇lyz = σ Tz σ̇z = −σ Tz

(
9z (σ z) − pz

(
f̂eqz

))
(24)

The derivative of the Lyapunov function could be
expressed as

v̇lyz = −

∑k=n

k=1
σzk

(
9zk (σ z) − pzk

(
f̂eqz

))
(25)

The separation of dynamics for the equivalent control
estimation and the closed loop system the estimation error
pz

(
f̂eqz

)
→ 0 and all its components pzk

(
f̂eqz

)
→ 0, k =

1, . . . , n faster than the components σzk . If9z (σ z) is selected
such that sgn

(
9zk (σ z) − pzk

(
f̂eqz

))
= sgn9zk (σ z) then

v̇lyz < 0 and the stability conditions are satisfied.
It is interesting to note that with a disturbance observer,

(23) the control input fz could be expressed as

fz = −9z (σ z) − Lz

∫ (
f̂eqz − feqz

)
dt

fz = −9z (σ z) − Lz

∫
(σ̇z + 9z (σ z)) dt (26)

The control fz = f̂eqz − 9z (σ z) realizes an integral action in
the closed loop system, by enforcing the f̂eqz = feqz or σ̇z =

−9z (σz).
The procedure shown in this section could be directly

applied to control problems described in Section II with the
appropriate selection of the error ez. This possibility to have
structurally the same control error dynamics is a basis for
the justification of the ways the design of the control may
be applied to satisfy the cross-coupling requirements.
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TABLE 1. The design procedure and parameters.

The key steps with equations used in the design procedure
and the design parameters are summarized in Table 1.

The design procedure shows the key design parameters:
the nominal inertia matrix An, observer gain matrices Lq,
Lz and the generalized error gain Cz The observer gains are
selected high with limitations related to the measurement
noise. The matrix Cz depends on the desired bandwidth of
the closed loop and the available control resources. Transfor-
mation matrices Tsq and Tsh must be regular.

The selection of the convergence term 9z (σ z) determines
the convergence of the generalized error. In most applica-
tions simple proportional term Kzσ zKz > 0 is satisfactory.
Selection of the discontinuous or fractional order 9z (σ z) =

Kz ∥σ z∥
ρ sign (σ z) term leads to motion in sliding mode and

could be designed with predefined finite-time convergence.

B. AN EXAMPLE OF 2 DOF SYSTEM
In [19] a design of the synchronization for 2-dof motion
systems in operation space is realized using the Hadamard
H2 projection matrix.

Here a 2-dof system (27) will be used as an example to
demonstrate step-by-step application of the design procedure
discussed in Section III. The nominal inertia matrix An is
assumed diagonal, ankk > 0, k = 1, 2

Anq̈ = τ − τ dis

τ dis = b (q, q̇) + g (q) + τ ext + 1Aq̈

q =

[
q1 q2

]T
; τ =

[
τ1 τ2

]T (27)

If the disturbance τ dis is estimated then the control input τ =

τ con + τ̂ dis, with assumption that separation of dynamics is
achieved, yields the compensated system dynamics as

τ = τ con + τ̂ dis ⇒

Anq̈ = τ con − p
(
τ̂ dis

)
p

(
τ̂ dis

)
=

(
τ dis − τ̂ dis

)
→
t→∞

0

An =

[
an11 0
0 an22

]
;


τ conq =

[
τ con1 τ con2

]T
τ dis =

[
τ dis1 τ dis2

]T (28)

The reference motion qref =

[
qref1 qref2

]T
is assumed

known. The motion tracking error eq, the cross-coupling
synchronization error esq, and the coupled error eqsq are given
as in (29) where H2 is the Hadamard matrix.

eq = q − qref

esq = H2eq = H2q − H2qref

eqsq = �qsqeq; �qsq = I + αSqH2, α > 0

H2 =

[
1 1
1 −1

]
; Sq =

[
1 0
0 −1

]
;

�qsq =

[
1 + α1 α1
−α2 1 + α2

]
(29)

The dynamics of the errors (29) can be expressed as
eq = q−qref

esq = H2eq
eqsq = �qsqeq

⇒


ëq = τ q − τ disq

ësq = fsq − fdissq
ëqsq = fqsq − fdisqsq

(30)

Here the control inputs τ q, fsqfqsq and disturbances τ disq ,
fdissq and fdisqsq are given as

τq =

{
A−1
n τ for dynamics (27)

A−1
n τ con for dynamics (28)

τ disq =

{
A−1
n τ dis + q̈ref for dynamics (27)

A−1
n p

(
τ̂ dis

)
+ q̈ref for dynamics (28){

fsq = H2τ q

fdissq = H2τ
dis
q

{
fqsq = �qsqτ q

fdisqsq = �qsqτ
dis
q

(31)

The corresponding generalized error σ q, σ sq, σ qsq and their
derivatives could be written as

σ q = ėq + Cqeq;Cq > 0
σ h = ėh + Cheh;Ch > 0
σ qsq = ėqsq + Cqsqeqsq;Cqsq > 0


σ̇q = τ q − τ eqq

σ̇sq = fsq − feqsq
σ̇qsq = fqsq − feqqsq

(32)

Here the equivalent control input is defined as

τ eqq =

{
A−1
n τ dis + q̈ref for dynamics (27)

A−1
n p

(
τ̂ dis

)
+ q̈ref − A−1

n Cqėq for dynamics (28)

feqsq = H2τ
eq
q

feqqsq = �qsqτ
eq
q (33)

The equivalent control τ eqq , feqsq and f
eq
qsq could be estimated

by the observer (22) with an appropriate change of coordi-
nates. Application of control as in (23) yields the closed-loop
motion as

τ q = τ̂
eq
q − Kqσ q ⇒ σ̇q + Kqσ q = τ̂

eq
q − τ eqq

fsq = f̂eqsq − Ksqσ sq ⇒ σ̇sq + Ksqσ sq = f̂eqsq − feqsq
fqsq = f̂eqqsq − Kqsqσ qsq ⇒ σ̇qsq + Kqsqσ qsq = f̂eqqsq − feqqsq

(34)
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Another possibility is to combine the control inputs τ q and
fsq instead of the control errors eq and esq. In this case the
coupled control input is expressed as

τ = τ q + λAnH−1
4 fsq (35)

The parameter λ defines the relative weight of the synchro-
nization control input fsq. Control (35) introduces redundancy
into the overall structure and, as will be shown in simulation
and experiments, a system with such control could toler-
ate a loss of some controller-generating components of the
vector τ q.
The design parameters for the 2-dof system design are:
(i) the gains in the disturbance l1τ , l2τ and equivalent con-

trol observers l1e, l2e. These parameters depend on the
measurement noise and the desired bandwidth of the
closed-loop system;

(ii) the components of the generalized error gain matrix
Cq,Csq,Cqsq define the convergence rate of the con-
trol error to the equilibrium eq = 0, esq = 0, and
eqsq = 0. Their selection depends on the desired
closed-loop bandwidth;

(iii) the feedback gains Kq,Ksq,Kqsq define the conver-
gence to the equilibrium σ q = 0, σ sq = 0, and
σ qsq = 0. Together with generalized error gains the
choice of Kq,Ksq,Kqsq defining the ‘‘stiffness’’ of the
closed-loop control.

(iv) the gains α, β and λ define the weight of the synchro-
nization error and control. In our experiments α, β,
λ < 1 are used.

(v) The choice of the cross-coupling matrix H is restricted
to the full-rank matrices. One way of derivation of
the transformation matrix H if direct construction of
Hadamard matrix is not feasible is shown in [23].
In general, any regular matrix could be used.

The structure of the system is shown in Figure 1. (a)-(c).
The operation space control with synchronization error esq =

H2eq and the synchronization controller with structure with
fsq is depicted in Fig. 1. (a). The system with coupled error
eqsq = �qsqeq and control fsq is depicted in Fig. 1. (b).
In Fig. 1. (c) the combination of the motion tracking and the
synchronization at the control input level is shown.

IV. SIMULATION AND EXPERIMENTAL VERIFICATION
In simulation and experimental verification of the proposed
algorithms, a four-axis system is used with DC motors as
actuators. The parameters of actuators are shown in Table 2.
The interactionwith the environment (represented by external
force in the mathematical model) is treated as a disturbance.
In both simulation and experiments, the motor torque is
treated as the control input. The estimation of the distur-
bance is realized for each axis separately. The nominal motor
parameters are used in the control design.

The task is defined as the synchronization of the trajec-
tory tracking. The motion tracking errors eqk = qk − qrefk
k = 1, . . . , 4 and motion references qrefk (t) are, in simulation

FIGURE 1. The structure of the 2-dof synchronization system:
(a) synchronization task control; (b) cross-coupling coupled-error
synchronization (c) the coupled control input synchronization control.

TABLE 2. The data on DC motors.

and experiments, selected as constants or sinusoidal defined
as eq1


eq1
eq2
eq3
eq4


eq

=


q1
q2
q3
q4


q

−


qref1
qref2
qref3
qref4


qref

;
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qref1
qref2
qref3
qref4


qref

=


1
2
3
4

 or


1
2
3
4

 sin (0.2π t) (36)

The cross-coupling synchronization error is defined as in (37)
with esq = H4eq where H4 is given as

esq1
esq2
esq3
esq4


esq

=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


H4


eq1
eq2
eq3
eq4


eq

(37)

The simulation and experiments are aimed to show the
following control system features:

• the behavior of the system without and with cross-
coupling synchronization control;

• the behavior of the system if the cross-coupling syn-
chronization control is combined with motion tracking
control by coupled error (11) (system structure as
depicted in Fig 1. (b) for 2nd order system);

• the behavior of the system if the cross-coupling syn-
chronization control is integrated with motion tracking
control by coupled control (35) (system structure as
depicted in Fig. 1 (c) for 2nd order system).

A. SIMULATION OF A 4-DOF SYSTEM
Simulations are conducted in a Matlab/Simulink environ-
ment. The simulation experiments are implemented under the
following conditions:

1) EXPERIMENTS WITHOUT SYNCHRONIZATION
• the structure of the disturbance observer for each axis

as shown in (3) DOB :
{
τqk , ωk ,Lqk

}
→ τ̂ disqk ,

k = 1, . . . , 4;
• the motion tracking errors eqk = qk − qrefk , k =

1, . . . , 4 are calculated as in (36). The generalized errors
for each axis are calculated as in (32) with σqk = ėqk +

Cqkeqk ;
• the equivalent control is estimated for each axis using

the observer as (22) DOB :
{
τqk , σqk ,Lqzk

}
→ τ̂

eq
qk k =

1, . . . , 4;
• the motion tracking control input is calculated for each

axis as in (23), τqk = τ̂
eq
qk − Kqkσqk .;k = 1, . . . , 4.

2) EXPERIMENTS WITH CROSS-COUPLING
SYNCHRONIZATION

• the components of the synchronization error esq = H4eq
are calculated using transformation (37). The general-
ized errors are calculated as in (32) with σsqk = ėsqk +

Csqkesqk , k = 1, . . . , 4.
• the equivalent control is estimated for each axis using

observer as in (22) DOB :
{
fsqk , σsqk ,Lsqzk

}
→ f̂ eqsqk

with, k = 1, . . . , 4.

3) EXPERIMENTS WITH CROSS-COUPLING
SYNCHRONIZATION ERROR

• the components of the coupled error eqsq = �qsqeq are
determined using transformation�qsq = I+αSqH4, and
H4 as in (37), Sq = diag (1, −1, −1, 1);

• the equivalent control is estimated for each axis using
observer as in (22) DOB :

{
fqsqk , σqsqk ,Lqsqk

}
→ f̂ eqqsqk

with, k = 1, . . . , 4.

4) EXPERIMENTS WITH COUPLING SYNCHRONIZATION
CONTROL

• the control τ q and synchronization control fsq are calcu-
lated as shown in A: and B: above. The coupling of these
two controls is realized by τ = τ q + λAnH−1

4 fsq.
In all simulation experiments, the control input is not lim-

ited. This solution is adopted to show the ideal behavior and
compare the transients with ones obtained in the experimental
system in which the input is limited by the allowed current
delivered from the driver.

TABLE 3. The design parameters used in simulation and experiments.

The parameters used in the simulation and experiments are
shown in Table 3. Note that elements of the matrix Cz are
not kept equal. That is visible in the upper graph in Fig. 2
(motion without synchronization) by examining the settling
time. Such parameters are selected to emphasize the influence
of the convergence term in forcing equal settling time in all
axes (lower diagram in Fig. 2.). Due to the limits on the
control, this effect is less emphasized in experimental results
depicted in Fig. 6. The settling time is given in Table 4.

In Fig. 2 motion errors for system transients for starting
from zero initial condition to constant references defined in
(36) are shown. The upper diagram is for systems without
cross-coupling and the lower diagrams show transients with
coupled error (13). The simultaneous convergence in the case
of cross-coupling synchronization is clear.

The transients for synchronization control with coupled
control input τ = τ q+λAnH−1

4 fsq are depicted in Fig. 3. The
convergence from zero initial conditions to reference motion
and the failure of motion tracking in the axis q1 at t = 2.51s
are shown. The operation of the system and recovery of the
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FIGURE 2. The motion tracking error without (upper diagram) and with
cross-coupling synchronization (lower diagram).

TABLE 4. The settling time in simulation and experiments.

synchronization is clear, which confirms the redundancy in
the selected control system structure.

The steady state errors in simulation and experiments are
given in Table 5.

The transients from zero initial conditions and zero cross-
ing for the system with sinusoidal references (36) are shown
in Fig. 4.

Simulation results illustrate the functionality and salient
features of the proposed design. They confirm the desired
behavior with both coupled errors and coupled control cases.
The loss of one of the controllers in the motion control loop
and the re-establishment of the synchronization as shown in
Fig. 2 confirms a redundancy property of the proposed design.

B. EXPERIMENTAL RESULTS FOR 4 DOF SYSTEM
The experimental validation of the proposed design is con-
ducted on a set-up consisting of four actuators as shown

FIGURE 3. The motion tracking and simulated loss of the motion tracking
controller for q1 at t = 2.51s.

TABLE 5. The steady-state error in simulation and experiments.

FIGURE 4. The synchronization of the motion with sinusoidal references
of different amplitudes.

in Fig. 5. The control algorithms are implemented in the
dSPACE environment with the DS1005 as a controller card,
DS3001 encoder card, and DAC card DS2103. The sampling
interval in all experiments is kept constant T = 28.5µs.
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FIGURE 5. The setup used for the experimental verification of the
proposed design.

FIGURE 6. The motion tracking without (upper diagram) and with (lower
diagram) cross-coupling synchronization for constant references.

The experiments are implemented for the same references
and controller parameters as the corresponding simulation.
The key difference between experimental and simulation is
the limit of the control input applied in the experiments which
has not been applied in simulation. That could be detected in
the initial transients or transients with large errors that caused
control saturation.

FIGURE 7. Cross-coupling synchronization control for sinusoidal
references.

FIGURE 8. The synchronization error for the experiment shown in Fig. 7.

FIGURE 9. The trajectory evolution for sinusoidal references and the
motion controller loss for the actuator q1 at t = 25.1s.

In Fig. 6 the transients from zero initial conditions to a
constant reference with and without cross-coupling synchro-
nization are shown (the synchronization control is realized
with coupling error eqsq = �qsqeq). Transients depicted in
Fig. 6 illustrate the validity of the proposed algorithm and the
consistency of the simulation and experimental results.
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FIGURE 10. The changes of the synchronization error in the experiment
shown in Fig. 9.

In Fig. 7 the cross-coupling synchronization with coupling

control τ = τ q+λAnH
−1
4 fsq is shown. The synchronous zero

crossing for all axes is shown.
The augmented synchronization error for the reaching

stage from zero initial conditions is shown in Fig. 8. The
straight-line motion in all axes is due to saturation of the con-
trol torque and consequently saturation of the motor speed.

The zero crossing and the evolution of system behavior in
the malfunction of one of the motion controllers are depicted
in Fig. 9. This experiment is conducted under the same con-
ditions (different time windows) as the one shown in Fig. 7.
Here malfunction of the controller in the axis q1 appears
at t = 25.1s. In the zoomed part the effect on the zero
crossing for all four actuators is shown. The changes in the
synchronization error in the same experiment are depicted
in Fig. 10.

The simulation and experimental results demonstrate the
validity of the proposed algorithm and the effectiveness of its
usage.

V. CONCLUSION
In this paper, a framework for the design of the cross-coupled
motion synchronization control for uncertain multi-axis sys-
tems is discussed in detail. The proposed design could be
applied in different configurations: (i) as a motion (posi-
tion or speed) or task tracking control design, (ii) as a
cross-coupling synchronization controller in which the syn-
chronization is enforced by setting a functional relationship
between system states; (iii) a combination of the motion
tracking and error based cross-coupling control. The pro-
posed formulation allows controller design that will enforce
the desired convergence of the generalized error while keep-
ing the same structure of the controller. Specific application
of the unknown input observer within the controller allows
efficient application for uncertain systems. The simulation
and experimental results verify the effectiveness of the pro-
posed algorithm. Further research in this framework may
include the selection of the structure of generalized error and
the convergence term9z (σ z) to enforce predefine finite-time

convergence of the control error, the implementation of dif-
ferent observers and adaptation for the changes in the nominal
inertia matrix. Interesting work would be the extension to the
compliant control systems.
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