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ABSTRACT Neuroscience suggests that the sparse behavior of a neural population underlies themechanisms
of the auditory system for monaural overlapped speech separation. This study investigates leveraging sparse
approximation to improve speech separation in a conventional deep learning algorithm. We develop a
combined model that embeds a sparse approximation algorithm, a multilayered iterative soft thresholding
algorithm (ML-ISTA), into a conventional time-domain-based speech separation algorithm, Conv-TasNet.
Adopting ML-ISTA is a crucial enabler for the embedding process and helps avoid solving a bi-level
optimization problem comprising sparse approximation and speech separation. ML-ISTA performs sparse
approximation through forward calculations, thereby eliminating the optimization of sparse approximation.
The combined model is trained with WSJ0-2mix, the Wall Street Journal English corpus for two-speaker
mixed speech without noisy or reverberant interference, to clarify the proposed method’s performance.
The model demonstrates that sparse approximation improves separation performance regardless of the
approximation setting. The peak performance of the model exceeds that of Conv-TasNet by 1.1% to 4.7% in
four speech quality criteria. Moreover, sparse approximation accelerates the combined model performance
gain at the early stages of learning relative to Conv-TasNet. The primary novelty of the study is embedding
the sparse approximation algorithm, ML-ISTA, into a deep-learning-based speech separation framework
and the experimental proof of improved separation performance in the proposed algorithm.

INDEX TERMS Deep learning, sparse approximation, sparsity, speech separation.

I. INTRODUCTION
Single-channel speech separation is crucial for restoring
the quality and intelligibility of individual sources from
overlapping speech in monaural recordings. This technology
is the front end for speech recognition and sound scene anal-
ysis applications. Deep-learning-based speech separation has
recently achieved remarkable performance among various
engineering approaches owing to considerable advancements
in image categorization. Conventional deep-learning-based
speech separation technologies are reviewed in [1] and
[2]. Reference [3] describes the comprehensive outlook of
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the state-of-the-art technologies for speech separation and
presents a detailed performance comparison. However, these
approaches have not yet reached the levels of separation
capability of auditory systems. The challenge of the need
for continuous improvement in the separation performance
is pointed out in [4].

The auditory systems of mammals, particularly primates,
can easily separate mixed sounds. This capability is demon-
strated by the ‘‘cocktail party problem,’’ wherein researchers
in several fields, including neuroscience, have collaborated
to clarify the separation mechanism of the human auditory
system from an auditory perspective. The mechanism for
solving the ‘‘cocktail party problem’’ is analyzed from an
auditory neuroscience point of view in [5].
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Neuroscience suggests that the mechanism of the human
auditory system for distinguishing between temporally over-
lapping sounds is based on the neural population’s sparse
behavior. Sparse behavior and its merits in the auditory
system are identified and presented in [6]. Sparse behavior is
generated by the selectivity of the spectral-temporal receptive
fields of auditory neurons to specific external stimuli. [7]
reveals the spectral-temporal receptive fields of auditory
neurons being adapted to natural sound statistics.

However, current state-of-the-art deep-learning-based
speech separation algorithms do not focus on sparse
behavior or its effect on separation performance. The
algorithms concentrate solely on mapping overlapped speech
to multiple separated speeches using neural networks and
minimizing the difference between the target and separated
speeches.

In contrast, speech enhancement, which is an application
field relevant to speech separation, utilizes sparse behavior
and demonstrates improvement in denoising performance.
Sparse behavior produced bymatching pursuit (MP) enforces
a meaningful structure on the binary time-frequency mask,
thus allowing to decrease estimation errors and main-
tain intelligibility [8]. The approach employing orthogonal
matching pursuit (OMP) for producing sparse behavior
outperforms the conventional methods in objective and
subjective measures [9].

This study investigates sparse approximation’s contribu-
tion to a deep-learning-based speech separation algorithm’s
separation performance. Sparse approximation is an opti-
mization problem for representing sparse components in a
latent space using external observations, and various method-
ologies for solving the sparse approximation problems are
proposed [10], [11]. Sparse approximation is also employed
to simulate sparse behaviors in the auditory systems. One
example is the application of the sparse approximation
to acquire auditory features in multilayered convolutional
networks mimicking auditory systems [12].

We develop a combined model that embeds a sparse
approximation algorithm into a deep-learning speech sep-
aration algorithm. We employ a multilayered iterative soft
thresholding algorithm (ML-ISTA) [13] as a sparse approx-
imation algorithm in conjunction with Conv-TasNet [14]
as a conventional time-domain-based deep learning speech
separation algorithm. In training and evaluation, we use
the speech corpus WSJ0-2mix, which is the Wall Street
Journal English version for the two-speaker mixed speech
without additional noise or reverberant interference, to clar-
ify the proposed method’s performance. In experiments,
the combined model’s separation performance for various
sparse approximation settings consistently surpasses that
of Conv-TasNet. The novelty of this work is to propose
embedding the sparse approximation algorithm, ML-ISTA,
into a deep-learning-based speech separation framework and
to experimentally demonstrate the improved performance of
the proposed algorithm.

This study’s prominent findings are summarized as
follows:

1) We pioneer a model that embeds a sparse approxima-
tion algorithm into a deep-learning speech separation
algorithm for better separation. The vital point in
the embedding process is the adoption of ML-ISTA
as a sparse approximation algorithm. This avoids
solving a bi-level optimization problem comprising
sparse approximation and speech separation. ML-ISTA
performs sparse approximation through forward calcu-
lations, eliminating the optimization of sparse approx-
imation. Furthermore, the calculation mechanism of
ML-ISTA, with a strong affinity for Conv-TasNet’s
convolution-based encoder structure, facilitates end-
to-end model training in a computationally efficient
manner.

2) We reveal that the combined model achieves perfor-
mance improvement of 1.1% to 4.7%, on average,
over Conv-TasNet at higher sparseness in four quality
criteria on the speech mixture dataset without noise or
reverberate interference. These gains in performance
are achieved by the increase in space and time com-
plexity for ML-ISTA: an increase in space complexity,
i.e., the model size, by 769 parameters (0.009%
of Conv-TasNet’s 8.64 million parameters) and in
time complexity, i.e., the computational operation,
by 0.36 giga floating point operations for a batch
(0.7% per given iteration count of the Conv-TasNet’s
55.34 giga floating point operations for a batch).

3) We uncover that ML-ISTA accelerates the combined
model performance gain at the early stages of learning
relative to Conv-TasNet.

The remainder of this paper is organized as follows.
Section II describes previous work on sparse behavior in
supervised deep-learning-based speech separation and neuro-
science. Section III explains the construction of the combined
model of ML-ISTA and Conv-TasNet. Section IV presents
the experimental setting and evaluates the performance
differences between the combined model and Conv-TasNet.
The rational factors that support the obtained results are
presented in Section V. In Section VI, we conclude that
integrating ML-ISTA as a sparse approximation explicitly
influences the separation performance in Conv-TasNet.

II. RELATED WORK
We first review state-of-the-art supervised deep-learning-
based speech separation algorithms, including Conv-TasNet
[14], which was state-of-the-art in the past, and describe
their treatment of sparse behavior. Then, we describe
neuroscience-based findings regarding sparse behavior and
its role in auditory speech separation. Finally, we discuss
sparse approximation.

Various supervised deep-learning-based speech separa-
tion approaches have been proposed, yielding significant
performance improvements [4]. Reference [15] proposed a
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separation-mask method for speaker-dependent scenarios,
where inference was conducted on mixed speech from
only the speakers seen during training. Frame-wise or
utterance-wise permutation invariant training (PIT) (µPIT)
[16] based on a separation mask has been proposed to address
speaker-independent scenarios. Such an approach can sep-
arate speech uttered by individuals who do not participate
in training, thereby expanding the applicability of speech
separation in practice. One method not based on separation
masks is deep clustering [17] to identify segmentation in
the bin space by speaker clusters. Reference [18] proposed
the algorithm jointly solving inferring a representation for
each source by deep clustering technique and estimating
each source signal given the inferred representations. Conv-
TasNet is an algorithm that receives the mixture waveform
as input and uses the separation-mask method with speaker-
independent scenarios supported by µPIT. Like the methods
above, it achieved state-of-the-art separation performance in
the past [4]. Dual-path RNN also uses the mixture waveform
as input and adopts a double-cross RNN structure in the
separation block [19]. Reference [20] explored two-stage pro-
cessing, one simultaneous grouping and the other sequential
grouping, which mimics the speech separation in the auditory
system and achieves state-of-the-art performance. Reference
[21] utilized a transformer in speech separation, showing that
the attention mechanism is effective in dealing with longer
temporal dependency in speech separation. Other studies deal
with the circumstances under noise and reverberation [22],
[23], [24]. Reference [22] deals with noisy and reverberant
speech separation by estimating a room impulse response.
Reference [23] used robust principal component analysis
and sparse nonnegative matrix factorization for reverberant
speech separation. Reference [24] applies a diffusion-based
generative technology to separate a mixture of reverberant
speech.

However, these algorithms, including Conv-TasNet, do not
consider the effect of the sparse behavior of hidden layer
components on separation performance.

Neuroscience [6], [25] considers sparse behavior in
sensory mechanisms. Sparse behavior is a state of sparse
representation of neural codes [26], [27]. From a neuro-
physiological perspective, neural codes dictate the sensory
neurons’ transformation of an external stimulus from sensory
receptors to the central brain for action. Sparse behavior indi-
cates that few neurons simultaneously activate in response
to an external stimulus at any given time. Sparse behavior is
generated by the selectivity of neurons in response to specific
external stimuli, causing sparse excitation in their physical
organization.

Sparse behavior also occurs in the auditory system. The
primary function of the auditory system is to distinguish
between temporally overlapping sounds [5]. A practical
implementation of auditory sparse excitation at the neural
level is generated using the spectral-temporal receptive
field characteristics of auditory neurons along the auditory
pathway.

Sparse approximation, or sparse coding, is a promising
method for simulating sparse behaviors at different stages
of the auditory pathway [12], [28], [29], [30]. It seeks a
small number of nonzero latent variables to represent a given
observation when the observation space is mapped to a latent
variable space with a given linear relationship [11]. Reference
[12] used sparse coding to obtain auditory features in
multilayered convolutional networks simulating an auditory
system. Reference [28] employed binary sparse coding
to estimate auditory features in constructing an auditory
model between speech embedded in natural sound and the
functional magnetic resonance imaging (fMRI) signals from
the auditory cortex. Sparse coding has also been used to learn
sparse features in midlevel auditory representations [29] and
to simulate sparse features on the outputs of cochlear filter
banks [30]. The latent variable space is often the time-feature
domain, wherein a few nonzero features represent sparse
behavior at any time.

III. COMBINING CONV-TASNET AND ML-ISTA
We first present an overview of Conv-TasNet and ML-ISTA.
We review the rationale for selecting ML-ISTA as a
solution to the sparse approximation in the combined
model. Thereafter, we explain how ML-ISTA is embedded
into Conv-TasNet to construct a combined model. Finally,
we describe the optimization problem and how to acquire the
combined model by solving the problem.

First, we describe the configuration of Conv-TasNet.
This monaural supervised deep-learning speech separation
algorithm consists of the encoder, separator, and decoder
with a loss function of µ PIT-based scale-invariant signal-
to-noise ratio (SI-SNR) between the estimated and target
speech signals. It achieved state-of-the-art performance in
the past. The input signal to the model is a mixture of
time-series speech signals, and the model outputs are the
estimated separated speech signals. The encoder consists
of multiple one-dimensional (1-D) filters in a single layer
and transforms its mixture input into a latent space. The
separator consists of multiple blocks of dilated convolutions
and estimates a mask for each speaker, which is applied
multiplicatively to the latent representations at the encoder
outputs to produce the estimated separated speech in the
latent space. The decoder is a linear filter with overlap-and-
add operation for the concatenation of speech signals and
reverts the estimated latent signals to the time domain.

Second, we review ML-ISTA. ML-ISTA has recently
been proposed as an algorithm for solving the least abso-
lute shrinkage and selection operator (LASSO) problem,
an ℓ1 regularization problem for sparse approximation. Algo-
rithms for LASSO constitute a well-studied, computationally
efficient category of solutions for sparse approximation,
compared to greedy algorithms such as MP and OMP, which
solve an ℓ0 regularization problem [11]. ISTA, which is the
basis for ML-ISTA, has mainly been employed in various
image applications such as image denoising and image
reconstruction of magnetic resonance (MR) modality in [31]
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FIGURE 1. (a) Matrix D is a union of vertically banded matrices to which N local one-dimensional (1-D) convolutional filters with filter length Z and filter
shift Z/2 are reformulated. Segments with the same shade degree represent 1-D convolutional filters with the same coefficients. (b) Matrix DT is the
transpose of D. (c) The ℓth recursive forwarding calculation on the single-layer recurrent convolutional neural network (RCNN) is equivalent to (2) with
γ (0) = 0. D and DT undergo matrix multiplications, and Tb is a rectified linear unit (ReLU) activation function with bias b.

and [32]. The former uses ISTA for the restoration of MR
images. The latter uses ISTA to shorten data acquisition time
to ease patient fatigue and mitigate target movement during
MR scans. Our work is the first time that ML-ISTA has been
employed for speech separation.

ML-ISTA is a variant of multilayered convolutional sparse
coding [33], which is a sparse approximation method
that maps the input to the output as a series of matrix
multiplications with formatted convolution matrices. For
simplicity, the authors of [13] derived ML-ISTA using a
two-layer convolutional sparse coding case as an example.
In contrast, we proceed with our discussion by concentrating
on a single-layer case because a single-layer network is the
encoder of Conv-TasNet, into which ML-ISTA is embedded.

In the single-layer case, the true sparse solution γ ∗ is
obtained in the minimization problem as follows:

γ ∗
= argmin

γ

1
2
∥y−Dγ ∥

2
2 + λ∥γ ∥1, (1)

where the given observation y ∈ RM and its sparse
latent representations γ ∈ RP form a linear combination
with a matrix D ∈ RM×P. One example of D has
a union of vertically banded matrices to which N local
1-D convolutional filters with length Z and shift Z/2 are
reformulated. The matrix D is shown in Fig. 1(a). ∥ ∗ ∥

2
2 and

∥ ∗ ∥1 are the squared ℓ2-norm and ℓ1-norm, respectively,
of the term ∗, and λ is a Lagrange multiplier. The first term on
the right-hand side of (1) is the reconstruction error against y
and the second term is the ℓ1-norm of γ . The norm serves as
a sparse regularization for the solution of γ . Therefore, the
obtained solution γ ∗ is the optimal sparse representation of
the input signal y.

ML-ISTA determines γ (L) for a given total iteration count
of L as the solution to the aforementioned minimization
problem, which approximates the true γ ∗ as follows:

γ (l+1)
= ReLU(γ (l)

− DT (Dγ (l)
− y) + b), (2)

γ (0)
= 0, (3)

where γ (l+1), l = 0, · · · ,L − 1 is the latent representation
at the (l + 1)th iteration. The rectified linear unit (ReLU)

with bias b, corresponding to λ, is used to add a nonnegative
constraint to the sparse representation γ . 0 is a vector with all
components zero. Note that γ (l+1) can be obtained in (2) once
γ (l) is known. Thus, L iterations of the equation yield γ (L)

for a given y. Furthermore, (2) is equivalent to a forwarding
calculation consisting of a pair of a forward pass withDT , the
transpose ofD in Fig. 1(b), and a backward pass withD on the
recurrent convolutional neural network (RCNN), as depicted
in Fig. 1(c). Therefore, γ (L) can be obtained using the L-time
recursive forwarding calculation of the RCNN.

ML-ISTA is selected because it exhibits the following
properties: a capability of approximating solutions to an
optimization problem via forwarding calculations, a strong
affinity for the convolution-based encoder structure of Conv-
TasNet, technically guaranteed convergence, guaranteed
solution uniqueness, and a high convergence speed. These
properties are favorable for solving high-dimensional sparse
approximation problems, including speech separation.

To embed ML-ISTA into Conv-TasNet and obtain a
combined model, the RCNN of ML-ISTA in the one-layer
case replaces the original encoder of Conv-TasNet, which
consists of multiple 1-D convolutional filters in a single
layer, whereas the two networks of Conv-TasNet, that is, the
separator and decoder, remain unchanged. This replacement
is efficient because ML-ISTA has the same convolutional
neural network (CNN) basis as the encoder of Conv-TasNet.

In a precise sense, a matrix γ
(L)
matrix, which is reformatted

from the RCNN output vector γ (L) as

γ
(L)
matrix = PN (γ (L)) ∈ RN×K , (4)

replaces the output of the Conv-TasNet encoder. Here, γ (L)
∈

RNK is a vector obtained using (2) L times. αβ denotes the
multiplication of scalars α and β, and Rα×β denotes a real
matrix with α dimensions on one axis and β dimensions
on the other axis. PN (x) is a reformatting operator over
vector x to a matrix such that {PN (x)}i,j = xi+N (j−1), i =

1, · · · ,N , j = 1, · · · ,K . N represents the number of 1-D
convolutional filters in the original Conv-TasNet encoder,
and K represents the number of overlapping segments of
the mixed signal y with length Z and shift Z/2. Z is the
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length of each 1-D convolutional filter in the original Conv-
TasNet encoder. The mixed signal y(t) ∈ RM , t = 1, · · · ,M
can be denoted as the summation of the speech signals of
C speakers sc(t), t = 1, · · · ,M , c = 1, · · · ,C such that
y(t) =

∑C
c=1 sc(t).

Finally, to acquire the combined model, the following
optimization problem is defined and solved with respect to
D, b,Sep, and Dec:

max
D,b,Sep, Dec

1
C

C∑
c=1

SI-SNR(c)(ŝc(γ
(L)
matrix), sc), (5)

where SI-SNR(c)(ŝc(γ
(L)
matrix), sc) denotes speaker c’s part

of the scale-invariant signal-to-noise ratio (SI-SNR) loss
function, and Sep and Dec denote the network parameters of
the separator and decoder, respectively.

The role of SI-SNR(c)(ŝc(γ
(L)
matrix), sc) as a function of

γ
(L)
matrix stems from the fact that all of the variables Q, Qc, Ŝc,
ŝc, and SI-SNR(c) can be derived from γ

(L)
matrix. We explain the

derivation below. SI-SNR(c)(ŝc(γ
(L)
matrix), sc) can be calculated

as

SI-SNR(c)(ŝc(γ
(L)
matrix), sc) ≜ 10 log10

∥s(c)target∥
2

∥e(c)noise∥
2
, (6)

s(c)target ≜
< ŝc(γ

(L)
matrix), sc > sc
∥sc∥2

, (7)

e(c)noise ≜ ŝc(γ
(L)
matrix) − s(c)target, (8)

where < α, β > is the inner product of the two vectors α and
β. Here, ŝc(γ

(L)
matrix) is the separated individual representation

for speaker c in the time domain as estimated by the combined
model. It results from an overlap-and-add operation on
K segments of a Z -long-sequence with a shift Z/2 of
V Ŝc(γ

(L)
matrix) ∈ RZ×K , where V ∈ RZ×N is the multiplication

matrix of the decoder. In turn, Ŝc(γ
(L)
matrix) denotes the

separated individual representations for speaker c in the latent
space, which is calculated as Ŝc = γ

(L)
matrix ⊙ Qc ∈ RN×K .

Here, Qc represents the mask pertinent to speaker c and
is defined as {Qc}n′,k ′ = {Q}c′=c,n′,k ′ ∈ RN×K . Q =

Sep(γ (L)
matrix) is the output of the separator, which is the full

separation mask and a function of γ (L)
matrix.⊙ denotes element-

wise multiplication. Therefore, Ŝc(γ
(L)
matrix) is a function of

γ
(L)
matrix. Consequently, all of these variables Q, Qc, Ŝc, ŝc, and

SI-SNR(c) can be derived from γ
(L)
matrix.

Equation (5) is regarded as optimizing a single speech
separation problem, where all model parameters, including
D, b, Sep, and Dec, can be updated and learned via
back-propagation in an end-to-end manner. The single prob-
lem is constructed by embedding the ML-ISTA forwarding
calculation (2) into (5) through (4), thereby inserting the
updated values of D and b into the back-propagated loss
function. The original problem to be solved is a bi-level
optimization problem that consists of (5) and (1). The
adoption ofML-ISTA avoids solving the bi-level problem and

solves the single problem of (5) by approximating the solution
of the second minimization problem of (1) by L iterations of
(2), which is equivalent to the L-time recursive forwarding
calculation in the RCNN.

The number of updates for D in the training of the
combined model is the same as that of Conv-TasNet because
ML-ISTA purely involves the network forwarding calculation
with a fixed D. D is updated only when the loss function is
updated. Therefore, the performance comparison between the
combined model and Conv-TasNet is fair with regard to the
number of updates for D.

IV. EXPERIMENTS
A. DATASET
The WSJ0-2mix English corpus [17] is used for training,
validation, and evaluation. In this study, the WSJ0 corpus,
containing speech signals recorded under different conditions
on microphone properties and settings (WV1 and WV2),
is used for enjoying the variety of speech quality out of
WSJ0. 30-hour training and 10-hour validation datasets are
created from the WSJ0 data under the si_tr_s directory. Two
utterances that are randomly selected from different speakers
are mixed with a random SNR that varies from −5 to +5 dB
to create mixed speech. A five-hour evaluation dataset is
similarly compiled using utterances from 16 unseen speakers
under the si_dt_05 and si_et_05 directories. Thereafter, all
speech signals are converted to 8 kHz and are fed to the
model.

B. EXPERIMENTAL PROCEDURE
We train Conv-TasNet as a baseline model and train the com-
bined models for comparison to investigate the quantitative
effect of sparse approximation on separation performance.
We evaluate and compare the separation performance and
sparsity of the models.

1) TRAINING PROCEDURE
We confirm that the hyperparameter settings of the baseline
model 1 are optimal for speech performance. In particular,
we confirm the best hyperparameter settings for the number
of convolutional filters and the size of the convolutional
kernel in the encoder by grid search. The actual parameters
for training are as follows: the number of convolutional filters
in the encoder N = 256, the convolutional filter kernel size
Z = 20 with shift 10, the number of channels to the separator
B = 256, the inner channels in the dilated-convolution
H = 512, dilated-convolution filter size Pdilated = 3, the
number of blocks of dilated-convolutionX=8, and the number
of repetitions of X-dilated-blocks R = 4. The optimizer is
Adams with an initial learning rate lr=0.001 and the learning
scheduler with a learning rate decreasing by half once three
consecutive epochs show no loss reduction. The batch is 3.
The number of workers in dataloader is 4.

1The code of the baseline model used is downloaded from
https://github.com/kaituoxu/Conv-TasNet
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The combined model with the given iteration count L
for ML-ISTA is trained to maximize the SI-SNR of the
target speech for all network parameters, including those
of ML-ISTA. The iteration count L is initially regarded
as a sparse approximation setting related to the level of
convergence. It also specifies the number of recursive
forwarding calculations in the RCNN in practical network
implementations. During training, all hyperparameters except
the iteration count for the combined model are the same as
those for the baseline model. We train the combined model
over 100 epochs on the training dataset and validate themodel
improvement in the objective function every epoch on the
validation dataset.Moreover, we generate intermediatemodel
snapshots after every ten epochs. This training yields the best
model with optimal weights for all networks, including the
bias of the ReLU in ML-ISTA for maximizing the objective
function after every ten epochs for a given iteration count.
We train the combined models with different sparsity levels
by varying the iteration counts among 3, 6, 9, and 12 to
examine the difference in separation performance.

2) EVALUATION PROCEDURE
We employ SI-SNR improvement (SI-SNRi) as a primary
quality criterion for separated speech to indicate the separa-
tion performance because it is related to the loss function to
optimize training. In addition, we use three complementary
criteria: signal-to-distortion ratio improvement (SDRi), per-
ceptual evaluation of speech quality (PESQ), and short-time
objective intelligibility (STOI). SI-SNRi and SDRi represent
improved differences in SI-SNR and SDR from mixed
speech. Each criterion is measured by the average over-per-
utterancemetrics produced by 2616 utterances composing the
evaluation dataset.

We use population sparseness Spop as the sparsity measure.
This metric measures the sparsity of brain neuron activity in
neuroscience [34], [35] and is defined as Spop = Ej[Spop,j],
where Ej[∗] represents the expectation for stimuli and Spop,j
is formulated as

Spop,j = 1 −
(Ei[∥ri,j∥])2

Ei[r2i,j]
. (9)

Here, Spop,j represents the population sparseness to
stimulus j ranging from zero to one. ri,j ranges between
(−∞, ∞) and denotes the response of neuron i in the
population to stimulus j. Ei[∗] represents the expectation for
the neurons. In our experiment, ri,j represents the encoder
output {γ (L)

matrix}i,j within the range [0, ∞). Spop,j describes the
inequality in the distribution of {γ (L)

matrix}i,j along neuron i for a
given stimulus j. A higher inequality leads to Spop,j increasing
to one, whereas a lower inequality leads to Spop,j decreasing
to zero. Spop,j also corresponds to the degree of nonzero
N-dimensional encoder output as a population activated for
a given stimulus j. Spop indicates the average of Spop,j for all
utterances in the evaluation dataset.

The relationship between sparseness and quality criteria
is investigated from pairs obtained for each model using
the evaluation dataset. We use Conv-TasNet as the baseline
model for comparison with the combined models. The base-
line model exhibits sparseness owing to the implicit sparsity
incorporated by ReLU. Therefore, a pair of sparseness and
quality criteria for the baseline model can also be calculated
for comparison. We examine whether the combined models
achieve higher performance and sparseness than the baseline
model.

C. RESULTS
1) SEPARATION PERFORMANCE VS. NUMBER OF EPOCHS
We first evaluate the speech separation performance trend
for the first 100 epochs in the baseline model, and four
combined models with iteration counts of 3, 6, 9, and 12 for
sparse approximation settings. We train and validate the
five models with five distinct training runs with random
weight initializations to generate deviation among the runs.
Thus, we train 25 networks over 100 epochs, with network
snapshots obtained every 10 epochs. We evaluate the
separation performance of the 25 networks on the evaluation
dataset using the four quality criteria every 10 epochs.

Comparisons of averages over five training runs for the
baseline model and four combined models in all epochs for
the four separation speech quality criteria are presented in
Fig. 2(a), Fig. 2(b), Fig. 2(c), and Fig. 2(d). All combined
models converge toward epoch 100. They are superior to
the baseline model in all epochs and for all four criteria
except SDRi, with model iteration counts 6 and 9 at epochs
90 and 100. The peak performance of all models is not
necessarily achieved by epoch 100 because performance
saturation or over-fitting occurs midway through training,
with peak performance attained at that point.

Paired t-tests between two groups, the combined model
and a baseline model, are conducted to show two statistical
metrics, Cohen’s d [36] and 95% confidence intervals of
the averaged performance difference between them. Cohen’s
d, a standardized effect size metric, measures the distance
between the two distributions. Farther distributions lead to the
metric increasing to one and closer distributions lead to the
metric decreasing to zero. For example, Fig. 3 shows Cohen’s
d metrics for SI-SNRi, indicating the distance between the
distributions of the combined model with each iteration count
of 3, 6, 9, and 12 and the baseline model at the same
epoch. The combined model with all iteration counts shows
Cohen’s d values in the range of 0.06 to 0.1 at all epochs
in SI-SNRi. The 95% confidence interval is illustrated as
a vertical black line at the top of each combined model’s
performance bar in the subfigures of Fig. 2. The differences
in performance between the combined and baseline models
in SI-SNRi, PESQ, and STOI are distinct over all epochs
except epoch 10 of PESQ, as there is no overlap between 95%
confidence intervals and the average baseline performance
regardless of the iteration counts. In comparison, differences
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FIGURE 2. Four averaged levels of performance with 95% confidence intervals vs. epochs for the baseline model and four combined models with
iteration counts (iter.cnts) of 3, 6, 9, and 12. The vertical black lines indicate 95% confidence intervals.

FIGURE 3. Cohen’s d effect size for SI-SNRi, indicating how far two
distributions of each iteration count of 3,6,9, and 12 and the baseline is
(far:1, close:0).

in SDRi are less prominent owing to several overlaps. The
combined model with an iteration count of three exhibits the
best performance for all four quality criteria in the later stages
of training.

2) RELATIONSHIP BETWEEN SPARSITY AND SEPARATION
PERFORMANCE
We analyze the contribution of sparse approximation to per-
formance based on a peak-to-peak performance comparison.
We determine the peak performance levels over all epochs for
each of the five models and compare them using a scatterplot
for each quality criterion. The aim is to independently identify
the separation performance potential of the combined models
for the four criteria.

FIGURE 4. Typical examples of population sparseness histograms for five
models with iteration counts (iter.cnts) of 3, 6, 9, and 12 at epochs
exhibiting their highest performance.

We collect the encoder output associated with peak
performance for each model for each quality criterion and
calculate the population sparseness Spop in the output using
the method described in IV-B2. Examples of histograms for
Spop,j as expressed in (9) over the evaluation dataset for
the five models are shown in Fig. 4. The figure shows that
the distributions of population sparseness for the combined
models are situated at higher positions than that for the
baseline model, regardless of sparse approximation settings,
that is, iteration counts.

Four sparseness vs. performance scatterplots for all five
models are presented in Fig. 5(a), Fig. 5(b), Fig. 5(c), and
Fig. 5(d), where the plot for each model depicts the results
for five training runs and their average as dots.
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FIGURE 5. Sparseness vs. performance plots for five training runs of the baseline and four combined models, along with their averages over
iteration counts at epochs with the best performance. α indicates the most significant average improvement over the baseline model among all
combined models. α values indicate the differences between the baseline and combined models for all four quality criteria for an iteration count
three.

We consider two evaluation perspectives: groups of
dot distributions and one model’s average performance.
Furthermore, two sub-perspectives are considered under each
view, one along the sparseness axis and the other along the
performance axis.

For the dot distribution groups, we observe one for the
baseline model and the other for the four combined models
for the four quality criteria. The latter group is consistently
distributed within a higher sparseness than the baseline for
all four quality criteria along the sparseness axis. Most dots
in the group for the four combined models are at higher
performance levels than those in the baseline model along
the performance axis for SI-SNRi and STOI. However, some
dots for the four combined models overlap with those in
the baseline model group for SDRi and PESQ. Thus, the
combined models exhibit more distinct differences from the
baselinemodel in SI-SNRi and STOI than in SDRi and PESQ.
We suspect that the distinct differences in SI-SNRi stem from
its role as an objective training function.

According to one model’s average performance, all
averages of the combined models exhibit higher peak
performance at higher sparseness than the baseline model
in all four quality criteria. The best peak performance
improvement over the baseline along the performance axis
is α for each criterion in the sub-figure of Fig. 5. All α values
are achieved by the combined model for the iteration count
of three, with 0.54 dB (4.7%) for SI-SNRi, 0.38 dB (3.2%)
for SDRi, 0.065 (2.4%) for PESQ, and 0.01 (1.1%) for STOI.
The average sparseness values of all four combined models
consistently exceed those of the baseline model along the

sparseness axis, irrespective of quality criterion. This implies
that sparse approximation produces higher sparseness than
the baseline model.

V. DISCUSSION
We discuss four issues in this section: the acceleration of
the performance gain in the early stages of learning, the
mechanism of sparse approximation that promotes improved
separation, the penalty of space and time complexity in the
combined models when compared with the baseline model,
and the result of an ℓ1-regularized model as an alternative
sparse implementation.

For the performance gain acceleration, we demonstrate that
sparse approximation facilitates the acceleration. We investi-
gate the same-epoch relative rate for SI-SNRi as a function
of epochs. The rate is defined as the ratio of the averaged
performance of the combined model to that of the baseline
model at the same epoch. A rate of more than one indicates a
superior performance gain of the combined model over that
of the baseline during the same training epochs. A higher rate
indicates a faster acceleration in the performance gain.

Fig. 6(a) presents the same-epoch relative rate for SI-
SNRi, derived from the outcomes in Fig. 2 (a). The SI-SNRi
rate exceeds one for all epochs up to 100, decreasing with
increased epochs. For SI-SNRi, all combined models exhibit
higher rates in the early epochs, from 20 to 50, than in the
later epochs, from 60 to 100. This implies that the effect
of sparse approximation emerges strongly as an accelerator
in the performance gain during the early training stages and
continues to influence the separation improvement in the later
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FIGURE 6. Acceleration in performance gain during the early stages of learning for SI-SNRi: (a) same-epoch relative rate for SI-SNRi against
baseline performance and (b) achievement rate for SI-SNRi against saturated performance of baseline model, averaged over epochs 60 to 100.

FIGURE 7. Comparison in intensity heatmaps on encoder outputs for a 34-second utterance. Blue and red dots represent zero and
nonzero data: (a) Baseline model shows scattered intensity among encoder outputs. (b) The combined model with an iteration count
of three shows encoder bases with differently weighted intensity.

FIGURE 8. Sparseness vs. SI-SNRi trend as training updates every
10 epochs for the baseline and combined models with iteration counts
(iter.cnts) of 3, 6, 9, and 12. Each line represents plots of the averaged
sparseness and SI-SNRi over five runs per model. The triangle symbol
indicates the first data at epoch 10 for each model. All combined models
exhibit higher SI-SNRi at higher sparseness than the baseline.

training stages. The advantage of improved acceleration is
observed at epoch 30 for SI-SNRi, as illustrated in Fig. 6(b).
All combined models surpass the saturated performance of
the baseline averaged over epochs from 60 to 100.

The mechanism of sparse approximation is the extraction
of fewer nonzero encoder data, which facilitates speech
separation compared with the baseline. For the models in
Fig. 4, the number of nonzero encoder data at each time frame
of the latent space in the combined model on the evaluation

dataset is always smaller than those at the corresponding time
frame in the baseline for the same speech input, regardless
of iteration counts. Compared to the baseline, the average
reduction ratios over all time frames are 36.3%, 45.4%,
29.6%, and 23.1% for iteration counts of 3, 6, 9, and 12,
respectively. Thus, the combined models’ nonzero encoder
data are reduced by an average of 33.6% over all time frames
and iteration counts. The combinedmodels have 84.9 nonzero
encoder data out of a total of 256 encoder data on average over
all time frames and iteration counts, whereas the baseline has
128.0 nonzero encoder data. Nevertheless, all the combined
models achieve a better separation performance than the
baseline model. The observation validates that fewer nonzero
encoder data extracted by sparse approximation facilitates
speech separation.

Fig. 7 demonstrates the qualitative comparisons concern-
ing the output of the encoder for a 34-second utterance, for
the two models: one from the baseline, the other from the
combined model with an iteration count of three. Blue and
red colors are for zero and nonzero data, respectively. The
baseline shows scattered activation, whereas the ML-ISTA
model displays bases with differently weighted intensity.
The plots show sparser encoder outputs in the ML-ISTA
embedded model than in the baseline. Fig. 8 shows the trend
of the learning in sparseness vs. SI-SNRi performance on
the baseline and combined models with iteration counts of 3,
6, 9, and 12 as the epochs increase. Each line represents
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FIGURE 9. Sparseness vs. performance plots for five training runs of
ℓ1-regularized models, combined models, and the baseline.
ℓ1-regularized models gain sparseness but decrease the performance
compared with the baseline as the λ increases.

plots of the averaged sparseness and SI-SNRi over five runs
per model. The plots indicate that the combined models
simultaneously learn sparseness and performance in SI-SNRi
and achieve better performance than the baseline model at
higher sparseness.

The requirement in space complexity for the ML-ISTA
is 769 parameters, which is 0.009% of the 8.64 million
parameters of the baseline model. Moreover, the requirement
in time complexity for the ML-ISTA is 0.36 giga floating
point operations per each iteration count for a batch, which
is 0.7% of the 55.34 giga floating point operations for the
baseline model. Thus, the penalties in the space and time
complexity are small compared with the improvement in the
performance by 1.1%–4.7%.

We conducted the imposition of an ℓ1-regularization in
the activation space on training loss, a straightforward
sparse implementation before the proposed method. The
result showed no improvement in separation performance
compared with the baseline. This method is not effective in
sparse implementation for facilitating separation. We share
the experimental results below for interested readers.

The ℓ1-regularized model is trained with a loss func-
tion containing the smoothed ℓp-over-ℓq(SPOQ) as an ℓ1-
regularization which is a good indicator for ℓ1 sparsity with
the existence of a derivative at input zero [37]. Here, all
other hyperparameter settings of the model are the same as
those of the baseline. ℓ1-regularized model is acquired by
minimization of the loss function as:

min
Enc,Sep,Dec

−
1
C

C∑
c=1

SI-SNR(c)(ŝc(γ ), sc) + λ · 9(γ ),

(10)

9(x) = log

(ℓpp,α(x) + βp
) 1
p

ℓq,η(x)

 , (11)

ℓp,α(x) =

(
N∑
n=1

(
(x2n + α2)

p
2 − αp

)) 1
p

, (12)

ℓq,η(x) =

(
ηq +

N∑
n=1

|xn|q
) 1

q

, (13)

where Enc denotes the encoder’s network parameters of
Conv-TasNet, and γ is the encoder output. ŝc(γ ) is the
estimated speaker c’s speech of Conv-TasNet, and λ is the
Lagrange multiplier. p = 0.75, q = 2.0, α = 7e−7,
β = 3e−3, and η = 0.1 are hyperparameters used for
guaranteed global minimum. xn, n = 1, 2, · · · ,N is the nth
component of the vector x ∈ RN , which is the input to the
function 9().
We examine the separation performance and sparsity of an

ℓ1-regularized model by varying λ ≥ 0, i.e., 0.02, 0.03, 0.05,
and 0.1. Note that the optimization is the minimization here
due to ℓ1-regularized setting. Fig. 9 shows the sparseness
vs performance plots between ℓ1-regularized models, the
combined models, and baseline in SI-SNRi. The dots from
five training runs for each λ are superimposed in Fig. 5(a).
Almost all dots from ℓ1-regularized models, including their
averages over five training runs per λ, are situated at higher
sparseness but at lower performance. The ℓ1-regularized
models achieve less performance than the baseline, leading
to less performance than the proposed combined models.

VI. CONCLUSION
We explore the impact of sparse approximation on the
separation performance of a deep-learning-based speech
separation algorithm in speech mixtures without additional
noise or reverberant interference.

We develop a combined model that embeds the sparse
approximation ML-ISTA into the deep-learning-based Conv-
TasNet speech separation. Adopting ML-ISTA as a sparse
approximation algorithm is crucial for embedding as it avoids
solving a bi-level optimization problem comprising sparse
approximation and speech separation. ML-ISTA performs
sparse approximation through forward calculations, thereby
eliminating sparse approximation optimization. ML-ISTA’s
forward mechanism has a strong affinity for Conv-TasNet’s
convolution-based encoder structure and facilitates end-to-
end computationally efficient model training.

We demonstrate that ML-ISTA’s explicit integration as a
sparse approximation influences Conv-TasNet’s overall sepa-
ration performance.We compare the separation performances
of the combined models with Conv-TasNet. We create
four combined models with different convergence levels
using ML-ISTA’s forward calculations with varying iteration
counts. We observe that the sparseness of the combined
models differs from that of the baseline model and that
sparse approximation yields superior performance in all four
criteria: SN-SNRi, SDRi, PESQ, and STOI. Improvements
in peak performance of 1.1% to 4.7%, on average, over
the baseline model are achieved in the four criteria, with
increases in the model size (0.009%) and computational
complexity (0.7% per iteration count). Furthermore, sparse
approximation accelerates performance gain in the early
stages of training, allowing all combined models to surpass
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the saturated performance of the baselinemodel even at epoch
30 for SI-SNRi.

We describe several directions in future work. One
direction is to extend the ML-ISTA model to a noisy and
reverberant environment. Noisy two-speaker mixtures, like
Libri2mix and WSJ0 hipster ambient mixtures (WHAM!),
or noisy reverberant two-speaker mixtures, like WHAM
reverberant (WHAMR!), are the target speech corpora.
Another direction is to apply ML-ISTA to the multilayered
convolutional encoder case [38] to examine the similar
level of ML-ISTA effect on separation performance in a
multilayered convolutional case.
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