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ABSTRACT The design of tracking control based on membership function-dependent L∞ performance
for the systems, which are described by the Takagi-Sugeno fuzzy models, is considered. In practice, most
Takagi-Sugeno fuzzy systems have such a characteristic that they work on some local subsystems most of
the time and on others less time. Taking advantage of this feature, an L∞ performance index dependent
on membership function is proposed, through which better performance may be guaranteed for those
local subsystems that work most of the time. By means of the newly defined L∞ performance index, the
measurable premise variables, the estimation of immeasurable premise variables, and the estimation of
nonlinear function, an observer-based tracking controller is designed in the form of linear matrix inequalities,
which makes full use of the information of measurable premise variables. Finally, an example is provided
to verify the effectiveness of the proposed approach. In the simulation, compared with the traditional L∞

control method, the novel method has better robust tracking performance.

INDEX TERMS L∞ control, membership function-dependent, observer-based tracking controller, Takagi-
Sugeno fuzzy system.

I. INTRODUCTION
In recent years, how to address nonlinear systems has
attracted considerable attention because in practical engi-
neering, a large number of control systems are nonlinear
[1]. As a powerful tool to address nonlinear systems, the
Takagi-Sugeno (T-S) fuzzy model method can approach a
complex nonlinear system by superimposing local linear
systems through membership functions [2], [3]. Therefore,
some theories of well-established linear systems can be
adapted to nonlinear systems. Many interesting results with
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regard to the T-S fuzzy model approach have been reported
in the articles [4], [5], [6], [7], [8], [9], [10], [11]. Reference
[4] develops a T-S fuzzy model with nonlinear terms such
that fewer fuzzy rules can be acquired. Less computational
burden can be obtained based on this modelling method.
In a framework of the fuzzy Lyapunov function, a steering
control scheme of fuzzy observer-based output feedback for
vehicle dynamics is proposed in [5]. In [6], the L2 −L∞/H∞

optimization control of a kind of nonlinear system is studied
by using the T-S fuzzy method. By using discrete-time
T-S fuzzy models, [11] designs a sliding mode observer-
based control scheme to estimate unmeasured states of the
system.
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Many T-S fuzzy systems have a common potential property
in that the system works under some particular fuzzy rules
most of the time, which means that the system works on
some specific local subsystems frequently and on others in
less time [12]. In practical engineering applications, it is
meaningful to design controllers by using this property of
T-S fuzzy systems. However, most of the current methods
ignore this characteristic of T-S fuzzy systems. In the current
T-S fuzzy controller synthesis, all local linear subsystems
have a fixed robust performance index [13], [14], [15], [16],
[17], [18], [19], which makes the analysis of the control
synthesis problem conservative. Fortunately, the membership
functions are related to the property of the T-S fuzzy
systems. Therefore, a robust performance index dependent
on membership functions can be constructed to achieve
better global T-S fuzzy system control effects. An H∞

performance index dependent on membership functions is
proposed by [12], through which a disturbance suppression
scheme can obtain better system performance. This motivates
us to construct a membership function-dependent robust
performance index.

On the other hand, the system is inevitably subject
to external disturbances [20], which adversely affect the
stability of the system. Moreover, the disturbances are per-
sistent and bounded [21]. Hence, it is important to attenuate
the persistent bounded disturbance in controller synthesis.
Fortunately, an L∞ method is provided to effectively solve
this problem. The peak value of the disturbance signal can
be described by the L∞ norm, which means that the L∞

norm can be used as the performance criterion for control
synthesis to minimize the upper bound of the continuously
bounded disturbance when considering the control problem
of a system with persistent disturbance [22]. At present, there
are relevant studies on the L∞ method [23], [24], [25]. In [23],
the optimal L∞-gain of the stabilization problem for T-S
fuzzy systems is acquired. The problem of finite frequency
L2 − L∞ filtering for T-S fuzzy systems with unknown
membership functions is considered in [24]. Therefore,
an observer-based controller design condition for a T-S fuzzy
system with persistent disturbance based on L∞ performance
is developed in this paper. The robustness of the system to
external persistent disturbance is increased.

Additionally, the task of tracking is a typical design
problem [26]. In recent years, many robust fuzzy tracking
control schemes have been developed for tracking control
design of nonlinear systems [27], [28], [29]. Reference [27]
investigates fault-tolerant tracking control for near-space-
vehicles (NSVs). Robust adaptive fuzzy tracking control for
nonlinear systems is studied in [28]. In [29], the design of
step tracking control is considered, which is aimed at discrete
nonlinear systems with finite capacity.

On the basis of the previous discussions, it is of great
significance to study how to reduce the effects of persistent
disturbance on the system and how to improve system
performance by the property that the T-S fuzzy system is in

some specific local subsystems in most cases. These points
are the driving force behind our current work. This paper
investigates the problem of robust tracking control for T-S
fuzzy systems on the basis of L∞ performance dependent
on the membership function. The main contributions of this
paper are listed as follows:

(A) A novel observer-based tracking controller scheme is
presented, which enables us to track the bounded reference
input. The scheme is designed by the T-S fuzzy model with
local nonlinear models, which reduces the number of fuzzy
rules and decreases the computational burden. Then, the
objective of tracking control can be realized even when the
system premise variables are partly measurable.

(B) A membership function-dependent L∞ performance
index is proposed to address the persistent disturbance.
Since many T-S fuzzy systems have a common potential
property that they work under some specific local subsystems
most of the time, an L∞ performance index dependent
on the membership function is developed. Compared with
existing results, by the novel L∞ performance index, the
property of T-S fuzzy systems can be made better use of.
Furthermore, the systems have better performance against
persistent disturbance.

The remainder of this paper is arranged as follows. The
system description is presented in Section II. In Section III,
the corresponding linear matrix inequality (LMI) conditions
of the observer-based tracking controller with membership
function-dependent L∞ performance are given, where the
information of the measurable premise variables is fully
used. Section IV employs an example to illustrate the
effectiveness of the proposed method. The conclusion is
drawn in Section V.
Notation: The sign ‘‘*’’ denotes an ellipsis as symmetry

in a matrix. The ‘‘MT ’’ and ‘‘M−1’’ stand for the trans-
pose and inverse of matrix M , respectively. The notation
M > 0(M < 0) means that the matrix M is real symmetric
and positive (negative) definite. For a square matrix M ,
He(M ) is defined as M + MT . For a two-point x, y ∈ Rn,
the convex hull of the two points is co{x, y} = {θ1x + θ2y :

θ1 + θ2 = 1, θi ≥ 0}. I and 0 are the identity matrix and
the zero matrix with appropriate dimensions, respectively.
diag{} denotes a block-diagonal matrix. The L∞ norm of
the signal ξ (t) is defined as ∥ξ (t)∥∞ ≜ supt ∥ξ (t)∥, where
∥ξ (t)∥ ≜

√
ξT (t)ξ (t).

II. SYSTEM DESCRIPTION
A. SYSTEM MODEL
This article considers a kind of nonlinear continuous-time
system, which is described as:

ẋ(t) = g1 (x(t))+ g2 (x(t)) u(t) + g3 (x(t)) τ (t)

+ g4 (x(t)) φ (t)

y(t) = g5 (x(t)) (1)

where x(t) is the system state; u(t) denotes the control input;
τ (t) represents the bounded external disturbance, which is
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assumed to be satisfied with τ (t) ∈ L∞; y(t) stands for the
measurable output; φ (t) = [φ1 (t) , · · · , φs (t)]T refers to a
nonlinear function, where s is the number of nonlinear terms;
g1(·), g2(·) and g3(·) are nonlinear functions to be linearized;
and g4(·) and g5(·) are linear functions.
Remark 1: Referring to [4], a number of nonlinear terms

in a nonlinear system are grouped into the nonlinear term
φ(t). As a result, based on the T-S fuzzy model with local
nonlinear models, the T-S fuzzy system has fewer fuzzy rules,
the synthesis of the controllers or the observers is simplified,
and the computational burden is reduced.

To illustrate the advantages of this modelling method,
an example is given as follows:

ẋ(t) = sin(x(t)) + x3(t) + u(t) (2)

For the above system, the T-S fuzzy model is described as:
PlantRule 1:
IF x2 is 01
THEN

ẋ(t) = A1x(t) + B1u(t) + Gφ(t)

PlantRule 2:
IF x2 is 02
THEN

ẋ(t) = A2x(t) + B2u(t) + Gφ(t)

where x ∈ [−π
2 ,

π
2 ], 01 = 1 −

4x2

π2 , 02 =
4x2

π2 , A1 =
2
π
,

A2 =
2
π

+
π2

4 , B1 = B2 = 1,G = 1, φ(t) = sin(x(t))− 2
π
x(t).

System (2) has two nonlinear terms. If the traditional
modelling method is used, there will be four fuzzy rules, while
the method in [4] has two fuzzy rules. Therefore, the fuzzy
rules of the system are reduced.

In addition, for the nonlinear term φ(t), the following
assumption is made:
Assumption 1 ([4]): The nonlinearities φi(t), i ∈ {1, · · · ,

s}, are sector-bounded nonlinear functions and satisfy the
property as follows:

φi(t) (x(t)) ∈ co{0,Eix(t)} i = 1, · · · , s (3)

where Ei are constant vectors with appropriate dimensions,
E = [ET1 · · ·ETs ]

T .
Next, the nonlinear system (1) is described by the following

T-S fuzzy model:
Plant Rule i:
IF z1(t) is 0i1, · · · , zp(t) is 0ip
THEN

ẋ(t) = Aix(t) + Biu(t) + Fiτ (t) + Gφ(t)

y(t) = Cx(t) (4)

where Ai, Bi, C , Fi, G (i = 1, · · · , r) stand for
constant real matrices with appropriate dimensions; z(t) =

[z1(t), · · · , zp(t)]T , zg(t)(g = 1, · · · , p) are the premise
variables, where p represents the number of premise vari-
ables; 0ig denotes a zg(t)-based fuzzy set, and they are
linguistic terms characterized by fuzzymembership functions

0ig(zg(t)), where rg is the number of zg(t)-based fuzzy sets.
It is easy to obtain that the fuzzy rule base consists of r =
p∏

g=1
rg IF-THEN rules.

After employing the fuzzy inference method with a
singleton fuzzifier, product inference, and center average
defuzzifiers, the overall fuzzy model of system (4) can be
inferred as follows:

ẋ(t) =

r∑
i=1

hi(z(t))(Aix(t) + Biu(t) + Fiτ (t)) + Gφ(t)

y(t) = Cx(t) (5)

with

hi(z(t)) =
wi(z(t))
r∑
i=1

wi(z(t))
,wi(z(t)) =

p∏
g=1

0ig(zg(t)) (6)

where
r∑
i=1

hi(z(t)) = 1, hi(z(t)) ≥ 0.

As the work in this paper considers a system with partly
measurable premise variables, it is convenient to separate the
expressions of the functions gi(·) depending exclusively on
measurable premise variables (zµ) and depending on at least
one immeasurable premise variable (zλ). Following the sector
nonlinearity approach in [30] together with this separation,
the equivalent representation of (5) is obtained as follows:

ẋ(t) =

m∑
i=1

n∑
j=1

µi(zµ(t))λj(zλ(t))(Aijx(t) + Biju(t)

+ Fijτ (t)) + Gφ(t)

y(t) = Cx(t) (7)

with

µi(zµ(t)) =
ui(zµ(t))
m∑
i=1

ui(zµ(t))
, ui(zµ(t)) =

p0∏
g=1

0ig(zg(t)) (8)

λj(zλ(t)) =
vj(zλ(t))
n∑
j=1

vj(zλ(t))
, vj(zλ(t)) =

p∏
g=p0+1

0jg(zg(t)) (9)

where µi(zµ(t)), i ∈ {1, · · · ,m} are positive func-
tions depending on the measurable premise variables and
λj(zλ(t)), j ∈ {1, · · · , n}, the positive functions depending
on at least one immeasurable premise variable with m =
p0∏
g=1

rg, n =

p∏
g=p0+1

rg. When all the premise variables are

measurable, µi(zµ(t)) = hi(z(t)), λj(zλ(t)) = 1, while when
none of them are measurable, µi(zµ(t)) = 1, λj(zλ(t)) =

hi(z(t)). It is noted that
m∑
i=1

n∑
j=1
µi(zµ(t))λj(zλ(t)) = 1,

m∑
i=1
µi(zµ(t)) = 1 and

n∑
j=1

λj(zλ(t)) = 1. In this paper, it is

assumed that the premise variables zg(t), g = 1, · · · , p0 are
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measurable and that the premise variables zg(t), g = p0 +

1, · · · , p are immeasurable.
Remark 2: Inspired by [31], the case where the premise

variable z(t) depends on the partially measurable states of
the system is considered, which implies that some states are
measurable and others are not. In this case, the premise
variables zg(t), g = 1, · · · , p0 are assumed to bemeasurable,
and the premise variables zg(t), g = p0 + 1, · · · , p are
assumed to be immeasurable. For example, when there are
three premise variables, two of which are measurable, then
z1 and z2 are measurable premise variables, and z3 is an
immeasurable premise variable.

B. OBSERVER-BASED CONTROLLER DESIGN
To design the observer, the equivalent form of the fuzzy
model (7) is given as follows:

ẋ(t) =

m∑
i=1

µi(zµ(t))(Āix(t) + B̄iu(t))

+

m∑
i=1

n∑
j=1

µi(zµ(t))λj(zλ(t))((Aij − Āi)x(t)

+ (Bij − B̄i)u(t) + Fijτ (t)) + Gφ(t)

y(t) = Cx(t) (10)

where Āi and B̄i that can be given are matrices of the same
dimensions as Aij and Bij, respectively.
Next, similar to [31], the measurable premise variables,

the estimation of immeasurable premise variables and the
estimation of the nonlinear function of the fuzzy model can
be used to construct a fuzzy observer as follows:

˙̂x(t) =

m∑
i=1

µi(zµ(t))(Āix̂(t) + B̄iu(t))

+

m∑
i=1

n∑
j=1

µi(zµ(t))λ̂j(zλ(t))((Aij − Āi)x̂(t)

+ (Bij − B̄i)u(t)) + Gφ̂(t)

+

m∑
i=1

µi(zµ(t))Li(y(t) − ŷ(t))

ŷ(t) = Cx̂(t) (11)

where x̂(t) and ŷ(t) are the estimated state and corresponding
output, respectively. λ̂j(ẑλ(t))(j = 1, · · · , n) represents the
membership function, which is dependent on ẑλ(t); φ̂(t)
stands for the estimation of the nonlinear function φ(t);
Li(i = 1, · · · ,m) denotes the observer gain matrices to be
determined.

Moreover, consider the following reference model to be
tracked [32]:

ẋr (t) =

m∑
i=1

n∑
j=1

µi(zµ(t))λj(zλ(t))Ãijxr (t) + r(t) (12)

where xr (t) is the desired reference state to be tracked,
Ãij specifies asymptotically stable matrices and r(t) is the
bounded reference input.

Then, the following fuzzy control scheme is adopted for
the T-S fuzzy system (10).

u(t) =

m∑
i=1

µi(zµ(t))Ki
(
x̂(t) − xr (t)

)
(13)

where Ki(i = 1, · · · ,m) are the fuzzy control gains to be
determined and only the measurable premise variables are
used.
Remark 3: It should be noted that since some of the

premise variables are immeasurable, the designed controller
depends on measurable premise variables. In (13), µi(zµ(t))
is known, which contains the information of measurable
premise variables. Therefore, the controller design method
effectively utilizes the information of measurable premise
variables. At the same time, the controller (13) shares the
same premise variables with the fuzzy model (10). Then,
Lemma 1 can be used to obtain less conservative results.

Next, denote

e0(t) = x(t) − x̂(t), er (t) = x(t) − xr (t) (14)

where e0(t) and er (t) represent the state estimation error and
tracking error, respectively.

On the basis of (10) and (11), the derivative of the state
estimation error is given by

ė0(t) = ẋ(t) − ˙̂x(t)

=

m∑
i=1

µi(zµ(t))
(
Āi − LiC

)
e0(t) + G

(
φ(t) − φ̂(t)

)
+

m∑
i=1

n∑
j=1

µi(zµ(t))λj(zλ(t))(Fijτ (t) +
(
Aij − Āi

)
ϖj(t)

+
(
Bij − B̄i

)
1j(t)) (15)

where ϖj(t) = λj(zλ(t))x(t) − λ̂j(zλ(t))x̂(t), 1j(t) =(
λj(zλ(t)) − λ̂j(zλ(t))

)
u(t).

Similarly, the tracking error dynamic can be expressed as

ėr (t) =

m∑
i=1

n∑
j=1

m∑
l=1

µi(zµ(t))λj(zλ(t))µl(zµ(t))(−BijKle0(t)

+ (Aij + BijKl)er (t) + (Aij − Ãij)xr (t) + Fijτ (t))

+ Gφ(t) − r(t) (16)

Combining (15) and (16), the fuzzy augmentation system
can be expressed as follows:

ξ̇ (t) =

m∑
i=1

n∑
j=1

m∑
l=1

µi(zµ(t))λj(zλ(t))µl(zµ(t))Âijlξ (t)

+

m∑
i=1

n∑
j=1

µi(zµ(t))λj(zλ(t))B̂ijτ̃ (t) +

[
ω1
0

]

+ G
[
φ̃(t)
φ(t)

]
(17)
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where

ξ (t) = [eT0 (t) eTr (t)]
T , τ̃ (t) = [τT (t) xTr (t) rT (t)]T ,

φ̃(t) = φ(t) − φ̂(t),

ω1 =

m∑
i=1

µi(zµ(t))
n∑
j=1

(
(Aij − Āi)ϖj(t) + (Bij − B̄i)1j(t)

)
Âijl =

[
Āi − LiC 0
−BijKl Aij + BijKl

]
B̂ij =

[
Fij 0 0
Fij Aij − Ãij −I

]
.

Assumption 2: 1) The input u(t) is bounded ∥u(t)∥ ≤ η

2) ∥ϖj∥ = ∥λjx − λ̂jx̂∥ ≤ aj∥x − x̂∥
3) ∥λj − λ̂j∥ ≤ bj∥x − x̂∥
4) ∥φ̃∥ = ∥φ − φ̂∥ ≤ ϕ∥x − x̂∥
where aj, bj and ϕ are Lipschitz constants, which are

known scalars.

C. PRELIMINARIES
Before obtaining the main result, the membership function-
dependent L∞ performance index will be given.
Definition 1: Under zero initial conditions, the L∞ perfor-

mance index γ can be defined as

∥ξ (t)∥∞ ≤ γ (µi,λj)∥τ (t)∥∞,∀τ (t) ∈ L∞ (18)

whereµi and λj are the membership functions. The definition
of the L∞ norm is given in the Notation. It is obvious that
the L∞ performance index γ depends on the membership
functions µi and λj in Definition 1.
Remark 4: Inspired by [12], the membership function-

dependent L∞ performance index is developed, which can
achieve better system performance. The specific analysis
of the reasons is given as follows: in practice, many T-S
fuzzy systems work under some fuzzy rules most of the
time (since the system states will stay in a neighborhood
of the origin) and do not work under other fuzzy rules
frequently. In other words, these T-S fuzzy systems work
on some subsystems most of the time, and others work at
low frequencies. This case is illustrated by the following
example (19). In this case, if some subsystems that work
frequently have a relatively small disturbance attenuation
index and others appropriately relax the index, better
system performance will be achieved compared with the
traditional L∞ method in [33]. Additionally, the H∞ method
in [12] can only deal with energy-bounded disturbances
but is not applicable for magnitude-bounded disturbances.
However, the developed approach can deal with persistent
disturbances, which overcomes the shortcomings of existing
methods.

To illustrate the case above-mentioned, the following
example is given:

ẋ(t) = cos(x(t))x(t) + x(t) + u(t) (19)

For the system (19), the following T-S fuzzymodel is described
as:

Rule 1:
IF cos(x) is 01

THEN

ẋ(t) = A1x(t) + B1u(t)

Rule 2:
IF cos(x) is 02
THEN

ẋ(t) = A2x(t) + B2u(t)

where x ∈ [−π
3 ,

π
3 ], 01 = 2 − 2 cos(x), 02 = 2 cos(x) −

1, A1 =
3
2 , A2 = 2, and B1 = B2 = 1. When the system

states stay near the origin, the system works on the subsystem
corresponding to Rule 2.
In this case, if some subsystems that work frequently have

a relatively small disturbance attenuation index and others
appropriately relax the index, better system performance will
be achieved.

In addition, the following lemma is also needed in the
derivation of the main result.
Lemma 1 ([34]): If the following conditions hold for i, l ∈

{1, · · · ,m}, j ∈ {1, · · · , n}:

8iji < 0
1

r − 1
8iji +

1
2

(
8ijl +8lji

)
< 0 i ̸= l

then the following inequality holds:
m∑
i=1

n∑
j=1

m∑
l=1

µiλjµl8ijl < 0

where µi(i = 1, · · · ,m), λj(j = 1, · · · , n) satisfy 0 ≤ µi ≤

1, 0 ≤ λj ≤ 1,
m∑
i=1
µi = 1,

n∑
j=1

λj = 1.

D. PROBLEM FORMULATION
In this paper, the aim is to design the gains of the controller
and observer so that the following two requirements are
satisfied simultaneously.

1) The fuzzy augmented system (17) is asymptotically
stable when the disturbance τ̃ (t) = 0;

2) The fuzzy augmented system (17) satisfies the mem-
bership function-dependent L∞ performance given
below when the disturbance τ̃ (t) ̸= 0.

sup
τ̃ (t)∈L∞

∥ξ (t)∥∞

∥τ̃ (t)∥∞

< γ (µi,λj) (20)

III. MAIN RESULT
In this section, sufficient conditions for designing the
observer-based tracking controller based on membership
function-dependent L∞ performance for a T-S fuzzy system
with partly measurable premise variables are given.
Theorem 1: For given positive scalars aj, bj, ϕ, ε, ρ, κ ,

α and c, the fuzzy augmented system (17) is asymptotically
stable with membership function-dependent L∞ performance
if there exists positive definite matrices P1 = PT1 > 0,
Q2 = QT2 > 0, symmetric matrices Xl(i = 1, · · · ,m),
M , Zi(i = 1, · · · ,m), diagonal matrix 3 > 0, such that
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the following inequalities hold for i, l ∈ {1, · · · ,m}, j ∈

{1, · · · , n}, x ∈ {1, · · · ,m− 1}, y ∈ {1, · · · , n− 1}:

2iji < 0
1

r − 1
2iji+

1
2
(2ijl +2lji) < 0 i ̸= l (21)

8i < 0 (22)I − δ2P1 0 0
0 −εδ2Q2 Q2
0 Q2 −I

 < 0 (23)

where

2ijl =


He(AijQ2+BijXl )+αQ2 Aij−Arij −I Fij G3+Q2ET

∗ −
�ij
ε

0 0 ET

∗ ∗ −
�ij
ε

0 0

∗ ∗ ∗ −
�ij
ε

0
∗ ∗ ∗ ∗ −23


8i =

ϒi P1+M−κĀTi M
T
+κCT ZTi −MG −M5A −M5B

∗ κ(M+MT ) −κMG −κM5A −κM5B
∗ ∗ −I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I


�ij = ρµiλj, 1 ≤ i ≤ x, 1 ≤ j ≤ y

�ij = µiλj, x < i ≤ m, y < j ≤ n

ϒi = He(−MĀi + ZiC) + αP1 + ϕ2I +

n∑
j=1

(a2j + b2j η
2)I

5A =
[
Ai1 − Āi Ai2 − Āi · · · Ain − Āi

]
5B =

[
Bi1 − B̄i Bi2 − B̄i · · · Bin − B̄i

]
The membership function-dependent L∞ performance

index is described as follows:

∥ξ∥∞ < γ (µi,λj)∥τ̃∥∞ (24)

where γ (µi,λj) =

√
c̄
α
δ =

√√√√(
x∑
i=1

y∑
j=1
ρµiλj+

m∑
i=x+1

n∑
j=y+1

µiλj

)
c

α
δ.

Next, the gains of the controller and observer are obtained
by

Kl = XlQ
−1
2 , Li = M−1Zi, i, l = 1, · · · ,m

Proof: The proof is divided into two parts, which are
proved by deriving Lyapunov conditions and solving them
using the numerical techniques based on LMIs. The first
part is to prove that the fuzzy augmented system (17) is
asymptotically stable. In the second part, the augmented
system (17) guarantees the membership function-dependent
L∞ performance index (24).
(A) Consider the following Lyapunov functional candidate:

V (ξ (t)) = ξ (t)TPξ (t) (25)

where P =

[
P1
εP2

]
with P = PT > 0, P1 = PT1 > 0,

P2 = PT2 > 0.
To guarantee the performance (24), the following condition

needs to be demonstrated:

V̇ + αV − c̄τ̃T τ̃ < 0 (26)

where c̄ =

(
x∑
i=1

y∑
j=1
ρµiλj +

m∑
i=x+1

n∑
j=y+1

µiλj

)
c.

Taking the derivative of the Lyapunov function, we have

V̇ = ξ̇TPξ + ξTPξ̇

= ė0TP1e0 + εėr TP2er + eT0 P1ė0 + εeTr P2ėr (27)

It is clear from (15) that for the free-weighting matrices
M1 and M2, the following zero-equation holds [35]:

0 = 2(eT0M1 + ė0TM2)(ė0 −

m∑
i=1

µi(Āi − LiC)e0

−

m∑
i=1

n∑
j=1

µiλjFijτ − Gφ̃ − ω1) (28)

whereM1 = M ;M2 = κM1;M is any symmetric matrix; and
κ is an arbitrary constant.
Next, adding the right of (28) to the right of (27), we have

V̇ = ė0TP1e0 + εėr TP2er + eT0 P1ė0 + εeTr P2ėr

+ 2(eT0M1 + ė0TM2)(ė0 −

m∑
i=1

µi(Āi − LiC)e0

−

m∑
i=1

n∑
j=1

µiλjFijτ − Gφ̃ − ω1) (29)

According to Assumption 1 and the method in [4], the
following inequality can be derived:

φT (t)3−1Ex(t) − φT (t)3−1φ(t) ≥ 0 (30)

where E is given in Assumption 1,3 is a diagonal matrix and
3 > 0.
Based on Assumption 2, the following inequalities can be

obtained:

a2j e
T
0 e0 −ϖ T

j ϖj ≥ 0 (31)

b2j η
2eT0 e0 −1T

j 1j ≥ 0 (32)

ϕ2eT0 e0 − φ̃T φ̃ ≥ 0 (33)

Combined with (30)-(33), it is clear that based on the S-
procedure, the condition (26) is satisfied only if

V̇ + αV − c̄τ̃T τ̃ +

n∑
j=1

(a2j e
T
0 e0 −ϖ T

j ϖj + b2j η
2eT0 e0

−1T
j 1j) + ϕ2eT0 e0 − φ̃T φ̃ + 2εφT3−1Ex − 2εφT

3−1φ < 0 (34)

DefineχT = [eTr xTr rT τT φT eT0 ėT0 φ̃T ϖ T

1T ]T , with (34), the following inequality holds:
m∑
i=1

n∑
j=1

m∑
l=1

µiλjµlχ
T4ijlχ < 0 (35)

where, as shown in the equation at the bottom of the next

page, ϒi = He(−MĀi + ZiC) + αP1 + ϕ2I +

n∑
j=1

(a2j +

b2j η
2)I ,Zi = MLi.
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We rewrite (35) as follows:

m∑
i=1

n∑
j=1

m∑
l=1

µiλjµlχ
T4ijlχ

=

m∑
i=1

n∑
j=1

m∑
l=1

µiλjµl(eTr (Aij + BijKl)T εP2er

+ eTr εP2(Aij + BijKl)er + αeTr εP2er + 2eTr εP2(Aij
− Arij)xr − 2 eTr εP2r + 2 eTr εP2Fijτ + 2 eTr εP2Gψ

+ 2εeTr E
T3−1φ −�ijxTr xr −�ijrT r −�ijτ

T τ

− 2εφT3−1φ) +

m∑
i=1

n∑
j=1

m∑
l=1

µiλjµl(2eTr εP2(−BijKl)e0

− 2τTFTij M
T
1 e0 − 2τTFTij M

T
2 ė0)

+

m∑
i=1

µi(eT0M1(−Āi + LiC)e0 + eT0 (−Āi + LiC)TMT
1 e0

+ αeT0 P1e0 + ϕ2eT0 e0 + eT0

n∑
j=1

a2j e0 + eT0

n∑
j=1

b2j η
2e0

+ 2 eT0 P1ė0 + 2 eT0M1ė0 + 2 eT0 (−Āi + LiC)TMT
2 ė0

− 2 eT0M1Gφ̃ − 2 eT0M15Aϖ − 2 eT0M15B1− 2ėT0M2Gφ̃

− 2ėT0M25Aϖ − 2ėT0M25B1

+ 2ėT0M2ė0 − φ̃T φ̃ −ϖ Tϖ −1T1) = ė0TP1e0
+ εėr TP2er + eT0 P1ė0 + εeTr P2ėr

+ 2(eT0M1 + ė0TM2)(ė0 −

m∑
i=1

µi(Āi − LiC)e0

−

m∑
i=1

n∑
j=1

µiλjFijτ − Gφ̃ − ω1) + αeT0 P1e0 + αeT0 εP2e0

− c̄xTr xr − c̄rT r − c̄τT τ +

n∑
j=1

(a2j e
T
0 e0 −ϖ T

j ϖj

+ b2j η
2eT0 e0 −1T

j 1j) + ϕ2eT0 e0 − φ̃T φ̃ + 2εφT3−1Ex

− 2εφT3−1φ = V̇ + αV − c̄τ̃T τ̃+

n∑
j=1

(a2j e
T
0 e0−ϖ

T
j ϖj

+ b2j η
2eT0 e0 −1T

j 1j) + ϕ2eT0 e0 − φ̃T φ̃

+ 2εφT3−1Ex − 2εφT3−1φ < 0

Furthermore, the inequality (35) holds only if

m∑
i=1

n∑
j=1

m∑
l=1

µiλjµl4ijl < 0 (36)

The Schur complement is applied to (36), which yields

ε

m∑
i=1

n∑
j=1

m∑
l=1

µiλjµl4
11
ijl < 0 (37)

m∑
i=1

n∑
j=1

m∑
l=1

µiλjµl

(
422
ijl − ε412

ijl (4
11
ijl )

−1(412
ijl )

T
)
< 0

(38)

The inequality (37) can be expressed in detail as follows:

ε

m∑
i=1

n∑
j=1

m∑
l=1

µiλjµl4
11
ijl = ε

x∑
i=1

y∑
j=1

m∑
l=1

µiλjµl
He(P2Aij+P2BijKl )+αP2 P2(Aij−Arij) −P2 P2Fij P2G+ET3−1

∗ −
ρµiλj
ε

0 0 ET3−1

∗ ∗ −
ρµiλj
ε

0 0

∗ ∗ ∗ −
ρµiλj
ε

0

∗ ∗ ∗ ∗ −23−1


+ ε

m∑
i=x+1

n∑
j=y+1

m∑
l=1

µiλjµl

ϖ T
= [ϖ T

1 ϖ T
2 · · · ϖ T

n ], 1T
= [1T

1 1T
2 · · · 1T

n ]

4ijl =

[
ε411

ijl ε4
12
ijl

∗ 422
ijl

]

411
ijl =


He(P2Aij+P2BijKl )+αP2 P2(Aij−Arij) −P2 P2Fij P2G+ET3−1

∗ −
�ij
ε

0 0 ET3−1

∗ ∗ −
�ij
ε

0 0

∗ ∗ ∗ −
�ij
ε

0

∗ ∗ ∗ ∗ −23−1


�ij = ρµiλj, 1 ≤ i ≤ x, 1 ≤ j ≤ y

�ij = µiλj, x < i ≤ m, y < j ≤ n

412
ijl =

 P2(−BijKl ) 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−FTMT
1 /ε −FTMT

2 /ε 0 0 0
0 0 0 0 0


422
ijl =

ϒi P1+M−κĀTi M
T
+κCT ZTi −MG −M5A −M5B

∗ κ(M+MT ) −κMG −κM5A −κM5B
∗ ∗ −I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I


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
He(P2Aij+P2BijKl )+αP2 P2(Aij−Arij) −P2 P2Fij P2G+ET3−1

∗ −
µiλj
ε

0 0 ET3−1

∗ ∗ −
µiλj
ε

0 0

∗ ∗ ∗ −
µiλj
ε

0

∗ ∗ ∗ ∗ −23−1


= ε

m∑
i=1

n∑
j=1

m∑
l=1

µiλjµl
He(P2Aij+P2BijKl )+αP2 P2(Aij−Arij) −P2 P2Fij P2G+ET3−1

∗ −
�ij
ε

0 0 ET3−1

∗ ∗ −
�ij
ε

0 0

∗ ∗ ∗ −
�ij
ε

0

∗ ∗ ∗ ∗ −23−1

<0

Furthermore, pre- and post-multiplying (37) by diag{P−1
2 ,

I , I , I ,3} and its transpose, it follows that

ε

m∑
i=1

n∑
j=1

m∑
l=1

µiλjµl


He(AijQ2+BijXl )+αQ2 Aij−Arij −I Fij G3+Q2ET

∗ −
�ij
ε

0 0 ET

∗ ∗ −
�ij
ε

0 0

∗ ∗ ∗ −
�ij
ε

0
∗ ∗ ∗ ∗ −23

 < 0

(39)

where Q2 = P−1
2 , Xl = KlP

−1
2 .

Next, applying Lemma 1 to (39), the following can be
obtained:

2iji < 0 i = 1, · · · ,m, j = 1, · · · , n
1

r − 1
2iji+

1
2
(2ijl +2lji) < 0 l = 1, · · · ,m, i ̸= l

(40)

where 2iji is given in (21).
Moreover, by selecting ε small enough, (38) can be written

as follows [36]:

m∑
i=1

n∑
j=1

m∑
l=1

µiλjµl4
22
ijl < 0 (41)

Since
n∑
j=1

λj = 1 and
m∑
l=1
µl = 1, it can be derived from

(41) that

m∑
i=1

µi8i < 0 (42)

which can be guaranteed by the following inequality:

8i < 0 (43)

where 8i is given in (22).
Therefore, it shows that once the conditions (21) - (23)

hold, the inequality (26) is satisfied, which implies that the
fuzzy augmented system (17) is asymptotically stable.

(B) Following [37], the proof process in Part B is as
follows. Through mathematical operations, the inequality
(26) can be derived as:

V̇ + αV < c̄τ̃T τ̃ (44)

namely,

V̇ + αV < c̄∥τ̃∥2∞ (45)

Then, multiplying both sides of inequality (45) by eαt

simultaneously, we obtain

eαt (V̇ + αV ) < c̄eαt∥τ̃∥2∞ (46)

Next, integrating inequality (46) from 0 to t , the following
can be obtained:∫ t

0

d(eαtV )
dt

dt <
c̄
α
(eαt − 1)∥τ̃∥2∞ (47)

namely,

eαtV < V (0) +
c̄
α
(eαt − 1)∥τ̃∥2∞ (48)

Then, multiplying the inequality (48) on the left and right by
e−αt , we can obtain

V < e−αtV (0) +
c̄
α
(1 − e−αt )∥τ̃∥2∞ < e−αtV (0) +

c̃
α

∥τ̃∥2∞

(49)

Under the initial condition of zero, the following inequality
can be obtained:

V <
c̄
α

∥τ̃∥2∞ (50)

Substituting the definition of V (t) into (50) yields

ξTPξ <
c̄
α

∥τ̃∥2∞ (51)

Next, let

I − δ2P < 0 (52)

Then, pre- and post-multiplying (52) by diag{I ,P−1
2 } and its

transpose yields[
I − δ2P1 0

0 P−T
2 P−1

2 − εδ2P−1
2

]
< 0 (53)

Applying the Schur complement to (53), the inequality can
be obtained as follows:I − δ2P1 0 0

0 −εδ2Q2 Q2
0 Q2 −I

 < 0 (54)

where Q2 = P−1
2 .

Moreover, substituting (52) into (51), we have

ξT ξ < δ2ξTPξ <
c̄
α
δ2∥τ̃∥2∞ (55)

namely,

∥ξ∥2∞ <
c̄
α
δ2∥τ̃∥2∞ (56)

VOLUME 11, 2023 124311



L. Yang et al.: Tracking Control Design for Takagi-Sugeno Fuzzy Systems

Finally, it implies that the following L∞ performance index
is guaranteed:

∥ξ∥∞ <

√
c̄
α
δ∥τ̃∥∞ (57)

Thus, the proof is complete.
Remark 5: The conventional L∞ performance index in

[33] can be described as:

∥ξ∥∞ < γ ∥τ̃∥∞ (58)

where γ =

√
c
α
δ. The c in (58) is a constant, while c̄ in

(24) is a variable that depends on membership functions.
In this paper, the subsystems that work most of the time
obtain a smaller performance index, and the performance
index for others are appropriately relaxed, which means that
the performance of the subsystems that work most of the
time is improved by losing the performance of others. It also
makes sense in the control of a real system. In addition, the

overall performance index γ =

√
c̄
α
δ in Theorem 1 is reduced

compared to all subsystems with the same performance index
γ =

√
c
α
δ in [33]. Hence, the result obtained by Theorem 1

has less conservatism and better overall performance.
Remark 6: The observer-based tracking controller con-

structed in this paper adopts the T-S fuzzy control technology,
which is one of the intelligent control technologies, and has
human thinking of fuzzy reasoning and decision-making. This
means that the tracking process is intelligent and smart.
Meanwhile, the control scheme uses observer error and
tracking error to realize closed-loop output feedback, which
does not require manual participation and realizes automatic
tracking control. Therefore, the tracking process is intelligent,
smart, and automatic.
Remark 7: To highlight the advantages of the work in this

paper, recent similar articles in the subject area are briefly
compared as follows: first, in [37], the problem of L∞ fault
estimation and fault-tolerant control for T-S fuzzy systems
with measurable premise variables is studied, but the case
in which some premise variables are immeasurable is not
considered. Due to the limitations of sensors in practice, some
premise variables of the system are immeasurable. Therefore,
T-S fuzzy systems with partly measurable premise variables
are considered in this paper, which improves the application
range of the method. Second, the local stabilization problem
for T’S fuzzy systems with partly measurable premise
variables and time-varying delay is investigated in [38].
However, it does not quantitatively describe the robustness.
Therefore, the control scheme designed in this paper uses the
robust performance index, which can quantitatively describe
the robustness of the system and provide a direction for the
optimization of the control scheme.

IV. EXAMPLE
This section provides an example to demonstrate the validity
of the presented approach.

FIGURE 1. Coordinate system of the spherical robot.

A spherical robot system referred to in [39] is considered,
whose coordinate system is shown in Fig. 1. In this paper,
referring to the simplified kinematic and dynamic model of
the spherical robot, the horizontal plane model is described
as:

ξ̇ = cosψ ū− sinψv

η̇ = sinψ ū+ cosψv

ψ̇ = r

˙̄u =
Xu

m− X ˙̄u
ū+

X|u|u

m− Xu̇
|ū|ū+ (m− Yv̇)vr +

1
m− Xu̇

X

+
1

m− Xu̇
τ1

v̇ =
Yv

m− Yv̇
v+

Y|v|v

m− Yv̇
|v|v− (m− Xu̇)ūr +

1
m− Yv̇

Y

+
1

m− Yv̇
τ2

ṙ =
Nr

Izz − Nṙ
r − (m− Yv̇)vū+ (m− Xu̇)ūv+

N|r|r

Izz − Nṙ
|r|r

+
1

Izz − Nṙ
N +

1
Izz − Nṙ

τ3 (59)

where the relevant definition of spherical robot parameters
can be found in [39]. In [39], only the values of some param-
eters are given. Since the robot structure is symmetrical about
the Oxz-plane and Oyz-plane and appropriately symmetrical
about the Oxy-plane, the values of the relevant parameters in
the three directions x, y and z are the same. Hence, the values
of each parameter are shown in Table 1.
Let x(t) = [x1(t) x2(t) x3(t) x4(t) x5(t) x6(t)]T =

[ξ η ψ ū v r]T , a1 =
Xu

m−Xu̇
, a2 =

Yv
m−Yv̇

, a3 =

Nr
Izz−Nṙ

, b1 =
1

m−Xu̇
, b2 =

1
m−Yv̇

, b3 =
1

Izz−Nṙ
, c1 = m − Xu̇,

c2 = m − Yv̇, d1 =
X|u|u
m−Xu̇

, d2 =
Y|v|v
m−Yv̇

, d3 =
N|r|r
Izz−Nṙ

,
u = [X Y N ]T . Since the robot is spherical, c1 = c2.
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TABLE 1. Values of spherical robot parameters.

Therefore, the horizontal plane model is simplified as

ẋ1 = cos(x3)x4 − sin(x3)x5
ẋ2 = sin(x3)x4 + cos(x3)x5
ẋ3 = x6
ẋ4 = a1x4 + b1u1 + b1τ1 + c2x5x6 + d1|x4|x4
ẋ5 = a2x5 + b2u2 + b2τ2 − c1x4x6 + d2|x5|x5
ẋ6 = a3x6 + b3u3 + b3τ3 + d3|x6|x6 (60)

Assume that x3 ∈
[
−
π
3 ,

π
3

]
, x4 ∈ [−0.1, 0.1], x5 ∈

[−0.1, 0.1], x6 ∈ [−0.1, 0.1] and x4, x5 are immeasurable.
To decrease the number of fuzzy rules, the modelling method
with local nonlinear functions is exploited.

Let φ1 = x5x6 + 0.1x5, φ2 = |x4|x4, φ3 = x4x6 + 0.1x4,
φ4 = |x6|x6. Then, based on the method in [4] it follows that
φ1 ∈ co {0, 0.2x5}, φ2 ∈ co {0, 0.1 x4}, φ3 ∈ co {0, 0.2x4},
φ4 ∈ co {0, 0.1 x6}. Furthermore, the model of the nonlinear
system can be obtained as follows:

ẋ(t) =


0 0 0 cos(x3) − sin(x3) 0
0 0 0 sin(x3) cos(x3) 0
0 0 0 0 0 1
0 0 0 a1 −0.1c2 0
0 0 0 0.1c1 a2+d2|x5| 0
0 0 0 0 0 a3

 x(t) +


0 0 0
0 0 0
0 0 0
b1 0 0
0 b2 0
0 0 b3

 u(t)

+


0 0 0
0 0 0
0 0 0
b1 0 0
0 b2 0
0 0 b3

 τ (t)+


0 0 0 0
0 0 0 0
0 0 0 0
c2 d1 0 0
0 0 −c1 0
0 0 0 d3

φ(t)

y(t) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 x(t)
In addition, the matrix E given in Assumption 1 can be

obtained as:

E =

[
0 0 0 0 rmax−rmin 0
0 0 0 umax 0 0
0 0 0 rmax−rmin 0 0
0 0 0 0 0 rmax

]
With the technique in [30], the nonlinear system can be

accurately represented by the following T-S fuzzy model:
Rule(11):

IF cos(x3) is 011 and sin(x3) is 021 and |x5| is 031
THEN

x(t) = A11x(t) + B11u(t) + F11τ + Gφ

y(t) = Cx(t)

Rule(12):
IF cos(x3) is 011 and sin(x3) is 021 and |x5| is 032
THEN

x(t) = A12x(t) + B12u(t) + F12τ + Gφ

y(t) = Cx(t)

Rule(21):
IF cos(x3) is 011 and sin(x3) is 022 and |x5| is 031
THEN

x(t) = A21x(t) + B21u(t) + F21τ + Gφ

y(t) = Cx(t)

Rule(22):
IF cos(x3) is 011 and sin(x3) is 022 and |x5| is 032
THEN

x(t) = A22x(t) + B22u(t) + F22τ + Gφ

y(t) = Cx(t)

Rule(31):
IF cos(x3) is 012 and sin(x3) is 021 and |x5| is 031
THEN

x(t) = A31x(t) + B31u(t) + F31τ + Gφ

y(t) = Cx(t)

Rule(32):
IF cos(x3) is 012 and sin(x3) is 021 and |x5| is 032
THEN

x(t) = A32x(t) + B32u(t) + F32τ + Gφ

y(t) = Cx(t)

Rule(41):
IF cos(x3) is 012 and sin(x3) is 022 and |x5| is 031
THEN

x(t) = A41x(t) + B41u(t) + F41τ + Gφ

y(t) = Cx(t)

Rule(42):
IF cos(x3) is 012 and sin(x3) is 022 and |x5| is 032
THEN

x(t) = A42x(t) + B42u(t) + F42τ + Gφ

y(t) = Cx(t)

where the membership functions 011(cos(x3)) = 2 −

2 cos (x3), 012(cos(x3)) = −1 + 2 cos (x3), 021(sin(x3)) =
1
2 −

√
3
3 sin (x3), 022(sin(x3)) =

1
2 +

√
3
3 sin (x3), 031(|x5|) =

0.1−|x5|
0.1 , 032(|x5|) =

|x5|
0.1 , and

A11 =


0 0 0 1

2

√
3
2 0

0 0 0 −

√
3
2

1
2 0

0 0 0 0 0 1
0 0 0 a1 −0.1c2 0
0 0 0 0.1c1 a2 0
0 0 0 0 0 a3

A12 =


0 0 0 1

2

√
3
2 0

0 0 0 −

√
3
2

1
2 0

0 0 0 0 0 1
0 0 0 a1 −0.1c2 0
0 0 0 0.1c1 a2+0.1d2 0
0 0 0 0 0 a3


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A21 =


0 0 0 1

2 −

√
3
2 0

0 0 0
√
3
2

1
2 0

0 0 0 0 0 1
0 0 0 a1 −0.1c2 0
0 0 0 0.1c1 a2 0
0 0 0 0 0 a3

A22 =


0 0 0 1

2 −

√
3
2 0

0 0 0
√
3
2

1
2 0

0 0 0 0 0 1
0 0 0 a1 −0.1c2 0
0 0 0 0.1c1 a2+0.1 d2 0
0 0 0 0 0 a3



A31 =


0 0 0 1

√
3
2 0

0 0 0 −

√
3
2 1 0

0 0 0 0 0 1
0 0 0 a1 −0.1c2 0
0 0 0 0.1c1 a2 0
0 0 0 0 0 a3

A32 =


0 0 0 1

√
3
2 0

0 0 0 −

√
3
2 1 0

0 0 0 0 0 1
0 0 0 a1 −0.1c2 0
0 0 0 0.1c1 a2+0.1d2 0
0 0 0 0 0 a3



A41 =


0 0 0 1 −

√
3
2 0

0 0 0
√
3
2 1 0

0 0 0 0 0 1
0 0 0 a1 −0.1c2 0
0 0 0 0.1c1 a2 0
0 0 0 0 0 a3

A42 =


0 0 0 1 −

√
3
2 0

0 0 0
√
3
2 1 0

0 0 0 0 0 1
0 0 0 a1 −0.1c2 0
0 0 0 0.1c1 a2+0.1d2 0
0 0 0 0 0 a3


Bij =

 0 0 0
0 0 0
b1 0 0
0 b2 0
0 0 b3

 ,Fij =


0 0 0
0 0 0
0 0 0
b1 0 0
0 b2 0
0 0 b3

 (1 ≤ i ≤ 4, 1 ≤ j ≤ 2)

G =


0 0 0 0
0 0 0 0
0 0 0 0
c2 d1 0 0
0 0 −c1 0
0 0 0 d3

 ,C =

[ 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

]

From (8) and (9), the membership functions µ1 = (2 −

2 cos(x3)) ∗ ( 12 −

√
3
3 sin (x3)), µ2 = (2 − 2 cos(x3)) ∗ ( 12 +

√
3
3 sin (x3)),µ3 = (−1+2 cos (x3))∗( 12 −

√
3
3 sin (x3)),µ4 =

(−1+2 cos (x3))∗ ( 12 +

√
3
3 sin (x3)), λ1 =

vmax−|x5|
vmax

and λ2 =

|x5|
vmax

. Then, the correlationmatrices in the solution process are
set as follows:

Ã11 = diag{−1,−1,−1,−1,−1,−1},

Ã12 = diag{−1,−1,−1,−2,−2,−2},

Ã21 = diag{−1,−1,−1,−3,−3,−3},

Ã22 = diag{−1,−1,−1,−4,−4,−4},

Ã31 = diag{−1,−1,−1,−5,−5,−5},

Ã32 = diag{−1,−1,−1,−1,−1,−1},

Ã41 = diag{−1,−1,−1,−2,−2,−2},

Ã42 = diag{−1,−1,−1,−3,−3,−3},

Ā1 =
A11 + A12

2
, Ā2 =

A21 + A22
2

,

Ā3 =
A31 + A32

2
, Ā4 =

A41 + A42
2

.

Since B11 = B12 = B21 = B22 = B31 = B32 = B41 = B42,
set B̄1 = B̄2 = B̄3 = B̄4 = B11.
Choosing κ = 0.01, ε = 0.1, ϕ = 1, η = 3.2, a1 = a2 =

1, b1 = b2 = 1, α = 0.2, δ = 1.2, ρ = 0.3, and minimizing
c via Theorem 1, we can obtain c = 15.1778. Then, the
designed gain matrices of the controller and observer are
given by solving Theorem 1:

K1 =

 −449.301 13.22059 0
−15.68869 −420.0979 0

0 0 −421.5934

−467.6605 −0.6598695 0
−24.81019 −445.8279 0

0 0 −439.883


K2 =

−451.9029 −20.07844 0
17.6034 −422.8807 0

0 0 −424.7268

−470.5679 −27.42098 0
1.319972 −447.4966 0

0 0 −442.4602


K3 =

−498.6646 34.17357 0
−35.79208 −466.4813 0

0 0 −461.793

−506.0227 15.20297 0
−41.72023 −483.3413 0

0 0 −471.8011


K4 =

−475.0507 −34.63238 0
36.95754 −447.3268 0

0 0 −441.0918

−489.0229 −39.52 0
15.97687 −466.5661 0

0 0 −455.4075


L1 =


724.8170 10.4245 0 −0.0399
−10.4245 724.81689 −0.00061 −0.1554

0 0 0.2521 0.9933
66980.8133 −10485.2693 −0.0001 1.6735
10485.2678 66980.6792 −0.0813 −10.2646
−0.0031 −0.0201 0.1926 4.3150


L2 =


724.5420 −10.6037 0 0.0401
10.6037 724.5419 −0.0006 −0.1552

0 0 0.2521 0.9933
67008.7533 10213.0661 0.0005 −1.5356

−10213.0635 67008.6193 −0.0813 −10.2564
0.0032 −0.0201 0.1926 4.3150


L3 =


796.1203 25.7068 0 −0.0410
−25.7069 796.1199 −0.0006 −0.1845

0 0 0.2521 0.9933
75670.8278 −8615.4992 −0.0001 1.6575
8615.4976 75670.6600 −0.0811 −11.7109
−0.0025 −0.0233 0.1926 4.3150


L4 =


795.8495 −26.0116 0 0.0413
26.0117 795.8491 −0.0006 −0.1843

0 0 0.2521 0.9933
75693.6468 8319.7263 0.0005 −1.5231
−8319.7232 75693.4789 −0.0811 −11.7028

0.0025 −0.0233 0.1926 4.3150


Furthermore, the performance index γ is optimized

using Theorem 1 and the method presented in [33]. The
comparison results are summarized in Table 2. Using the
approach developed in this paper, the equivalent disturbance

attenuation performance index is denoted by γ =

√
c̄
α
δ ∈

[5.7257, 10.4537], where c̄ = (ρ(µ3λ1 + µ4λ1) +

µ1λ1 + µ1λ2 + µ2λ1 + µ2λ2 + µ3λ2 + µ4λ2) × c.
In addition, the minimum allowable value of γ is

√
c
α
δ =

7.5329 by the approach in [33]. Fig. 2 illustrates the variation
curves of the disturbance attenuation performance indexes
obtained by Theorem 1 and the conventional L∞ approach
described in [33]. From Fig. 2, it can be observed that
when µ3λ1 + µ4λ1 > 0.69, the equivalent disturbance
attenuation performance index obtained by Theorem 1 is
smaller compared to the disturbance attenuation performance
index obtained by [33]. Conversely, when µ3λ1 + µ4λ1 <

0.69, the equivalent disturbance attenuation performance
index obtained by Theorem 1 is larger than that obtained
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TABLE 2. The minimum allowable values of γ .

FIGURE 2. Trajectories of γ obtained by different methods.

by [33]. Therefore, this can be considered a compromise.
A relatively small disturbance attenuation index is set for
a class of fuzzy rules during which the system operates
most of the time (corresponding to the fuzzy rules related to
µ3λ1 and µ4λ1). However, as a trade-off, a relatively large
disturbance attenuation index is obtained for other fuzzy rules
that occur less frequently. This trade-off is also meaningful in
the practical control of real systems. To enhance the overall
system performance, the disturbance attenuation index can
be relaxed for a short period of time to provide strong
disturbance attenuation capability during the majority of the
operating time.

First, there is a need to validate the effectiveness of the
tracking control scheme. Since the actual system of the
spherical robot can only control the position, not the speed,
the first three components of the reference input r(t) are set,
namely, r1, r2 and r3. First, the reference input is set as

r1(t) = 0.5 sin(
π

50
t) (61)

r2(t) = 0.5 sin(
π

50
t) (62)

r3(t) = 0.5 sin(
π

50
t) (63)

Fig. 3 - Fig. 5 are the tracking curves of the sinusoidal signal,
respectively corresponding to (61) - (63). Then, the reference
input is set respectively as

r1(t) = 0.5 (64)

r2(t) = 0.5 (65)

r3(t) = 0.5 (66)

Fig. 6 - Fig. 8 are the tracking curves of the step signal,
corresponding to (64) - (66). From Fig. 3 - Fig. 8, it is

FIGURE 3. Desired state xr1, state x1 and observer state x̂1.

FIGURE 4. Desired state xr2, state x2 and observer state x̂2.

FIGURE 5. Desired state xr3, state x3 and observer state x̂3.

clear that the proposed method can track the sinusoidal signal
and step signal well. Therefore, the developed method in
Theorem 1 allows us to ensure good tracking.

To prove the superiority of the method in Theorem 1,
another comparison between the proposed method and the
conventional L∞ control method in [33] is made. The
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FIGURE 6. Desired state xr1, state x1 and observer state x̂1.

FIGURE 7. Desired state xr2, state x2 and observer state x̂2.

FIGURE 8. Desired state xr3, state x3 and observer state x̂3.

disturbance τ (t) is set as follows:

τ (t) =


[1 0 0]T , 0 ≤ t ≤ 3
[0 1 0]T , 8 ≤ t ≤ 11
[0 0 0.05]T , 16 ≤ t ≤ 19
[0 0 0]T , others

FIGURE 9. States x(t).

FIGURE 10. Tracking error ∥er ∥.

FIGURE 11. Observer error ∥e0∥.

The simulation results are shown in Fig. 9 - Fig. 13.
The curves of the dynamic system states with disturbance are
illustrated in Fig. 9. It is easy to see that the developedmethod
in Theorem 1 has better robustness against disturbances
compared with the conventional L∞ control method in [33].
Additionally, the tracking error ∥er∥, observer error ∥e0∥ and
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FIGURE 12. Squared root of ratio

√√√√√ ∫ tf
0 ξT ξ dt∫ tf
0 τT τ dt

.

FIGURE 13. L∞ performance index γ .

response of the ratio

√ ∫ tf
0 ξT ξ dt∫ tf
0 τT τ dt

are shown in Fig. 10 - Fig. 12,

respectively. Since there is a case where ∥τ∥ is 0, the ratio ∥ξ∥
∥τ∥

cannot be shown continuously. Therefore, we plot the caves
of the tracking error ∥er∥ and observer error ∥e0∥ under the

same disturbance and ratio

√ ∫ tf
0 ξT ξ dt∫ tf
0 τT τ dt

. From Fig. 10 - Fig. 12,

it is not difficult to see that the ratio ∥ξ∥
∥τ∥

by the approach
in Theorem 1 is always less than the method based on the
conventional L∞ performance index in [33]. Furthermore,
Fig. 13 shows the caves of the L∞ performance index γ .
Fig. 13 indicates that the L∞ performance index γ by the
method in Theorem 1 is obviously less than the conventional
L∞ performance index by [33]. At the same time, Fig. 13 also
illustrates thatµ3λ1+µ4λ1 > 0.69, whichmeans that a lower
L∞ performance index and better system performance can be
obtained by Theorem 1.
Finally, based on the above analysis, it is easy to conclude

that the tracking control system is asymptotically stable with
membership function-dependent L∞ performance, and by

using the proposed approach, it has better robustness and less
conservatism.

V. CONCLUSION
In this paper, the problem of tracking control design for
T-S fuzzy systems based on membership function-dependent
L∞ performance has been investigated. First, a novel
membership function-dependent L∞ performance index has
been proposed by using the property of T-S fuzzy systems
that work on some specific local subsystems most of the time.
Then, by the proposed L∞ performance index, an observer-
based tracking controller is constructed. Finally, an example
of a spherical robot horizontal plane model is provided to
illustrate the effectiveness. Compared with traditional L∞

control, the new tracking control strategy can obtain better
robustness for the case of a specific class of fuzzy subsystems
that work most of the time. However, the novel approach
proposed is not very suitable for T-S fuzzy systems whose
states change significantly. Therefore, to better improve
the performance of such systems, we will focus on the
control synthesis of T-S fuzzy systems whose states change
significantly.
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