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ABSTRACT In response to the challenge of easily falling into local optima and slow identification speed
in the parameter identification of permanent magnet synchronous motors (PMSMs), this paper proposes a
novel algorithm called the Chaotic Gaussian-Cauchy RAO (CGCRAO) algorithm, which leverages chaotic
initialization and a hybrid variation strategy. The algorithm uses Tent chaotic mapping for population
initialization to improve population diversity. At the same time, by combining the Gaussian and Cauchy
distribution characteristics and the three-stage operation idea, the optimal individual variation strategy is
autonomously selected in real-time to improve the RAO-1 algorithm. This paper validates the effectiveness
of the algorithm improvement and the correctness of the three-stage operation idea using eight benchmark
test functions. Furthermore, This paper conducted comparative experiments on parameter identification of
five algorithms under different operating conditions through simulation and experiments. The results indicate
that the proposed CGCRAO algorithm enables fast and accurate identification of PMSM parameters.

INDEX TERMS CGCRAO algorithm, permanent magnet synchronous motors (PMSMs), three-stage
running idea, chaos initialization, Gaussian-Cauchy hybrid variation.

I. INTRODUCTION
The permanent magnet synchronous motor (PMSM) is a
type of motor that has outstanding advantages such as
small size, simple structure, high power density, and stable
performance. It has been widely used in high-performance
fields such as aerospace [1], industrial production [2], and
transportation [3], [4]. To achieve efficient control of PMSMs
in these fields, scholars have designed many advanced
controllers, such as field-oriented control (FOC) [5] and
direct torque control (DTC) [6]. The accurate model and
parameters of the PMSM are crucial for the performance
release of these controls and the design of fault diagnosis
systems [7].
In PMSM DTC [5], electromagnetic torque and magnetic

flux are critical control variables. However, inter-turn short
circuits can cause sudden changes in the dq-axis inductance
and stator winding resistance. In contrast, demagnetization of
the rotor permanent magnet can cause a decrease in magnetic
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flux amplitude. These factors seriously affect the control
effect of DTC. For PMSM FOC [8], the PID parameters in
the current control loop are closely related to the inherent
parameters of the motor, such as the stator resistance, dq-axis
inductance, and rotor magnetic flux. However, the motor
parameters are easily affected by temperature changes, skin
effect, and magnetic saturation, which can lead to poor
control performance of the PID controller and thus affect
the motor’s operating performance. Therefore, to achieve
high dynamic response and high-precision control, accurate
motor parameters are needed, and fast and effective parameter
identification methods are required to improve the control
performance of the entire servo system [9].

The search for more accurate and effective methods
of identifying the parameters of PMSMs has become a
widely studied topic among researchers. Currently, these
research efforts can be divided into two categories: tra-
ditional identification methods and identification methods
based on artificial intelligence optimization algorithms.
Traditional identification methods include Recursive Least
Squares (RLS) [10], [11], [12], Model Reference Adaptive
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Systems (MRAS) [13], [14], [15], [16], and Extended
Kalman Filters (EKF) [17], [18], [19]. The RLS method
linearizes the mathematical model of the motor, which is easy
to implement but requires a large amount of computation and
data storage space. Additionally, the RLS method requires
the derivative of the objective function concerning the motor
parameters. However, external noise and fluctuations in
motor speed can affect the differentiation results, leading to
poor robustness of the RLS method [10], [11]. To address
this issue, a PMSM parameter identification method based
on recursive least squares with a forgetting factor and a
weighting factor was proposed in [12]. However, due to
the different algorithm parameter selections under different
motor operating conditions, it is difficult to simultaneously
achieve good identification accuracy and algorithm tracking
performance. The MRAS method can identify the stator
resistance and rotor magnetic flux well, but the design of the
adaptive rule is complex and difficult, resulting in reduced
accuracy [13], [14]. In [16], some parameters with small
variations were taken as fixed values to identify other motor
parameters. Still, the varying parameters themselves change
with the motor operation, leading to large identification
errors. The EKF method overcomes the problem that the
MRAS method is only applicable to linear systems and
is sensitive to external noise but requires a large amount
of matrix calculation at each step, resulting in a huge
computational load [17]. Additionally, the EKF method
requires accurate pre-processing of the motor mathematical
model, which is also complex when identifying multiple
parameters [19].
The PMSMhas nonlinear and time-varying characteristics.

Traditional parameter identification methods cannot achieve
a good balance in factors such as convergence, complexity,
and convergence accuracy [20]. In recent years, artificial
intelligence optimization algorithms have achieved good
results in solving many optimization problems due to their
low requirements on the objective function and high effi-
ciency, and have begun to be applied in the PMSM field. For
example, [21] applied neural network algorithms (NNA) to
high-speed PMSM parameter identification. Although NNA
can obtain more accurate results in parameter identification,
it usually requires a large number of data samples for
training and timely information adjustment. At the same
time, users cannot intervene in the operation, making it
difficult to find the causes of erroneous results. In addition,
[22] used a particle swarm optimization algorithm to
identify PMSM parameters, which transforms the system
parameter identification problem into a multimodal dynamic
optimization problem. This algorithm has high identification
accuracy for stator resistance, but low accuracy for magnetic
flux and dq-axis inductance. Later, researchers improved the
algorithm to introduce Cauchy variation into the particle
swarm algorithm, using the Cauchy perturbation strategy to
enhance the global exploration ability of the particle swarm
algorithm and thereby improve the parameter identification

accuracy [23], but further improvement is still needed.
Meanwhile, [24] proposed a dynamic self-learning particle
swarm optimization algorithm based on the traditional parti-
cle swarm method, which enhanced the population’s global
search ability and escaped local optima. Reference [25]
introduced a nonlinear convergence strategy based on the
original GWO algorithm to improve the algorithm’s global
search ability and to some extent, improve the convergence
accuracy, but the convergence speed still needs to be
improved. In addition, [26] proposed an improved differential
evolution algorithm (DE) that introduced cloning selection
and receptor editing mechanisms to improve the algorithm’s
population diversity and global search ability. However,
this algorithm is only applicable to non-convex extreme
PMSMs, and parameter identification of convex extreme
PMSMs still needs further research. References [27], [28],
and [29] combined the differential evolution algorithm with
the particle swarm optimization algorithm and applied them
to parameter identification under different backgrounds. This
hybrid algorithm avoids the shortcomings of the two algo-
rithms and has good parameter identification accuracy, but
the hybrid formula is complex, withmany parameters, and the
algorithm time complexity is high. Reference [30] proposed
a hybrid variation adaptive differential evolution algorithm
to solve the problem of scaling factors and crossover roads
difficult to determine in traditional differential evolution
algorithms. This algorithm has better application in the
PMSM parameter identification field and can effectively
reduce identification errors. However, the algorithm itself is
complex, using random numbers for variation, and its global
exploration ability and local mining ability still need to be
further improved. RAO-1 is another implicit optimization
algorithm proposed by Ravipudi Venkata Rao in 2020 after
the JAYA algorithm [31]. The core formula of this algorithm
is simple, with few algorithm parameters, and easy to embed
in embedded systems. However, it has the disadvantages
of poor population diversity and the inability to accurately
search for optimization in the later stages of iteration.

To address the above-mentioned issue, this paper proposes
a hybrid variation-based chaotic RAO algorithm for PMSM
parameter identification. In the algorithm initialization stage,
Tent chaotic mapping is first used to enhance the diversity of
the population. Subsequently, the algorithm is combined with
the Gauss-Cauchy variation strategy based on the three-stage
idea proposed in this paper, which effectively improves
the local exploitation and global exploration abilities of
the algorithm. Eight standard test functions are used for
verification. Finally, a dual-loop PMSM simulation model
and hardware experimental platform based on vector control
and feedforward decoupling control were constructed. The
superiority of the CGCRAO algorithm was validated through
parameter identification and comparison with the identifica-
tion results of four other algorithms.

The main contributions of this paper are as follows: Firstly,
an improved RAO-1 algorithm, CGCRAO, is proposed for
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PMSM parameter identification. The algorithm utilizes Tent
chaotic mapping to initialize the population and incorporates
the Gaussian-Cauchy function to guide the variation process.
Secondly, a three-stage idea is introduced to guide the
variation process based on the changing curve of the fit-
ness function during the algorithm iterations. Thirdly, the
effectiveness of the CGCRAO algorithm improvement and
the correctness of the three-stage idea is verified by using
eight standard test functions. The simulation model and
hardware experimental platform for PMSMwere established.
Comparative experiments were conducted for parameter
identification using five different algorithms, further validat-
ing the feasibility and superiority of the CGCRAO algorithm.

The structure of this paper is as follows: Section II
introduces the mathematical model of PMSM. Section III
elaborates on the principles of the CGCRAO algorithm,
focusing on the core formulas, initialization strategies, and
variation strategies of the basic version. By validating with
eight benchmark test functions, the improved performance
of the CGCRAO algorithm is demonstrated. Section IV
introduces the PMSM parameter identification model. Sec-
tions V and VI present the comparative results of algorithm
identification in both the simulation environment and the
hardware experimental environment. Finally, Section VII
provides a summary of the entire paper.

II. MATHEMATICAL MODEL OF PMSM
PMSM is a complex system that exhibits strong coupling,
nonlinearity, and time variation. To facilitate analysis,
we assume an ideal state, which neglects the effects of eddy
currents and iron losses. The mathematical model of PMSM
can be described by the following voltage equations in the dq
synchronous rotating coordinate system:{

ud = Rsid +
dψd
dt − ωeψq

uq = Rsiq +
dψq
dt + ωeψd

(1)

The solution to the flux linkage equations is as follows:{
ψd = Ld id + ψf
ψq = Lqiq

(2)

where id , iq, ud , and uq represent the dq-axis stator current
and voltage, while Rs denotes the stator resistance. The ψd
and ψq correspond to the dq-axis rotor flux linkage, while ωe
represents the electrical angular velocities of the rotor. The
Ld and Lq represent the dq-axis inductance, and ψf denotes
the permanent magnet rotor flux linkage.

Substituting Eq.(2) into Eq.(1) and adopting the id∗
=

0 vector control method for decoupling control, we can obtain
the following expressions for the stable state, where did/dt =

0 and diq/dt = 0:{
ud = Rsid − ωeLqiq
uq = Rsiq + ωeLd id + ωeψf

(3)

This paper focuses on parameter identification of surface-
mounted PMSMs, where the dq-axis inductance can be
assumed to be equal, i.e., Ld = Lq = Ls. To facilitate

FIGURE 1. The waveform of the d-axis instantaneous negative-sequence
current injection.

parameter identification, Eq. (3) needs to be transformed
into a steady-state discrete equation. Since three motor
parameters

{
Rs,Ls, ψf

}
need to be solved for, Eq.(3) is an

underdetermined system of rank 2, which cannot be solved
uniquely on its own. To overcome this issue, this paper injects
a negative-sequence weak magnetic current with id∗

̸= 0 into
the motor during steady-state operation, as shown in Fig. 1,
to generate another set of second-order voltage equations.
As a result, a full-rank equation system is obtained, with a
unique solution. The final equation system for PMSMdq-axis
identification is expressed as follows:

ud0(k) = −L̂sωe0(k)iq0(k)
uq0(k) = R̂siq0(k) + ψ̂ f ωe0(k)
ud (k) = R̂sid (k) − L̂sωe(k)iq(k)
uq(k) = R̂siq(k) + L̂sωe(k)iq(k) + ψ̂ f ωe(k)

(4)

In the equation, ud0(k), uq0(k), id0(k), iq0(k) represent the
k-th sampling data of time period id∗

= 0, while ud (k), uq(k),
id (k), iq(k) represent the k-th sampling data of time period

id∗
= −2, and

{
R̂s, L̂s, ψ̂f

}
represent the identified motor

parameter results of the algorithm.

III. ALGORITHM IMPROVEMENT
A. RAO-1 ALGORITHM
The RAO algorithms, proposed by Rao for unconstrained
optimization problems [31], have great potential in the field
of parameter identification and have already been applied
in numerous industrial fields. The basic version of this
algorithm is the RAO-1 algorithm. In comparison to RAO-2
and RAO-3 algorithms, the primary advantage that best
characterizes the RAO algorithm is its simplicity in core
formulas and fast iteration speed. It uses the optimal and
worst solutions obtained during the iteration process to
generate new solutions. The candidate solutions are updated
using only two basic operations: addition and multiplication.
Therefore, the RAO-1 algorithm has extremely low hardware
requirements and is more easily implemented across plat-
forms. The RAO-1 algorithm has only two simple parameters,
namely the number of iterations and the population size. The
core formula of RAO-1 is as follows:

X ′
j,h,i = Xj,h,i + rand · (Xj,best,i − Xj,worst,i) (5)

where Xj,h,i represents the solution vector of variable j in
the h-th candidate solution at the i-th iteration; X ′

j,h,i is
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the updated solution vector of Xj,h,i; Xj,best,i represents the
optimal solution vector of variable j in the h-th candidate
solution at the i-th iteration; Xj,worst,i represents the worst
solution vector of variable j at the i-th iteration, and rand is a
random variable between 0 and 1.

B. CGCRAO ALGORITHM DESIGN
1) INITIALIZATION OF TENT CHAOTIC MAPPING
Chaos has randomness, ergodicity, and initial value sen-
sitivity, which can accelerate the convergence speed of
the algorithm. In this paper, the Tent map is used to
generate chaotic sequences, and the population is initialized
to distribute the initial solutions as evenly as possible in the
solution space. The process of generating a chaotic sequence
Z based on the Tent map is as follows:

Zh =


rand, h = 1
Zh−1
c , 0 ≤ Zh−1 < c&1 < h

1−Zh−1
1−c , c ≤ Zh−1 < 1&1 < h

(6)

Here, c represents the chaos coefficient, which measures
the complexity and disorder of the chaotic system. Zh
represents the h-th candidate solution in the initial population.
In this paper, c is set to 0.5, which can generate a uniformly
distributed sequence and make the initial population density
insensitive to parameter changes. The initial population based
on the Tent map chaotic mapping is illustrated as:

Xj,h = Xj,min + Zh ·
(
Xj,max − Xj,min

)
(7)

where Xj,h represents the variable j in the h-th candidate
solution in the initial population. Xj,min and Xj,max represent
the upper and lower bounds of the candidate solution. Using
an initial population based on the Tent chaotic mapping can
improve the diversity of the population and to some extent
improve the convergence speed.

2) MIXED VARIATION STRATEGY
The Gaussian distribution is a widely used probability
distribution in mathematics, physics, and engineering. It has
several characteristics: it can loosely explain several random
variables and events in reality and can be used to estimate
or extract several probability models. The probability density
function of the Gaussian distribution is expressed as stated
below:

f (x) =
1

√
2πσ

exp
(

−
(x − µ)2

2σ 2

)
(8)

where σ represents the variance and µ represents the mean.
The operation of improving the local search performance of
the key search area is called variation. Gaussian variation
refers to the use of random numbers that conform to a normal
distribution to guide the variation process. In previous studies,
the grasshopper optimization algorithm, the moth-flame
optimization algorithm, and the imperial competition opti-
mization algorithm have all introduced Gaussian variation,
which has enhanced the performance of their respective basic

versions. When the algorithm enters the convergence state,
the new solution update formula for Gaussian variation is as
follows:

X ′
j,best,i = Xj,best,i · (1 + Gaussian(0, 1)) (9)

The distribution of Gaussian variation is characterized by
a mean of 1 and a variance of 0. When RAO-1 reaches
convergence, the algorithm can explore new solutions in the
vicinity of the optimal solution, which allows it to escape
from local optima.

Cauchy distribution is a continuous probability distribution
with an undefined mean. When a random variable x follows
the probability density function of the Cauchy distribution,
it is said to have a Cauchy distribution. The probability
density function of the Cauchy distribution is given by:

f (x, δ, µ) =
1
π

(
δ

δ2 + (x − µ)2

)
,−∞ < x < ∞ (10)

When we say a variable x follows the standard Cauchy
distribution, it means that its probability density function is
in the way described below:

f (x) =
1
π

(
1

x2 + 1

)
,−∞ < x < ∞ (11)

To calculate the Cauchy distribution function, we can get
by Eq.(11):

Cauchy(0, 1) = tan
([
ε −

1
2

]
π

)
, ε ∈ U(0, 1) (12)

In this paper, Cauchy variation is used to update the best
individual during algorithm convergence, which is highly
effective in improving population diversity, escaping local
optima, and enhancing the exploration properties of RAO-1.
When the algorithm enters the convergence state, the Cauchy
variation formula is as follows:

X ′
j,best,i = Xj,best,i · (1 + Cauchy(0, 1)) (13)

To fully exploit the characteristics of the two various
strategies mentioned above, the distribution of the Gaussian
function and standard Cauchy function are compared in
Fig. 2.
Through Fig. 2, it can be observed that the Gaussian

distribution has a more centralized distribution compared to
the standard Cauchy distribution, while the latter has more
dispersed distribution on both sides. This indicates that the
Cauchy distribution can generate a random number that is
far away from the origin with a higher probability, making
it more likely to escape from local optimal solutions and
explore global optimal solutions. On the other hand, the
Gaussian distribution can produce random numbers around
the origin with a higher probability, which can enhance
the exploration for better solutions around the current local
optimal point, and thus accelerate the local search ability
and speed of the RAO-1 algorithm. Therefore, this paper
combines the advantages of both variation strategies and the
Tent chaotic mapping to propose the CGCRAO algorithm.
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FIGURE 2. Gaussian Cauchy function comparison diagram.

3) CGCRAO ALGORITHM
When the chaotic RAO-1 algorithm reaches a relatively stable
local optimal point, the Gaussian variation can be employed
to focus on exploring the local area around the current optimal
individual, thereby enhancing the algorithm’s local search
capability. Subsequently, when the Gaussian variation locates
the optimal point within the current region, the Cauchy
variation can be leveraged to increase the likelihood of
the algorithm escaping from the local optimal point and
improving its global exploration capability. To endow the
proposed algorithm with the ability to autonomously select
variation strategies, a three-stage operation idea is introduced
to guide the variation process.

FIGURE 3. Algorithmic iterative process.

Drawing on the concept of slope in mathematics, the slope
represents the degree of inclination of a straight line (or a
tangent to a curve) with respect to the positive direction of the
horizontal axis, reflecting the rate of change of the function
value at that point. Its numerical value is the tangent of the
angle between the horizontal axis and the line.

As shown in Fig. 3, the iterative operation of the algorithm
is a process in which the adaptive function value continuously
decreases and finally stabilizes at a minimum value, and
the change in the function value approaches zero. Based

on the analysis of the slope and the adaptive function, this
paper analogizes the slope of the adaptive function curve
using the difference in the adaptive function values of the
best individuals in two iterations and provides two parameter
values, k1 and k2. The algorithm is initialized, and when the
total number of iterations reaches one-fifth, if the slope of
the algorithm at this point is greater than k1, it indicates that
the algorithm is still in an unconverted state. If the slope is less
than k1 but greater than k2, it indicates that the algorithm has
entered the preliminary convergence state. When the slope of
the algorithm is less than k2, it indicates that the algorithm
has entered the severe convergence state.

The selection of k1 and k2 impacts the global exploration
ability and local exploitation ability of the CGCRAO
algorithm. To determine the values of k1 and k2 for the
CGCRAO algorithm in specific scenarios, it is necessary
to analyze the convergence characteristics of the RAO-1
algorithm, which can include the average or standard
deviation of fitness function values. In the context of PMSM
parameter identification, this paper sets k1 as the unit order of
magnitude of the algorithm’s average fitness function value
and k2 as one-tenth of k1.

Different convergence states adopt different individual
updating strategies. In the unconvergent state, the RAO-1 core
formula Eq.(5) is used for iteration to drive the algorithm from
the initial state toward the preliminary convergence state.
After finding the local optimal point, the algorithm enters the
second state - the preliminary convergence state, and uses the
Gaussian variation core formula Eq.(9) for iteration to explore
further the current local optimal point. Then, the algorithm
enters the third phase - the heavy convergence state, and to
improve the algorithm’s global search capability, the Cauchy
variation core formula Eq.(13) is selected for iteration to drive
the algorithm from the severe convergence state toward the
complete convergence state, attempting to escape the current
local optimal point until the algorithm ends.

Through the above analysis, it is evident that the CGCRAO
algorithm proposed in this paper introduces chaotic initial-
ization and a Gaussian-Cauchy hybrid variation strategy,
building upon the foundation of the RAO algorithm. Addi-
tionally, the CGCRAO algorithm is guided by the proposed
three-stage concept to adapt its variation strategy based on
the current search conditions, enhancing the algorithm’s
population diversity, global search, and local exploitation
capabilities."

4) ALGORITHM PERFORMANCE TEST
In this section, the effectiveness of the proposed improved
algorithm and the correctness of the three-stage idea are
verified through 8 benchmark functions. The specific infor-
mation of the functions is shown in Table 1. Among them,
f1, f2, f3, and f4 are unimodal functions (with only one
global optimum), which are used to test the algorithm’s
local exploitation capability. f5, f6, f7, and f8 are multimodal
functions (real-valued functions with multiple local minima
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TABLE 1. Information of eight benchmark functions.

in the considered range), which are used to test the
algorithm’s global exploration capability.

FIGURE 4. Comparison of convergence curves of eight benchmark test
functions.

Fig. 4 presents a comparison of the results obtained by the
CGCRAO and RAO-1 algorithms on eight benchmark func-
tions. It can be observed that the CGCRAO exhibits a higher
convergence rate and solution accuracy. Especially when
dealing with multimodal functions like f5, f6, f7, and f8, the
superior performance of CGCRAO is more pronounced. The
chaotic initialization strategy enables the initial solution to
be distributed as uniformly as possible in the solution space,
while the Gaussian variation strengthens the algorithm’s local
exploration ability around the current best solution, and the
Cauchy variation improves the algorithm’s ability to jump
out of local optima, providing stronger global exploration
ability.

To further validate the correctness of dividing the algorithm
into three stages, under the same control conditions with
the introduction of Gaussian Cauchy variation and chaotic
initialization, CGCRAO adopted the three-stage operation
idea for autonomous selection of variation strategies, while
CCGRAOused randomnumbers to select variation strategies.
Table 2 presents a quantitative comparison of the two
algorithms on 10 standard tests, each run 10 times (including
mean and standard deviation values).

As shown in Table 2, CGCRAO using the three-stage
running idea outperforms the mixed variation CCGRAO
using random numbers in terms of both the best average
value and standard deviation. This undoubtedly proves the
correctness of dividing the algorithm into three stages, which
endows the algorithm with autonomous selection ability.
Compared with CCGRAO, CGCRAO exhibits stronger
global optimization ability and more stable convergence
accuracy.

IV. PMSM PARAMETER IDENTIFICATION BASED ON
CGCRAO
A. PRINCIPLE OF PMSM PARAMETER IDENTIFICATION
The basic principle of PMSM parameter identification is
to continuously refine the adaptive function value of the
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TABLE 2. Comparative experimental results of ideological verification.

identification parameters through optimization algorithms
based on the difference between the electric machine
theoretical model and the actual system output, and ultimately
converge to the parameter values with the minimum fitness,
thus obtaining the PMSM parameters. The PMSM parameter
identification model is shown in Fig. 5.

FIGURE 5. PMSM parameter identification model.

The Fitness function in Fig. 5 is as follows:

Fitness =ω1 ·
∣∣ud0(k) − ˆud0(k)

∣∣
+ ω2 ·

∣∣ud (k) − ûd (k)
∣∣

+ ω3 ·
∣∣uq0(k) − ˆuq0(k)

∣∣
+ ω4 ·

∣∣uq(k) − ûq(k)
∣∣ (14)

In the above equation,ω1,ω2,ω3, andω4 are the weighting
coefficients of the Fitness function. When the fitness value
is the same, different weighting coefficients will lead to
different accuracy of the identification results. ud0 and uq0
represent the measured values of the motor dq-axis voltage
under id∗

= 0 control, while ˆud0 and ˆuq0 represent the
corresponding estimated values obtained by the algorithm
from the collected data under id∗

= 0 control. ud and
uq represent the motor dq-axis voltage measurement values
obtained when injecting negative sequence current id∗ is not
equal to 0, while ûd and ûq represent the corresponding
estimated values obtained by the algorithm from the collected
data when injecting negative sequence current id∗ is not equal
to 0.

B. CGCRAO-BASED PMSM PARAMETER IDENTIFICATION
STEPS
Step 1: Start running the PMSM and save the data for the
motor operation in different id∗ modes, including dq-axis
voltage, current, and electrical angular velocity.

Step 2: Set the population size and iteration times,
and initialize the population using Tent chaotic mapping
according to Eq.(6) and Eq.(7).

Step 3: Determine whether the maximum number of
iterations has been reached. If ‘‘yes,’’ then execute Step 8.
If ‘‘no,’’ then execute Steps 4 to 7.

Step 4: Calculate the individual’s fitness function value
using Eq.(4) and Eq.(14). Find the best and worst value
individuals and their corresponding fitness function values.

Step 5: Update the individual according to the convergence
state. If the convergence state is not reached, use the
RAO-1 core formula Eq.(5) for individual updating. If the
convergence state is reached preliminarily, use the Gaussian
variation core formula Eq.(9) for individual updating. If the
convergence state is reached heavily, use the Cauchy variation
core formula Eq.(13) for individual updating.

Step 6: Handle the boundary and calculate the fitness
function value of the new individual.

Step 7: Determine whether the new individual is better than
the old individual. If ‘‘yes,’’ then replace the old individual
with the new one. If ‘‘no,’’ then keep the old individual. Then
execute Steps 3.

Step 8: Output the best individual and its corresponding
fitness function value. The optimal individual

{
R̂s, L̂s, ψ̂f

}
is the result of identifying the motor parameters, which
continues until the algorithm ends.

Fig. 6 depicts the process flowchart of the CGCRAO
algorithm for PMSM parameter identification.

V. SIMULATION VERIFICATION
An SVPMSM identification system was built on the Mat-
lab/Simulink software platform to validate the effectiveness
and feasibility of the proposed CGCRAO-based algorithm for
PMSM parameter identification. It is shown in Fig. 7. The
motor utilizes a vector control strategy, and the algorithm’s
input signals consist of ud , uq, id , iq, and ωe. Table 3 displays
the specific parameters of the SVPMSM utilized in the
experiment.

The total simulation time is 0.4 seconds. Table 4
presents the algorithm’s parameter settings, where W repre-
sents the inertia weight,C1 represents the self-learning factor,
C2 represents the social learning factor, pop represents the
population size, N represents the total number of iterations,
Cr represents the crossover rate, F represents the scaling
factor, and k1, k2 represent the various factors in CGCRAO.
1) Operating condition 1.
The identification results and errors under a no-load con-

dition at a speed of 1000 rpm are presented in Table 5. Fig. 8
illustrates the fitness functions and parameter identification
curves for five algorithms applied to PMSM parameter
identification.
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FIGURE 6. The process flowchart for PMSM parameter identification base
on CGCRAO algorithm.

TABLE 3. Specific motor parameters.

TABLE 4. Parameter settings for the five algorithms.

The identification results of a dual closed-loop vector-
controlled PMSM under Operating condition 1, obtained
by running simulations and comparing five intelligent
algorithms, reveal that The DE, PSO, RAO-1, GWO, and
CGCRAO algorithms converge to stability after 19, 10,
25, 60, and 47 iterations, respectively. The final fitness

values of the five algorithms are 0.03845, 0.03682, 0.02935,
0.02661, and 0.02411, respectively. The RAO-1, DE, and
PSO algorithms are more prone to local optima. Compared to
the DE and PSO algorithms, the RAO-1 algorithm not only
achieves higher identification accuracy and similar conver-
gence speed but also has a relatively simple core formula,
making it more suitable for PMSM parameter identification.
In contrast, although GWO surpasses RAO-1 in terms of
identification accuracy, it exhibits slower convergence speed
and requires further improvement. The proposed CGCRAO
algorithm, which incorporates a hybrid variation and chaotic
initialization strategy, outperforms other algorithms in terms
of convergence speed and accuracy. The identification results
of stator resistance, stator inductance, and magnetic flux
shown in Fig. 8 demonstrate that the CGCRAO algorithm
converges to the true values faster and more smoothly.
Finally, when considering Table 5, it is evident that the
identification errors of various parameters in CGCRAO are
significantly smaller than those in the other four algorithms.
CGCRAO inherits the fast convergence property of RAO-1
while achieving higher identification accuracy.

2) Operating condition 2.
The identification results and errors under a speed of

1500 rpm and rated torque are presented in Table 6. The
fitness function curve and parameter identification variation
curves are shown in Fig. 9.

Evenwith increasedmotor speed and torque, the CGCRAO
algorithm maintains identification errors of less than 1%
for resistance and magnetic flux, with an identification
error of only 1.0547% for inductance. Although both GWO
and RAO-1 algorithms have identification errors within
2%, the GWO algorithm exhibits the slowest identification
speed and significant parameter fluctuation. Both PSO
and DE algorithms have resistance identification errors
exceeding 4.5%, indicating poor identification performance
and practicality. It is evident from the fitness function curve
that the CGCRAO algorithm maintains the highest identi-
fication accuracy and a very fast convergence speed. From
Fig. 9, it can be observed that the parameter identification
curves of the CGCRAO algorithm exhibit minimal fluctu-
ation, indicating good robustness under different operating
conditions.

VI. EXPERIMENTAL VERIFICATION
To further validate the feasibility and correctness of the
proposed CGCRAO algorithm for PMSM parameter iden-
tification. The hardware experimental platform, as shown
in Fig. 10, was constructed, consisting of a 0.2 kW
PMSM, motor driver, microcontroller, host computer, isola-
tion transformer, and oscilloscope. The floating-point DSP
TMS320F28335 controller from TI Corporation was used in
this paper. The design of the motor vector control algorithm
was completed in the Code Composer Studio software.
The system control program consists of a main program
and a loop timer interrupt program. The interrupt function
completes tasks such as A/D sampling, position and velocity
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FIGURE 7. The framework of PMSM identification based on CGCRAO algorithm.

TABLE 5. Parameter identification results by using five algorithms under Operating condition 1 in the simulation environment.

TABLE 6. Parameter identification results by using five algorithms under Operating condition 2 in the simulation environment.

FIGURE 8. Parameter identification curves of PMSM using five algorithms
under Operating condition 1 in the simulation environment.

estimation, coordinate transformation, velocity and current PI
control, and SVPWM modulation within the timer period.

FIGURE 9. Parameter identification curves of PMSM using five algorithms
under Operating condition 2 in the simulation environment.

The real-time communication between the microcontroller
and the host computer is used to obtain the current, voltage,
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and rotational speed information required for algorithm
identification.

The experiment validation includes motor parameter
identification experiments under two different operating
conditions and algorithm identification time testing.

FIGURE 10. Experimental platform.

1) Operating condition 1.
The identification results and errors at the unloaded state

with a rotational speed of 1000 rpm are shown in Table 7. The
adaptive function curve and the curves depicting parameter
identification variations are shown in Fig. 11.
By observing the adaptive fitness function curves of the

five functions in Fig. 11, it can be seen that CGCRAO
converges to the lowest fitness value, which is 0.03306.
The final fitness values for parameter identification using
GWO and RAO-1 are close, but RAO-1 demonstrates
greater stability and faster convergence compared to GWO.
The CGCRAO algorithm is based on simplicity and fewer
parameters of the core formula of RAO-1, and it also
exhibits a similarly fast convergence speed. PSO and
DE algorithms have the lowest parameter identification
accuracy, with final fitness values of 0.4002 and 0.04113,
respectively.

The identification error of motor resistance under the
same operating condition is relatively higher compared to
the simulation results, which is mainly attributed to sensor
accuracy and external environmental interference on the
motor. Among different algorithms used for the identification
of stator resistance, electronic inductance, and magnetic flux
parameters, CGCRAO achieves the highest accuracy with
identification errors of 2.5898%, 1.7506%, 0.5907%, and
it also exhibits fast convergence speed. In comparison, the
RAO-1 algorithm exhibits the fastest convergence speed
but is prone to getting trapped in local optima, leading
to improved accuracy. The major issue with the GWO
algorithm is its unstable identification results with the highest
fluctuation. PSO and DE algorithms provide relatively close
identification results to the actual value for inductance, but
they perform the worst in terms of resistance and magnetic
flux identification.

2) Operating condition 2.
The parameter identification of the five algorithms was

conducted under the operating condition of the motor with
a speed of 1500 rpm and rated torque. The identification

FIGURE 11. Parameter identification curves of PMSM using five
algorithms under Operating Condition 1 in the physical motor
environment.

curves and fitness function curves are depicted in Fig. 12. The
identification results and errors are listed in Table 8.
Operating condition 2 imposes stricter requirements on the

motor’s speed and load, primarily testing the robustness and
stability of different algorithms under complex conditions.
From the graph, it can be observed that the DE algorithm
exhibits the largest variations, the highest fitness value,
and the poorest accuracy. The CGCRAO algorithm shows
smaller variations and remains the most accurate among
the five algorithms, demonstrating good robustness and
stability for motor parameter identification under different
operating conditions. Increasing torque and speed lead
to larger identification errors, with the most significant
changes observed in resistance and magnetic flux. Although
the GWO algorithm demonstrates decent convergence
accuracy, it exhibits greater fluctuations in parameter
identification under operating condition 2. In comparison,
RAO-1 and CGCRAO exhibit better practicality in motor
parameter identification. The CGCRAO algorithm, when
combined with chaotic initialization and a Gaussian-Cauchy
hybrid mutation strategy, exhibits improved identifica-
tion accuracy and stability compared to the RAO-1
algorithm.

3) Execution Time Test for Algorithm Parameter.
Identification Perform 10 runs for each of the aforemen-

tioned two operating conditions and calculate the average
execution time for the five algorithms. To compare the
computational workload of the five algorithms, this study
employed a combination of the pre-estimate method and
the post-statistical method. Factors such as algorithm pop-
ulation size, iteration times, core formula, programming
language, and machine execution speed were considered.
The algorithm’s execution time (averaged over 20 runs)
was used to reflect its computational workload under the
condition of maintaining the consistency of these factors.
This is illustrated in Table 9.
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TABLE 7. Parameter identification results by using five algorithms under Operating condition 1 in the physical motor environment.

TABLE 8. Parameter identification results by using five algorithms under Operating condition 2 in the physical motor environment.

FIGURE 12. Parameter identification curves of PMSM using five
algorithms under Operating Condition 2 in the physical motor
environment.

TABLE 9. Comparison of five algorithms execution time.

We compared the running time of the five algorithms using
a population size of 100 and 200 iterations. Table 9 shows that
RAO-1 and CGCRAO algorithms have significantly shorter
running time compared to DE, PSO, and GWO algorithms.
This is due to the higher time complexity of DE, PSO,
and GWO algorithms compared to RAO-1 and CGCRAO
algorithms, resulting in longer running time and slower
convergence. Despite introducing the Gaussian-Cauchy vari-
ation strategy and chaotic initialization strategy based on
RAO-1, and selecting variation strategy according to different
operating states, the CGCRAO algorithm maintains a fast

running speed, as shown in the Table 9, even though
these additions increase the computational complexity of the
algorithm.

CGCRAO combines the advantages of the original RAO-1
algorithm, requiring fewer algorithm parameters and featur-
ing a more concise core formula, resulting in high accuracy.
Furthermore, CGCRAO demonstrates a wider applicability,
making it suitable for identifying various types of motors
including asynchronous motors and wind turbines.

VII. CONCLUSION
This paper proposes a hybrid variation-based chaotic RAO
algorithm for PMSM parameter identification. The intro-
duction of Tent chaotic mapping in the initialization stage
enriches the population diversity and accelerates population
convergence. Meanwhile, a three-stage operation idea is
proposed to guide the Gaussian-Cauchy hybrid variation
process. The effectiveness of the algorithm improvement
and the correctness of the three-stage idea are verified
through eight benchmark test functions. The simulations and
experiments under various operating conditions indicate that
the CGCRAO algorithm can identify the electromagnetic
parameters of PMSM, such as stator resistance, inductance,
and flux linkage. Compared with the identification results
of PSO, DE, GWO, and the original version of the RAO-1
algorithm, CGCRAO exhibits fast convergence speed, high
accuracy, and strong robustness. With fewer parameter
settings and a core formula of addition and multiplication
operations, the CGCRAO algorithm provides a new method
for applying intelligent algorithms to embedded system
applications for motor parameter identification.
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