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ABSTRACT Edge cloud at satellite (ECS) is a newly developed edge computing (EC) technology that uses
EC services offered by satellites to support high reliability and seamless global coverage. Satellites assume
the role of computing and storage nodes for edge clouds, while terrestrial control centers function as cloud
centers. In this paper, we propose a novel system and software architecture for the ECS to improve the cloud
management of satellite networks and increase the flexibility of satellite service provision at the edge. Then,
we propose a platform for the ECS based on KubeEdge called SatEdge. SatEdge has many function modules
to meet the needs of the satellite-terrestrial network (STN) such as high reliability, high flexibility, and low
latency. On this platform, we designed a microservice scheduling algorithm called optimal microservice
scheduling with adaptivity and mobility (OMS-AM). OMS-AM can schedule a globally optimal workflow
for microservice modules on the satellites to minimize task processing latency, failed task rate, and energy
consumption. Compared with our last work, OMS-AM reduces the task processing latency by 14% at most.
Additionally, OMS-AM improves the mobility of the current scheduling method put forth in our previous
study, which may help lower the task failure rate. Energy usage and the total normalized costs are additional
indicators of the efficiency of the microservice architecture.

INDEX TERMS Edge cloud at satellite, satellite-terrestrial network, edge computing, microservice
scheduling.

I. INTRODUCTION
According to the Global Mobile Market Report released by
Ericsson in 2022 [1], 5G now covers 25% of the global
population and is projected to reach 75% by 2027. This
poses a challenge to current terrestrial networks because
the current ground communication system cannot achieve
seamless coverage. Therefore, the optimization of future
communication networks is urgently required. As illustrated
in [2], the future generation of wireless communication
systems is expected to support the enormous growth in
traffic and guarantee seamless coverage. Satellite networks,
as suggested by [3], offer a robust solution to enhance and
extend terrestrial mobile communication systems.

Additionally, with the development of high-performance
computing technology in space, satellite computing capabili-
ties have improved, providing a computational foundation for
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the development of satellite edge computing (EC) technology
[4]. EC provides more network functions and content to
the network edge [5]. A software-defined network based
on the edge cloud computing was proposed in [6]. And
the authors of [7] proposed a data aggregation mechanism
based on EC. However, future satellite-terrestrial network
(STN) will require differentiated service scenarios such
as wide-area high-speed bandwidth, wide-area reliability,
and wide-area Internet of Things (IoT), which pose higher
demands on rate, error rate, and latency indicators. This
leads to problems such as limited resources, low efficiency of
running isolation, and delayed response time when adapting
to future STN. Through satellite edge cloud, we can deploy
cloud computing resources and services in satellite systems,
providing computing and storage services to support various
application requests from Earth [8].

Although there have been some studies on satellite
network platforms integrated with EC, these systems still
lack experimental verification in production and development
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environments. According to our survey, the most relevant
research lacks well-defined software architecture to provide
guidance for the development process. In [3], the authors pro-
posed a novel satellite terrestrial network using double edge
computing. A double-edge intelligent integrated satellite and
terrestrial network was proposed in [2]. Both of these works
focus on the design of EC in STN, and the EC servers are
deployed in satellite networks. In [9], the authors proposed
a classic software-defined-network (SDN) aware hybrid
satellite-terrestrial network architecture. The architecture and
design of the mentioned satellite platforms can be referred
to in future systems. However, these platforms are built
based on OPNET. This tool cannot realize the decentralized
architecture of a real EC. In [10], the authors proposed a
satellite edge computing simulator, SatEdgeSim, which is an
extension of PureEdgeSim. A dynamic network virtualization
technique in the STN scene was proposed in [11], but these
two studies lacked a decentralized software architecture.
Despite numerous studies on satellite architecture and
platforms, few have employed container orchestration tools
on these platforms. The authors of [12] discussed containers
and clusters for edge cloud architecture, and application
and service orchestration can help manage and orchestrate
applications through containers. The suitability of container
and cluster technologies can be used to build an STN system.
Thus, in our work, when we build the satellite edge cloud
platform, we not only refer to the cloud and EC architecture of
social enterprises but also industrial practice [13]. Therefore,
we used container-based edge cloud architecture. Moreover,
the authors in [14] researching on the satellite-high altitude
platform-terrestrial, and this work maximizes the sum rate of
secondary network.

Technologies such as containers and virtualization have
changed the manner in which various workloads and
applications are deployed, run, and managed [15]. Most
existing studies assume that applications are deployed in
cloud data centers, but cloud computing is moving from
centralized, large-scale data centers to a more distributed
edge cloud architecture [12]. To meet requirements such
as data privacy and low latency, enterprises need to extend
workloads from the cloud to the edge to perform data
aggregation, machine learning inference tasks, etc. This
can also alleviate the pressure on communication networks
caused by the explosive growth in data traffic. In [16],
the authors proposed an eCaaS (namely edge Container
as a Service) framework to address challenges from an
edge computing service provider perspective. In addition,
container orchestration using cluster tools is a prevalent
approach that involves master and agent roles. The master
manages the workloads of the agents and monitors their real-
time statuses. Kubernetes (K8s) [17], Rancher, and Docker
are popular platforms for building clusters. However, new
platforms such as K3s [18] and KubeEdge [19] have emerged
to meet the lightweight requirements of edge nodes in edge
computing scenarios. New use cases require performant,
available, and scalable orchestration at the edge [20]. The
authors in [21] discuss EC and its current situation. We also

compared several open-source tools (Table 1). In the K8s
architecture, the minimum configuration requirements for
edge nodes are 2 core CPU and 2GB of memory [17]. In the
K3s architecture, the minimum configuration requirements
for edge nodes are 1 core CPU and 512MB of memory [18].
In the KubeEdge architecture, the minimum configuration
requirement for edge nodes is 1 core CPU and 80MB [19]. So
in Table 1, we can draw conclusions about the lightweighting
degree of edge nodes. In [16], the authors also compared
various aspects of the three tools. Based on Table 1, we can
conclude that KubeEdge is more suitable for deployment
in edge computing scenarios owing to its lightweight and
decentralized nature, and its additional functions that enable
the efficient operation of edge nodes [22].

The microservice architectural pattern has emerged based
on the development of containers. Microservices split an
application into small self-contained services that can be
independently developed, deployed, and scaled. Containers
are commonly employed in hosting services within a
microservice architecture [15]. The lightweight, portable,
and self-contained nature of microservices makes them ideal
for use in satellite networks that have limited resources
and rapidly changing topologies. Because the virtualization
technology represented by containers can effectively improve
resource limited issues, such as resource isolation, resource
scheduling, resource limitations, and quotas. In satellite
communication systems, the authors in [23] introduced a
threshold-based user scheduling scheme designed to enhance
secure transmission. However, it is worth noting that there
is currently a gap in the literature concerning scheduling
schemes tailored specifically for microservices in this con-
text. Microservices not only integrate the excellent features of
the container, but also changes the traditional software opera-
tion mode from a stand-alone application to independent and
autonomous service modules. The microservice architecture
can promote satellite edge computing, such as task migration
and computation offloading on satellites, ground control
center detection, and satellite management. However, owing
to the limitations of satellite payload, volume, energy
consumption, and computing and storage resources, a more
flexible and controllable resource management approach
is required. However, few studies have been conducted
on microservice architecture in satellite networks. A 5G
satellite edge computing framework consisting of embedded
hardware platforms and microservices in satellites was
proposed in [24], and the experiments were carried out
in MATLAB. Moreover, the deployment of microservices
on satellite platforms requires effective task workflow
planning and container orchestration tools to manage the
lifecycle of container-based microservices. Although some
researchers have developed models for microservices to
minimize network delays and costs, they have not defined
specific workloads or run their algorithms in real production
environments, such as [25] and [26]. Additionally, in [27], the
authors propose microservice scheduling methods in satellite
networks, but the number of satellites involved was limited,
and its experimental results were incomplete.
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FIGURE 1. Network scenario and topology of SatEdge.

TABLE 1. Comparison between K8s, K3s and KubeEdge.

The major contributions of this paper are summarized as
follows:

• Comparative Analysis: We conduct a comprehensive
comparison of various open-source tools, analyzing their
characteristics and functions. This work serves as a
valuable guide for researchers in satellite networks and
aids cloud computing developers in selecting suitable
platforms.

• SatEdge: We introduce SatEdge, a lightweight edge
cloud platform based on KubeEdge specifically
designed for satellite environments. SatEdge enhances
the flexibility of satellite service provisioning and
contributes to the overall management of the satellite
system. We provide a comprehensive overview of
SatEdge, including network scenarios, system deploy-
ment, system architecture, and software architecture.
This fills a gap in existing research by providing
a well-defined software architecture that guides the
development process.

• OMS-AM Algorithm: Building upon our previous
work, we propose the optimal microservice scheduling
algorithm with adaptivity and mobility (OMS-AM).

This algorithm aims to minimize latency, energy con-
sumption, and task failure rate. It takes into account
topology changes and propagation delay in the satellite
network, focusing on addressing mobility challenges.
OMS-AM considers both the task’s path among satel-
lites and ensures the successful transmission of results
back to users.

Furthermore, based on the aforementioned three points,
we introduce a series of experiments to verify the perfor-
mance of SatEdge and OMS-AM.

II. SATELLITE-BASED LIGHTWEIGHT EDGE CLOUD
ARCHITECTURE
In this section, we introduce SatEdge from the perspectives
of scenario, topology, and architecture. The scenario and
physical topology of our platform are shown in Fig. 1. And
SatEdge’s system architecture is shown in Fig. 2, which
provides the design principle for software development,
as shown in Fig. 3.

The scene of the satellite-terrestrial hybrid network is
shown on the left side of Fig. 1. In space, satellites orbit in
a certain pattern, and the constellation is dynamic. Owing
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to the EC diagram, every satellite has certain resources to
handle user requests. The user may initiate an Internet service
request, such as an image or video. Furthermore, the entire
satellite system should be managed by a terrestrial control
center, which can communicate with a certain number of
satellites through station gateways. Managers can monitor
satellite networks for things such as microservice deploy-
ment, resource allocation, and satellite status monitoring.

The topology of SatEdge is shown on the right side of
Fig. 1. As previously mentioned, SatEdge is built based
on KubeEdge, which extends container orchestration and
device management to hosts at the edge. Therefore we built
our platform with a cluster-based approach while taking
advantage of the KubeEdge architecture’s strength in edge
computing. Specifically, we set up a cloud server in the public
network to represent the terrestrial center and another server
running satellites in the intranet. To simulate users, we used a
laptop running functional scripts to generate users and tasks.
In addition, we also developed two User Interface (UI) pages:
a monitor page to supervise the whole system and a user
simulation page to generate users and tasks.

FIGURE 2. System architecture of SatEdge.

The system architecture mainly includes the control,
satellite edge, and user layers. The control layer control
and interact with satellite networks, manages them, and
monitors their status. The satellite edge layer is primarily
deployed on each satellite, and the resources of the satellite
can be managed and scheduled. The user layer is used
to transmit user requests to the satellite edge layer and
provide feedback on the processing results to the user. In
particular, we partitioned the user service and system service
at the control layer and edge layer. The request method of
the user service is initiated by the user who waits for a

response. System services refer to services provided for the
internal parts of the system, and their service targets are the
various parts of the system. User services are targeted at
users or terminals to access services. The system has two
types of user: general users and administrators. The former’s
requirements are to access specific business applications,
such as object detection, whereas the latter’s requirements are
to manage the entire system, such as monitoring data.

The components of the control layer are introduced as
follows.

• Global monitoring: This is designed for administrators.
We have also provided UI pages, as shown in the Fig. 1.

• Satellite Scene Construction: We used the STN scene to
validate the performance of SatEdge.

• Automated deployment: Users can deploy tasks by
uploading resource configuration files.

• Service Orchestration: Automating the management and
scheduling of multiple containerized services through
orchestration tools.

• Life cycle management: Perform various operations
and management of containerized applications, such as
image building, deployment, scaling, and monitoring.

• Service Scheduling: It deploys services to available
nodes based on the resource requirements of the
application.

• Cloud-edge Collaboration: The collaborative work
between cloud and edge computing devices improves
task processing efficiency.

Some components of the satellite edge layer are introduced
as follows.

• Service discovery: Automatic identification and man-
agement of containerized applications to ensure service
availability and reliability.

• Edge autonomy: Edge nodes have a certain degree
of autonomy and can perform task scheduling, fault
recovery and other operations without the need for cloud
intervention.

• User management: It manages users accessing the
system and record their information.

• Edge-edge Collaboration: By enabling efficient collab-
oration between edge nodes, the system efficiency and
response speed can be improved.

To further demonstrate SatEdge’s functions, we organized
the platform’s functional metrics in Table 2.
The SatEdge architecture is shown in Fig. 3. SatEdge’s

architecture is primarily divided into clouds and edges.
The cloud represents the terrestrial control center, and the
edge is responsible for receiving instructions from the cloud
and running the containers. Moreover, the blue components
are K8s elements, such as API and DataBase. The yellow
components are KubeEdge elements, such as CloudCore and
EdgeCore. The reds are the components that we develop.
Subsequently, some components of SatEdgewere introduced.

• Terrestrial Cloud Control System: It helps admin-
istrators manage the SatEdge system. In particular,
we developed a demo interface based on VUE to display
services and visualize our platform’s situation.
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TABLE 2. Functions of SatEdge.

FIGURE 3. Software architecture of SatEdge.

• Service Orchestration: Based on customized templates,
the services provided by satellites to the outside world
are orchestrated on-demand.

• Scene Validation: We used the STN scene to validate
SatEdge’s performance. The way in which we build the
STN scene can be referred to in our last work [27]. We
obtained the satellite motion trajectory through Satellite
Tool Kit (STK) simulation software, and obtained
the access satellite and link delay through subsequent
processing. We also imported this information into
the SatEdge platform through the Traffic Control tool
provided by the Linux system.

• Basic Management: It manages satellite node resources
such as computation and storage, as well as link latency.

• Resource Management: It collects and determines every
satellite node’s CPU and Memory resources.

• Functional Components: This component provide ser-
vice that help satellites process tasks more efficiently.

• Resource Allocation: It allocates satellite nodes’ CPU or
Memory resources.

• Resource Perception: This perceives the computing
resources of satellites and inter-satellite link status.

• Access Service: It records information about the user
and the task, such as the user’s location and the type of
task.

• Functional Components: After the users send tasks
to this system, our platform uses offloading or
load-balancing strategies to process the tasks. These
strategies are described in [27].

III. MICROSERVICE MODEL AND PROBLEM
FORMULATION
In this section, the microservice model and the problems
that we want to solve are introduced. First, we introduce
the mobility in satellite networks, and then further elaborate
on the problems brought about by the dynamic changes in
topology in a satellite network that integrates microservice
architecture. Finally, the scenario modeling and the problems
to be solved are presented through mathematical formulas.

A. MOBILITY IN STN
Satellite nodes have undergone rapid changes. When analyz-
ing a satellite scene, the satellite’s changes can be divided
into several time slots at a certain sampling frequency, and the
satellite constellation can be viewed as static in each time slot.
As shown in Fig. 4, for ground users, the satellite topology
undergoes different changes in consecutive time slots of T1,
T2, and T3. From T1 to T2, the access satellite remains
the same, but the inter-satellite delay changes owing to the
satellite’s movement. From T2 to T3, there is a significant
change in topology, and the access satellite also changes.

FIGURE 4. Mobility in STN.

B. STN SCENARIOS WITH MICROSERVICE ARCHITECTURE
Many business units, such as services, operate on satellites
waiting to be requested. Traditionally, every service runs as
a whole on a satellite, but a whole service can be divided
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into a series of lightweight and self-contained components by
the microservice architecture. In this manner, a user request
is executed by different satellites, which can formulate a
workflow.

To illustrate the impact of mobility on tasks for users in
a satellite network with a microservice architecture more
clearly, we have drawn Fig. 5. The scene is divided into two
parts: the task handling process and the task result return
process. The first process is represented by a orange arrow,
and the second process is represented by a blue arrow.

• The task handling process refers to the process in
which the user sends the task to the satellite network
through satellite access and the satellites collaborate to
process it.

• The task result return process refers to the process of
returning the result to the user through inter-satellite
forwarding.

Fig. 5 illustrates the changes in the direction of the task
owing to the mobility of the satellite during task processing.
Where the solid line in the figure represents the scheduling
of the workflow by the system when the topology structure
is unchanged. The dashed lines indicate that the scheduling
process is affected by satellite mobility. According to this
strategy, it needs to be rescheduled, and the direction of the
adjusted task flow is shown on the right side of Fig. 5 (a).
Fig. 5 (b) illustrates how to successfully return the task result
to the user if there are changes in the satellite topology
structure when the task result is returned.

C. PROBLEM FORMULATION
In this section, we present a microservice scheduling problem
using mathematical formulations. The user tasks that we are
considering are related to Internet services, such as object
detection and facial recognition. The tasks for which users
initiate requests primarily involve videos or images of a
certain size. The processing results for these types of tasks
are usually in the form of text output; therefore, the size of
the task processing results can be ignored.

When tasks are executed, the proposed algorithm sched-
ules a workflow path among the available satellites and
microservices to minimize total latency, total energy con-
sumption, and task failure rate. The total latency comprises
the following parts: transmission latency from the ground
to satellites T transgnd , propagation latency from the ground
to satellites T propgnd , propagation latency between satellites
T prop, transmission latency between satellites T trans, and
computation latency T comp. The i-th satellite is Vi, and
V1 represents the access satellite. Suppose there is a whole
business application that can be divided into microservices
M1,M2, . . . ,Mj components according to functions, and
these microservices are distributed in the satellite networks.
A task is always received by access satellite V1 first, and after
the task is processed by M1, the algorithm decides whether
it is processed by M2 in V1 or M2 in other satellites. Thus,
this scheme can form a scheduled workflow, namely path
P: p1,1, p2,2, . . . , pi,j. This implies that there are p satellite
nodes in the network. pi,j means a task is processed by
the j-th microservice component of the i-th satellite. The

communication link between satellites vi and vi+1 is denoted
as Li,i+1.

γi denotes the processing density in cycles per bit of
satellite i. f ji denotes the computing power assigned to Mj.
mj−1 is the incoming data size of Mj, and m0 is the initial
task size. The output data size is represented as mj, and mj is
sent to its successor satellite node for further processing. The
transmission rate between satellites is RISL . The transmission
latency between satellite Vi′ and another satelliteVi can be
expressed as mj

RISL
i′,i

. T propi′,i is the propagation delay between

satellite Vi′ and another satelliteVi.
Task processing delay is an objective that we want

to minimize. Based on the aforementioned mathematical
symbols, we define the total computing and transport delay
in the task processing process as T total . γi denotes the
processing density in cycles/bit. f ji denotes the computing
power assigned to Mj.

T total = T transgnd + T propgnd + T comp + T trans + T prop

= T transgnd + T propgnd +

p∑
i,j

Tpi,j +
p−1∑
i,j

TLpi,pi+1

=
m0

Rgnd
+ τgnd +

p∑
i,j

γimj

f ji
+

p∑
i,j

(
mj−1

RISLi,i+1

+
di,i+1

c
)

(1)

Another objective of our algorithm is to minimize energy
consumption, which is defined as E total . Energy consumption
mainly involves three processes: transmission of tasks from
the ground to access satellites, computing tasks on satellite
Ecomp and transmitting tasks and their parametersE trans

between satellites. ϵi represents the energy cost of the satellite
Vi per CPU cycle. PISL is the transmission power between
satellites.

If a task’s size is Wn, the computation cost energy that the
satellite Vi processes for this task can be defined as (2).

Ecomp = ϵiWnγi (2)

The energy cost that the ground transmits tasks to access
satellites could be defined as (3).

E tansgnd =
WnPgnd
Rgnd

(3)

The energy cost of satellite Vi transmitting to satellite Vi+1
could be defined as (4).

E tans =
WnPISL
RISLi,i+1

(4)

Then, the total energy cost ofthe computation and trans-
mission can be denoted as (5).

E total = E transgnd + Ecomp + E trans

= E transgnd +

p∑
i,j

Epi,j +
p−1∑
i,j

ELpi,pi+1

=
m0Pgnd
Rgnd

+

p∑
i,j

ϵimjγi +
p−1∑
i,j

mjPISL
RISLi,i+1

(5)
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FIGURE 5. Mobility in STN scenarios with microservice architecture.

As illustrated at the beginning of this section, the size of the
task results can be ignored; therefore the return of task results
does not consume energy. The objective of the proposed
algorithm is to minimize both the T total and the E total .

IV. ALGORITHM DESIGN
In this section, we introduce the proposed algorithm, namely,
OMS-AM, and other algorithms for comparison in the
experiment. The designed algorithm can minimize both
end-to-end delay and energy consumption. The other four
compared algorithms are optimal microservice scheduling
with adaptivity (OMS-A), non-microservice scheduling with
adaptivity and mobility (nonM-AM), and non-microservice
Scheduling (nonM). OMS-AM and OMS-A are both based
on amicroservice architecture. But OMS-A does not consider
satellites’ mobility when the result is returned to users.
The nonM-M and nonM algorithms are not based on the
microservice architecture, that is to say, these strategies
consider a service as a whole. When the result must be sent
to users, nonM-M considers the satellites’ mobility. While
nonMwill not take this into consideration, a task result comes
back the way it come.

The first three algorithms are designed based on microser-
vice architecture. We build a mesh model referring to [28],
[29] to describe these three algorithms as shown in Fig. 6. We
adapt this model to the STN and improve the performance of
satellite system.

A. OPTIMAL MICROSERVICE SCHEDULING WITH
ADAPTIVITY AND MOBILITY (OMS-AM) ALGORITHM
OMS-AM was improved based on the Optimal Microser-
vice Scheduling with Adaptive Link Changes (OMS-ALC)
proposed in our previous work [27]. Some characteristics

FIGURE 6. Mesh model of OMS-AM.

of OMS-AM are in line with those of the OMS-ALC. For
example, both algorithms take advantage of the flexibility
of microservices to formulate workflows. Second, they
focused on a globally optimal solution among the available
microservices and satellites. However, compared to OMS-
ALC, OMS-AM has three advantages.

• The number of satellites involved has increased. OMS-
ALC only considers five satellites, whereas OMS-AM
considers all satellites that may be involved.

• The mobility of satellite networks requires careful
consideration. We consider the influence of mobility not
only in the task handling process but also in the results
return process.
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• These results are more persuasive. The performance of
OMS-AM is verified using richer metrics. In [27], the
results of experiments verified the OMS-ALC using
delay tests. However, in this paper, we show the results
in terms of delay, energy consumption, and task success
rate.

OMS-AM consists of two processes: the task handling
process and the results return process. In the task handling
process, tasks are sent to the network, and the algorithm
schedules task requests to formulate a workflow among satel-
lites according to collectible indices in the real production
environment. In this process, the OMS-AM considers the
mobility of satellites and works with adaptive link change
characteristics. In the results return process, after a task is
processed, the satellite topology may change because of task
execution time delays. Thus, the results must be forwarded to
the users.

1) TASK HANDLING PROCESS
To represent the OMS-AM well, we built a 2D mesh

model, as shown in the Fig.6. The horizontal axis repre-
sents microservice components M1,M2, . . . ., and M0 repre-
sents the start of the workflow. The vertical axis represents
available satellite nodes V1,V2, . . . ., and V1 represents the
access satellite. In addition, a cell in the mesh is S totalj (mj,Vi),
which represents the total cost from the task request sent
to mj processed completely by Mj. Moreover, the cost is
composed of five parts: CPU cores, CPU utilization, number
of parallel tasks, inter-satellite propagation delay, and energy
consumption, which are denoted as corei, utili, parai, delayi,
and energyi, respectively.

Sj(mj,Vi) = corei + utili + parai + delayi + energyi (6)

These five parameters determine the cost value, and to nor-
malization them, we need to standardize them. Because we
want the minimal cost sum Sj, we perform the normalization
as follows: If there exists a group of parameters in terms of
one performance, X = [x1, x2, . . . , xi], and the larger the xi
is, the better. We normalize xi as 7. For example, utili, parai,
delayi, and energyi.

x_normi =
xi − min(X )

max(X ) − min(X )
(7)

If the smaller the xi is, the better, we normalize xi as 8. Such
as corei.

x_normi =
max(X ) − xi

max(X ) − min(X )
(8)

Then, we have the same recursion method referring to the
(13) defined in [27] to the final solution. In this work, we use
Sminj (mj,Vi) to replace Smaxj (mj,Vi), and S

total_min
j to replace

S_totalmaxj .
When j = 1, the initial S total1 is defined as follow:

S total_min1 = min {S1(m1,Vi)} (9)

According to the above computational process, we can
obtain the minimal cost of the workflow. Once a task comes
in, OMS-AM projects a reasonable workflow to minimize

the cost sum. After each recursion, the best satellite Vi will
be selected and added to the available satellite set V . And
the mj will be assigned according to V . Similarly, when
the workflow executed by some satellite changes owing
to the topology of satellites or the delay of inter-satellite
links, OMS-AM abandons the S_totalj, and calculates a new
workflow according to the (13) defined in [27]. Similarly,
a mesh model can still be established, as shown in Fig. 6.

2) RESULTS RETURN PROCESS
When the task is completed, the results must be returned

to the user. Because of the computing time, transmission
delay, and propagation delay, it is likely that the topology of
the satellite will change after the micro-service module has
finished processing a certain task. If the satellite is returned
along the original path, the access satellite directly connected
to the user will not be the satellite in the previous time
slot. Therefore, it is necessary to first determine whether the
satellite topology has changed.

If the topology changes during the return, the return
portion of the satellite receipt algorithm that obtains the
task processing results obtains the schedule path with the
minimum transmission delay using the shortest path method
to ensure that the task results are successfully returned to the
user. The return of a mission can be thought of as a graph
structure. From the final satellite, Vi is the starting point, and
the end point is the access satellite that the user connects to in
real time. As shown in Fig. 6, the return section only considers
the topology of the satellites and, not the micro-services and
their connections. By default, each satellite has a forwarding
capability. We consider the return process to be a directed
acyclic graph, G = (V ,E). V represents a set of nodes,
that is, each satellite node. To build G, we also set a series
of parameters. The source node is determined by the task
handling process, and we define it as Vs. The destination node
is access satellite Vd . NumorbitV is the number of node V ’s
orbit. NumidV is the number of node V in one orbit. In the
topology G = (V ,E), V (G) = {V1,V2, . . . ,Vn, . . . ,VN },
we can compute the N according to (11).

N =

∣∣∣NumorbitVs − NumorbitVd + 1
∣∣∣ ×

∣∣∣NumidVs − NumidVd + 1
∣∣∣

(10)

E represents the set of edges, and each edge (u, v) ∈ E
has a non-negative weight w(u, v), which is expressed in
terms of inter-satellite delay. The set S is used to store nodes
that currently have the lowest delay. From StartVi, Vi joins
the priority queue and sets its lowest delay d(Vi) to zero.
From Start Vi, traverses all adjacent satellite nodes v ∈ V ,
calculates the distance from Vi to v, that is, d(u) + w(u, v),
if this distance is smaller than the shortest distance of the
current record d(v), then update the value of d(v) and add
V to the S. The core algorithm is expressed as (11).

d(v) = min{d(v), d(u) + w(u, v)} (11)

The flow of the results return is illustrated in Fig. 6. We can
see that it starts at node, that is the final satellite computing
task. It then determines finds the minimal end-to-end delay
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in the workflow. This process ensures that the results can be
successfully sent to the users.

3) THE WHOLE PROCESS
And the pseudocode of whole OMS-AM is shown as follow.
If there are m microservices and n available satellites, it can
be concluded that the time complexity is O(mn).

Algorithm 1 (OMS-AM) Algorithm
Input: Available satellites set V (i = 1, 2, , . . . ., I ), Task
mj(j = 1, 2, . . . ., J ), set S

Output: Target satellites set Vcoming of tasks handling
process, Target satellites set Vback of results returned
process.
In the task handling process
for j = 1 to J do
Normalize utili parai delayi energyi referring to (4)
Normalize corei referring to (5)
Execute the same steps referring to [27]

end for
In the results return process
get the Vs from Vcoming
if topology of satellite network stays the same then
return the results according to Vcoming

else
construct the graph G according to (10), initialize w
according to inter-satellite delay.
while len(S)<len(G) do

update d(V ) according to (11)
add V to the priority queue S
record V ’s previous node in a dictionary D
if status of link changes then

reconstruct the graph G
end if
compute Vback according to S and D

end while
end if

The task handling process and the results return process
can both be modeled as a graphG. A comparison is presented
in Table 3. Process 1 represents the task handling process,
and Process 2 is the results returned process. In Process 1, the
source node is fixed because the process starts from the access
satellite. In Process 2, the algorithm starts with the final
satellite that has computed the results. In terms of destination,
Process 1 is unfixed. The workflow is scheduled using real-
time parameters, and the network topology is changing. In
terms of structure, the graph Process 1 is acyclic because
a satellite can forward a task to another, and it can also
compute the task locally. In Process 2, a satellite is unlikely
to forward the results to itself. In process 1, the weights are
determined by five parameters, as shown in (6). In process 2,
no tasks need to be computed, and only the results need to
be forwarded, so the weights are decided by the inter-satellite
delay.

TABLE 3. Comparison of two processes.

B. OTHER COMPARED ALGORITHMS
The Other three compared algorithms are OMS-A, nonM-
AM, and nonM. OMS-A. The OMS-A is the algorithm
proposed in [27]. The difference between OMS-AM and
OMS-A lies in the results return process. OMS-A does not
use the shortest path method to compute the return path, and
forwards the results according to the original path. In other
words, if the topology changes after the tasks are computed,
the results cannot be sent to the users.

The nonM-AM algorithm does not use a microservice
architecture. Therefore, every service runs on the satellites
as a whole. In this case, the definition of Mj does not exist.
Services among the available satellites have no connections.
We use the same five indexes to judge which satellite is the
best to process a task according to (6). The results returned
process by this algorithm are similar to those of OMS-AM.

The nonM algorithm has also been designed for non-
microservice applications. It is similar to nonM-AM, but it
does not consider the resultsof the returned process.

V. EXPERIMENT
In this section, we show the UI pages of our platform and the
performance of some algorithms.

A. FUNCTION VERIFICATION OF SATEDGE
We developed some UI pages to verify the functions of
SatEdge as shown in Fig. 7 and 8. In Fig. 7, when simulating
users who request service on the satellite system, we can set
a series of users’ information, such as location and number. If
the number of users is greater than five, the page will choose
five users and their tasks to display. This page also visualizes
the results of object detection tasks. We can observe the
processing time for each task. Our object detection service
can process images and videos. The first three tasks shown in
the figure are images and the last two tasks are videos.

The monitoring page is illustrated in Fig. 8. In the center
of Fig. 8, there isa dynamic 3D demo of satellites and the
earth. On this page, we can monitor all the information of
the satellite system. For the satellite network, this page can
display resource comparisons such as CPU, memory, and
utilization. We can also observe the priority of the satellite
nodes. In addition, we can monitor some details of the
users’ tasks. First, the page contains the number of requested
services. Second, it tracks every task’s execution information,
as shown in the users’ tasks section.

B. PERFORMANCES OF ALGORITHMS
We conducted a series of experiments to verify the per-
formance of the OMS-AM. The configuration of the cloud
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FIGURE 7. The user simulation page of SatEdge’s UI.

FIGURE 8. The monitoring page of SatEdge’s UI.

server is an Intel(R) Xeon(R) Platinum 8255C CPU @
2.50 GHz, and the server running satellite nodes is an
Intel(R) Xeon(R) W-2123 CPU @ 3.60 GHz. As for the
open-source tools: EdgeMesh version 1.12.0, KubeEdge
version 1.8.2, and K8s version 1.21.0. The constellation
settings and the parameters mentioned above are listed
in Table 4. Our parameter configurations were informed
by precedent studies, as explicated in the introduction
section. In our study, parameters γi and ϵ are constant
after the simulation initiation, impacting the overall energy
consumption magnitude. On the other hand, parameters fi,
PISL , and Wn are dynamic and exert a substantial influence
on performance metrics, while it’s important to note that
our algorithm considers global optima, ensuring its robust
performance in the research scenario.

The user task we used is a universal object detection
application that is based on a neural network model. For the
microservice application design, we used the typical neural
network written in Keras with six convolution layers. In
addition, we trained the neural network on an open-source
dataset and achieved an accuracy of approximately 90%
accuracy. After the training was complete, we divided the
network construction into three parts to build three connected
microservices. At the beginning, each microservice only
needs to load a part-trained weight to fit its construction.

Next, we will introduce the performance of OMS-AM
algorithm.

TABLE 4. Parameters of experiments.

Based on the four test dimensions, we conclude that OMS-
AM achieves the best performance compared to the other
three algorithms. The OMS-AM achieved the lowest end-
to-end delay, task failure rate, energy consumption, and total
normalized cost. In addition, we found that strategies based
on microservice architecture are better.

The average delay varies with the number of tasks,
as shown in Fig. 9. With an increase in task requests,
the average delay for all strategies increase. However, the
growth rate of the OMS-AM is the lowest. The algorithms
based on the microservice architecture, colored blue and
purple, can achieve a lower end-to-end delay. This result
proves that the microservice architecture is more efficient,
because the algorithm using microservice architecture has
more flexibility in task processing. Moreover, the OMS-AM
proposed in this paper is better than the algorithm proposed in
our previous work [27], which is colored in purple. When the
number of tasks is 60, the average delay of the OMS-AM is
approximately 14% lower than that of the OMS-A. Because
the OMS-AM is based on the global optimal characteristics
of the OMS-A algorithm, and also considers the problems
caused by the network mobility in the task return process to
prevent the terminal from receiving the task result timeout
due to the satellite topology changes.

In Fig. 10, we show the impact of the algorithms’ mobility
on task failure rates. Both OMS-AM and nonM-AM have
strategies for coping with the results return process, so they
have the lowest number of failed tasks. The nonM algorithm
considers neither the microservice architecture nor the results
returned process, so the task delay would be longer, and it
is likely to meet topology changes. This is why the line of
nonM shakes more violently than the others do. In addition,
the algorithms that consider the results return process, have a
lower task failure rate.

The energy consumption of the four algorithms is shown
in Fig. 11. These four lines were grouped into two categories.
OMS-AM and OMS-A are based on a microservice architec-
ture, and their energy costs are lower than those of nonM-
AM and nonM. Based on these results, we can conclude
that microservices enable satellite networks to operate
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FIGURE 9. The average delay varies with number of tasks.

FIGURE 10. Number of failed tasks varies with number of tasks.

more efficiently. This is because the algorithms consider
computational and transmission energy consumption when
searching for the global optimal solution.

FIGURE 11. Energy consumption varies with number of tasks.

Moreover, we compare the sum of the normalized costs,
as defined in (6) after normalization. In Fig. 12, the trends
are similar to the comparison of the energy consumption.
Strategies that use microservices incur lower costs in terms
of computation, transmission, and energy.

FIGURE 12. Sum of normalized cost varies with number of tasks.

From these four experimental comparisons, we can
conclude that the OMS-AM is the most efficient algorithm.
Because it has the lowest delay and task failure rate, its energy
consumption and cost sum are also low.

VI. CONCLUSION
This study makes three main contributions. First, we compare
these open-source tools in terms of characteristics and
functions, which would allow more researchers to know
about container and cluster technology. Next, we developed a
satellite edge cloud platform based on KubeEdge. SatEdge
increases the flexibility of satellite service provision and
helps manage the entire satellite system. We introduce
SatEdge from network scenarios and system deployment as
well as from system architecture and software architecture.
According to our survey, most relevant research lacks
concrete software architecture to guide development. Third,
we extended the mobility of the microservice scheduling
algorithm based on our previous work. Moreover, OMS-AM
not only considers a task’s coming path among satellites
but also ensures that the result can be sent back to users.
Then, we introduce a series of experiments to verify the
performance of the OMS-AM on our platform. The results
show that the OMS-AM outperforms the other solutions in
terms of delay, energy consumption, and success rate. Our
experiments validated the effectiveness of the microservice
architecture in satellite networks. Meanwhile, more improve-
ments can be done in the future. For example, we can modify
the KubeEdge native module to make the platform more
adaptable to STN. Besides, we can design algorithms by
considering more issues related to the mobility of the satellite
network, such as connection reliability.
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