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ABSTRACT Deep neural network-based tracking tasks have experienced significant advancements in recent
years. However, these networks continue to face challenges in effectively adapting to appearance changes
in both target and background, as well as linking objects after extended periods. The primary challenge in
tracking lies in the frequent changes in a target’s appearance throughout the tracking process, which can
potentially reduce tracker robustness when faced with issues such as aspect ratio changes, occlusions, scale
variations, and confusion from similar objects. To address this challenge, we propose a tracking architecture
that combines a temporal convolutional network (TCN) and attention mechanism with spatial-temporal
memory. The TCN component empowers the model to capture temporal dependencies, while the attention
mechanism reduces computational complexity by focusing on crucial regions based on context. We leverage
the target’s historical information stored in the spatial-temporal memory network to guide the tracker in
better adapting to target deformation. Our model attains a 67.5% average overlap (AO) on the GOT-10K
dataset, a 72.1% success score (AUC) on OTB2015, a 65.8% success score (AUC) on UAV123, and achieves
59.0% accuracy on theVOT2018 dataset. These outcomes demonstrate the high effectiveness of our proposed
tracker in tracking a single object.

INDEX TERMS Temporal convolutional networks, attention mechanism, spatial-temporal memory, single
object tracking.

I. INTRODUCTION
Computer vision research places significant importance on
single object tracking due to its wide-ranging practical appli-
cations in computer interaction, monitoring, robotics, and
autonomous driving. The objective of single object tracking
is to locate and track a specific target in video sequences,
given the initial target’s position in the first frame. Despite
considerable advancements in recent years, object tracking
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remains a complex challenge due to various factors, such
as occlusion, distractors, motion, target deformation, similar
objects, and background clutter. To obtain more accurate and
robust tracking results, some state-of-the-art trackers employ
a multi-stage tracking strategy involving additional tracking
stages to achieve precise bounding box estimation. These
trackers first identify the target’s rough location and then
fine-tune the results through additional tracking stages to
achieve a more precise bounding box prediction.

While the others employ the template matching method,
which involves identifying areas of the target template image
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that match a search image. The representative of the template
matching method is the Siamese tracker [1], which relies on
a two-branch neural network that processes a template image
and a search image using a convolutional neural network
to generate a response map indicating the target’s loca-
tion. However, this method does not utilize spatial-temporal
information and update the template, thus is hard to adapt
to appearance changes during tracking, leading to tracking
failures.

The incremental template update strategy [2] was proposed
to maintain accurate and robust tracking of an object by
continuously updating multiple templates that represent the
object’s appearance and environment. However, the approach
may face limitations when tracking objects undergo signif-
icant changes in appearance or motion over time, as the
incremental update strategy assumes that the changes in the
object’s appearance are gradual and can be captured by updat-
ing the existing templates. In scenarios with abrupt changes or
occlusions, the approachmay not be able to maintain accurate
tracking. Additionally, the approach may not be suitable for
tracking multiple objects simultaneously, as the templates
would need to be updated for each object separately, leading
to increased computational complexity.

The method for capturing the appearance and motion
patterns of an object is implemented in the Temporal
Convolutional Network (TCN) models [3]. TCN utilizes
1D convolutional layers with dilated filters to capture tem-
poral dependencies across multiple time steps. It can also
incorporate spatial information by treating the input data as
a 1D sequence of feature vectors, where each vector corre-
sponds to a spatiotemporal location in the input. This allows
the network to capture both spatial and temporal depen-
dencies in the data. However, TCN is designed to handle
sequential data with fixed length and regular patterns, which
means it may not be well-suited for tasks that require model-
ing complex dependencies [4].
Later on, Lai et al. [5] introduced a memory buffer network

that can selectively store and retrieve relevant information
about the target object, such as its appearance, motion, and
context from past frames to improve object tracking per-
formance. This approach utilizes the stored information to
generate a set of candidate object locations and adaptively
updates the tracking model over time. However, the method
has some limitations. It can be computationally expensive
and requires a large amount of training data to achieve high
accuracy. Additionally, it is highly sensitive to the quality and
quantity of input data, which can lead to overfitting or poor
generalization to unseen data.

Inspired by prior works, this paper proposes a method that
incorporates the Temporal Convolutional Network (TCN)
with an attention mechanism to enhance its potential in
modeling long-range patterns in videos. The proposed
method also employs a historical network that relies on
spatial-temporal information, replacing the conventional
template-matching approach and eliminating the need for
direct template updating. Furthermore, to ensure that the

model captures the true target appearance instead of other
interfering objects, a background label is added.

The main contributions of our work are as follows:
1) We introduce a tracking architecture that combines

the Temporal Convolutional Network (TCN) and an atten-
tion mechanism with a spatial-temporal memory network for
enhanced single-object tracking.

2) TCN is specifically designed to capture temporal depen-
dencies in sequential data, enabling our model to handle
temporal variations in object motion and appearance. Addi-
tionally, the attention mechanism is incorporated into the
hidden layers of TCN to selectively focus on themost relevant
parts of the input, reducing computational complexity and
boosting the model’s performance.

3) To ensure that the model captures the true target
characteristics and not distractors, the background label is
deliberately incorporated into the backbone network.

4) We utilize a spatial-temporal memory network that
retains the past information of the target to guide the tracker
in adjusting to the target’s shape or movement.

5) We evaluate our proposed model on four benchmark
datasets: GOT-10K, OTB2015, UAV123, and VOT2018.

The rest of this paper is organized as follows. Section II
reviews the related work on object tracking. Section III
presents the proposed method. Section IV illustrates the
experimental results of the proposed method. Finally,
section V presents the conclusions.

II. RELATED WORKS
Extensive research has been conducted on single object track-
ers. The Siamese network structure [6] is one of the most
popular. This approach involves combining two convolu-
tional neural networks (CNNs) to achieve high accuracy
while maintaining fast tracking speeds in real-time trackers.
These trackers typically transform object tracking into a tem-
plate matching problem by cropping a template image from
the first frame during inference and matching it within the
search image region in the current frame. They employ end-
to-end training to acquire the object’s feature representation.
One major advantage of this method is the reduced need for
online updates, which enables real-time tracking. However,
most Siamese trackers [7] rely solely on the appearance
features from the first frame and do not effectively leverage
interframe information. Although this approach works well
for tracking, it is weak in tracking objects that drift, especially
in scenarios with cluttered backgrounds and occlusions, due
to the lack of updating the target’s appearance changes over
time.

Lu et al. [8] introduced SiamFC (Siamese Fully Convolu-
tional) to improve the architecture of Siamese networks by a
fully convolutional neural network. SiamFC also incorporates
a template suppression method to enhance the accuracy and
robustness of the tracker. The template suppression tech-
nique removes background information from the template.
This method is based on a segmentation network trained to
identify foreground and background regions in the template.
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The foreground regions are then used to generate a new
template that only contains the object of interest [10]. The
SiamFC tracker has a limitation where it cannot adjust to
appearance changes or learn a new template during the track-
ing process. This limitation causes problems with template
drifting because the templates obtained during tracking are
not always reliable, which can lead to the accumulation of
small errors over time [9]. Then Li et al. [10] presented
the SiamRPN architecture, which comprises two identical
networks that share weights. One network is responsible for
generating region proposals, while the other network pre-
dicts a similarity score between the target and the proposed
regions. The combination of these two networks enables
efficient and accurate tracking of the target object. While the
SiamRPN architecture has demonstrated good performance
in object tracking, it can be slow to track objects that are
moving quickly. This is because SiamRPN needs to compute
the similarity between the target object and the search region
at every frame, which can be computationally expensive.

According to the limitation of previous works that strug-
gle to capture the target’s appearance changes over a long
period, leading to suboptimal performance. To address this
limitation, memory networkswere introduced as a solution by
selectively storing and retrieving relevant information about
the target object from past frames, allowing them to effec-
tively capture and model appearance changes over longer
sequences of frames. Zhou et al. [11] introduced a mem-
ory network to store and update the features of the tracked
object, which enables the model to handle occlusions and
re-detections of the object. The memory network is designed
to store the object’s spatiotemporal features separately, which
allows the model to distinguish between the appearance and
motion features of the object. Although memory network
has shown promise in improving the performance of various
tasks, they can be computationally expensive and require
large amounts of training data. In our approach, we integrated
the memory network to capture target information from past
frames through the learning process of TCN and attention
mechanism. This integration enhances the model’s ability to
concentrate on the most relevant parts, allowing it to learn
effectively even with limited training data and achieve high
accuracy.

TCN is one of the powerful architectures introduced by
Bai et al. [12], which utilizes causal convolutions and dila-
tions to capture long-range temporal patterns for sequence
modeling tasks. TCN has been successfully used in wind
power prediction by Zhu et al. [13], training the model on a
sequence of historical wind power data and weather forecast
data. The results demonstrate excellent ability and prediction
accuracy compared to 1D-Convolutional Neural Networks
(CNNs), Long Short-Term Memory (LSTM) networks, and
Gated Recurrent Units (GRUs). However, this approach is
limited to short-term forecasting, specifically predicting wind
power output 1-6 hours ahead. He et al. [4] employed TCN
to detect anomalies by learning a temporal representation of
the time series that captures the normal patterns and detects

deviations from those patterns. The model was trained on a
large dataset of labeled time series and is able to general-
ize to new and unseen time series. However, this approach
requires a large amount of labeled data for training, and
it can be computationally expensive, especially for longer
or higher-dimensional time series features. This could be a
drawback for users who have limited computational resources
or require real-time anomaly detection.

III. PROPOSED METHOD
The overview of our proposed architecture as illustrated in
Figure 1 consists of four main components: a backbone
network, a Temporal Convolutional Network and attention
mechanism, a spatial-temporal memory network, and a pre-
diction network. The backbone network is split into two
branches: a historical branch (depicted in blue) and a search
branch (depicted in orange). The historical branch takes both
historical frames and their corresponding background label
as inputs, while the search branch takes a single search frame
representing the current frame.

A. BACKBONE NETWORK
The backbone network comprises two branches: the historical
branch and the search branch.

1) HISTORICAL BRANCH
We adopt GoogLeNet as the backbone for feature extraction.
To incorporate the historical branch, we utilize historical
frames T along with their corresponding background label B.
The background label B contains 1 and 0 pixels within
the ground truth of the target and background, respectively.
To fuse the information from the historical frames and back-
ground label, we extract the feature of historical frame Ti
(denoted as θm). Then, we combine the first convolutional
layer of θm with the background label map Bi using the
element-wise addition operation. This allows the network
to focus on the regions corresponding to the target while
suppressing the background. The combined sum of these two
elements is subsequently fed into the following layers of θm,
producing T historical feature maps. Each historical feature
map is represented as ft−i, where ft−i ∈ RCxHxW . In this
context, C stands for the number of channels, while H and
W correspond to the height and width of the feature map,
respectively.

2) SEARCH BRANCH
The search branch takes a search frame as input and feeds it
into the backbone network for feature extraction, resulting in
an output feature map fs, where fs ∈ RCxHxW

.

B. TEMPORAL CONVOLUTIONAL NETWORK AND
ATTENTION MECHANISM
All the historical feature maps ft−i, generated by the back-
bone network, are concatenated to form the output, which
then serves as input to the temporal convolutional network
and attention mechanism. The TCN employs a hierarchical
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FIGURE 1. Overview of our proposed architecture.

convolutional architecture to capture long-term temporal pat-
terns. The attention mechanism is integrated into the hidden
layers of the TCN structure. Figure 1 illustrates an example of
the temporal convolutional network and attention mechanism
with one input layer and a kernel filter size of 3, using a
dilation factor d to represent the receptive field (depicted
in blue cells) of the model. The attention layers’ results
(represented by vectors A0,A1, . . . ,AK ) are concatenated to
form the output fm.
The TCN structure incorporates causal convolution, dilated

convolution, and residual connections [14].

1) CAUSAL CONVOLUTIONS
In a causal convolutional layer, the output at each time step
depends only on the input at the current and past time steps,
and not on any future time steps. This ensures that the model
can make predictions based solely on the past and not on the
future. To maintain the same length between the input and
hidden layers, zero padding is utilized in the hidden layers.

2) DILATED CONVOLUTIONS
The dilated convolutions are employed to capture long-term
dependencies and model large receptive fields. In a dilated
convolutional layer, the filter is applied over a wider range
than its original size by skipping input values with a specified
step size, thus effectively expanding the receptive field. This
is necessary because relying solely on causal convolutions
would require an excessively deep network, which can be
computationally expensive. The receptive field size y is deter-
mined by the formula in (1).

y =

n∑
n=1

(k − 1) x dn + 1, (1)

where n represents the number of hidden layers, and k denotes
the kernel size. The expansion factor of the nth hidden layer,

FIGURE 2. The dilated causal convolution.

denoted by dn, is calculated based on the formula dn = 2n−1.
The dilated causal convolution is shown in Figure 2.

3) RESIDUAL CONNECTIONS
Residual connections have demonstrated remarkable effec-
tiveness in training deep networks by allowing information
to be transmitted across layers. In a residual network, skip
connections are used throughout to accelerate the training
process and circumvent issues such as gradient explosion or
vanishing, despite the network being extremely deep. A resid-
ual connection comprises two branches, with the first branch
containing two layers of dilated causal convolution with
weight normalization and dropout layers, following ReLU
activation. Meanwhile, the second branch is a shortcut that
directly connects the input to the output of the convolutional
layers by using 1D convolution to ensure that the dimensions
of the output from both branches are equal and can be added
together, as shown in Figure 3.

C. ATTENTION MECHANISM
The attention mechanism [15] has proven to be a successful
technique in both machine learning and natural language
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FIGURE 3. Residual connections.

processing. It relies on the context to determine which part of
the data is more important than another. We incorporated this
technique into the TCN structure to improve its performance.
Figure 4 presents the attention mechanism flowchart, a con-
stituent of the ‘Temporal Convolution Network and Attention
Mechanism’ as depicted in Figure 1.

FIGURE 4. The attention mechanism flowchart.

To achieve this, we employ linear transformations denoted
as f , g, and h to map the feature map from the hidden layer (i)
of the TCN to three distinct vectors: key (K ), query (Q), and
value (V ). Following this, the attention weight is determined
through matrix multiplication of QKT , which calculates the
dot product for each combination of queries and keys. This
product is then divided by

√
dk . The derived attention weight

undergoes normalization using the softmax function and is
subsequently multiplied with V to derive the attention feature
map. The attention function can be expressed in (2).

Attentioni (Q,K,V) = Softmax

(
Q · KT
√
dk

)
· V (2)

where T denotes the transpose matrix, dk represents the
feature dimension ofK , and i represents the number of hidden

layers in the TCN. The symbol ⊗ in the attention mechanism
flowchart represents matrix multiplication.

D. SPATIAL-TEMPORAL MEMORY NETWORK
The purpose of the spatial-temporal memory network [16]
is to retrieve target information from historical frames and
uses this information to generate a soft weight map w in
order to create a fused feature map z. This z is then used to
classify the target and distinguish it from the background in
the current search frame, as well as to predict the target’s loca-
tion within the search frame. The spatial-temporal memory
network is shown in Figure 5. To begin the process of the
spatial-temporal memory network, the feature map f m and
f s are first reshaped to a new dimensionality of 512, where
f m is the output from the temporal convolutional network and
attention mechanism, and f s is the output from the search
branch in the backbone network.

FIGURE 5. The spatial-temporal memory network.

The spatial-temporal memory network computes the simi-
larities between every pixel of f m ∈ RTHWxC and f s ∈ RCxHW

to obtain a soft weight map w ∈ RTHWxWH , where T is
the number of historical frames, and C , H , W represent the
number of channels, the height, and the width of the feature
map, respectively.

To ensure proper scaling, we normalize w using the soft-
max function [17]. The formula for one element wij is shown
in (3) as an example.

wij =

exp
[(
f mi
⊙

f sj
)

/
√
C
]

∑
exp

[(
f mi
⊙

f sj
)

/
√
C
] (3)

In this context, the variable i represents the index of each pixel
on f m, while j corresponds to the index of each pixel on f s.
The symbol

⊙
represents the vector dot-product operation.
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After transposing f m, we proceed to multiply f m with w.
This is because f m stores all historical information related to
the target. By assigning weights to each element of f m, the
model is enhanced to selectively retrieve the most relevant
target information stored in f m based on the current search
frame. The output is a feature map that has the same size
as f s. To generate the fused feature map z, we concatenate
the output from the multiplication of f m and w with f s. The
equation for this process can be shown in (4). The symbol⊗

represents the matrix multiplication, where i represents
the index of the element of z, and T represents the transpose
of f m.

zi = concat
(
f si , (f

m)Ti ⊗ w
)

(4)

E. PREDICTION NETWORK
The prediction network comprises two primary branches:
a classification branch and a regression branch. The clas-
sification branch is further divided into two sections: the
first is devoted to predicting class confidence, while the
other focuses on determining the centerness of the object.
To enhance the classification accuracy between the target
object and the background, we introduce the regression
network. This network supplies pertinent information that
provides relevant information to enhance the classification
branch.

1) THE REGRESSION BRANCH
The fused feature map, denoted as z, serves as the input
for the prediction network. The regression branch utilizes
anchor-free regression to predict the object’s location on the
image at a pixel level. It achieves this by considering each
pixel in the feature map z as training samples, without relying
on predefined anchor boxes, following a similar approach
as [31]. If the location (x, y) of a pixel falls within the
boundaries of the ground-truth bounding box of the target
object, it is classified as a positive sample with a label that
corresponds to the class of the ground-truth label. Otherwise,
it is treated as a negative sample, with is assigned to 0
(representing the background class)

Along with the classification label, we also generate a
4D vector t∗ = (l∗, t∗, r∗, b∗) representing the regression
targets associated with a particular location. In this context,
(l∗, t∗, r∗, b∗) denote the distances from the location (x, y) to
the four edges of the bounding box, as illustrated in Figure 6.
If the location (x, y) aligns with the ground-truth bounding
box B, we can define the training regression targets for that
distinct location as follows:

l∗ = x − x0, t∗ = y− y0
r∗

= x1 − x, b∗
= y1 − y (5)

For an input image, the bounding boxes corresponding to
the ground-truth are represented as B = (x0, y0, x1, y1, c) ∈

R4x{1, 2, . . . ,C}. In this notation, the coordinate pairs
(x0, y0) and (x1, y1) indicate the positions of the top-left
and bottom-right corners of the bounding box, respectively.

FIGURE 6. An example of a 4D vector (l∗, t∗, r∗, b∗) representing the
regression target.

The variable c corresponds to the class label to which the
object within the bounding box belongs, and C signifies the
total number of available classes.

2) THE CLASSIFICATION BRANCH
As mentioned previously that the classification branch con-
sists of two parts: one for predicting the class confidence
and another for estimating the center-ness of the object, both
utilizing the fused feature map z as an input for the prediction
network. To condense the output’s dimensionality to 1D,
we employ a linear convolutional layer with a 1 × 1 kernel.
This is then followed by a sigmoid function to compute the
predicted classification confidence.

The second part focuses on predicting the center-ness [33]
of the object. Based on our observations, many low-quality
predictions for bounding boxes stem from locations dis-
tant from the object’s center. To address this problem,
we introduce an auxiliary branch composed of a single-layer
(1 × 1 convolutional layer) This works concurrently with
the classification branch (as depicted in Figure 1) and
is specifically designed to estimate the center-ness of a
given location. The center-ness value signifies the nor-
malized distance between the location and the target
object’s center. For a given location with regression targets
t∗ = (l∗, t∗, r∗, b∗), the center-ness target is defined as
follows:

centerness∗ =

√
min(l∗, r∗)
max(l∗, r∗)

x
min(t∗, b∗)
max(t∗, b∗)

(6)

The center-ness is a value confined within the range
of 0 to 1. It is trained through binary cross-entropy loss,
which is subsequently incorporated into the aggregate loss
function, as shown in (7). The final score is computed by
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multiplying the predicted center-ness with the corresponding
predicted classification score. As a result, the center-ness can
effectively assign reduced weights to bounding boxes that are
situated further from an object’s center. Consequently, these
lower-quality bounding boxes are excluded during the final
non-maximum suppression step, significantly bolstering the
detection performance.

3) LOSS FUNCTION
To optimize a training object, we determine the training loss
function as follows:

L
({
px,y

}
,
{
tx,y
})

=
1

Npos

∑
x,y

Lcls
(
px,y, c∗x,y

)
+

λ

Npos

∑
x,y

1{
c∗x,y>0

}Lreg (tx,y, t∗x,y)
(7)

The training loss function [33] consists of two components:
the focal loss [32], denoted as Lcls, and the IoU loss [34]
of the bounding box, represented by Lreg. The term Lcls is
defined based on the predicted classification score px,y for
class c∗x,y as determined in (8), while Lreg is defined in (9)
based on the regression target tx,y (predicted bounding box)
and the ground-truth bounding box t∗x,y. In the training loss
function of (7),Npos indicates the number of positive samples.
The balance weight for Lreg, denoted as λ, is assigned a value
of 1. The sum is computed across all locations on the feature
map Zi. The indicator function 1{c∗x,y>0} is used, assigning a
value of 1 to c∗x,y if the location (x, y) is considered a positive
sample, and 0 if it is regarded as a negative sample.

Lcls
(
px,y, c∗x,y

)
= − ∝

(
1 − px,y

)γ log
(
px,y

)
(8)

The hyperparameters ∝ and γ necessitate tuning based on
our evaluation criteria. Typically, ∝ is set within the interval
[0,1], while γ lies within the interval [0,5]. In the context
of this study, we have specifically designated ∝ = 0.25
and γ = 2.

Lreg = −

∑
i

ln
(
IoU

(
t, t∗

))
(9)

IoU =
Intersection(t, t∗)
Union(t, t∗)

(10)

The IoU loss defined in (9) and (10) quantifies the discrep-
ancy between the predicted bounding box t∗ and the ground
truth bounding box t . This offers an evaluation of the align-
ment accuracy between the predicted bounding box and the
ground truth.

IV. EXPERIMENTAL RESULTS
Our proposed method uses Python 3.6 and PyTorch 1.8.0.
It achieves a speed of 25 frames per second (FPS).
Our model is implemented on an Intel(R) Xeon(R) CPU
E5-2698 v4 @ 2.20GHz with a single GPU and 32GB
of memory, while other methods utilize 4 GPUs for their
approaches [18], [14], [29].

A. TRAINING DATASET
We employed the GOT-10k datasets [19] for our training,
which involved training for 20 epochs using the stochastic
gradient descent (SGD) optimizer with a batch size of 10.
The learning rate was progressively increased from 0.01 to
0.08 during training. Our model was configured with a histor-
ical frame count (T ) set to 3. For each frame within a training
sample, we generated a 289 × 289 pixel square image patch,
which served as the input for the model.

B. COMPARISON
In our research, we explored three distinct approaches. Ini-
tially, we employed a baseline architecture as a starting
point. In the second approach, we integrated a Temporal
Convolutional Network (TCN) between the backbone net-
work and the spatial-temporal memory network. Finally,
in the third approach, we combined a TCN and an attention
mechanism (TCN + Attention) and placed them between
the backbone network and the spatial-temporal memory net-
work. We trained our model using the entire training set
from the GOT-10k dataset. Subsequently, we evaluated its
performance on the GOT-10k testing set, and the results can
be found in Table 1. In terms of the average overlap (AO)
metric, it measures the average intersection over union (IoU)
between the predicted bounding boxes and the ground truth
across all frames in the sequence. Additionally, the success
rate (SR) metric is assessed at thresholds of 0.50 and 0.75,
measuring the percentage of frames where the predicted
bounding box overlaps with the ground truth by a certain
threshold.

TABLE 1. Comparisons of three trackers on the GOT-10k dataset.

Based on the findings in Table 1, we can conclude that
our proposed method, which integrates both the Temporal
Convolutional Network and attentionmechanism between the
backbone network and the spatial-temporal memory network,
outperformed the baseline and TCN methods in terms of
tracker performance. However, this method had a lower frame
per second (FPS) rate compared to the baseline and TCN
trackers. To further evaluate our model, we tested it on a
sequence video with a complex scene, and the results are
illustrated in Figure 7.

In Figure 7(a), the bird is the target object in frame #86,
and it is located at the center of the frame. The baseline
method tracks the entire body of the bird, while the TCN
and TCN+Attentionmethods closely track the object in prox-
imity to the ground truth. In frame #130, when the birds
move into a cloud, the TCN and TCN+Attention methods
outperform the baseline method. In frame #191, when the
objects emerge from the cloud, the TCN+Attention method
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FIGURE 7. Visualized comparisons of our methods.

continues to track the target accurately, while the baseline and
TCN methods deviate from the ground truth.

In Figure 7(b), in frame #30, the target crab traverses
among other crabs, encountering an obstruction caused by
a larger crab. Notably, the baseline method erroneously
tracks the larger crab as the target, whereas the TCN and
TCN+Attention methods maintain close and accurate track-
ing of the intended target.

In frame #81, a crab swiftly passes by the target crab,
and only the TCN+Attention method successfully maintains
tracking of the intended target. Subsequently, in frame #124,
a crab resembling the target momentarily appears in close
proximity to the target’s location. Here, both the TCN and
TCN+Attention methods consistently exhibit precise target
tracking, while the baseline method exhibits deviations from
the ground truth.

Moving on to Figure 7(c), where the challenge lies in
tracking a face within a fast-paced battle scene characterized
by a dark background and a group of individuals resembling
the target. It is evident that the TCN+Attention method
exhibits superior performance in closely tracking the target
face, aligning well with the ground truth. The video available
at https://drive.google.com/drive/folders/1ePyPF85nSgrDY
keoORzK6UG0oZMEwLDo?usp=sharing

Furthermore, we evaluated the performance of our method
by comparing it with state-of-the-art approaches. The com-
parison results on the GOT-10k, OTB2015, UAV123, and
VOT2018 datasets are shown in Table 2 to Table 5,
respectively.

The GOT-10k dataset [19] is a large benchmark that com-
prises 10,000 videos, with 180 videos designated for the
test set. This dataset is designed for generic object tracking,
encompassing not only visual object tracking but also other
related tasks such as visual object detection and semantic
segmentation. To assess the performance of our approach,
we conducted a comprehensive comparison with state-of-
the-art methods, using the metrics of Average Overlap (AO)
and Success Rate (SR) at IoU thresholds of 0.50 and 0.75.
In Table 2, we present our tracker’s performance, which
achieved an AO score of 67.5%. It falls slightly below the
RPformer and RANformer tracker. Notably, other method-
ologies were trained on larger and more diverse datasets.
The datasets and their corresponding sizes, including LaSOT
(227 GB), GOT-10k (66 GB), TrackingNet (2.1 TB), COCO
(25 GB), ImageNet (150 GB), and Youtube-VOS (130 GB).
Our approach distinguishes itself by being trained solely on
a training set of the GOT-10k dataset. This result highlights
the efficiency and effectiveness of our tracking model. For
the graphical representation of the comparative performance
across various tracking methods on the GOT-10k dataset,
please refer to Figure 8.

The OTB2015 [28] is a popular visual tracking benchmark
comprising 100 video sequences used for evaluating tracking
method performance. In our experiment, we conducted a
comparative analysis between our proposed approach and
several state-of-the-art tracking methods. Table 3 presents
comparisons of success (AUC) and precision scores on
OTB2015. Notably, our method outperforms others with an
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TABLE 2. The comparisons on GOT-10k dataset.

FIGURE 8. The comparison graph on GOT-10k.

TABLE 3. The comparisons on OTB2015 dataset.

impressive AUC score of 72.1%, the highest among the track-
ing methods compared.

The UAV123 [51] dataset comprises 123 video sequences
captured by a low-altitude unmanned aerial vehicle (UAV).
In contrast to other benchmark datasets, this dataset contains
many small objects, along with tracking sequences that have
several distractor objects and prolonged occlusions. Table 4
displays a success (AUC) score of 65.8% achieved by our
proposed tracker. It falls slightly below the RPformer and
RANformer tracker.

The VOT2018 dataset [21] consists of 60 videos designed
for visual object tracking, where the objective is to track

TABLE 4. The comparisons on UAV123 dataset.

TABLE 5. Comparisons on VOT2018 dataset.

an object in a video sequence based on its initial location.
We employ standard metrics to evaluate the methods, specif-
ically in terms of the accuracy (A) metric, which measures
the percentage of frames where the predicted bounding box
overlaps with the ground truth by a certain threshold. The
robustness (R) metric assesses the percentage of videos in
which the tracker successfully tracks the object until the end
of the sequence. The expected average overlap (EAO) metric,
a combination of A and R, provides an overall measure of the
tracker’s performance in terms of accuracy and robustness.
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FIGURE 9. The comparison graph on VOT2018.

The results presented in Table 5 indicate that our method
achieved an accuracy score of 59.0%, which is higher than the
most tracking methods compared, except for the RPformer
and RANformer tracker. The graphical representation of this
comparison on VOT2018 is shown in Figure 9.

C. ABLATION EXPERIMENT
We conducted an ablation study in which we evaluated our
model’s performance under two different training scenar-
ios: one using 20% of the GOT-10k and COCO datasets
and the other using only 40% of the GOT-10k dataset’s
training set. Subsequently, we tested the model on the
GOT-10k dataset, and the results are presented in Table 6.
Our findings clearly demonstrate that both the TCN and the
attention mechanism play pivotal roles in enhancing overall
accuracy.

TABLE 6. Comparing the performance between training with 20% of the
GOT-10k and COCO datasets and training with 40% of the GOT-10k
dataset.

V. CONCLUSION
We presented an architecture for enhancing single object
tracking that combines Temporal Convolutional Network
(TCN) and attention mechanism with spatial-temporal mem-
ory. This method is designed to capture complex temporal
patterns with long-range dependencies. By utilizing spatial-
temporal memory based on historical data, this approach
eliminates the need for direct template updating and con-
ventional template matching methods. Moreover, to ensure
that the model accurately captures the target’s true charac-
teristics, we incorporated a background label during feature
extraction. Our method focuses on streamlining the training
process when working with restricted datasets due to the con-
straints imposed by computational resources. We conducted

experiments across various benchmark datasets, including
GOT-10k, OTB2015, UAV123, and VOT2018.

Despite its capabilities, our method faces challenges when
confronted with some intricate real-world situations. These
situations include rapid motion sequences, closely resem-
bling objects, and instances of occlusion, which can adversely
affect the efficacy of our tracking approach. In future research
endeavors to enhance tracking performance, wemay consider
incorporating versatile and diverse template features. More-
over, given unrestricted hardware resources, evaluating our
tracker on expansive datasets, like LaSOT and TrackingNet,
will offer a comprehensive perspective on its resilience and
flexibility across diverse tracking situations.
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