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ABSTRACT Layer segmentation of Optical Coherence Tomography (OCT) images is an important step
in diagnosing retinal diseases. However, the presence of some artifacts and noise in OCT images often
leads to unsatisfactory layer segmentation results. Especially when the number of layers to be segmented
is particularly large, the boundaries between layers are indistinguishable, which poses a great challenge to
automatic and accurate segmentation. To solve these problems, we propose a novel multi-task dual boundary-
aware network to improve the retinal layer segmentation performance in OCT images. Specifically, based
on the hierarchical relationship between retinal layers, we design a dual boundary representation method to
encode the bidirectional boundary information between layers. Then we design a multi-task architecture and
a novel consistency loss to utilize the boundary representation to make the segmentation more accurate.
For evaluation, we have built a large-scale OCT layer segmentation dataset with 1,200 images. The
comprehensive experimental results show that our method achieves superior performance over other state-
of-the-art algorithms.

INDEX TERMS Boundary representation, consistency constraint, multi-task network, optical coherence
tomography, retinal layer segmentation.

I. INTRODUCTION
Retinal diseases are the main causes of visual impairment
and blindness. The survey by the World Health Organization
shows that 36 million people in the world are perpetually
blind, and 253 million people have disturbances of visual
acuity [1]. In fact, 80% of cases of visual impairment
can be prevented or cured at an early stage with an
appropriate retinal screening and treatment program [2], [3].
For example, diabetic retinopathy and age-related macular
degeneration can be diagnosed by examining changes in
retinal layer thickness and structure [4], [5]. Because optical
coherence tomography (OCT) can obtain a high-resolution
cross-sectional view of the human retina without invasion,
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it has been widely used for retinal disease diagnosis [6].
While retinal layer segmentation can provide a very intuitive
analysis of the shape and thickness of the retinal layer, it is
a very critical step in the diagnosis of retinal diseases [7],
[8], [9]. However, manual segmentation of retinal layers is
time-consuming and subjective, which greatly reduces the
efficiency of clinical diagnosis. Therefore, automated retinal
segmentation techniques have been developed to efficiently
and accurately carry out the task of OCT layer segmentation.

However, automated retinal layer segmentation faces
the following challenges: First, there exists interference
information from the background and other surrounding
tissues in OCT images. For example, as shown in Fig. 1(a),
blood vessels in the retinal region disrupt the continuous
shape of the retinal layers. Second, the retinal layers of OCT
images have low contrast and narrow width, which makes

125346

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-6971-5504
https://orcid.org/0009-0009-0450-8649
https://orcid.org/0000-0003-4369-2417
https://orcid.org/0000-0002-1948-2500
https://orcid.org/0000-0003-3730-6401
https://orcid.org/0000-0003-3835-1079


C. Yang et al.: Multi-Task Dual Boundary Aware Network for Retinal Layer Segmentation

FIGURE 1. Examples of our OCT retinal layer segmentation dataset.
(a) and (c) are original OCT images without and with lesion, respectively.
(b) and (d) are the corresponding retinal layering masks.

it difficult to distinguish the boundaries between the retinal
layers. As shown in Fig. 1(b), the layer boundary between the
Ganglion Cell Layer (GCL) and Inner Plexiform Layer (IPL)
is blurry and difficult to distinguish. In addition, the narrow
widths of the lower retinal layers makes it a challenge for
models to accurately separate distinct layers like the Myoid
Zone (MZ), Ellipsoid Zone (EZ), and Interdigitation Zone
(IZ). Third, the presence of the lesion disrupts the intrinsic
anatomy of the retina [10]. As shown in Fig. 1(c), the presence
of effusion disrupts the shape of the retinal layers, making it
difficult for automatic segmentation algorithms to learn the
structural features of the retina.

Currently, some deep learning based methods have been
proposed to address these challenges in retinal layer segmen-
tation, which can be divided into the following categories:
The first category of methods uses convolutional neural
networks (CNNs) to classify the central pixels of sliding
patches [10], [11], but they are very inefficient. The second
category of methods adopts fully convolutional networks
(FCNs) to segment the whole image using dense prediction
[12], [13], but their performance on boundaries is usually
unsatisfactory. The third category of methods first uses
an FCN to obtain preliminary retinal layer segmentation
results and then uses a graph search algorithm to optimize
the boundaries of each retinal layer [14], [15]. However,
graph search is a post-processing operation that requires
manual parameter setting and takes a long time to run. The
fourth category of methods uses an end-to-end multi-task
FCN to generate layer segmentation results and boundary
regression results simultaneously, which prompts the net-
work to focus on the boundaries between retinal layers
[16], [17]. However, the boundary representations of these
methods are too simplistic and do not take full advantage
of the relationship between layers. The fifth category of

methods is the Transformer-based networks like Swin-Unet
[18] and TransUnet [19]; global features can be acquired
through Transformer structure. However, Transformer-based
networks always fall into heavy computation costs [20],
which may cause unsatisfactory performance in small-shape
object segmentation on small datasets due to overfitting.

To address these challenges, we propose a multi-task dual
boundary aware network (DBA-Net) that not only segments
retinal layers but also obtains rich boundary information.
To better highlight the unclear retinal layer boundary,
we propose a novel dual boundary representation that encodes
the boundary based on the hierarchical relationship between
adjacent layers. To better strengthen mutual assistance
between different tasks, we designed a consistency loss to
make the segmentation prediction and boundary regression
prediction mutually constrained.

Our main contributions can be summarized as follows:
• A dual boundary representation method is proposed
to address the indistinguishable boundaries between
retinal layers. Different from conventional methods,
the proposed method is based on the hierarchical
spatial relationship between adjacent layers from two
perspectives.

• A consistency constraint between segmentation tasks
and boundary regression tasks is designed to enhance
the task consistency in multi-task learning, which
can effectively reduce the semantic gap in multi-task
optimization.

• Comprehensive experiments have been performed on
1,200 OCT images, with results demonstrating the
superiority of our method over state-of-the-art (SOTA)
methods.

II. RELATED WORKS
A. RETINAL LAYER SEGMENTATION
With the continuous development and improvement of deep
learning techniques, more and more methods based on them
have been applied to retinal layer segmentation. Fang et al.
used a CNN to classify the central pixel of sliding patches
in an image as background or boundary, thus layering the
retina by locating all boundary pixels [11]. Xiang et al. used
a custom feature extractor and neural networks to classify
each pixel point as one of seven retinal layers, background,
or neovascularization [10].
However, the efficiency of using sliding windows and

CNN classifiers is too low, which means that each pixel
has to undergo a separate classification process. Therefore,
some semantic segmentation algorithms based on FCNs are
widely used for retinal layer segmentation. For example,
Roy et al. proposed a variant of Unet named ReLayNet to
segment the retina into 7 layers, edema, and background,
which adopted the unpooling operation in the upsampling
process to recover the fine-grained location information lost
in the pooling operation and used a joint loss consisting
of both cross-entropy loss and Dice loss to constrain the
network optimization [12]. Wang et al. used the higher-level
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FIGURE 2. The overall multi-task architecture of our proposed method includes three tasks: one main segmentation task and two boundary regression
tasks. In addition to the loss for each task, a complementation loss and a consistency loss are used to enhance the model capability based on the
constraints between different boundary representations and between boundary representations and segmentation, respectively.

features of the encoder to generate the region segmentation
results and the lower-level features of the encoder to generate
the boundary segmentation results, and then the two results
were combined to obtain the final segmentation results [16].
While the traditional pooling operation will lead to resolution
loss, dilated convolution, and spatial pyramid pooling are
adopted by some works to increase the receptive field. For
example, Apostolopoulos et al. used multi-scale input and
dilated convolution to compensate for the loss of resolution
caused by downsampling [21]. Li et al. proposed an FCN
that adopted dilated convolution layers and a modified spatial
pyramid pooling layer to obtain multi-scale information to
accomplish fine retinal layer segmentation [13].

One of the main disadvantages of the convolution layer is
that it can only extract local features, so it cannot encode the
relationship between global pixels. To address this problem,
some methods based on Recurrent Neural Networks (RNN)
have been proposed to extract global pixel dependencies
for retinal layer segmentation [15], [22]. For example,
Gopinath et al. used CNN for the layer of interest extraction
and edge detection and then used Long Short Term Memory
to trace continuous boundaries following edge detection [22].
Hu et al. constructed an RNN-based image feature extraction
module and embedded this module in ResNet [23], which
extracted global information from images in four directions
to improve the segmentation performance [15]. Another
approach is a Transformer-based network. This method uses
multi-head self-attention in the Transformer module to build
a global dependency of the feature map, which solves the

problem of the local receptive field of CNN. Xue et al.
propose a method for retinal layer segmentation called
CTS-Net [24], which is based on the CSWin Transformer
[25] architecture. The CTS-Net combines the advantages
of the Transformer’s global modeling capabilities with
convolutional operations to achieve accurate retinal layer
segmentation and smooth boundary extraction.

B. BOUNDARY AWARE SEGMENTATION
The accuracy of boundaries is very important in the image
segmentation task, so some boundary-based segmentation
methods have been investigated to produce accurate bound-
aries, which can be divided into polygon-based methods and
multi-task learning-based methods.

Polygon-based methods regard the segmentation task as
the coordinate regression of boundary points and then connect
these points into polygons as the segmentation result [26],
[27], [28]. For example, Tam et al. first used a regression
network to get the coordinates of 50 boundary points and
then adopted a manifold regularization to constrain the
spatial correlation between boundary points [29]. Meng et al.
proposed CABNet to represent the boundaries of objects
with vertices and then explicitly predicted the coordinates of
these vertices, which achieved good performance in optic disc
(OD) and optic cup (OC) segmentation tasks [28]. Similarly,
Xie et al. proposed a PolarMask that first represented
segmentation polygons in the polar coordinate system and
then used a CNN to predict the length of a ray at each
angle [30].
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Multi-task learning-based methods usually pay attention
to the dependency of segmented regions and boundaries,
implicitly or explicitly [31], [32]. For example, Zhang et al.
proposed a network for OD and OC segmentation that used
an edge guide mechanism to emphasize and highlight the
segmentation boundaries [33]. Zhang et al. and Fan et al.
proposed a similar idea of boundary attention, where object
boundaries were implicitly extracted from region predictions
through a foreground elimination mechanism [31], [32].
Meng et al. proposed cross-domain graph reasoning with
regional nodes and boundary nodes to improve the interactive
aggregation ability of regional features and boundary fea-
tures [34]. Typically, these methods regard segmentation as a
multi-task learning problem by extracting features of regions
and boundaries using a shared backbone network.

Boundary-based segmentation methods have also been
used in retinal layer segmentation tasks. While retinal
layer segmentation predictions often have discontinuous
boundaries, two kinds of methods have been proposed to
address this problem. The first one usually adopted post-
processing strategies such as graph search and level sets
to optimize the segmentation results to generate continuous
boundaries [35], [36]. For example, Kugelman et al. first
trained an RNN-based network and then optimized the
boundaries using a graph search algorithm [14]. The second
one adopted end-to-end networks to get continuous retinal
layer boundaries. For example, Ngo et al. predicted the retinal
boundary pixels by feeding the image patches augmented
with boundary and location information into a regression
network [2]. He et al. proposed two cascaded U-structured
networks, S-Net and T-Net, in which S-Net classifies each
pixel and T-Net generates consecutive layers with the correct
layer order based on detected retinal layer boundaries [37].
He et al. designed a multi-task architecture to do region
segmentation and boundary delineation together [17].
Although post-processing algorithms such as graph search

can optimize the boundaries of the segmentation results to
obtain continuous boundaries, manual parameters need to be
set, and the algorithm takes a long time. Multi-task networks
can assist segmentation by adding boundary tasks, but their
boundary modeling fails to adequately represent boundary
information, and the relationships betweenmulti-tasks are not
fully exploited.

III. METHOD
Fig. 2 shows the overall multi-task architecture of our
proposed method, which includes three tasks: one main
segmentation task, and two boundary regression tasks.
Different from the widely used boundary representation
methods, we design a pair of boundary representation
methods based on the spatial context between adjacent layers,
and there is a strong correlation between them, namely,
the sum of two values under two representation methods is
always 1 for each pixel. Based on this, we design a com-
plementation loss between the predictions of two boundary
representations to enhance the boundary learning ability.

Moreover, to improve mutual supervision between the seg-
mentation task and boundary tasks, we design a consistency
loss. In our implementation, the image pixels will be
classified into 13 classes, including 11 retinal layers, fluid,
and background. Identifying an abnormality in a specific
layer of the retina can greatly assist clinicians in refining
their differential diagnosis when interpreting OCT scans,
which emphasizes the importance of being able to identify
and distinguish the 11 retinal layers. For instance, exudates
and drusen may appear similar with an ophthalmoscope or
in fundus photos. However, they can be easily differentiated
based on their location within the retinal layers. Exudates
are typically found in or adjacent to the outer plexiform
layer, as they are lipid residues originating from damaged
capillaries in the inner retina. On the other hand, drusen
are deposits located between the retinal pigment epithelium
(RPE) and Bruch’s membrane due to the malfunctioning of
RPE. Next, we will give details about our network.

A. MULTI-TASK ARCHITECTURE
Fig. 3 shows the detailed architecture of our proposed
method. Since any FCN can be the backbone of our method,
we adopt a U-shaped architecture in our implementation
due to its excellent performance in the field of medical
image segmentation. Specifically, we deepened the original
Unet by adding one encoder block and one decoder block
to increase its receptive field. Each encoder block includes
two convolution layers and a max pooling layer, while
each decoder block includes one up-sampling layer and two
convolution layers.

The initial shared blocks consist of five encoder blocks and
two decoder blocks; the independent blocks for respective
tasks consist of three decoder blocks. This shared structure
has the advantage of reducing the parameters and compu-
tational effort of the network and improving the feature
extraction capability of the encoder blocks.

The predictions of the conventional segmentation task
are generated by the last learned feature maps through a
1 × 1 convolution layer and a Softmax function. The
predictions of each boundary regression task are generated
by the last feature map through a 1 × 1 convolution layer
and a Sigmoid activation function. Based on our innovative
definition, two boundary regression predictions can generate
segmentation results by adding operations.

B. DUAL BOUNDARY REPRESENTATION
In our retinal segmentation task, we segment a retinal OCT
image into 11 layers, fluid, and background. Uncertain lesion
regions pose significant challenges for achieving accurate
segmentation.

Many methods attempt to improve the segmentation
performance with the help of boundary representation, which
enhances the feature learning on the boundary by encoding
the boundary. But most of them are based on simple
pixel distance context to implement boundary coding [38],

VOLUME 11, 2023 125349



C. Yang et al.: Multi-Task Dual Boundary Aware Network for Retinal Layer Segmentation

FIGURE 3. The detailed illustration of our proposed method.

[39], [40], which makes it hard to capture the hierarchical
relationship between adjacent layers of retinal in OCT
images. For example, the background is always above the
first retinal layer. Based on this finding, we designed a dual
boundary representation to highlight the indistinguishable
boundary, which is defined based on the nearest distance
between the pixel and its adjacent layer boundary from both
the upper and lower directions. A visualization example of
our dual boundary representation is shown in Fig. 4.
Our dual boundary representation consists of an upper

boundary representation and a lower boundary representa-
tion. Before giving their definitions, we first define BRdisupper
and BRdislower as:

BRcupper (x) =

 inf
y∈Bcupper

∥x − y∥, GT c(x) = 1

0, otherwise
(1)

BRdisupper = cat(BR1upper ,BR
2
upper , . . . ,BR

C−1
upper ) (2)

BRclower (x) =

 inf
y∈Bclower

∥x − y∥, GT c(x) = 1

0. otherwise
(3)

BRdislower = cat(BR1lower ,BR
2
lower , . . . ,BR

C−1
lower ). (4)

where GT uses One-hot encoding and GT c(x) refer to the
x-th pixel in the c-th channel of segmentation mask. Bcupper
and Bclower refer to the upper boundary and lower boundary

of the c-th retinal layer, respectively. ∥x − y∥ refers to the
Euclidean distance between x and y. The function inf refers
to the minimum value taken from the set, which serves
to obtain the shortest distance from the pixel to the upper
or lower boundary of the layer to which it belongs. The
function cat refers to combining many single-channel data
into multi-channel data. Based on BRdisupper and BR

dis
lower , our

dual boundary representation is defined as:

BRupper =
BRdisupper

BRdisupper + BRdislower
. (5)

BRlower =
BRdislower

BRdisupper + BRdislower
. (6)

As can be seen from Eq. (5) and (6), the values of BRupper
and BRlower all fall in the range of 0 to 1, which can improve
the robustness of the representation. The upper boundary
representation and the lower boundary representation can
be derived from each other, which further enhances the
representation capability. Moreover, the added results of
these two boundary representations can be converted to
segmentation results, which facilitates mutual assistance
with the segmentation predictions. Please note that our dual
boundary representation applies to 11 retinal layers and fluid,
excluding the background, so BRupper and BRlower have
C − 1 channels.
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FIGURE 4. Example of our dual boundary representation. (a) is an OCT
image with lesion, and (b) is its corresponding segmentation mask.
(c) and (d) are its corresponding upper and lower boundary
representations, respectively.

C. LOSS FUNCTION
There are four types of loss functions in our proposed net-
work, namely, segmentation loss for the segmentation task,
boundary loss for the boundary regression task, boundary
complementation loss for mutual constraint between two
boundary representations, and multi-task consistency loss for
mutual constraint between the boundary regression task and
the segmentation task.

1) SEGMENTATION LOSS
Instead of using conventional cross-entropy loss, we adopt
Dice loss to supervise the segmentation prediction while
it can better deal with the class imbalance problem and
has better segmentation ability for smaller targets [41]. The
detailed definition of Dice loss is as follows:

Lsegmentation = 1 −
1
C

C−1∑
c=0

2PcGT c + τ

Pc + GT c + τ
. (7)

whereGT c refers to the c-th channel of the ground-truth label
mask, and Pc refers to the c-th channel of the segmentation
predicted mask. C = 13 refers to the number of channels,
which corresponds to the number of classes. τ is a constant
close to zero that is used to prevent calculation exceptions.

2) BOUNDARY LOSS
There are two items in our boundary loss while we have
two boundary regression tasks, one for the upper boundary
representation prediction and the other for the lower boundary
representation prediction. Here, we adopt mean square error
as the optimization objective, and the boundary loss is
defined as:

Lupper =
1

C − 1

C−1∑
c=1

||PBcupper − BRcupper ||
2, (8)

Llower =
1

C − 1

C−1∑
c=1

||PBclower − BRclower ||
2, (9)

Lboundary = Lupper + Llower . (10)

FIGURE 5. Examples of the effects of lesions on retinal structure.

where PBcupper and PBclower are the c-th channel of upper
and lower boundary representation prediction results and
BRcupper and BR

c
lower are the c-th channel of upper and lower

boundary representation labels, respectively. Here c starts
from 1 instead of 0, which means that the calculation of the
background is not performed.

3) BOUNDARY COMPLEMENTATION LOSS
In terms of Eq. (5) and (6), we can find that for each pixel,
the adding value of the upper boundary representation and
the lower boundary representation is always equal to 1,
which is the innovation characteristic of our definition.
To better capture the boundary, we propose a boundary
complementation loss to enhance the learning capability for
a boundary as follows:

Lcomplementation =
1

|PBadd |

C−1∑
c=1

∑
x∈PBcadd

d(PBcadd (x)), (11)

in which

PBadd = PBupper + PBlower , (12)

d(PBcadd (x)) = ∥PBcadd (x) − 1∥2, x ∈ {x | GT c(x) = 1}.

(13)

where PBupper and PBlower are the upper and lower boundary
representation predictions, respectively, and PBadd is the
result of adding dual boundary representation. PBcadd (x)
represents the x-th pixel in the c-th channel of PBadd ,
d(PBcadd (x)) is the square of the L2 norm of error between
PBcadd (x) and 1, and |PBadd | refers to the number of pixels
in PBadd .

4) MULTI-TASK CONSISTENCY LOSS
There is a strong consistency between our boundary represen-
tation and the segmentation, while the added results of two
boundary predictions can be converted to the segmentation
results. So we designed a multi-task consistency loss to
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improve the mutual supervision between the boundary
regression and the segmentation task. The definition is:

Lconsistency =
1

C − 1

C−1∑
c=1

||PBcadd − Pc||2. (14)

Lconsistency calculates the consistency difference between the
predicted dual boundary representation and the predicted
conventional segmentation.

5) TOTAL LOSS
When training our network, our total loss is a combination of
the four losses mentioned above:

Ptotal =w1Lsegmentation + w2Lboundary
+ w3Lcomplementation + w4Lconsistency. (15)

where w1, w2, w3, and w4 are loss weights to balance
the importance of different losses. We set w1 = 10 and
w2 = w3 = w4 = 1 in our implementation based on the
empirical results.

IV. EXPERIMENTS
A. DATASET
We verified our method on an OCT image dataset collected
from the Second Affiliated Hospital of Zhejiang University,
and the retinal layer annotation was done by clinicians
with the help of our developed annotation tool. The dataset
contains healthy OCT images and also OCT images with
ocular diseases, including Central Serous Chorioretinopathy
(CSC), Diabetic Macular Edema (DME), and Drusen.
As shown in Fig. 5, CSC causes one large fluid in the retina,
DME causes multiple small fluids in the retina, and Drusen
causes a change in the shape of retinal layers. Specifically,
950 OCT images without any diseases, 100 OCT images with
CSC, 50 OCT images with DME, and 100 OCT images with
Drusen were collected. And images with different diseases
make the dataset more challenging.

These images have different resolutions, mainly 425 ×

927, 496 × 769, and 496 × 528. The retina is divided into
11 layers, which are the Nerve Fiber Layer (NFL), Ganglion
Cell Layer (GCL), Inner Plexiform Layer (IPL), Inner
Nuclear Layer (INL), Outer Plexiform Layer (OPL), Outer
Nuclear Layer (ONL), External Limiting Membrane (ELM),
Myoid Zone (MZ), Ellipsoid Zone (EZ), Interdigitation Zone
(IZ), and Retinal Pigment Epithelium (RPE). In some OCT
images with diseases such as CSC and DME, there will be
fluid in the retina, and we have also marked the fluid to assist
in the diagnosis of the disease.

B. EXPERIMENTAL SETTING AND EVALUATION METRICS
To remove interference such as the optic nerve, we center
cropped these images and unified them into 411×451 accord-
ing to the minimum size of these images, so the input size of
the network is 411× 451× 3. The whole dataset was divided
into the training set, the validation set, and the test set in the
ratio of 7:1:2 in terms of each type of image. We used the

RMSProp optimization algorithmwith 1e−8 weight decay of
0.9 momentum to update the network weights and a learning
rate scheduler with a decay of 0.5 every 10 steps. Batch size
was set to 8, and the maximum number of training epochs
was 50. We normalized the pixel values of the input image
between 0 and 1 by dividing them by 255.

To better evaluate the layer segmentation performance,
we adopt the Dice coefficient and Boundary Intersection-
over-Union (BIoU) [42] for evaluation. The dice coefficient
is used to evaluate the performance of region segmentation,
and BIoU is used to measure the boundary accuracy. The
definitions are as follows:

Dice =
2|P

⋂
GT |

|P| + |GT |
, (16)

BIoU =
|(Pb

⋂
B)

⋂
(P

⋂
GT )|

|(Pb
⋂
B)

⋃
(P

⋂
GT )|

. (17)

where GT refers to the ground-truth label mask, and P
refers to the segmentation predicted result. B and Pb are
the boundaries of GT and P obtained through pixel-by-pixel
boundary judgment operations, respectively.

⋂
represents the

intersection of two sets,
⋃

represents the union of two sets,
and + represents the sum of the number of pixels in the
two sets.

C. COMPARISON WITH SOTA METHODS
To better evaluate the performance of our model in the retinal
layering task, we compared our method with some SOTA
image segmentation methods, including Unet [43], Relaynet
[12], Deeplabv3+ [44], HarDNet-MSEG [45], BASNet [46],
CTS-Net [24], Swin-Unet [18], DuAT [47], MultiResUnet
[48], and TransSegNet [49]. Unet and Relaynet are traditional
U-structured networks that use skip connections to merge
detailed features and high-dimensional features. Deeplabv3+
uses dilated convolution and spatial pyramid pooling to
increase the perceptual domain, while HarDNet-MSEG
achieved SOTA in both accuracy and inference speed on
five medical datasets. BASNet uses two cascaded U-structure
segmentation networks, where the first network uses a deep
supervision strategy to generate preliminary segmentation
results, and the second network optimizes the segmentation
results to obtain refined results. CTS-Net and Swin-Unet
applied CSwin Transformer and Swin Transformer [50],
respectively, as the basic architecture of the encoder and
decoder in the model. DuAT applied the Pyramid Trans-
former [51] module combined with global-to-local spatial
aggregation and a selective boundary aggregation block
to generate fine-grained segmentation results. TransSegNet
combined Unet and Vision Transformer to take advantage
of the complementary benefits of CNN-based network and
Transformer-based network. MultiResUnet improves on the
architecture of Unet, enabling the network to learn image
features of different scales and solving the semantic gap
between the corresponding levels of encoder and decoder. For
a fair comparison, we use the same training strategy for all
methods.
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TABLE 1. Comparison results in terms of Dice coefficient. The red fonts indicate the best results among all methods.

TABLE 2. Comparison results in terms of BIoU. The red fonts indicate the best results among all methods.

We calculated the Dice coefficient and BIoU for each class
as well as the average results of all classes. Quantitative
results of our method and other comparison methods are
reported in Table 1 and Table 2. Among the 11 layers and
fluid of the retina, our method achieved the top results
in 7 layers (NFL, OPL, ONL, ELM, MZ, EZ, RPE) and

the second highest results in 2 layers (INL, IZ) in terms
of Dice coefficient; the average value was 5.965% higher
than the best results of all compared methods. Our method
achieved the top results in all layers in terms of BIoU,
whose average value was 10.833% higher than the best results
of all compared methods. BIoU represents the accuracy of
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FIGURE 6. Segmentation results of all methods on one image without lesion. The area circled by the white box means segmentation errors occur
compared to our model.

the boundaries in the segmentation results, and the best
average BIoU value of our method indicates that our method
can obtain more accurate boundaries. Also, we performed
a qualitative analysis to visually compare the segmentation
results of one OCT image without a lesion and one with a
lesion, as shown in Fig. 6 and Fig. 7. Other methods suffered
segmentation errors in the white boxes compared to ours,
which can better deal with the case when noise or interference
occurs than other methods. From the experimental results,
we can conclude that our model achieves satisfactory
results in the segmentation of narrower layers and interlayer
boundaries in the retina compared to other current methods,
including the Transformer-based networks, demonstrating
the effectiveness of our proposed dual boundary constraint
loss functions.

D. ABLATION STUDY
In our method, there are several improvements over the
backbone, including upper boundary representation, lower
boundary representation, boundary complementary loss, and

TABLE 3. Ablation studies in terms of Dice coefficient.

multi-task consistency loss. To demonstrate their effective-
ness, we have implemented several networks to perform
ablation experiments by gradually adding the corresponding
modules from the backbone, namely, the original backbone,
the backbone with the upper boundary representation branch
(backbone+upper), the backbone with the lower boundary

125354 VOLUME 11, 2023



C. Yang et al.: Multi-Task Dual Boundary Aware Network for Retinal Layer Segmentation

FIGURE 7. Segmentation results of all methods on one image with a lesion. The area circled by the white box means segmentation errors occur
compared to our model.

TABLE 4. Ablation studies in terms of BIoU.

representation branch (backbone+lower), the backbone with
both the upper and lower boundary representation branches
and also the boundary complementary loss (backbone+dual),
and the backbone with both the upper and lower boundary
representation branches, the boundary complementary loss,
and the multi-task consistency loss (ours).

The quantitative results of the ablation experiments are
reported in Table 3 and Table 4. It can be seen that
the Dice coefficient and BIoU of the backbone were
improved when the upper boundary representation branch
or the lower boundary representation branch was added,
which indicated that the learned boundary-related features
under the supervision of the boundary representation could
enhance the segmentation performance. When the backbone

added both the upper and lower boundary representation
branches, its Dice coefficient and BIoUwere higher than both
backbone+upper and backbone+lower, which demonstrated
the effectiveness of our dual boundary representation. Finally,
our proposed method achieved a higher Dice coefficient
and BIoU than backbone+dual, which demonstrated the
effectiveness of the multi-task consistency loss.

E. SHARE STRUCTURE STUDY
Network weight sharing strategy was used in our method,
which is inspired by [52]. Different sharing structures
determined the number of network parameters and the degree
of sharing between multiple tasks. In order to explore a more
suitable network-sharing structure, we selected five network-
sharing structures, as shown in Fig. 8, for comparison.

The segmentation metrics and network parameters of
different network sharing structures are shown in Table 5.
It can be seen that shared structure 3 has achieved the best
segmentation result. When the degree of sharing is large, it is
difficult for the shared features to satisfy multiple tasks at the
same time. When the degree of sharing is small, the multi-
tasks cannot improve the feature extraction ability. We finally
chose shared structure 3 as our network shared structure.

F. LOSS WEIGHT STUDY
In our experiment, the selection of four loss function
weight hyperparameters is very important and plays a
decisive role in the final experimental result. In this regard,
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TABLE 5. Quantitative segmentation results and parameter quantities for different network sharing structures.

FIGURE 8. Network share structures. From (a) to (e), the degree of
network sharing increases sequentially.

TABLE 6. Comparison results of different loss weights in terms of Dice
coefficient.

we designed a comparison experiment to verify the difference
in segmentation results caused by different weight choices
of loss functions. In practice, we assign the weights of each
loss function to integers from 1 to 10 and then perform
the experiment. The comparison experiment results can be
seen in Table. 6 and Table. 7. Here, we analyze the model’s
performance by separately setting the weights of each loss
function (wi = 1, i = {1, 2, 3, 4}) to 10, while assigning
the weights of the remaining three loss functions as 1. It can
be seen that the model performs best when the segmentation
loss w1 is set to the maximum value of 10 for both the
segmentation effect of a single retinal layer and multiple
retinal layers. From the perspective of experience, the weight
allocation of the loss function should be set higher for the

TABLE 7. Comparison results of different loss weights in terms of BIoU
coefficient.

segmentation loss so that the model can pay more attention
to the segmentation task, while the boundary constraint loss
function is to increase the performance of the model based
on the segmentation task and should not be placed in the first
place. Thus, our loss function weight allocation is reasonable
for tasks primarily based on segmentation.

V. CONCLUSION
In this paper, we propose an advanced boundary-aware multi-
task image segmentation network, DBA-Net, to perform
layer segmentation in retinal OCT images. Different from
conventional methods, our boundary representation is based
on the hierarchical relationship between adjacent layers
and enhances the segmentation task learning through a
consistency constraint between the segmentation task and
the boundary task. Extensive experiments demonstrate that
our method achieves superior performance than other SOTA
methods.
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