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ABSTRACT Brain tumors are one of the leading causes of death in adults. They come in various
shapes and sizes from one patient to another. Sometimes, they infiltrate surrounding normal tissues,
making it challenging to delineate tumor boundaries. Despite extensive research, the prognosis is still low.
Accurate and timely brain tumor segmentation is critical for treatment planning and disease progression
monitoring. Automatic segmentation of brain tumors using deep learning methods has produced high-
quality and reproducible segmentation results. Specifically, the encoder-decoder networks, like the U-
Nets, have dominated the previous BraTS Challenges because of their superior performance. Due to
the importance of high-quality segmentation, most state-of-the-art models focus more on pushing the
boundaries of the current methods at the expense of computational complexity. The computational budget
for practical applications is minimal, requiring technological solutions that balance accuracy and available
computational resources. In this study, we extended the U-Net model in the nnU-Net by replacing the
basic 3D convolution blocks with bottleneck units utilizing depthwise-separable convolutions. Furthermore,
we introduced the shuffle attention mechanism in the skip connections to compensate for the slight loss
in segmentation accuracy due to a reduction in the number of parameters. On the brain tumor dataset
BraTS 2020, our network achieves dice scores of 79.2%, 91.2%, and 84.8% for enhancing tumor (ET),
whole tumor (WT), and tumor core (TC), respectively, with only 2.51M parameters and 55.26G FLOPS.
Extensive experimental results of the BraTS 2020 dataset reviewed that the proposed modifications
achieved competitive performance at a lower computational cost. The code for this project is available at
https://github.com/tmagadza/EfficientNNUNET.git.

INDEX TERMS Brain tumor segmentation, depthwise-separable convolutions, group convolution, shuffle
attention, U-Net.

I. INTRODUCTION
A brain tumor is the abnormal growth of cells in any
part of the brain. Their exact causes are not yet known
[1]. However, the risk factors include a family history of
brain tumors, metastases, and exposure to ionizing radiation.
There are about 120 types of tumors, with gliomas being
the most common and one of the leading causes of death
among adults [2]. The World Health Organization broadly
classifies gliomas into low-grade (Grade I and II) and high-
grade (Grade III and IV) tumors. The low-grade tumors
are less aggressive, with a life expectancy that spans many
years. On the other hand, high-grade tumors are much more
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aggressive, with a median survival rate of fewer than two
years, and require immediate treatment [3].

Timely, accurate, and reproducible segmentation of brain
tumors is critical for diagnosis, treatment planning, and
monitoring of disease progression. In clinical practice,
segmentation is done manually by a high-trained radiologist.
This process is tedious and time-consuming and suffers from
intra and inter-rater variability [3], [4]. Consequently, manual
segmentation is only used for qualitative assessment or visual
inspection.

Meanwhile, in recent years, automatic brain tumor seg-
mentation has been slowly becoming a viable solution to
manual segmentation. It requires minimal human involve-
ment if not none at all. However, it also presented its unique
challenges. Brain tumors come in different shapes, sizes, and
locations from one patient to another, limiting the use of prior
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knowledge of the shape and location of anatomic tissues.
The most aggressive tumors often diffuse into surrounding
tissues, making delineating tumor boundaries difficult. Fur-
thermore, segmentation only depends on comparing pixel
intensities between normal brain parts and lesions. Despite
these challenges, automatic brain tumor segmentation is
still a promising solution for quantitatively assessing brain
tumors.

More recently, deep learning methods for automatic
brain tumor segmentation have attracted much attention
among the research community owing to their success
in various computer vision applications. Applying deep
learning techniques to medical image analysis requires
expertise in choosing the appropriate network for the task
at hand and making numerous decisions regarding hyper-
parameters, preprocessing and post-processing techniques,
training schemes, data augmentation, etc. [5]. A slight
mistake in the configuration of these methods will lead to
a significant drop in performance. For example, methods
based on U-Net [6] like structure have been dominating the
BraTS challenge [7]. Still, the performance of these methods
varies significantly, signifying the importance of expected
knowledge for the task at hand [5].
In 2020, Isensee et al. [8] proposed an open-source

self-configuring deep learning framework for biomedical
image segmentation, which they dubbed nnU-Net.1 Their
framework automates the entire segmentation pipeline,
including configuring any medical dataset, preprocessing,
network architecture, training, and post-processing without
human input. nnU-Net has set a new state of the art in
various semantic segmentation challenges [8]. In the context
of Brain Tumor segmentation, Isensee et al. [7] investigated
the suitability of nnU-Net for brain tumor segmentation while
applying BraTS-specific modification, and their method
came first in BraTS 2020 Challange. Again, in BraTS 2021
Challenge, Luu and Park [9] proposed several modifications
to the nnU-Net, including using a larger network, swapping
batch normalization with group normalization, and adopting
axial attention in the decoder. Their method also came
first.

Despite several benefits that nnU-Net brings to medical
image segmentation, it needs more computational costs.
At its core, nnU-Net is an instance of basic U-Net archi-
tecture. It makes use of standard convolution, which is
computationally expensive. By using 3D convolutions, which
have been shown to perform better than 2D counterparts,
the number of parameters increases substantially, making it
practically impossible to train the model reasonably for a
given computational budget.

This work investigated the effects of reducing the nnU-
Net framework’s computational complexity on the model’s
segmentation performance on brain tumor segmentation
tasks.

1https://github.com/MIC-DKFZ/nnUNet

Our main contributions can be summarized as follows:
1) We propose swapping all standard convolutions with

depthwise separate convolutions to reduce the number
of network parameters and improve the efficiency of
the network.

2) We introduce bottleneck units to reduce the number of
parameters further.

3) We adopt the 3D shuffle attention mechanism in skip
connections to improve the segmentation performance
of the network. Moreover, we introduced residual
connections to avoid network degradation.

4) We extensively evaluate the proposed modifications
using BraTS 2020 dataset.

The rest of the paper is organized as follows: Section II
reviews related work. Section III describes the dataset used
and the proposed modifications to the nnU-Net framework.
Section IV presents the experimental results, which are dis-
cussed in Section V. Lastly, Section VI provides concluding
remarks.

II. RELATED WORK
A. U-NET LIKE ARCHITECTURE
Since the introduction U-Net [6] in 2015, the encoder-
decoder-like structure became the de-facto standard for
biomedical segmentation. The U-Net architecture uses an
encoder pathway to extract rich semantic and global infor-
mation by successively reducing the spatial resolution by
half and doubling the number of feature maps. The decoder
gradually doubles the spatial resolution to recover the spatial
resolution while reducing the feature maps by half. Skip
connections combine the encoder’s finer features and the
decoder’s course features. Dong et al. [10] proposed a 2D
U-Net that was optimized using soft dice loss to mitigate
the unbalanced nature of the BraTS 2015 dataset. Their
methods applied extensive data augmentation techniques to
improve segmentation performance. Myronenko [11], the
winner of BraTS 2018, proposed an encoder-decoder network
with an asymmetrically larger encoder to extract more deep
features. Their method uses a variational autoencoder branch
to regularize the shared encoder. The author observed that
increasing the width of the network improved performance.
Their approach is computationally expensive due to standard
convolutions and large input patch sizes. Insensee et al.
[12] developed a U-Net Like 3D architecture, which was
trained using large patch size, dice loss, and extensive
data augmentation. Deep supervision was used to improve
gradient propagation to lower layers further. Li et al. [13]
proposed an up-skip connection between the encoder and
decoder to improve the information flow. Their network
incorporated an inception module and used cascading train-
ing strategy to segment tumor regions sequentially. Zhao,
Y. et al. [14] investigated the usefulness of various schemes
in data processing, model designing, and optimization as
applied to general DCNN design and training for the 3d brain
tumor segmentation. Their method won second place in the
BraTS 19 Challenge.
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B. REGION-BASED TRAINING
Wang et al. [15] developed a method that exploits brain
tumors’ hierarchical nature by segmenting partially overlap-
ping regions one after the other in a cascading fashion. Their
method uses anisotropic convolution to balance between
accuracy and model complexity. Multi-scale feature fusion
was exploited for robust segmentation. The shallow layers
learn to represent local and low-level features while deep
layers learn to represent more global and high-level features.
Their method was not end-to-end. Each network was
trained separately, increasing the time required for both
training and testing [16]. Wang et al. [17] extended their
previous work [15] to incorporate uncertainty estimation
gathered from test time augmentation. The paper showed
that uncertainty estimation could identify false positives
and improve segmentation performance. Unfortunately, their
method required a longer time to train. In [18], Zhoul et al.
adopted the multi-task learning approach instead of training
three networks separately, combining the three tasks in a
single model. The paper adopted the curriculum learning
scheme, gradually introducing each task as the learning
proceeded.

C. LIGHT-WEIGHT NETWORKS
Chen et al. [16] used anisotropic convolutions to split the
standard 3D convolution into three parallel branches, each
extracting features from different orthogonal views. The use
of separable convolution has the benefit of reducing the
number of parameters. Their model replaces all the standard
convolution operations in the U-Net structure with separable
convolutions. Chen et al. [19] exploited group convolution to
reduce model complexity. Each group is split into two three
branches using weighted 3D dilated convolution for multi-
scale learning. A multiplexer unit facilitates information
sharing between each group or fiber. Zhou et al. [20] utilized
the shufflenetV2 units in the encoder to reduce the number
of parameters, while in the decoder, residual units are used
to address network degradation. Luo, Z et al. [21] proposed
hierarchical decoupled convolution to reduce the number
of parameters in an encoder-decoder structure. Peng et al.
[22] proposed a U-Net variant that utilizes weighted dilated
convolutions to learn multi-scale features. The authors used
group convolutions to reduce the number of parameters in
the network. Furthermore, the authors used dense residual
blocks to improve segmentation performance. In [23], the
authors used a 3D inverted residual module to reduce the
computational complexity of 3D models. Their methods
achieved competitive results on BraTS 2018 while using few
computational resources. Zhang et al. [24] exploited shuffle
units and depthwise separable convolutions to reduce the
number of network parameters and operations.

D. ATTENTION MECHANISM
Noori et al. [25] proposed a 2d encoder-decoder networks
structure that utilizes residual units to improve network

training and apply channel attention after concatenating
low-level and high-level features. The authors argue that
it is improper to concatenate features from low-level and
high-level features without weighing them. Empirical results
demonstrate the effectiveness of channel attention in improv-
ing segmentation performance. Zhang et al. [26] proposed
a 2d encoder-decoder network structure that incorporates
residual units and attention gates in the skip connection.
Experiment results showed the effectiveness of attention
gates in improving network performance. Cao et al. [27]
proposed a UNet-like network structure that utilizes 3D
Shuffle Attention in the encoder and skip connections. The
authors adopted an optimized shuffle unit as a basic building
block. The authors did not report on the complexity analysis
of their method.

III. MATERIALS AND METHODS
A. DATA
We used the BraTS 2020 dataset [3], [28], [29] that contains
369 training and 125 validation subjects for training and
validation of our model. As illustrated in Figure 1, all
subjects have native (T1), post-contrast T1-weighted (T1Gd),
T2-weighted (T2), and T2 Fluid Attenuated Inversion
Recovery (T2-FLAIR) volumes that were acquired using
varying clinical protocols and scanners from nineteen (19)
institutions. The training set was also comprised of manually
annotated ground truth by one to four raters applying the same
annotation protocol, and experienced radiologists approved
their annotations. In contrast, the ground truth for the
validation set was not made public. Instead, the researchers
can use the online evaluation platform2 to evaluate models.
All scans were co-registered to the same anatomical template,
interpolated to the same resolution (1mm3), skull-stripped,
and had an original image size of 240 × 240 × 155. We also
used the BraTS 2021 dataset [3], [29], [30] which includes
1251 training cases and 219 validaton cases. The structure
and format of BraTS 2021 is consistent with the BraTS
2020 dataset.

B. NNU-NET BASELINE
Our baseline model was an instantiation of nnU-Net [7],
a winning model for BraTS 2020. The model follows an
encoder-decoder structure with skip connections linking
the two pathways, as presented in Figure 2. As a 3D
U-Net [31], the model takes in a large input patch of
128 × 128 × 128, with four 3D MRI image modalities
concatenated in the channel dimension. The network com-
prises five (5) resolution levels. In the encoding pathway,
each level reduces the spatial resolution by half using strided
convolution and doubles the feature maps starting from
base feature maps of 32 up to a maximum of 320. Two
consecutive convolution blocks were applied in each layer,
each performing 3× 3× 3 convolution followed by instance
normalization [32] and then Leaky Relu non-linearity. In the

2https://ipp.cbica.upenn.edu/

126388 VOLUME 11, 2023



T. Magadza, S. Viriri: Efficient nnU-Net for Brain Tumor Segmentation

FIGURE 1. Examples of different MRI imaging modalities. From left to right: T1, T1ce, T2, and FLAIR.

decoding path, each layer gradually reduces the number of
feature maps by half while doubling the spatial resolution
with transpose convolutions. Convolution blocks in the
decoding path follow the same structure as the encoding
path. 1 × 1 × 1 convolution followed by sigmoid non-
linearity is performed after the last layer to reduce the number
of feature maps to 3. Deep supervision was also used to
improve network training in all layers along the decoding
path except the two lowest resolutions. To improve the
segmentation performance, we directly optimize the three
partially overlapping regions: whole tumor, tumor core, and
enhancing tumor, instead of providing labels that include:
edema, non-enhancing tumor, and necrosis and enhanc-
ing tumor. Aggressive data augmentation techniques were
applied on the fly using the batchgenerators framework.3

Specifically, we applied rotation, scaling, elastic deformation,
additive brightness augmentation, and gamma augmentation
as described in [7]. The loss function was a summation of
dice and binary cross-entropy losses, which has been shown
to improve segmentation performance [33].

C. NNU-NET MODIFICATIONS
1) REDUCED COMPUTATIONAL COMPLEXITY
A standard convolution operation is computationally expen-
sive since it simultaneously performs spatial and channel-
wise correlation in one go. An excessive amount of com-
putation is required when using 3D MRI volumes with
large patch sizes, which were shown to perform well as
compared to 2D counterparts, making it difficult to train
the resulting models. To reduce the number of parameters
as well as computational complexity, we replaced all the
standard convolution operations with depthwise separable
convolutions, which apply 3 × 3 × 3 convolution on each
channel separately followed by 1 × 1 × 1 convolution
to project the output channels from previous operation
to another channel space as illustrated in Figure 3(b).
A depthwise separable convolution can be generalized as a
group convolution with a group size equal to the number of
input channels. We adopted the bottleneck unit as our basic

3https://github.com/MIC-DKFZ/batchgenerators

building block with depthwise separable convolution in the
middle, as shown in Figure 3(c). The module introduced an
addition hyper-parameter, reduction ratio r , to reduce the
number of input channels for the middle layer. We have fixed
the value of r to 4.

2) SHUFFLE ATTENTION MECHANISM
The use of depthwise separable convolutions will signifi-
cantly reduce network parameters, which may slightly reduce
the segmentation accuracy. To compensate for the loss
in performance, we introduced the shuffle attention (SA)
[34] mechanism, which simultaneously applies spatial and
channel attention. The attention will help the network focus
more on all salient features of the task. The network can
learn to capture the pixel-level correlations and channel
dependency by combining spatial and channel attention.
Numerous studies [35], [36], [37], [38] have shown that
attention mechanisms can considerably enhance network
performance.

Given an input feature map I ∈ RC×H×W×D, where
H , W , D, and C are the height, width, depth, and number
of channels of the input feature map, respectively, SA first
divides I into G groups along the channel dimension, i.e.,
I = [I1, · · · , IG], Ik ∈ RC/G×H×W×D. Then each sub group
Ik is further split into two branches, denoted by Ik1, Ik2 ∈

RC/2G×H×W×D. As shown in Figure 4, the first branch is
used to generate the channel attention map by applying
global average pooling (GAP), which generates channel-wise
statistics s ∈ RC/2G×1×1×1, to the input feature map, which
can be calculated by shrinking Ik1 through spatial dimension
H ×W × D:

s = Fgp(Ik1) =
1

H ×W

H∑
i=1

W∑
j=1

D∑
t=1

Ik1(i, j, t) (1)

Furthermore, a linear transformation Fc(·) is perform,
followed by a simple gating mechanism with sigmoid
activation σ to produce the channel attention:

I ′k1 = σ (Fc(s)) · Ik1 = σ (W1s+ b1) · Ik1 (2)

where W1 ∈ RC/2G×1×1×1 and b1 ∈ RC/2G×1×1×1 are
parameters used to scale and shift s.
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FIGURE 2. Baseline model as generated by the nnU-Net framework. (adapted from [7]).

FIGURE 3. Basic building blocks. (a) Standard convolution block. (b) DWConv: Depthwise separable convolution block. (c) Bottlenet unit with
depthwise separable convolution block in the middle.

The second branch generates the spatial attention by firstly
obtaining spatial-wise statistics through Group Norm (GN)
over Ik2 followed by a linear transformation Fc(·). The final
output of spatial attention is given by:

I ′k2 = σ (W2 · GN (Ik2) + b2) · Ik2 (3)

whereW2 and b2 are parameters with shape RC/2G×1×1×1.
Then, a concatenation operation is applied to the two

branches to make the number of channels as the same as the
number of input, i.e., I ′k = [I ′k1, I

′

k2] ∈ RC/2G×H×W×D. All
the sub-groups are then aggregated, followed by the ‘‘channel
shuffle’’ operation to enable information communication
between different sub-groups. The final output of the SA
module is the same size as I .

D. TRAINING
Our model was implemented in Pytorch4 using opensource
framework for biomedical segmentation5 [8]. Each network

4https://pytorch.org/
5https://github.com/MIC-DKFZ/nnUNet

takes an input patch of 128 × 128 × 128, with four
3D MRI image modalities concatenated in the channel
dimension. We normalize each input channel independently
by subtracting the mean and dividing it by the standard
deviation. Data augmentation, which comprised random
rotation and scaling, elastic deformation, additive brightness
augmentation, and gamma scaling, was applied on the fly.
The loss function was a summation of batched dice and cross-
entropy loss. We optimize all the networks with stochastic
gradient descent with an initial learning rate of 0.01 and
Nesterov momentum of 0.99. The learning rate was decayed
with a polynomial schedule:

lr = 0.01 × (1 −
epoch
400

)0.9 (4)

Each network was trained for a total of 400 epochs, with
each epoch defined as 250 iterations, on an NVIDIA Tesla
V100 16GB GPU. During inference, we post-processed each
subject by replacing the enhancing tumor with the tumor core
when the predicted volume was less than some threshold. The
configuration of our models was as follows:
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FIGURE 4. The 3D Shuffle Attention Module. The input feature map is first divided into sub-groups along the channel dimension. Then, each
sub-group is further divided into two branches, the channel, and spatial attention branches. A concatenation operation is used to join features
from the two branches. Afterward, all sub-groups are aggregated, followed by a channel shuffle operation to enable information communication
between different sub-groups. (adapted from [34]).

• BL: baseline nnUnet-Net without modifications (see
Section III-B).

• BL + DS: replaced all standard convolution with
depthwise separable convolutions

• BL + BU: baseline with bottleneck unit as a basic
building block

• BL +DS+ BU: baseline with bottleneck unit with
depthwise separable convolution in the middle as
described in Section III-C1

• BL+DS+BU+ SA: baseline with depthwise separable
convolutions, bottleneck unit, shuffle attention in both
the encoder and skip connections.

• BL + R: baseline with residua connection
• BL +DS+ R / BL +DS+ R*: baseline with depth-
wise separable convolutions and residual connection. *
indicates that the ReLu is applied after the addition of
residual units.

• BL+DS+R*+AA: baseline with depthwise separable
convolutions, residual connection, and shuffle attention
skip connections.

IV. RESULTS
A. PERFORMANCE COMPARISON OF THE PROPOSED
METHOD
Due to a 12-hour limitation on CHPC,6 we trained all
model configurations for a maximum of 400 epochs. Each
configuration was trained with all 369 training cases and
evaluated with the 125 validation cases. The validation results
of each configuration, as computed by the online evaluation
platform, are presented in Table 1. The results show that the
baseline configuration (BL) performance for both the dice
score and Hausdauf distance is relatively high. Introducing
the bottleneck unit (BU) to the baseline showed a decrease in
dice score for enhancing tumor and tumor core by 1.9% and
0.4%, respectively. From the results, we can also see a slight
increase in Hausdorff distance in enhancing tumor, whole
tumor, and tumor core by 9.80 mm, 0.12 mm, and 0.74 mm,
respectively.

6https://www.chpc.ac.za/

On the other hand, replacing all the convolution blocks in
the baseline with the depthwise separable convolutions (DS)
produced similar if not better, results. For Example, the dice
score in the tumor core improved by 0.5% while remaining
the same for the whole tumor and marginally decreased by
0.4% in enhancing the tumor. As for the Haursdoff distance,
the results in Table 1 show an increase of 5.80 mm in
enhancing tumor and an improvement of 2.14 mm in the
tumor core. The BL + DS + BU model achieved slightly
less performance as compared to the BL + DS model. At the
same time, the BL + DS + BU + SA model shows a slight
improvement in performance in dice score and the Haursdoff
distance for enhancing tumor compared to the BL + DS +

BU model.
Residual units can help reduce degradation in deep

networks like U-Net structure [39]. From Table 1, we did
not observe any benefits of residual connections with ReLu
before addition (BL + R and BL + DS + R) except
for Hausdourff distance, where we observed a decrease of
2.80 mm in the whole tumor and an increase of 3.00 mm
in the tumor core. Interestingly, applying ReLu after the
addition further decreases the performance. Introducing
Shuffle Attention to the skip connection of BL + DS + R*
substantially improved performance in the Hausdorff
distance of the tumor core.

B. MODEL COMPLEXITY
Table 1 also reports on the complexity of the different
model configurations in terms of floating-point operations
(FLOPS) and a number of parameters (Params) as computed
by the THOP7 python library. The table shows that the
BL + DS model balanced model complexity and seg-
mentation performance well. Specifically, it achieved 82%
and 90% reduction in floating-point operations and several
parameters, respectively, without affecting the segmentation
performance. A combination of depthwise separable con-
volutions and bottleneck units (BL + DS + BU) further
reduced the model complexity at a slight reduction in
segmentation performance. The results show that the Shuffle

7https://github.com/Lyken17/pytorch-OpCounter
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TABLE 1. Performance comparison on the BraTS 2020 validation set (125 cases). Metrics are computed by the online evaluation platform. See
Section III-D for decoding the abbreviations. ET - Enhancing tumor, WT - Whole tumor, TC - Tumor core.

Attention barely increases the computation cost. Because
of strided convolutions for downsampling and upsampling,
introducing residual units resulted in a slight increase in
floating point operation due to the 1 × 1 × 1 convo-
lution to match the dimensions in both branches before
addition.

C. PERFORMANCE COMPARISON WITH THE
STATE-OF-THE-ART
1) PERFORMANCE COMPARISON WITH THE
STATE-OF-THE-ART METHODS WITHOUT MODEL ENSEMBLE
For a fair comparison, Table 2 list the results without a
model ensemble of the top performances in the BraTS
2020 validation dataset except for the result for Isensee et al.
[7], since they did not present the results for a single model.
Yuan [40] and Wang et al. [41] are the top participants
of the BraTS 2020 challenge, and only results without
model ensemble are listed here. We also included single
model results of our previous work [42], Raza et al. [43],
and Daza et al. [44]. From the results, it is evident that
our proposed method achieves superior performance with
minimum computation complexity.

Y. Yuan [40] won third place in the BraTS 2020 challenge
by aggregating the output feature maps from all the encoding
layers with high-level feature maps of each decoding layer
using skip connections. Yuan’s method achieves superior
performance against state-the-art in Hausdorff distance for
enhancing tour. However, our lightweight method outper-
forms Yuan’s method in the other metrics.

Wang et al. [41] won second place in the BraTS
2020 challenge. Their methods utilize two interconnected
pathways, which take a pair of modalities each. From the
results, it is clear that our method demonstrated superior
performance in all metrics.

In our previous work [42], we partially utilized depthwise
separable convolutions in both the encoder and the decoder.
Although our previous work shows competitive performance,
it has many floating point operations. In contrast, our
proposed work is superior in all metrics.

On the other hand, Raza et al. [43] adopted resid-
ual units in the encoding pathway resulting in superior

performance in dice score for the enhancing tumor, the
worst performance in dice score for the whole tumor, and
a comparable performance in the remaining metrics. The
computational complexity of their method is relatively high.
Similarly, Daza et al. [44] proposed a lightweight method
with superior performance in the Hausdorff distance for
enhancing tumors. Our approach remains superior in other
metrics.

2) PERFORMANCE COMPARISON WITH THE
STATE-OF-THE-ART METHODS WITH MODEL ENSEMBLE
Table 3 reports on the aggregate performance of the state-
of-the-art methods with the model ensemble on the BraTS
2020 validation dataset. Isensee et al. [7] won the first price,
followed by Jia et al. [45] and Wang et al. [41] for the second
price, and then Yuan [40] for the third place in the BraTS
2020 challenge. We have also included model ensemble
results for Wang et al. [46]. From the table, it is clear that
the state-of-the-art methods achieved the best performance at
the cost of computational complexity.

Isensee et al. [7] applied nnU-Net [8] with BraTS specific
modifications and extensive data augmentation to the brain
tumor segmentation problem. Their winning method, which
is an ensemble of 25 models, uses basic U-Net structures,
with each model trained for 1000 epochs. Results show that
Isensee et al.’s method is superior in dice for enhancing tumor
and Hausdorff distance for the whole tumor as compared
to the state-of-the-art methods. Additionally, their 5 model
ensemble also shows similar performance. However, our
method achieves the same results as Isensee et al.’s method
in dice for the whole tumor and a slight improvement
in Hausdorff distance for the tumor core and comparable
performance for the other metrics while using significantly
fewer computational resources.

Jia et al. [45] proposed a two-stage cascaded model that
maintains high-resolution feature representation and uses
a Non-local attention mechanism to aggregate contextual
information from all layers. Again, their best method was
an ensemble of 27 models, each trained for 450 epochs.
Despite high performance in dice for the whole tumor and
Hausdorff distance for the tumor core, their method is
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TABLE 2. Mean performance metrics on BraTS 2020 Validation dataset as compared to the state-of-the-art without model ensemble. See Section III-D for
decoding the abbreviations. ET - Enhancing tumor, WT - Whole tumor, TC - Tumor core.

still computationally expensive. Compared to our method,
as shown in Table 3, our best single model achieves
comparable results at low computation costs.

Wang et al. [41] and Yuan [40] ensemble 9 models and
11models to secure second and third places receptively. Their
ensemble improved performance in all metrics except for
Wang et al. [41], which marginally increased Hausdorff dis-
tance for the enhancing tumor and tumor core. In comparison,
our model achieved competitive results.

Lastly, Wang et al. [46] introduced Transformer to the
encoder-decoder structure for brain tumor segmentation to
model long-range dependencies. Their 5 model ensemble
achieved superior performance in the Hausdorff distance
for the enhancing tumor with relatively huge computational
costs. In contrast, our lightweight method demonstrated
superior performance in other metrics at significantly low
computation costs.

3) PERFORMANCE COMPARISON ON BRATS 2021 DATASET.
Table 4 compares our best-performing model with the state-
of-the-art models on the BraTS 2021 dataset 5-fold cross-
validation results. By the time of writing this paper, the online
evaluation platform for the BraTS 2021 dataset8 was no
longer available. The table shows that our model performed
well on the enhancing tumor region and performed slightly
poorly on both the whole tumor and tumor core. On the other
hand, our model uses very light resources as compared to the
state-of-the-art.

D. QUALITATIVE ANALYSIS
In Figure 5, we show qualitative overview of the segmentation
performance of BL + DS model on the validation set.
To avoid cherry picking [7], we systematically selected cases
by first computing an average over the three validation
regions and then picked the best, worst, median, and 75th
and 25th percentile. The clearly show that the segmentation
quality of our model is quite high overall. However,
in the worst scenarios, it completely fail to segment small
enhancing tumor lesion.

8https://www.synapse.org/#!Synapse:syn25829067/wiki/610863

V. DISCUSSION
Automatic brain tumor segmentation is paramount for the
timely, reproducible, and accurate delineation of tumor sub-
structures. Although deep learning methods have demon-
strated superior performance than traditional methods in
the past few years, automatic brain tumor segmentation is
still an open challenge. Brain liaisons appear in different
shapes, sizes, and locations from one patient to another,
rendering prior knowledge useless. Moreover, deep learning
methods require massive training datasets and computational
resources [20]. One would need a model with competitive
performance for a limited computational budget for practical
application.

Unfortunately, as shown in Table 3, most state-of-the-art
methods focusmore on improving segmentation performance
at the cost of high computation resources. These methods
are usually an ensemble of multiple models. For Example,
Isensee et al.’s method [7], which won the first prize in the
BraTS 2020 challenge, is an ensemble of 25 models. Each
model needed to be trained separately for 1000 epochs before
their results could be aggregated. Furthermore, their method
is computationally expensive when applied to 3D MRI scans
due to standard convolutions.

Similarly, Jia et al. [45] ensemble 27 models to win
second place in the same challenge. These models chew a
significant amount of computation resources to train them.
With an increase in the training dataset set, as in BraTS
2021, computation resources are needed even more. The
computational requirements may be prohibitive for clinical
applications or out of reach for many researchers resulting in
poor adoption rates.

Motivated by the above observations, we extended
Isensee et al.’s work [7] by introducing depthwise separable
convolutions to reduce the computational costs significantly.
We also experimented with bottleneck units to further reduce
the number of parameters at the expense of a slight loss
in segmentation performance. As shown in Table 1, our
model configuration with depthwise separable convolutions
demonstrated a good balance between computation cost and
segmentation performance compared to other configurations.
The results are consistent with other previous studies [50],
[51], [52]. Although residual units [53] may assist in
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FIGURE 5. Qualitative validation set result. Selection criteria for cases were based on best,worst,
median, and 75th and 25th percentile. From left to right:FLAIR image with overlay of generated
segmentation, FLAIR image, T1ce image, and T2 image. Edema is shown in yellow, necrosis in green
and enhancing tumor in blue.
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TABLE 3. Mean performance metrics on BraTS 2020 Validation dataset as compared to the state-of-the-art with the model ensemble. See Section III-D for
decoding the abbreviations. ET - Enhancing tumor, WT - Whole tumor, TC - Tumor core. † - Ensemble of models trained with 5-fold cross-validation.

TABLE 4. Cross-validation results on BraTS 2021 dataset. ET - Enhancing tumor, WT - Whole tumor, TC - Tumor core.

mitigating network degradation [20], we did not observe any
meaningful benefits. He et al. [54] observed that applying
1 × 1 convolution in residual skip connection will result in
poor performance, especially when the number of residual
units is high. In the future, we will experiment with residual
units in the decoding path as in [20].
The benefits of attention mechanism have been studied

extensively in natural language processing [55], computer
vision [34], [56], [57], [58] as well in medical image
segmentation [23], [27], [59]. In this work, we adopted a
lightweight Shuffle Attention mechanism [34] to squeeze
in extra segmentation performance without introducing
noticeable computational costs. Table 1 shows that the
attention mechanism in the skip connections significantly
improved the Hausdorff distance for the tumor core.

It is evident in Table 2 and Table 3 that our proposed
method is both competitive and efficient regarding com-
putation resources. Table 2 shows that our single model
nearly outperforms state-of-the-art methods without model
ensemble in all metrics. However, as shown in Table 3, the
model ensemble is essential to garner extra segmentation
performance. Nevertheless, our single model achieved com-
parable performance using significantly few computational
resources. Table 4, our model performed slight poor for
both the whole tumor and tumor core regions. However,
performance can be boosted by increasing the number of
training iterations. Visual inspection in Figure 5 demonstrated
that the segmentation quality of our method is high overall.
Sometimes, our method fails to segment small regions of
enhancing tumors. In the future, we will experiment with

an ensemble of lightweight models to improve segmentation
performance.

VI. CONCLUSION
This paper proposed some modifications to the nnU-Net
framework to reduce computational complexity while main-
taining competitive segmentation performance. Specifically,
we replaced all convolution blocks with depthwise separable
convolutions. We adopted the bottleneck units to minimize
the trainable network parameters further. We applied the
Shuffle Attention mechanism to the skip connections to
improve performance without introducing additional com-
putational costs. Moreover, we utilized residual units to
prevent network degradation. Experimental results on BraTS
2020 validate the effectiveness of the proposed method.
Our method achieves competitive results while consuming
significantly few computational resources.
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