
Received 13 September 2023, accepted 29 October 2023, date of publication 6 November 2023,
date of current version 9 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3330431

Fast Planning and Tracking of Complex
Autonomous Parking Maneuvers With Optimal
Control and Pseudo-Neural Networks
EDOARDO PAGOT , MATTIA PICCININI , (Member, IEEE),
ENRICO BERTOLAZZI , AND FRANCESCO BIRAL
Department of Industrial Engineering, University of Trento, 38123 Trento, Italy

Corresponding author: Mattia Piccinini (mattia.piccinini@unitn.it)

ABSTRACT This paper presents a framework to plan and execute autonomous parking maneuvers in
complex parking scenarios. We formulate a minimum-time optimal control problem for trajectory planning,
using an indirect optimal control approach. A novel smooth penalty function is devised for collision
avoidance with optimal control, and an effective technique is adopted to compute an initial solution guess.
The trajectory planning tasks are solved with low computational times, and a dense mesh is used to discretize
the domain of the optimal control problems, resulting in accurate collision-free solutions. The planned
parking maneuvers are tracked with an original pseudo-neural feedforward-feedback steering controller,
which outperforms other techniques from the literature, and a feedback longitudinal controller, to drive
a realistic 14-degree-of-freedom vehicle simulator. We validate the planning and tracking algorithms in
challenging narrow parking scenarios, including reverse, parallel and angle parking, and unstructured
environments. The framework robustness is assessed by changing the vehicle mass, the road adherence
conditions, and by introducing measurement noise with realistic sensor models. A video of the trajectory
planning and tracking results is available as supplementary material.

INDEX TERMS Autonomous parking, optimal control, trajectory optimization, trajectory tracking.

I. INTRODUCTION
Current developments in intelligent vehicle technology
focus on several aspects of autonomous driving, including
autonomous parking and valet parking. Valet parking is the
ability to autonomously cruise for a free parking spot, while
autonomous parking refers more specifically to the execution
of a parking maneuver. This paper focuses on planning and
executing autonomous parking maneuvers.

The expected benefits of autonomous parking and valet
parking are several. There are technical advantages, such as
the ability to move and park in narrower spaces, compared
to human-driven parking. Moreover, an autonomous system
can find the fastest and shortest parking path, and it can
minimize the time to search for a parking spot—which is

The associate editor coordinating the review of this manuscript and

approving it for publication was Wonhee Kim .

anything but a minor matter. In the New York City region
alone, vehicles cruising for a free parking space travel more
than 70,000 miles every day. This equals to a daily emission
of 29 metric tons of CO2 [1]. Hence, autonomous parking
systems can considerably impact greenhouse emissions.
There are also advantages related to passenger comfort: for
example, a passenger can exit the vehicle and let it look for a
parking spot by itself. The vehicle could be parked in narrow
spots where the driver is precluded from opening the doors,
or where drivers with reduced mobility would not be able to
dismount from the vehicle.

An autonomous parking framework usually consists of
three main functional parts: (a) environment mapping and
on-line vehicle state estimation; (b) trajectory planning,
to compute a feasible path and velocity profile; (c) motion
tracking, to execute the planned trajectory. In this work,
we focus on trajectory planning and tracking (points (b)

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

124163

https://orcid.org/0000-0001-9046-1545
https://orcid.org/0000-0003-0457-8777
https://orcid.org/0000-0003-0487-5210
https://orcid.org/0000-0001-8098-7965
https://orcid.org/0000-0001-9893-6381

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

and (c)), but we finally analyze the robustness of our
framework to measurement noise, in a realistic mapping and
state estimation simulation scenario.

The following subsection critically analyses the strengths
and limitations of related literature papers, after which the
main paper contributions are outlined.

A. RELATED WORK
In the field of path and trajectory planning for automated
parking, the main techniques that emerge in the literature [2]
are search-based, sampling-based, and optimal control-
based. The search methods, like the many variants of
A* and Hybrid A* [3], [4], and the sampling RRT*-like
techniques [5], [6] tend to suffer from curse of dimensionality
issues, when the parking spaces are narrow and a fine map
resolution is required [2], [7]. Moreover, the search A*-
like methods are generally used for path planning, and
the computed path may be far from the global optimum.
Conversely, optimal control-based methods can be used for
trajectory planning, i.e., to compute both a path and a velocity
profile. The computed trajectory is at least locally optimal,
according to the chosen objective function, constraints, and
vehicle dynamics model.

In recent years, several authors used optimal control
(OC) to solve trajectory planning problems for autonomous
parking. The authors of [8] used optimal control and direct
collocation to compute minimum-time parking maneuvers
in generic scenarios with multiple obstacles; however, their
computational times were far from real-time. The previous
work was then extended in [9], in which a look-up table
of pre-computed OC solutions was created and provided as
guess for the minimum-time optimal control problem. The
framework was successfully tested on narrow parking spots;
however, only the parallel parking scenario was studied,
and the computational times were in the order of 40-180
seconds, thus far-fetched for a real-time application. In [10],
the authors obtained the parking maneuvers from the solution
of a combined minimum-time and minimum-space optimal
control problem (OCP). The OCP was initialized by means
of standard maneuvers from a look-up table. They tuned
and tested their framework on reverse parking only, and the
computational times were in the order of 100 seconds. In [11],
a multi-stage Hybrid A* was developed to compute a coarse
path in unstructured parking scenarios, and the solution was
refined by solving an optimal control problem in an obstacle-
free corridor. Similarly, [12] used an enhanced Hybrid A*
method to compute an obstacle-free corridor, in which an
OCP was solved for valet parking navigation problems.
The authors of [13] presented an iterative framework for
autonomous parking, based on the direct optimal control
method. They reported promising computational times lower
than 1 second; however, the frameworkwas validated on quite
trivial scenarios, that were closer to a navigation problem
than to a parking one. The authors of [14] developed a
machine learning (ML) framework based on a Monte Carlo

tree search, able to learn optimal parking maneuvers. TheML
algorithm was trained with the solutions of minimum-time
optimal control problems solved with direct collocation,
which were computed offline; the computational time for the
offline solution of the OCPs is not provided by the authors,
and the framework was tested only on parallel parking
scenarios.

Recently, some papers used reinforcement learning [15],
[16] for trajectory planning in autonomous parking. However,
they showed only examples of parallel parking scenarios.

Finally, a remarkable application of optimal control for
autonomous parking is [17], where the authors solved
a minimum-time OCP with a convexification technique,
in order to obtain an exact and smooth formulation of the
original, non-convex OCP. They employed the Hybrid A∗

algorithm [3] to compute solution guesses for the optimal
control problem, obtaining average computational times
lower than 2-3 seconds, and testing their framework on
both reverse and parallel parking scenarios. However, the
parking spots were relatively large, and the resulting parking
maneuvers were quite simple, being always composed of only
two driving segments, the first in the forward direction, and
the second in the rearward direction. Moreover, to reduce the
computational time, the discretization grid of the OCP was
quite coarse: as pointed out by the authors, some collisions
with the obstacles are visible in the plotted OCP solutions,
in the time frame between two consecutive discretization grid
points.

To summarize, the main difficulties that hinder accu-
rate and computationally fast OC trajectory planning for
autonomous parking are typically related to: (1) the need
to use a dense discretization planning grid; (2) the need to
plan complex maneuvers, with many segments in the forward
and rearward direction; (3) the non-convexity of the planning
domain; (4) the presence of many local minima, and hence
the need for a good solution guess.

Regarding the closed-loop motion tracking and execution
of parking or low-speed maneuvers, various low-level
controllers can be found in the literature [18], [19], [20], [21].
For example, in [6] a pure-pursuit steering controller [22]
was used for path tracking, and a PI longitudinal controller
for speed tracking. The authors in [23] used a short-horizon
MPC to track a given parking trajectory. They linearized
a kinematic vehicle model around the reference trajectory,
obtaining a quadratic problem to be solved online. A sliding
mode path tracking controller was used in [24], in com-
bination with a PI speed tracking regulator. Other authors
used prescribed performance function-based controllers for
trajectory tracking with collision avoidance [25], [26]. A
Lyapunov-based feedback controller was presented [27],
for both speed and path tracking. In [28], an integrated
longitudinal-lateral neural network controller for autonomous
parking was developed. However, their approach requires
a very large training dataset, since the neural network
structure is generic, and they show only parallel parking
examples.

124164 VOLUME 11, 2023

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

B. RESEARCH QUESTION
The research question of our paper is the following: Given
a high-fidelity vehicle simulator, develop a framework for
online fast trajectory planning with optimal control and
low-level tracking of complex automated parking maneuvers.
The framework must operate in a variety of real-life parking
scenarios, including narrow parallel, reverse and angle
parking spots, and unstructured environments. The trajectory
tracking algorithms must be sufficiently robust to unknown
variations in the vehicle’s parameters and road adherence,
and to measurement noise.

To the best of our knowledge, no existing literature paper
answers the previous research question in its entirety. More
precisely, the works mentioned in Section I-A are limited by
at least one of the following factors:

1) Real-time optimal control planning and tracking of
accurate parking maneuvers was not performed in
both narrow parallel/reverse/angle parking spots and
unstructured environments. Specifically, the authors
of [17] solved their OCPs with acceptable computa-
tional times, but they used a quite coarse discretization
mesh, which yielded local obstacle collisions in narrow
parking spots. The authors of [11] dealt with generic
parking scenarios, but they solved the OCP in an
obstacle-free corridor, andwithout very narrow parking
spots.

2) Many authors, like [9], [10], [11], and [17], focused
mainly on trajectory planning, but they did not
properly analyze the maneuver execution phase, with
high-fidelity multibody vehicle simulators. Moreover,
they did not consider model mismatches and sensor
noise.

3) Most of the optimal control-based papers used direct
collocation approaches, while indirect optimal con-
trol methods —based on the Pontryagin’s Maximum
Principle (PMP)— are still unexplored in the field of
autonomous parking.

4) Some papers, like [28], used neural network controllers
for motion tracking, but they required very large
training datasets, and they focused on a limited set of
parking scenarios.

C. PAPER CONTRIBUTION AND STRUCTURE
Our paper aims to answer the research question of
Section I-B, through the following contributions:
1) We present a novel autonomous parking framework

that solves minimum-time optimal control problems
(OCPs) by means of an indirect method. Our frame-
work is able to deal with narrow parking spots and
generic unstructured parking scenarios, computing
complexmaneuvers with many forward/reverse driving
segments, in a single optimization. In comparison with
the direct collocation literature methods, we employ an
indirect optimal control method, implemented by our
software tool PINS. Using PINS and an effective OCP
formulation, low computational times are obtained

even with a dense discretization time grid, that yields
accurate solutions near the obstacles.

2) We devise a novel method to deal with collision avoid-
ance in the optimal control problems, using penalty
functions described as smooth three-dimensional func-
tions. Our formulation allows the creation of arbitrary
scenarios, by approximating obstacle shapes using
multiple rectangles of different sizes.

3) A novel scheme is adopted to generate the solution
guess for the OCP, combining a Hybrid A* algorithm
and an optimal control tracking problem.

4) An original pseudo-neural physics-driven steering
controller is devised, which enables an accurate
closed-loop tracking of the optimal control trajectories
on a complex 14-degree-of-freedom vehicle simulator.

5) The parking framework (planning and tracking) is
validated on a wide range of complex and non-
conventional maneuvers, compared to what is available
in the literature. Moreover, we analyze the framework’s
robustness to changes in vehicle parameters and road
adherence, and to localization noise due to sensors.

This paper is organized as follows. Section II presents an
overview of the trajectory planning and control framework,
and of the vehicle simulator to be controlled. Section III
outlines the optimal control problem formulation for trajec-
tory planning, and the warm-start strategy to generate a good
guess for the problem. Section IV deals with the trajectory
tracking controllers, with a special focus on the pseudo-neural
feedforward-feedback steering controller. The main results
are described in Section V: we first analyze the planned and
executed maneuvers in a wide range of challenging parking
scenarios. Then, we evaluate the framework’s robustness to
variations in the vehicle parameters and road adherence, and
to vehicle’s localization errors due to measurement noise.
Finally, in Section VI we outline our conclusions and the
future work.

II. FRAMEWORK OVERVIEW
In this section, we give an overview of the presented
autonomous parking framework. The trajectory planning and
tracking scheme is provided in Fig. 2. The framework plans
and executes parking maneuvers with a custom-designed
vehicle simulator (VS), which accurately reproduces the
dynamics of a sedan car.

A. VEHICLE SIMULATOR
With the target to reproduce the dynamical behavior of a
real sedan car, the VS is implemented as a high-fidelity
14-degree-of-freedommultibodymodel. The PacejkaMF-6.2
formulation [29] is adopted for the tire forces and moments,
and the VS can be used on three-dimensional roads [30].
The vehicle suspensions are modeled with kinematic and
compliance maps. An efficient formulation is obtained for
the VS multibody model through symbolic manipulation,

VOLUME 11, 2023 124165

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

FIGURE 1. Vehicle driving simulator in the Autonomous Driving
Laboratory of the University of Trento (Italy). The simulator uses real-time
hardware to implement the presented VS model.

TABLE 1. Main parameters of the vehicle simulator.

so that the VS supports real-time hardware-in-the-loop (HIL)
simulations.

The VS is integrated into the driving simulator of Fig. 1,
in the Autonomous Driving Laboratory at the University of
Trento (Italy). The VS employed in this paper was also used
in [31], to validate an artificial race driver, with minimum-
time maneuvers. The reader is referred to [32, Sections
V-VI] for further implementation details about the VS. The
VS simulates a front-wheel-drive (FWD) sedan car, with an
electric motor and an open mechanical differential. The main
parameters of the VS are reported in Table 1.

In this work, the internal structure and the parameters of the
VS are assumed to be unknown, so that the VS is used as a
black-boxmodel. Moreover, we will test the robustness of our
autonomous parking framework by varying some parameters
of the VS (vehicle mass and road adherence), without
changing/re-training the models for trajectory planning and
control.

We stress that the use of a high-fidelity VS is pivotal
in the development of autonomous parking systems, as it
effectively reduces testing costs and accelerates the design
iterative process.

B. TRAJECTORY PLANNING AND CONTROL OVERVIEW
Given the desired initial and final vehicle pose, and the
positions of the obstacles, an optimal control problem
(OCP) plans the parking trajectory (path and speed profile).
A feedforward steering controller is implemented with

a novel pseudo-neural physics-driven structure. Such a
pseudo-neural controller computes the steering angle δffk
for the current time step k , using a window of present and
future optimal trajectory curvature values [ρk , . . . , ρk+q].
A feedback steering proportional controller computes a
steering angle δfbk , to compensate the path (x, y) and yaw
angle (θ) tracking errors. The total steering wheel angle is
computed as δDk = δffk + δfbk , and it is an input for the VS.
Finally, a feedback longitudinal PI controller is used to track
the optimal forward speed vx profile, computing the requested
pedal p, with −1 ≤ p ≤ 1 (p < 0 for braking, p > 0 for
throttle).

The optimal control problem is solved only once, before
the maneuver is executed, but we will show that the compu-
tational times are low enough for a real-world application.
During the maneuver execution, the optimal control solution
is extracted and fed to the feedforward and feedback tracking
controllers, which operate in real-time at 1 kHz. The vehicle
simulator is also executed at 1 kHz.

In Section V-D, we will test the planning and control
scheme of Fig. 2 in a realistic localization and state estimation
simulation framework, to evaluate the scheme’s robustness to
measurement errors.

III. TRAJECTORY PLANNING
This section describes the OCP employed for trajectory
planning, the novel penalty function for collision avoidance,
and the original method to generate a guess solution for the
OCP.

A. VEHICLE MODEL FOR OPTIMAL CONTROL
In the optimal control problem formulation, we adopt a
kinematic model of the vehicle motion:

ẋ(t) = vx(t) cos(θ(t)) (1a)

ẏ(t) = vx(t) sin(θ(t)) (1b)

θ̇ (t) = vx(t) tan(δ(t))/L (1c)

v̇x(t) = ax(t) (1d)

τδ δ̇(t) = δdot(t) (1e)

where the notation ẋ indicates the derivative of the quantity
x with respect to time t . Referring to Fig. 3, x and y
are the coordinates of the origin of the vehicle’s moving
frame —centered on the vehicle’s rear axle—, with respect
to the ground frame X-Y. The angle θ is the orientation
of the vehicle’s moving frame, with respect to the ground
frame. vx is the vehicle forward velocity, while δ is the
Ackermann steering angle (at the center of the front axle). The
model states are x = [x, y, θ, vx , δ], while the controls are
u = [ax , δdot], where ax is the vehicle forward acceleration
and δdot is the angular velocity of the steering wheel. The
parameter τδ in (1e) is the transmission ratio of the steering
mechanism. A reasonable limit on δdot is imposed in order to
consider the maximum angular speed reachable by real-world
electric steering wheel actuators. Finally, L is the vehicle
wheelbase.

124166 VOLUME 11, 2023

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

FIGURE 2. Overview of the trajectory planning and tracking framework. The OCP plans the parking trajectory only once, with low computational
times, and the maneuver is then tracked by the feedforward and feedback controllers at a 1 kHz rate. In each control block, we write the paper
section that describes it.

FIGURE 3. Schematic of the ego vehicle: the quantities {x, y } and θ

represent the position and orientation of the vehicle’s moving frame
Xv -Yv (in red), with respect to the ground frame X-Y (in blue). The green
dots are the collision checking points used to evaluate the obstacle
penalties. The vehicle wheelbase is L. Notice that the front and rear
overhangs of the vehicle are considered in the model.

We underline that the steering angle δ computed by the
OCP with the kinematic model (1c,1e) is not directly used
to control the vehicle simulator, whose steering dynamics
is more complex and nonlinear. Section IV-A will present a
feedforward steering controller, which is designed and trained
to learn a more accurate model of the steering dynamics,
to track the trajectory curvature profile returned by the
OCP.

B. OBSTACLE FORMULATION FOR OPTIMAL CONTROL
We introduce a novel penalty function to deal with collision
avoidance in the optimal control problem. The penalty
function enforces the geometry of a given obstacle: referring
to Fig. 4, an obstacle (shown in grey) is defined in terms
of its absolute position [xo, yo], orientation θo, width W o

and length Lo. The arguments of the penalty function are
the obstacle geometry parameters and the coordinates [x̄, ȳ]

FIGURE 4. In the optimal control problem, an obstacle (depicted in grey)
is modeled using its absolute position [xo, yo] and orientation θo, with
respect to the X-Y ground frame, and its width W o and length Lo. The
penalty function P(·) in (2) takes as input the obstacle geometry and one
of the collision checking points [x, y] (green dots), belonging to the ego
vehicle and expressed in the X-Y ground frame. The reference frame s-n is
rotated by the obstacle orientation angle θo, and is used to ease collision
checking with generically oriented obstacles.

of an arbitrary point. As will be explained next, the points
[x̄, ȳ] passed as arguments of the penalty function belongs to
a set of several collision checking points defined along the
ego vehicle’s perimeter (green dots in Fig. 4). The penalty
function is named P(·), and is expressed as:

P(x̄, ȳ, xo, yo, θo,W o,Lo) = Q(s̄,Lo, so) · Q(n̄,W o, no)

(2)

with
{
[s̄, n̄]T = R(θo) · [x̄, ȳ]T (3a)

[so, no]T = R(θo) · [xo, yo]T (3b)

To consider the obstacle orientation angle θo, equations
(3a,3b) are used to perform a change of reference frame:
the collision checking point [x̄, ȳ] and the obstacle center
[xo, yo], defined in the ground frame X-Y, are now expressed
in the rotated s-n frame (Fig. 4). In (3a,3b), the notation [·]T

VOLUME 11, 2023 124167

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

indicates the transpose of a vector, while the rotation matrix
R(θo) is given by:

R(θo) =

[
cos(θo) sin(θo)

− sin(θo) cos(θo)

]
(4)

The penalty P(·) in (2) is built by multiplying two smooth
functions, named Q(·) and plotted in Fig. 5a. The Q(·)
functions use as arguments the transformed coordinates of
the collision checking point [s̄, n̄] and of the obstacle center
[so, no], computed with (3a,3b). As shown in Fig. 5a, the
value of the function Q(s̄,Lo, so) increases if so −

Lo
2 ≤

s̄ ≤ so +
Lo
2 , i.e., if the collision checking point is inside

the obstacle shape, along the s direction.
The function Q(·) is computed as the first-order derivative

of a smooth Clip function, and is written as1:

Q(s̄, Lo, so)

=
1
2 ht

(
s̄− s0 +

Lo

2

)
1√

1 +
1
ht 2

(
s̄− s0 +

Lo
2

)2+

−
1
2 ht

(
s̄− s0 −

Lo

2

)
1√

1 +
1
ht 2

(
s̄− s0 −

Lo
2

)2 (5)

where ht is a tunable smoothing parameter, whose effect is
shown in Fig. 5a. The function Q(·) in (5) is computed along
the s direction: by changing its arguments, the function is also
evaluated along the n direction, and used in (2). Fig. 5b shows
an example of the obstacle penalty function P(·), obtained
with (2) and [xo, yo] = [0, 0] m, θo = 0 deg, W o

= 2 m,
Lo = 3 m. Note that, when θo = 0 deg, the obstacle s-n
directions are aligned with the ground reference frame X-Y
(Fig. 4). The penalty function in (2) models the rectangular
bounding box of an obstacle. However, combining multiple
penalties allows us to deal with obstacles of generic shapes,
as will be shown in the angle parking example of SectionV-A.

Finally, for collision checking we define 12 points on the
rectangular bounding box of the ego vehicle (green dots
in Fig. 3 and Fig. 4): the 4 corners of the box, 3 points
equally spaced along the right and left sides of the vehicle,
and the 2 middle points of the front and rear edges of
the box. To consider the i-th obstacle, located in [xoi , y

o
i]

with orientation θoi and dimensions W o
i , L

o
i , we augment

the cost function of the OCP (Section III-C) with the sum
of the values of the penalty P(x̄(t), ȳ(t), xoi , y

o
i , θ

o
i ,W

o
i ,Loi),

evaluated in the time-varying coordinates [x̄(t), ȳ(t)] of each
of the 12 points of the ego vehicle. The choice of 12 points
for collision checking ensures that the bounding box of the
ego car does not collide with the obstacles. The value of each
penalty is zero when the corresponding collision checking
point is outside the obstacle bounding box, and greater than
zero if the collision checking point is inside the obstacle area.
Local collisions of the ego bounding box with an obstacle
could still happen in between two collision checking points;

1We can tune the maximum value of the function Q(·) by means of an
additional scaling function, here not reported for brevity.

FIGURE 5. (a) Example of Q(s, Lo, so) function (5), used for collision
avoidance along the obstacle longitudinal s direction. The plotted
example uses so = 0 m and Lo = 3 m: the function Q(·) increases if
so −

Lo
2 ≤ s ≤ so +

Lo
2 , i.e., if the collision checking point is inside the

obstacle shape, along the s direction. (b) Example of the
three-dimensional obstacle penalty function (2), with parameters
xo = 0 m, yo = 0 m, θo = 0 deg, W o = 2 m, Lo = 3 m. The value of the
penalty is zero when the collision checking point coordinates [x, y] are
outside the obstacle bounding box, and greater than zero when the
coordinates [x, y] are inside the obstacle area.

however, in our results we never encountered this event.
Indeed, we started our experiments with only 4 points, and
the number of 12 collision checking points represents the
lower bound for which no collisions occurred, in all the test
scenarios of this paper.

C. OPTIMAL CONTROL PROBLEM FORMULATION
Exploiting the devised collision avoidance penalty function,
we solve the following optimal control problem for trajectory
planning of parking maneuvers:

min
u∈U

wT tf +

∫ tf

0
ℓobst(t) dt (6a)

s.t. ẋ(t) = f (x(t),u(t)) (6b)

|δ(t)| ≤ δmax, |vx(t)| ≤ vxmax (6c)

|δdot(t)| ≤ δdotmax , |ax(t)| ≤ axmax (6d)

x(0) = xini, y(0) = yini, θ (0) = θini, vx(0) = 0 (6e)

x(tf) = xf , y(tf) = yf , θ(tf) = θf , vx(tf) = 0 (6f)

124168 VOLUME 11, 2023

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

We remark that the problem (6a)-(6f) is not formulated
to track a pre-calculated path, but rather to freely plan
a collision avoidance trajectory. The cost function (6a)
has two main purposes: minimize the maneuver time tf ,
and avoid collisions. The former goal is weighted by the
tunable parameter wT . Collision avoidance is performed with
the integral term in (6a), where ℓobst(t) has the following
expression:

ℓobst(t) =

nobs∑
i=1

npts∑
j=1

P
(
xj(t), yj(t), xoi , y

o
i , θ

o
i ,W

o
i ,Loi

)
(7)

ℓobst(t) in (7) is the sum of the values of the novel penalty
function P(·), computed for all the npts = 12 collision
checking points of the ego vehicle (Fig. 3), and for all the
nobs obstacles. In (7), [xj(t), yj(t)] are the coordinates of the
j-th collision checking point of the ego vehicle; [xoi , y

o
i , θ

o
i]

are the coordinates and orientation of the i-th obstacle, whose
width and length are W o

i and Loi . The expression of the
penalty function P(·) is given by (2). The relative weight
between the two objectives in the cost function (6a) is tuned
so that no collisions occur, in all the 75 maneuvers on which
the framework is tested. Also, the absolute weight on the
final-time objective wT is large enough to enforce parking
maneuver times that are well inside the range of human
drivers’ parking times.

The dynamical system (6b) is the kinematic vehicle
model (1a). Box constraints (6c,6d) are imposed for the states
{δ, vx} and the controls {δdot, ax}. Initial and final conditions
are set for the vehicle pose and velocity with the constraints
(6e,6f). Since we employ an indirect optimal control method,
such initial and final conditions are strictly enforced.

Notice that, in the optimal control formulation (6a)-(6f),
the final maneuver time tf is not known a priori, while
being one of the quantities we want to minimize. In order
to solve the OCP, we rewrite it in its free-time formulation,
by substituting the time t with a new independent variable,
named ζ :

t = ζ tf , ζ ∈ [0, 1], (8)

The new independent variable ζ ranges in the fixed interval
[0, 1]. The final maneuver time tf is now treated as a new
state variable, which is constant in time, i.e. dtf

dt = 0. The
extended state of the dynamical system is redefined as x =

[x, y, θ, vx , δ, tf]. Let us indicate with h′ the derivative of
the generic quantity h with respect to the new independent
variable ζ . Using the chain rule of differentiation, we can
write:

x′
=

dx
dζ

=
dx
dt

dt
dζ

=
dx
dt
tf (9)

Exploiting the relation (9) and adding the new state variable
tf (ζ), whose derivative with respect to ζ is zero, the

system (1a) is rewritten as:

x ′(ζ) = tf (ζ) vx(ζ) cos (θ (ζ))
y′(ζ) = tf (ζ) vx(ζ) sin (θ (ζ))
θ ′(ζ) = tf (ζ) vx(ζ) tan(δ(ζ))/L
v′x(ζ) = tf (ζ) ax(ζ)
τδδ

′(ζ) = tf (ζ) δdot(ζ)
t ′f (ζ) = 0

(10)

and the original OCP (6a)-(6f) is reformulated as:

min
u∈U

wT tf +

∫ 1

0
ℓobst(ζ) tf dζ (11a)

s.t.(10)

|δ(ζ)| ≤ δmax, |vx(ζ)| ≤ vxmax (11b)

|δdot(ζ)| ≤ δdotmax , |ax(ζ)| ≤ axmax (11c)

x(0) = xini, y(0) = yini, θ (0) = θini, vx(0) = 0 (11d)

x(1) = xf , y(1) = yf , θ (1) = θf , vx(1) = 0 (11e)

Note that the final time tf is now a state variable, thus it
can be explicitly minimized in the target function (11a).
The OCP is formulated and solved using the software

suite PINS [33], [34], [35], [36], [37], which is based on
the indirect method for optimal control. A comprehensive
comparison of direct and indirect methods for the solution
of optimal control problems can be found in [37]. The
comparison showed that PINS has comparable performances
to a state-of-the-art direct method implementation. Starting
from the continuous-time OCP (11a)-(11e), PINS builds a
two-point boundary value problem, which is then discretized.
We use a dense time grid with 500 points for the discretiza-
tion. The choice of PINS is justified because the indirect
optimal control method implemented by the proprietary
software and solver, developed by our research group, allow
us to solve the OCPs with low computational times on the
dense mesh grid. The reader can refer to [31], [38], [39],
[40], and [41] for other recent examples of minimum-time
nonlinear OCPs solved in real-time and offline using PINS.

D. TRAJECTORY GUESS GENERATION
We adopt an effective Hybrid A* + OCP tracking strategy
to compute a solution guess for the optimal control problem.
The proposed guess method combines the Hybrid A*
algorithm [3] and an optimal control tracking problem. First,
a kinematically feasible parking path is generated through
the Hybrid A* algorithm. Second, the path provided by the
Hybrid A* is tracked by solving the following optimal control
problem:

min
u∈ U

wT tf +

∫ 1

0

[
wP

((
x(ζ) − xA(ζ)

)2
+

(
y(ζ) − yA(ζ)

)2)
+ wθ

(
θ (ζ) − θA(ζ)

)2]tf dζ
s.t. (10), (11b), (11c), (11d), (11e) (12)

VOLUME 11, 2023 124169

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

where {xA, yA, θA} are the coordinates and yaw angle of the
Hybrid A* path, and {wT ,wP,wθ } are tunable weights. Note
that the tracking OCP (12) uses the same vehicle model (10)
and constraints (11b)-(11e) as the main OCP (11a)-(11e). The
solution of the tracking OCP (12) is then used as a guess for
the free-trajectory main optimal control problem (11a)-(11e).
As will be shown in Section V-B, our solution guess

method (Hybrid A* + OCP tracking) outperforms the Hybrid
A* alone, leading to collision-free trajectories and decreasing
the overall computational times. More precisely, combining
the Hybrid A* with the tracking OCP (12), we obtain a
solution guess for all the variables of the free-trajectory
OCP (11a)-(11e), while the Hybrid A* alone would provide
only a sequence of positions and yaw angles.

IV. TRAJECTORY TRACKING
In this section, we present the low-level trajectory tracking
controllers. Referring to Fig. 2, we implement the following
low-level controllers: a feedback longitudinal controller
for speed-tracking, and a feedforward + feedback steering
controller for path tracking.

The main novelty introduced in this paper for trajectory
tracking is the feedforward steering controller, to which we
dedicate the next section. The feedback steering controller
consists of two proportional regulators, which will be
described in Section IV-B. Finally, the feedback longitudinal
controller is a simple PI regulator, and its description will be
omitted since it is well established in the literature.

A. FEEDFORWARD STEERING CONTROLLER
To track the path computed by high-level OCP, we devise a
novel feedforward steering controller. The controller has a
pseudo-neural physics-driven formulation (pNN), which uses
few learnable parameters to accurately model the nonlinear
steering dynamics.

In comparison with other papers using neural networks
for motion tracking of parking maneuvers [28], the specific
structure devised for pNN requires smaller training datasets
to produce accurate predictions. In Section V-C, we will com-
pare pNN with the clothoid-based [21] and pure pursuit [22]
literature steering controllers. This comparison reveals that
pNN significantly decreases the path and yaw angle tracking
errors, and delivers smoother steering angles that improve
passengers’ comfort.

The design methodology of pNN is partly inspired by
the neural models that we presented in [31], [42], and
[43]; however, the pNN of this paper has a novel internal
structure, specifically conceived to capture the nonlinear
steering dynamics at low speed, for parking maneuvers.

Referring to Fig. 6, pNN computes in real-time the steering
wheel angle δffk , where k ∈ N is the index of the current time
step, using the following inputs:

1) a window of q + 1 future trajectory curvature values
ρk = [ρk , . . . , ρk+q] computed by the high-level OCP;

FIGURE 6. Inputs and output of the feedforward pseudo-neural steering
controller (pNN). Inputs: window of future optimal curvature values
ρk = [ρk , . . . , ρk+q] computed by the OCP, and window of past steering
angles [δffk−r

, . . . , δffk−1
] computed by pNN. Output: feedforward

steering angle δffk
for the current time step k .

FIGURE 7. Structure of the feedforward pseudo-neural steering controller
(pNN), aimed at modeling the nonlinear steering dynamics at low speed.
The quantities colored in green are the sizes of the propagated signals.

2) a window of steering angles [δffk−r , . . . , δffk−1] com-
puted by pNN in the past r time steps.

The trajectory curvature ρ used as input for pNN is given by
�/vx , with � =

dθ
dt and vx being respectively the yaw rate

and the forward speed computed by the high-level OCP.
pNN is a discrete-time dynamical system, with sampling

time TsNN = 0.05 s, formulated as:

δffk = fst
(
G(ρk) · FT

)
+

[
δffk−r , . . . , δffk−1

]
AT

= fst

([
g(ρk), . . . , g(ρk+q)

]  F1
...

Fq+1

)

+
[
δffk−r , . . . , δffk−1

] A1
...

Ar

 (13)

where the notation FT denotes the transpose of the vector F.
Fig. 7 graphically depicts the internal structure (13) of pNN.

Let us now analyze the role of each block in Fig. 7 and
equation (13), starting from the functional layer G(·).

1) FUNCTIONAL LAYER G
The vector functional layer G(ρk) = [g(ρk), . . . , g(ρk+q)]
in (13) is designed to learn a steady-state relation between
the trajectory curvature ρ and the steering angle δw at the

124170 VOLUME 11, 2023

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

front wheels.2 The vectorG(ρk) has q+1 entries, representing
steering angle δw predictions, for the present and future time
steps.

The function g(·) is the scalar version of G(·), and is
designed to model a vehicle characteristic curve, which
we call curvature diagram. Such a diagram is shown in
Fig. 8b, with a solid blue line, and it can be obtained
experimentally with a simple sinusoidal steering maneuver,
like the one in Fig. 8a. The curvature diagram captures
the deviations between tan(δw) and the kinematic steering
angle ρL, with L being the vehicle wheelbase. The shape
of the diagram depends on the steering maps3 (i.e., the
nonlinear relations between the steering wheel angle δD and
δw), on the characteristics of the tires and suspensions, and
on other factors. The shape of the curvature diagram is nearly
independent of the vehicle speed vx (in the parking range
vx ≲ 5 km/h).
Let us model the curvature diagramwith a polynomial, as a

function of the trajectory curvature ρ:

tan(δw) − ρL = h(ρ) = h1ρ + h2ρ3
+ h3ρ5 (14)

where h(ρ) is the approximating function, shownwith a green
line in Fig. 8b, and {h1, h2, h3} are optimization variables.
Polynomials of 5th order (with only odd powers) were found
to be accurate enough to model the curvature diagram.

The function g(ρ) appearing in (13) is obtained by
solving (14) for the steering angle δw:

δw = arctan
(
h(ρ) + ρL

)
= g(ρ) (15)

The function g(ρ) is a static map, and relates ρ with δw in
steady-state conditions.

2) FULLY-CONNECTED LAYER F
As previously described, the functional layer G(ρk) returns a
vector of steady-state front wheels steering angle predictions,
for a given vector of present and future trajectory curvatures
ρk . The entries of G(ρk) are then linearly combined by the
fully-connected layer weights F = [F1, . . . ,Fq+1], to model
part of the transient dynamic response of the system, and
improve the steady-state predictions. During training, the
knowledge of the future curvature [ρk , . . . , ρk+q] is used to
learn the dynamic behavior of the vehicle, and the possible
delays between a steering input and the corresponding
trajectory curvature output.

The scalar output of G(ρk) ·F
T in (13) is a first estimate of

the front wheels steering angle δwk , at the present time step k .

3) FUNCTIONAL LAYER FST
The functional layer fst(·) in Fig. 7 receives as input a steering
angle δwk at the front wheels —computed by the preceding
layers— and maps it in the corresponding steering wheel
angle δffk . More precisely, the function fst(·) is an identified

2δw is defined as the average of the steering angles at the front wheels.
3The steering maps of the vehicle simulator also depend on the

deformations of the suspensions.

FIGURE 8. Testing the feedforward pseudo-neural steering controller
(pNN) with a sine-steer maneuver at constant speed: (a) comparison of
the real steering wheel angle δD with the prediction δff of pNN, and
(b) resulting curvature diagram.

static steering map,4 i.e., a lookup table to relate δwk and
δffk . Note that fst(·) is only an estimate of the real steering
map, which also depends on the suspension deformations.
Such minor effects are learned partly by the proposed neural
model, and partly compensated by the feedback steering
controller.

4) FULLY-CONNECTED LAYER A
Finally, in (13) we use the fully-connected layer weightsA =

[A1, . . . ,Ar] to learn a linear combination of past steering
angles [δffk−r , . . . , δffk−1], computed by pNN in the previous
r = 15 time steps. The weights in A provide a further
accuracy improvement, to model the steering dynamics. The
unit delay z−1 in Fig. 7 shows that the output of pNN
is recursively fed back and re-used, in an auto-regressive
way.

The output of the controller pNN is δffk = fst(δwk) + δarxk ,
with δarxk = [δffk−r , . . . , δffk−1]A

T .

4We estimate the steering map δff = fst(δw) with offline static tests,
by identifying a lookup table relating δw with δff. The angle δw is measured
as (δ11 + δ12)/2, with {δ11, δ12} being the front right and front left wheel
steering angles. Note that {δ11, δ12} do not need to be measured online, but
only one time, offline, to estimate the steering map.

VOLUME 11, 2023 124171

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

TRAINING THE FEEDFORWARD STEERING CONTROLLER
We now provide some details about the training and
parameterization of the feedforward pseudo-neural steering
controller pNN.

Regarding the inputs of pNN, the lengths q + 1 = 15 and
r = 15 of, respectively, the future curvature window and
the past steering window are optimized with experiments,
to cover a sufficient portion of the vehicle dynamic response.
The pNN model has a total number of 3 + (q + 1) + r =

3 + 15 + 15 = 33 learnable parameters.
The model is trained with supervised learning. The vehicle

simulator we want to control is used in an open-loop scheme
to generate the training dataset: a single sinusoidal steering
maneuver —like the one in Fig. 8a— is performed at a
nearly constant vehicle speed (4 km/h), and the resulting
vehicle telemetry is employed to train the pNN model.
Similar maneuvers —with different sine steering frequency
and vehicle speed—are carried out and used for the validation
and test sets. The training loss function is the mean square
error (MSE) between the steering wheel angles δff computed
by pNN and the recorded steering values of the training set.
Tensorflow is adopted to formulate and train pNN, using the
Keras API and the Nadam optimization method [44].

We underline that, given the specific structure designed
for pNN and its low number of learnable parameters, the
training dataset required to produce accurate predictions
is smaller than in other more traditional neural network
approaches [28].
Fig. 8a shows the results obtained with pNN on a test set,

not used during training. The steering angle δff computed by
pNN is very close to the recorded angle δD, and the predicted
curvature diagram (Fig. 8b) is almost overlapped with the real
one. The root mean squared (RMS) prediction error δff − δD
on the test set is 0.487 deg.

B. FEEDBACK STEERING CONTROLLER
The feedback steering controller consists of two proportional
regulators. The first controller aims at decreasing the path
tracking error,5 namely the Euclidean distance between
the (estimated) vehicle position [x̂k , ŷk] at time step k and the
desired position [xk , yk]. The second controller reduces
the difference between the (estimated) yaw angle θ̂k and
the target value θk .
The feedback controllers are tuned after training the

feedforward steering controller pNN. Since the internal
structure and the parameters of the vehicle to be controlled
are assumed to be unknown, we tune the feedback steering
controllers with a model-free approach. Similarly to what we
did in [31], the M2 iterative learning tuning (ILT) method
of [45] is adopted, due to its ability to deal with custom
cost functions and generic plant models. Using the ILT,
the proportional gain of a feedback controller is iteratively
updated using an approximate gradient method, where the

5A low-pass filter is used to eliminate the high-frequency content of the
path tracking error, to avoid rapid steering variations.

gradient of the cost function is estimated from the results of
the previous and current iterations.

The path tracking feedback controller is tuned first,
while the yaw angle tracking feedback controller is tuned in a
second phase. The cost function of the ILT is a weighted sum
of the mean squared values of the tracking error, the control
magnitude δfb, and its variations 1δfb. In each learning
iteration, the vehicle simulator is controlled in closed-loop,
to track a reference parking maneuver computed with optimal
control. In this way, new data are collected, the proportional
controller gain is updated, and a new iteration is performed,
until certain exit conditions are met.

V. RESULTS
A. TEST SCENARIOS
The presented autonomous parking framework is tested in
four challenging scenarios. To evaluate the robustness of the
trajectory planning and control algorithms, a grid of starting
positions is used for each scenario:

1) Reverse parking scenario, Fig. 9a: the maneuvers are
solved on a grid of 28 starting positions.

2) Parallel parking scenario, Fig. 9b: the maneuvers are
solved on a grid of 21 starting positions. A nearby
obstacle limits the maneuvering space on the right side
of the vehicle.

3) Generic parking scenario, Fig. 9c: the maneuvers are
solved on a grid of 14 starting positions. The vehicle
must execute a reverse parking maneuver: the parking
spot is quite far and an obstacle is interposed between
the starting and final positions.

4) Angle parking scenario, Fig. 9d: the maneuvers are
solved on a grid of 12 starting positions. The vehicle
must reverse into an angle parking spot. The maneu-
vering space on the right and on the left of the vehicle
is limited by a combination of obstacles. The complex
obstacles in this scenario are created by rotating and
superimposing several rectangular obstacles.

Overall, we use 28+21+14+12 = 75 parking maneuvers
to test our framework.

Considering the autonomous parking literature, our scenar-
ios are very challenging, narrow, diverse, and representative
of real-world parking situations. Moreover, our approach
enables arbitrary-shaped obstacles, by overlaying multiple
rectangles with different sizes and orientations. Modeling
the obstacles with rectangles is therefore not a limiting
choice.

Each side of the grey obstacles in Fig. 9 has a safety
margin (0.10 m) with respect to the true obstacle dimensions.
We underline that the safety margin is imposed only to
consider potential errors deriving from the obstacle size
estimation, localization system and path tracking controllers.
Aswill be shown next, no safetymargin would be required for
the parking maneuvers planned with optimal control, since
in the test scenarios presented in this work such maneuvers
never lead to obstacle collisions.

124172 VOLUME 11, 2023

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

TABLE 2. CPU times of the optimal control problems on the four parking scenarios, using the grid of starting positions of Fig. 9.

FIGURE 9. Grid of starting positions (red dots) used to test the automated
parking framework, for each of the four parking scenarios. The total
number of parking maneuvers is 28 + 21 + 14 + 12 = 75.

B. TRAJECTORY PLANNING SOLUTIONS WITH OPTIMAL
CONTROL
In this section, we show the trajectories planned with
optimal control, for the four test scenarios previously
described.

Fig. 10, 11, 12 and 13 depict some of the planned
maneuvers, respectively for the reverse parking, parallel
parking, generic parking and angle parking scenarios. For
the sake of brevity, in each scenario, the parking maneuvers
are plotted for only two of the many starting positions of
Fig. 9. In each plot of Fig. 10, 11, 12 and 13, we show in
green a sequence of 50 frames of the vehicle motion. The
discretization time grid in the OCP contains 500 points, and
it is therefore 10 times denser than the plotted sequence of
frames.

The presented framework is able to plan complex maneu-
vers, composed of several segments with different travel
directions. For example, the angle parking maneuvers in

FIGURE 10. Reverse parking maneuvers, plotted for 2 of the 28 starting
positions in Fig. 9a. The blue line represents the path of the vehicle
reference point (center of the rear axle). The red arrow indicates the
vehicle’s forward direction at the starting point. Frames of the vehicle
motion are shown every 10 discretization grid points of the OCP solution.

Fig. 13a and 13b have 4 segments, with the travel direc-
tion sequence forward-rearward-forward-rearward, while the
reverse parking maneuver in Fig. 10b consists of 5 segments.
No collisions occur with the obstacles, in all the 75 testing

scenarios. Such an accurate collision-free trajectory opti-
mization is made possible by the dense mesh with which

VOLUME 11, 2023 124173

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

FIGURE 11. Parallel parking maneuvers, plotted for 2 of the 21 starting
positions in Fig. 9b. The blue line represents the path of the vehicle
reference point (center of the rear axle). The red arrow indicates the
vehicle’s forward direction at the starting point. Frames of the vehicle
motion are shown every 10 discretization grid points of the OCP solution.

the OCPs are discretized, and by the relatively large number
of collision-checking points. In contrast, the authors of [17]
obtained simpler parking maneuvers, always composed of
2 segments, and their trajectories sometimes had local
obstacle collisions between adjacent mesh points, due to a
quite coarse discretization.

The OCPs are solved on a 2019 MacBook Pro, equipped
with a 2,6 GHz 6-Core Intel Core i7 processor. Table 2 reports
the computational (CPU) times to calculate the solution
guesses (Section III-D) and solve the OCPs. On average, the
CPU time to plan the parking maneuvers is around 1.5-2 s,
and it is below 4.5 s for all the 75 tested maneuvers.

The main factors and novelties that contribute to decreas-
ing the CPU times are:

• The formulation of the obstacle smooth penalty func-
tions (Section III-B);

• The effectiveness of the solution guess strategy
(Section III-D);

• The effectiveness of the PINS solver (Section III-C).
Table 3 compares the CPU times obtained with our Hybrid

A* + OCP tracking guess strategy (Section III-D), against
the Hybrid A* alone. The latter is used as a solution guess
for optimal control by other authors, like [17]. However, the
Hybrid A* returns only a feasible (often non-time-optimal)
path, without speed and steering angle profiles. Conversely,
our guess strategy uses the optimal control problem (12) to
track the Hybrid A* path, and the resulting solution is then

FIGURE 12. Generic parking scenario, plotted for 2 of the 14 starting
positions in Fig. 9c. The blue line represents the path of the vehicle
reference point (center of the rear axle). The red arrow indicates the
vehicle’s forward direction at the starting point. Frames of the vehicle
motion are shown every 10 discretization grid points of the OCP solution.

used as a guess for all the states and controls of the main
OCP (11a)-(11e). Table 3 compares the mean CPU times
obtained with our guess strategy and with the Hybrid A*,
using the 75 parking maneuvers of the 4 scenarios (Fig. 9).
Our guess method decreases by more than 20% the mean
CPU times for trajectory planning (1.80 s against 2.30 s).

Assuming an automotive-grade hardware 5 times slower
than the hardware employed in this paper, the scaled-up
computational times to plan the parking maneuvers would
still be acceptable for a commercial application.

C. TRAJECTORY TRACKING WITH THE VEHICLE
SIMULATOR
Following the scheme in Fig. 2, the parking trajectories
planned with optimal control are tracked by low-level

124174 VOLUME 11, 2023

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

FIGURE 13. Angle parking maneuvers, plotted for 2 of the 12 starting
positions in Fig. 9d. The blue line represents the path of the vehicle
reference point (center of the rear axle). The red arrow indicates the
vehicle’s forward direction at the starting point. Frames of the vehicle
motion are shown every 10 discretization grid points of the OCP solution.

TABLE 3. Comparison of the proposed solution guess method, named
Hybrid A* + OCP tracking, against the benchmark Hybrid A* alone. The
table compares the mean CPU times obtained on the four scenarios of
Fig. 9 (75 parking maneuvers). Our method provides an improved guess to
the OCP (11a)-(11e) for trajectory planning, whose overall mean
computational time is decreased by more than 20% (1.80 s against 2.30 s).

controllers (Section IV), to drive the high-fidelity vehicle
simulator described in Section II-A. The trajectory tracking
framework is implemented in a Matlab&Simulink environ-
ment.

A video demonstration of the planned and tracked parking
maneuvers is available as supplementary material. The video
was generated with the CARLA graphic environment [46].
However, we remark that we do not close the loop on
the simple vehicle model of the CARLA simulator; on

TABLE 4. Tracking performance on the four parking scenarios (75 parking
maneuvers, whose starting conditions are shown in Fig. 9), with different
low-level steering controllers. The proposed pNN+fb steering controller
outperforms the literature benchmarks, in all the path and yaw angle (θ)
tracking error indicators. Considering the 0.10 m safety margin on the
obstacle bounding boxes, pNN+fb is the only controller that never leads
to collisions.

the contrary, we employ our high-fidelity vehicle simulator,
illustrated in Section II-A.

LITERATURE BENCHMARKS FOR STEERING CONTROL
The performance of the proposed feedforward-feedback
pseudo-neural steering controller (Sections IV-A and IV-B) is
compared with other two literature lateral controllers, namely
the clothoid-based technique of [21] and the pure pursuit
controller [22].

For the clothoid-based method [21], at each time step a
clothoid curve is built, with the library developed by [47],
to connect the current vehicle pose with a point on the target
path, using a look-ahead distance of 2 m. The steering wheel
angle computed by the clothoid-based controller at the time
step k is based on a kinematic relation:

δDk = fst
(
arctan(ρckL)

)
(16)

where ρck is the curvature value of the clothoid at its starting
point, L is the vehicle wheelbase, and fst(·) is the vehicle
(identified) steering map, described in Section IV-A.
For the pure pursuit controller, the look-ahead distance is

tuned with experiments and set to 2.5 m.

ANALYSIS OF THE TRAJECTORY TRACKING RESULTS
Table 4 compares the path and yaw angle tracking per-
formance of the proposed feedforward-feedback steering
controller (here named pNN+fb) with the clothoid-based
and pure pursuit literature techniques. The comparison
focuses on the root mean square (RMS) tracking errors and
their maximum values, computed using the four parking
scenarios and the 75 different starting positions shown
in Fig. 9. The path tracking error (PTE) is computed as√
(xk − x̂k)2 + (yk − ŷk)2, with [x̂k , ŷk] being the real vehicle

coordinates at time step k , and [xk , yk] being the coordinates
of the closest point on the optimal path. Similarly, the yaw
angle tracking error is θk − θ̂k .
The proposed pNN+fb steering controller outperforms the

literature benchmarks in all the path and yaw angle tracking
error indicators. Considering that the maximum path tracking
and yaw angle tracking errors obtained with the pNN+fb
controller are 0.048 m and 0.74 deg respectively, and that the
obstacle bounding boxes are defined with a safety margin of
0.10 m (Section V-A), then no collisions due to errors in the

VOLUME 11, 2023 124175

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

FIGURE 14. Comparison of the path tracking performance of the proposed feedforward-feedback pseudo-neural steering
controller (pNN+fb) with the clothoid-based and pure pursuit literature techniques. The figure plots 4 of the 75 parking
maneuvers considered in this paper: (a) reverse parking, (b) parallel parking, (c) generic parking scenario, (d) angle parking.
The plots show the paths of the origin of the vehicle’s reference frame, namely the center of the vehicle’s rear axle.

tracking of the planned optimal path occur when the pNN+fb
is used.

Fig. 14 shows some of the path-tracking results, in the
four parking scenarios. Fig. 15 plots the forward speed vx
and steering wheel angle δD profiles, together with the path
and yaw angle tracking errors, for the parking maneuver
of Fig. 14a. Note that the pNN+fb controller delivers a
smooth steering angle δD. Conversely, the clothoid-based
and pure pursuit controllers sometimes yield oscillating or
saturated steering angles, which result in worse tracking
accuracy and decrease passenger comfort. Finally, the
feedback longitudinal controller provides adequate speed-
tracking performance.

The obtained results show that the presented framework is
suitable for a real application, where planning and executing
accurate maneuvers is fundamental, and the computational
times should be reasonably low.

D. ROBUSTNESS ANALYSES
1) ROBUSTNESS TO VEHICLE AND ADHERENCE
PARAMETERS
The framework’s robustness is here analyzed by increasing
the vehicle mass and reducing the road adherence, without
changing the parameters of the trajectory planning and track-
ing controllers. Specifically, the vehicle mass is increased
by 220 kg, and a wet road is simulated, decreasing by
40% the cornering and longitudinal tire stiffnesses [29],
as well as the peak of the lateral and longitudinal tire
forces. The changed vehicle and adherence parameters affect
the curvature diagram (Fig. 8b) and the lateral dynamics,
thus potentially decreasing the accuracy of the feedforward
steering controller pNN. Nonetheless, the feedback steering
controller compensates for part of the unmodeled dynamics,
preserving good tracking accuracy. As reported in Table 5,
the path and yaw angle tracking results do not degrade with

124176 VOLUME 11, 2023

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

TABLE 5. Analyzing the effect of an unknown increase in the vehicle mass (by 220 kg) and road adherence reduction (by 40%) on the trajectory tracking
performance. The table reports the path and yaw angle tracking errors on the four parking scenarios (75 parking maneuvers), obtained with the proposed
pNN+fb steering controller. The results do not degrade with respect to the nominal case (Table 4), thus indicating good robustness of the automated
parking framework to variations of the tyre-road adherence and/or vehicle physical properties.

FIGURE 15. Trajectory tracking in the reverse parking scenario of Fig. 14a:
speed (vx) and steering angle (δD) profiles, path tracking error (PTE) and
yaw angle tracking error. The plots of the path and yaw tracking errors
show only the two best controllers, excluding the pure pursuit. The
proposed pNN+fb controller delivers a smooth steering angle δD, while
the clothoid-based and pure pursuit controllers sometimes yield
oscillating or saturated steering angles, which result in worse tracking
accuracy and decrease passenger comfort.

respect to the nominal case (Table 4), for the four parking
scenarios and the 75 starting positions, which indicates
good robustness of the automated parking framework to
variations of the tyre-road adherence and/or vehicle physical
properties.

2) ROBUSTNESS TO SENSOR NOISE
In this section, realistic sensor models are integrated into
a state estimation setup, to evaluate the robustness of the
planning and control framework to measurement noise.
We remark that proposing an effective choice of sensors and
localization techniques for autonomous parking is not in the
scope of this paper. The state estimation methods in this
section are used only to evaluate the results in the presence
of measurement noise.

We define our parking scenarios using the Automated
Driving Toolbox in Matlab & Simulink R2022b. Exploiting
the Toolbox, the following sensors are simulated: a lidar,
an inertial measurement unit (IMU) and wheel encoders.
We stress that the sensors’ selection is not the focus of this

paper: in a real-world application, the lidar could be replaced
by a radar, or by the combination of ultrasonic sensors
and cameras. In our simulation environment, synthetic
point clouds are generated by a lidar sensor mounted on
the ego vehicle, using a realistic statistical model of the
sensor detections. Simultaneous localization and mapping
(SLAM) is performed with the Toolbox, using the lidar
scans. The SLAM algorithm returns an estimate of the ego
vehicle pose [x̂, ŷ, θ̂]. In addition, an IMU model is used
within the imuSensor function in Matlab, to measure the
longitudinal and lateral accelerations âx , ây and the yaw

rate �̂ =
ˆ̇θ . Finally, wheel encoder models are adopted to

measure the angular rates of the four wheels, from which
an estimate of the vehicle forward speed v̂x is retrieved
using the estimation algorithm described in [48, Chapter 5].
An extended Kalman filter (EKF) is implemented to fuse
the available measurements, using a kinematic prediction
model.

Fig. 16 shows the results obtained in the reverse parking
scenario, with the state estimation setup previously described.
The SLAM algorithm returns an estimate of the vehicle pose
every 0.2 s (green dots in Fig. 16a), while the sampling time
of the IMU and wheel encoders is 0.01 s. The EKF estimates
the vehicle state (pose, velocities and accelerations) every
1 ms, and the estimates are fed to the tracking controllers.
The RMS value of the path tracking error (PTE, Fig. 16b)
between the desired and executed paths is 0.029 m, while
its maximum value is 0.089 m. Considering the 0.10 m
safety margin used to define the obstacle bounding boxes
(Section V-A), no collisions occur throughout the maneuver
execution. The estimates of forward speed vx and yaw rate �

provided by the EKF are sufficiently close to the actual values
(Fig. 16b), which results in a good tracking of the desired
speed.

The feedback steering controller computes steering cor-
rections δfb (Fig. 16b, dark-blue line of the bottom plot) to
compensate for part of the path and yaw angle estimated
tracking errors. Note that the overall steering wheel angle
δff + δfb (orange line) remains sufficiently smooth, which
is important for passengers’ comfort. A rigorous stability
analysis for the feedback steering controller is hindered by
the nonlinear and black-box nature of the vehicle simulator,
and by the presence of a nonlinear feedforward steering
controller. Nonetheless, we remark that the feedback steering
controller adds minor control corrections δfb (Fig. 16b,

VOLUME 11, 2023 124177

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

FIGURE 16. Executing a parking maneuver in the reverse parking
scenario, in the presence of measurement noise: (a) comparison of the
executed path with the raw SLAM results and the EKF estimates, and
(b) forward speed (vx), yaw rate, path tracking error (PTE) and steering
wheel angle (δD) profiles.

bottom plot), since most of the control action is provided
by the feedforward steering controller pNN. The feedback
steering controller considerably reduces the path and yaw
angle tracking errors, in all the tested parking scenarios,
even in the presence of unknown changes in the vehicle
and adherence parameters. Thus, from a practical viewpoint,
the feedback action improves the closed-loop tracking
performance, and helps compensate for model mismatches
and disturbances.

To limit the number of figures in the paper, we do not plot
the results with measurement noise for all 4 parking scenarios
(Fig. 14) and all 75 parking maneuvers. Nevertheless, our
experiments demonstrate that the findings in Fig. 16 for the

reverse parking scenario are representative of all parking
scenarios. Even in the presence of synthetic measurement
noise, obstacle collisions are consistently avoided.

VI. CONCLUSION
In this paper, we presented a framework for fast planning
and execution of complex autonomous parking maneuvers.
Using an indirect optimal control approach, a minimum-time
parking problem was formulated, and a novel smooth penalty
function was adopted for collision avoidance with optimal
control. We proposed an effective warm-start strategy for the
optimal control problems, based on the creation of robust
guess solutions by means of an optimal tracking of the path
given by the Hybrid A* algorithm. A dense mesh was used
to discretize the domain of the OCPs for trajectory planning,
which yields accurate collision-free maneuvers.

We introduced a novel pseudo-neural feedforward-
feedback steering controller, which, in comparison with other
literature techniques, yields better accuracy and smoother
steering angle profiles. Using the proposed steering controller
and a feedback longitudinal velocity regulator, the planned
maneuvers were executed in real-time with a 14-degree-of-
freedom vehicle simulator.

The framework was validated using narrow reverse,
parallel and angle parking spots, and more generic parking
scenarios. The results show that our framework can plan
and execute a wide range of parking maneuvers in differ-
ent challenging scenarios, moving close to the obstacles
and avoiding collisions. In addition, our optimal control
formulation and solution method can compute maneuvers
with multiple segments of forward and reverse driving. The
framework is sufficiently robust to a change in the vehicle
mass and in the tire-ground adherence. Moreover, collision-
free maneuvers were executed in the presence of synthetic
measurement noise, generated with realistic sensor models.
Finally, the computational times are sufficiently low, and
the framework is promising for a real-world automotive
application.

Future work will be focused on testing the framework with
an instrumented commercial vehicle, to implement a valet and
autonomous parking application.

ACKNOWLEDGMENT
The authors would like to thank Alice Plebe for her help with
the preparation of the final video, and the critical reviews
of the manuscript, and also would like to thank Matteo
Larcher, for the development of the vehicle simulator.
(Edoardo Pagot and Mattia Piccinini contributed equally

to this work.)

REFERENCES
[1] P. Ramaswamy, ‘‘IoT smart parking system for reducing green house

gas emission,’’ in Proc. Int. Conf. Recent Trends Inf. Technol. (ICRTIT),
Apr. 2016, pp. 1–6.

[2] B. Li, L. Fan, Y. Ouyang, S. Tang, X. Wang, D. Cao, and F.-Y. Wang,
‘‘Online competition of trajectory planning for automated parking:
Benchmarks, achievements, learned lessons, and future perspectives,’’
IEEE Trans. Intell. Vehicles, vol. 8, no. 1, pp. 16–21, Jan. 2023.

124178 VOLUME 11, 2023

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

[3] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, ‘‘Path planning for
autonomous vehicles in unknown semi-structured environments,’’ Int. J.
Robot. Res., vol. 29, no. 5, pp. 485–501, Apr. 2010.

[4] J. Petereit, T. Emter, C. W. Frey, T. Kopfstedt, and A. Beutel, ‘‘Application
of hybrid A∗ to an autonomous mobile robot for path planning in
unstructured outdoor environments,’’ in Proc. 7th German Conf. Robot.
(ROBOTIK), May 2012, pp. 1–6.

[5] S. Karaman and E. Frazzoli, ‘‘Optimal kinodynamicmotion planning using
incremental sampling-based methods,’’ in Proc. 49th IEEE Conf. Decis.
Control (CDC), Dec. 2010, pp. 7681–7687.

[6] Y. Dong, Y. Zhong, and J. Hong, ‘‘Knowledge-biased sampling-based
path planning for automated vehicles parking,’’ IEEE Access, vol. 8,
pp. 156818–156827, 2020.

[7] B. Li, L. Li, T. Acarman, Z. Shao, and M. Yue, ‘‘Optimization-based
maneuver planning for a tractor-trailer vehicle in a curvy tunnel: A weak
reliance on sampling and search,’’ IEEE Robot. Autom. Lett., vol. 7, no. 2,
pp. 706–713, Apr. 2022.

[8] B. Li and Z. Shao, ‘‘A unified motion planning method for parking
an autonomous vehicle in the presence of irregularly placed obstacles,’’
Knowl.-Based Syst., vol. 86, pp. 11–20, Sep. 2015.

[9] B. Li, K. Wang, and Z. Shao, ‘‘Time-optimal maneuver planning in
automatic parallel parking using a simultaneous dynamic optimiza-
tion approach,’’ IEEE Trans. Intell. Transp. Syst., vol. 17, no. 11,
pp. 3263–3274, Nov. 2016.

[10] C. Chen, B. Wu, L. Xuan, J. Chen, T. Wang, and L. Qian, ‘‘A trajectory
planning method for autonomous valet parking via solving an optimal
control problem,’’ Sensors, vol. 20, no. 22, p. 6435, Nov. 2020.

[11] W. Sheng, B. Li, and X. Zhong, ‘‘Autonomous parking trajectory
planning with tiny passages: A combination of multistage hybrid A-
star algorithm and numerical optimal control,’’ IEEE Access, vol. 9,
pp. 102801–102810, 2021.

[12] J. Lian, W. Ren, D. Yang, L. Li, and F. Yu, ‘‘Trajectory planning for
autonomous valet parking in narrow environments with enhanced hybrid
A∗ search and nonlinear optimization,’’ IEEE Trans. Intell. Vehicles, vol. 8,
no. 6, pp. 3723–3734, Jun. 2023.

[13] B. Li, T. Acarman, Y. Zhang, Y. Ouyang, C. Yaman, Q. Kong,
X. Zhong, and X. Peng, ‘‘Optimization-based trajectory planning for
autonomous parking with irregularly placed obstacles: A lightweight
iterative framework,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8,
pp. 11970–11981, Aug. 2022.

[14] S. Song, H. Chen, H. Sun, M. Liu, and T. Xia, ‘‘Time-optimized online
planning for parallel parking with nonlinear optimization and improved
Monte Carlo tree search,’’ IEEE Robot. Autom. Lett., vol. 7, no. 2,
pp. 2226–2233, Apr. 2022.

[15] J. Zhang, H. Chen, S. Song, and F. Hu, ‘‘Reinforcement learning-based
motion planning for automatic parking system,’’ IEEE Access, vol. 8,
pp. 154485–154501, 2020.

[16] S. Song, H. Chen, H. Sun, and M. Liu, ‘‘Data efficient reinforcement
learning for integrated lateral planning and control in automated parking
system,’’ Sensors, vol. 20, no. 24, p. 7297, Dec. 2020.

[17] X. Zhang, A. Liniger, and F. Borrelli, ‘‘Optimization-based collision
avoidance,’’ IEEE Trans. Control Syst. Technol., vol. 29, no. 3,
pp. 972–983, May 2021.

[18] B. Paden, M. Cáp, S. Z. Yong, D. Yershov, and E. Frazzoli, ‘‘A survey of
motion planning and control techniques for self-driving urban vehicles,’’
IEEE Trans. Intell. Vehicles, vol. 1, no. 1, pp. 33–55, Mar. 2016.

[19] N. H. Amer, H. Zamzuri, K. Hudha, and Z. A. Kadir, ‘‘Modelling and
control strategies in path tracking control for autonomous ground vehicles:
A review of state of the art and challenges,’’ J. Intell. Robot. Syst., vol. 86,
no. 2, pp. 225–254, May 2017.

[20] Y. Kebbati, N. Ait-Oufroukh, D. Ichalal, and V. Vigneron, ‘‘Lateral control
for autonomous wheeled vehicles: A technical review,’’ Asian J. Control,
vol. 25, no. 4, pp. 2539–2563, Jul. 2023.

[21] D. Piscini, E. Pagot, G. Valenti, and F. Biral, ‘‘Experimental comparison
of trajectory control and planning algorithms for autonomous vehicles,’’
in Proc. 45th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), vol. 1,
Oct. 2019, pp. 5217–5222.

[22] V. Sukhil and M. Behl, ‘‘Adaptive lookahead pure-pursuit for autonomous
racing,’’ 2021, arXiv:2111.08873.

[23] Z. Zhang, L. Xie, and H. Su, ‘‘Trajectory tracking control for autonomous
parking using reduced-horizonmodel predictive control,’’ inProc. 4th CAA
Int. Conf. Veh. Control Intell. (CVCI), Dec. 2020, pp. 401–405.

[24] J. Zhang, Z. Shi, X. Yang, and J. Zhao, ‘‘Trajectory planning and tracking
control for autonomous parallel parking of a non-holonomic vehicle,’’
Meas. Control, vol. 53, nos. 9–10, pp. 1800–1816, Nov. 2020.

[25] B. S. Park, ‘‘Prescribed performance function based control for trajectory
tracking of nonholonomic mobile robots with collision avoidance,’’
in Proc. IEEE Conf. Control Technol. Appl. (CCTA), Aug. 2017,
pp. 1013–1018.

[26] S. He, S.-L. Dai, Z. Zhao, T. Zou, and Y. Ma, ‘‘UDE-based distributed
formation control for MSVs with collision avoidance and connectivity
preservation,’’ IEEE Trans. Ind. Informat., early access, May 22, 2023, doi:
10.1109/TII.2023.3274234.

[27] P. Zips, M. Böck, and A. Kugi, ‘‘Fast optimization based motion planning
and path-tracking control for car parking,’’ IFAC Proc. Volumes, vol. 46,
no. 23, pp. 86–91, 2013.

[28] J. Moon, I. Bae, and S. Kim, ‘‘An inverse vehicle model for a neural-
network-based integrated lateral and longitudinal automatic parking
controller,’’ Electronics, vol. 8, no. 12, p. 1452, Dec. 2019.

[29] H. Pacejka, Tire and Vehicle Dynamics, 3rd ed. Amsterdam,
The Netherlands: Elsevier, 2012.

[30] D. Stocco and E. Bertolazzi, ‘‘Acme: A small 3D geometry library,’’
SoftwareX, vol. 16, Dec. 2021, Art. no. 100845.

[31] M. Piccinini, S. Taddei, M. Larcher, M. Piazza, and F. Biral, ‘‘A physics-
driven artificial agent for online time-optimal vehicle motion planning and
control,’’ IEEE Access, vol. 11, pp. 46344–46372, 2023.

[32] D. Stocco, M. Larcher, and E. Bertolazzi, ‘‘A novel approach for real-time
tire/ground contact modeling,’’ 2023.

[33] E. Bertolazzi, F. Biral, and M. Da Lio, ‘‘Symbolic–numeric indirect
method for solving optimal control problems for largemultibody systems,’’
Multibody Syst. Dyn., vol. 13, no. 2, pp. 233–252, Mar. 2005, doi:
10.1007/s11044-005-3987-4.

[34] E. Bertolazzi, F. Biral, and M. Da Lio, ‘‘Symbolic-numeric efficient
solution of optimal control problems for multibody systems,’’ J. Comput.
Appl. Math., vol. 185, no. 2, pp. 404–421, Jan. 2006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377042705001238

[35] E. Bertolazzi, F. Biral, and M. D. Lio, ‘‘Real-time motion planning for
multibody systems: Real life application examples,’’Multibody Syst. Dyn.,
vol. 17, nos. 2–3, pp. 119–139, Apr. 2007.

[36] F. Biral, E. Bertolazzi, and P. Bosetti, ‘‘Notes on numerical methods
for solving optimal control problems,’’ IEEJ J. Ind. Appl., vol. 5, no. 2,
pp. 154–166, 2016.

[37] N. Dal Bianco, E. Bertolazzi, F. Biral, and M. Massaro, ‘‘Comparison
of direct and indirect methods for minimum lap time optimal control
problems,’’ Vehicle Syst. Dyn., vol. 57, no. 5, pp. 665–696, May 2019, doi:
10.1080/00423114.2018.1480048.

[38] M. Piccinini, M. Larcher, E. Pagot, D. Piscini, L. Pasquato, and F. Biral,
‘‘A predictive neural hierarchical framework for on-line time-optimal
motion planning and control of black-box vehicle models,’’ Vehicle Syst.
Dyn., vol. 61, no. 1, pp. 83–110, Jan. 2023.

[39] E. Pagot, M. Piccinini, and F. Biral, ‘‘Real-time optimal control of an
autonomous RC car with minimum-time maneuvers and a novel kineto-
dynamical model,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Oct. 2020, pp. 2390–2396.

[40] R. Lot and N. Dal Bianco, ‘‘Lap time optimisation of a racing go-kart,’’
Vehicle Syst. Dyn., vol. 54, no. 2, pp. 210–230, Feb. 2016.

[41] N. Dal Bianco, R. Lot, and M. Gadola, ‘‘Minimum time optimal control
simulation of a GP2 race car,’’ Proc. Inst. Mech. Eng., D, J. Automobile
Eng., vol. 232, no. 9, pp. 1180–1195, Aug. 2018.

[42] M. Da Lio, R. Donà, G. P. R. Papini, F. Biral, and H. Svensson, ‘‘A mental
simulation approach for learning neural-network predictive control (in self-
driving cars),’’ IEEE Access, vol. 8, pp. 192041–192064, 2020.

[43] M. D. Lio, M. Piccinini, and F. Biral, ‘‘Robust and sample-efficient esti-
mation of vehicle lateral velocity using neural networks with explainable
structure informed by kinematic principles,’’ IEEE Trans. Intell. Transp.
Syst., early access, Aug. 21, 2023, doi: 10.1109/TITS.2023.3303776.

[44] T. Dozat, ‘‘Incorporating Nesterov momentum into Adam,’’ in Proc. ICLR,
2016, pp. 1–4.

[45] J.-X. Xu and D. Huang, ‘‘Optimal tuning of PID parameters using
iterative learning approach,’’ in Proc. IEEE 22nd Int. Symp. Intell.
Control, Oct. 2007, pp. 226–231.

[46] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, ‘‘CARLA:
An open urban driving simulator,’’ in Proc. 1st Annu. Conf. Robot Learn.,
2017, pp. 1–16.

VOLUME 11, 2023 124179

http://dx.doi.org/10.1109/TII.2023.3274234
http://dx.doi.org/10.1007/s11044-005-3987-4
http://dx.doi.org/10.1080/00423114.2018.1480048
http://dx.doi.org/10.1109/TITS.2023.3303776

E. Pagot et al.: Fast Planning and Tracking of Complex Autonomous Parking Maneuvers

[47] E. Bertolazzi and M. Frego, ‘‘Interpolating clothoid splines with curvature
continuity,’’ Math. Methods Appl. Sci., vol. 41, no. 4, pp. 1723–
1737, Mar. 2018. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/mma.4700

[48] S. Savaresi and M. Tanelli, Active Braking Control Systems Design for
Vehicles. London, U.K.: Springer, Jan. 2011, doi: 10.1007/978-1-84996-
350-3.

EDOARDO PAGOT received the M.S. degree in
mechatronics engineering and the Ph.D. degree
(cum laude) in mechatronics engineering from the
University of Trento, Italy, in 2018 and 2023,
respectively.

He is currently a Research Fellow with the
Department of Industrial Engineering, Univer-
sity of Trento. His research interests include
multi-body dynamics modeling and optimal con-
trol (online and offline) in the field of vehicle

dynamics, for both intelligent transportation and motorsport sectors.

MATTIA PICCININI (Member, IEEE) received
the B.Sc. degree (cum laude) in industrial engi-
neering and the M.Sc. degree (cum laude) in
mechatronics engineering from the University of
Trento, Italy, in 2017 and 2019, respectively, where
he is currently pursuing the Ph.D. degree.

From March 2022 to June 2022, he was
a visiting Ph.D. student with Universität der
Bundeswehr, Munich, Germany. His research
interests include motion planning, control, and

state estimation methods for autonomous vehicles.

ENRICO BERTOLAZZI received the master’s
degree (cum laude) in mathematics from the
University of Trento, Italy. He is currently an
Associate Professor in numerical analysis with the
Department of Industrial Engineering, University
of Trento. His research interests include numerical
analysis and include the development of numerical
algorithms for the numerical solution of optimal
control problems mainly with indirect methods.

FRANCESCO BIRAL received the master’s degree
in mechanical engineering from the University of
Padova, Italy, and the Ph.D. degree in mechanism
and machine theory from the University of Bres-
cia, Italy, in 2000, for his work on minimum lap
time of racing vehicles with the use of optimal
control.

He is currently an Associate Professor with the
Department of Industrial Engineering, University
of Trento. His research interests include symbolic

and numerical multi-body dynamics and optimization, constrained optimal
control, mainly in the field of vehicle dynamics with special focus on
intelligent vehicles and optimal maneuver for racing vehicles. He has
15 years experience in the development and validation of ADAS and AD
functions, both for cars and PTWs, gained in several European and industrial
funded research projects.

Open Access funding provided by ‘Università degli Studi di Trento’ within the CRUI CARE Agreement

124180 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-1-84996-350-3
http://dx.doi.org/10.1007/978-1-84996-350-3

