IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 9 September 2023, accepted 27 October 2023, date of publication 6 November 2023, date of current version 9 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3330467

== RESEARCH ARTICLE

nMorph Framework: An Innovative Approach
to Transpiler-Based Multi-Language
Software Development

ANDRES BASTIDAS FUERTES"”'!, (Member, IEEE), MARIA PEREZ "',
AND JAIME MEZA2?, (Member, IEEE)

!Facultad de Ingenieria en Sistemas, Escuela Politécnica Nacional, Quito 170525, Ecuador
2Facultad de Ciencias Informaticas, Universidad Técnica de Manabf, Portoviejo 130105, Ecuador

Corresponding author: Andrés Bastidas Fuertes (andres.bastidas02 @epn.edu.ec; andres.bastidas @smartwork.com.ec)

This work was supported in part by Smartwork S.A.

ABSTRACT In the rapidly evolving landscape of software development, this study aims to introduce
and assess the nMorph framework, a potential breakthrough in multi-programming-language software
development. This approach aspires to empower developers to code in a unified language and subsequently
transpile it into multiple target languages, ensuring the software’s original integrity. The objective is to
balance the demands of modern software development, like adaptability, scalability, and performance
efficiency, with the complexities of burgeoning digital systems. The framework endeavors to strike a balance
between architectural integrity and multi-language, multi-platform flexibility. The nMorph framework,
especially tailored for enterprise back-end development, integrates crucial features such as ORM, Database
Connectors, a dedicated security layer, and essential tools like Configuration mechanisms and Exception
Control and Logging. Architecturally, it leans on the Haxe transpiler to transition between languages
like Java, C#, and PHP, and ensures compatibility with databases such as Oracle, SQL Server, MySQL,
and PostgreSQL, as well as servers like IIS, Apache, Tomcat, and Glassfish. To evaluate its real-
world usability, a controlled empirical experiment was conducted. Novice developers participated in a
simple banking-like transactional exercise using the nMorph framework in comparison with traditional
programming languages. Results from the empirical study indicated that participants, on average, took
15.19% longer when using nMorph in contrast to conventional programming languages. However, the time
investment was counterbalanced by the benefits of multi-language and multi-platform software outputs using
nMorph. The study also highlighted the nuanced challenges faced when transitioning to nMorph, especially
contingent upon a developer’s foundational language. This research illuminated the intricate interplay
between perceived task difficulty, individual language proficiency, and distinct software development phases.
Future directions in research will delve deeper into real-world applications, aiming for continual refinement
based on user feedback and comprehensive case studies.

INDEX TERMS nMorph framework, transpiler-based architecture, enterprise back-end layers, multi-
programming language software, object-relational mapping (ORM), software architecture, software
development, Haxe.

I. INTRODUCTION

Software development in the modern age is characterized by a
multitude of variables, including the demand for adaptability,
scalability, and performance efficiency [1]. As software
systems become more intertwined and complex, choosing

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina

the correct architecture is crucial. Architectural designs
provide a high-level perspective, defining components and
their interactions and, ensuring quality attributes such as
compatibility, scalability, reliability, maintainability, and
performance.

The increasing complexity of the digital world makes
it imperative for foundational structures to support the
continual adaptation of these systems. Structural models

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

124386

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0001-8648-7865
https://orcid.org/0000-0003-0942-673X
https://orcid.org/0000-0002-3685-3879

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

perceive software architecture as a composition of compo-
nents connected with aspects, such as configuration, style,
constraints, and semantics, captured using Architectural
Description Languages (ADLs). These ADLs simplify the
depiction of components and connections and foster effective
communication among stakeholders [1].

Furthermore, the practice of software design remains
intricate and often result in suboptimal solutions. To address
this issue, we introduce the notion of multi-programming-
language software. The same software was concurrently
developed in multiple programming languages. Such devel-
opments can be expensive and error-prone, necessitating the
introduction of a new approach.

The concept of multi-programming language development
marks a paradigm shift in the conception, design, and
execution of software projects. This is further underscored
by predefined architectural design models, such as model-
view-controller (MVC) [2], Service-Oriented Architecture
(SOA) [3], and microservices [4] which are abstract solutions
for recurring software challenges.

In a previous work titled “Transpiler-Based Architecture
Design Model for Back-End Layers in Software Develop-
ment” [5], we delved into the intricacies of implementing
transpilers in the back-end layer of a software architecture.
That proposal aims to revolutionize the traditional models
of software design by enabling the automatic transforma-
tion of business logic and back-end components from a
single source code into diverse equivalents using distinct
programming languages. Such innovation was not merely
academic; it spoke directly to the current challenges faced
by developers in addressing a dynamic, multi-platform digital
ecosystem.

However, any revolutionary architectural model requires
practical tools to enable its effective adoption by the
developer community. Although the conceptual advantages
of a transpiler-based architecture are clear, the lack of
an actionable framework could potentially impede its
widespread adoption. Recognizing this gap, we embarked
on the journey to actualize the transpiler-based architectural
vision, culminating in the ‘“nMorph framework.”

The nMorph framework seeks to transcend the theoretical
realm and venture into a practical implementation. This
toolkit has been meticulously crafted, encompassing a robust
set of tools that streamlines the transpiler-based software
design model [5]. Designed with the developers in mind,
it provides a seamless interface to facilitate coding in a uni-
fied, translatable programming language. Such a framework
enables software to be written once and, when necessary,
transpiles it into various target languages, preserving the
integrity and functionality of the original design.

The advent of the nMorph framework is not merely a
response to the theoretical model proposed earlier but is a
testament to the evolving needs of the software development
landscape. Multi-programming language development is no
longer a distant vision but an imminent reality, with myriad
applications ranging from enterprise software suites and

VOLUME 11, 2023

government projects to versatile digital platforms catering to
a global audience.

This paper offers readers a comprehensive insight into the
nMorph framework, starting from its foundational principles
rooted in the previous transpiler-based architectural design
model, to its design, features, and potential applications.
Our objective is to present not only a toolkit but also a
transformative methodology that has the potential to redefine
multi-platform software development.

A. DEFINITIONS

As a formal definition, the “nMorph framework” is a
cutting-edge solution in the realm of multi-programming-
language software development. It allows developers to code
in a unified language, which can then be transpiled into
multiple target programming languages while preserving
the software’s original integrity. Beyond mere language
translation, nMorph addresses the challenges of adapt-
ability, scalability, and performance efficiency in modern
software demands. It is particularly tailored for enterprise
back-end development, integrating features such as ORM,
Database Connectors, and a dedicated security layer, all
underpinned by the Haxe transpiler. This framework is
consolidate the balance between architectural integrity and
the flexibility required for multi-language, multi-platform
development.

“Multi-programming language software” refers to soft-
ware applications or systems that are developed in multiple
programming languages concurrently and in their entirety.
In this context, the software isn’t just incorporating com-
ponents from different languages, but rather, has complete
parallel implementations in various languages. Each of these
implementations encompasses all features and functional-
ities, allowing the software to be available in different
programming languages, capitalizing on the unique strengths
and capabilities of each language.

B. OBJECTIVE

This study introduces the nMorph framework, a ground-
breaking design aimed at transcending traditional boundaries.
By leveraging the power of transpilers, nMorph promises
a unified business logic layer that can be transpiled across
multiple programming languages, thereby ensuring func-
tionality consistency. This approach not only simplifies the
development process but also enhances maintainability and
adaptability in the future.

Modern enterprises requires software platforms that
are adaptable, maintainable, and future-proof. To address
this need, we present a pioneering approach to software
architecture-using a high-level transpiler language for craft-
ing the business logic layer of enterprise systems. This
approach ensures that the logic layer can be transpiled
seamlessly across various target programming languages.
Consequently, equivalent source code components emerge,
each in a distinct programming language but are functionally
analogous.

124387

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

C. SCOPE
The crux of our proposal is not just about transpilation.
Beyond this, the framework requires the following:
o Generic libraries for consistent data types and cross-
cutting methods.
« Diverse database connection methods, eliminating the
need for re-writing code.
« Differentiated execution mechanisms for server applica-
tions, ensuring native performance.
o Object transference through code generation to aid user
interface integration.
o Post-compilation methods, artifact adaptation, post-
transpilation code injection, and package generation.
o In the following sections, each component will be
elaborated upon, providing an in-depth understanding of
their integration and operation.

D. RATIONALE

Given the multi-platform capabilities of languages such as
Java (via JVM) [6] and .net Core [7], one might question
the relevance of our proposal. Additionally, with cloud
deployments increasingly obfuscating back-end intricacies
and protocols such as HTTP fostering interoperability, why
pursue multi-language compatibility?

We posit that, while many languages offer multi-platform
support, specific application scenarios demand source code in
multiple languages simultaneously. While integration across
platforms is feasible, there are several reasons for validating

our approach:
o Customization: Enterprises often prefer specific pro-

gramming languages and databases aligning with their
current technological investments.

o Technological Longevity: Enhancing the software’s
future relevance without reprogramming presents signif-
icant long-term cost savings.

o Brand Independence: Our model offers freedom from
global brands or service providers, enabling software
migration between technologies without re-writing.

o Foundation for Future Research: Our multi-language
programming approach lays the groundwork for other
related research areas.

E. CONTRIBUTION
Traditionally, software architects have limited options and
often bind them to long-term dependencies. Redundant
programming across languages is impractical. The nMorph
framework challenges the status quo. By using a transpiler for
business logic programming, developers write their solutions
once, transpile them effortlessly to various languages. Such
flexibility promises broader compatibility and structuring,
primarily focused on back-end development, given the
ubiquity of front-end technologies, such as HTML.
Although the study identifies specific application scenarios
substantiating our design, it does not restrict other solutions
from harnessing the proposed benefits. Importantly, our focus
is not on creating a new transpiler but on utilizing existing

124388

ones to structure this innovative software architecture design
and affirm its feasibility.

F. RESEARCH QUESTIONS
« In the context of multi-programming language software

development, how does the transpiler-based approach of
the nMorph framework demonstrate feasibility and effi-
cacy compared to traditional programming languages?

o How does the implementation of the nMorph framework
influence the experience and efficiency of developers,
especially in comparison to commonly used program-
ming languages (C#, PHP, or Java) for business logic
development?

o Considering the transition between the nMorph frame-
work and traditional programming approaches, to what
extent does a developer’s language proficiency impact
the adaptability, scalability, and performance outcomes
in software construction and practice?

G. ABOUT THIS WORK

In the subsequent sections, we delve into the design
principles of the nMorph framework, its core components,
and its unique capabilities. Practical examples elucidate
how the framework can be deployed in diverse scenarios,
underlining its versatility and robustness. We also explore the
synergies between the previously proposed transpiler-based
architecture design model and the nMorph framework,
highlighting how the latter actualizes the former’s vision.
Finally, we reflect on the broader implications of this toolkit
for the future of software development, setting the stage for
further research and exploration in this intriguing domain.

In this document, the term “transpiler”” is prominently
utilized, alongside several associated terms that, in essence,
convey the same meaning. These synonymous terms encom-
pass the transpiler, transcompiler, source-to-source compiler,
s2s compiler, and cross-compiler. Throughout the diverse
sections of this paper, the term “‘translation” is employed to
denote syntax transformations. Nonetheless, it is imperative
to highlight that this term is not formally recognized as
a direct synonym. Its usage can be ambiguous, potentially
overlapping with domains outside computer science, such as
linguistics or education.

Although various methodologies exist, including auto-
matic code generation techniques, template-based code
generation, domain-specific languages, and even software
generation based on artificial intelligence methodologies,
which can generate outputs across multiple programming
languages, this study specifically focuses on the application
of a transpiler. This is viewed as the central component of
the novel software architecture design paradigm. Prospective
research endeavors may integrate or amalgamate these
techniques to enhance the design model delineated herein.

This investigation does not venture into the crafting of
a novel transpiler or delve deeply into the intricacies of
the source code or the syntax translation procedure. Rather,
its emphasis lies in defining design elements that leverage

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

the advantages of integrating a transpiler within the coding
process and execution pipeline of a transactional application.

As elucidated in this document, the phrase ‘multi-
programming-language software’ alludes to the practice of
constructing software by concurrently employing multiple
distinct programming languages throughout the software
development lifecycle.

The remainder of this study is structured as follows.
In Section I, the introductory section (currently under
discussion) provides an overview of the background, objec-
tives, scope, rationale, contributions, and research questions.
In Section II, we delve into the intricacies of the nMorph
framework implementation, elucidating its components, tech-
nology selection criteria, overarching development frame-
work, and resultant solution artifacts. Section III is dedicated
to an empirical experiment, a laboratory exercise undertaken
by a developer team utilizing the aforementioned framework.
Section IV engages in a comprehensive discussion, encom-
passing a review of the research questions, an analysis of
previously published articles by the authors, and potential
threats to validity. Finally, Section V draws conclusions
from the presented content and provides avenues for future
research.

Il. nMorph FRAMEWORK

A. FRAMEWORK VISION

A novel application development framework is proposed,
called “nMorph framework,” enabling the construction of
enterprise back-ends using transpilable languages, which,
after transpilation and integration, ensures consistent opera-
tional performance across various platform-specific compila-
tions, like .net DLLs or Java’s JAR/WAR.

This section delineates the componentes of the proposed
framework, designed for high-level functional replication in
various scenarios, with an architectural model based on a
layered pattern to comprehend the required components and
delineate their responsibilities and interactions.

The proposed development framework serves as a com-
prehensive library for software developers, providing the
essential components required to build an enterprise platform
or information system. The library is constructed in the
transpiler language to ensure universal compatibility across
various technologies. Among the core components are ORM
(Object-relational Mapping) & Database Connectors, which
bridge the application’s logic with relational databases
through unified connectors, abstract the specifics of database
engines and promote a single high-level framework for
all technologies. The framework also includes a security
layer the offers methods for encryption, authentication,
authorization, and data validation, ensuring that developers
adopt secure programming practices.

Additional features include Common Methods, providing
routine functions, such as serialization, data structures,
and business logic utilities. A Configuration mechanism,
typically using encrypted text-based files, allows the setting
operational of parameters, such as database connection

VOLUME 11, 2023

strings, file paths, logging preferences, and business logic
parameters. Exception Control & Logging unify error han-
dling and logging across platforms, ensuring comprehensive
error data recording for technical review and operational
transparency. Finally, Runtime Methods enable compatibility
of business logic methods across platforms with foundational
classes and a centralized routing mechanism for exter-
nal invocations, ensuring consistent communication with
back-end proxies.

The Data Layer in the proposed architecture facilitates
the developer’s data access logic, acting as a bridge
to the underlying business logic. It encompasses a Database
Engine that integrates various transactional database engines,
enabling users to select their preferred database systems. This
layer allows data storage and query processing by utilizing
database objects, such as tables, views, and procedures.

Notably, developers can embed business logic directly into
a database via stored procedures, which limits portability
across different database engines in the native database lan-
guage. Hence, to ensure seamless database engine transitions,
the use of database-specific stored procedures should be
minimized, and ORM could support DDL in the transpiler,
enabling automatic generation of database logic objects. The
Business Data Access component introduces programming
objects mirroring database entities, with columns translated
to fields in code and relationships interpreted as arrays
from related tables, all leveraging ORM’s standardized query
methods.

The Business Layer of the architecture is designed
for programmers to implement specific solution methods
directly, making it the primary interface for source code
integration. At its core, the Business Logic component
allows developers to embed and customize algorithms that
are essential for the functioning of enterprise platforms or
information systems, setting business rules and conditions
using business objects, and the data access layer. Business
Objects provide a means to create compound or extended data
structures necessary for processing information in business
logic or for input and output parameters.

The Business Services component auto-generates the
exposure of specific methods flagged in the business logic,
acting as the interface for nested implementations, integrating
calls to the framework to manage routing and handle requests
throughout their lifecycle, and serving as the sole connection
point for these implementations.

Nest Implementations refer to the various methods
employed by target technologies to expose back-end func-
tionalities to the front-end. These transpiled functionalities
can be expressed through multiple nest implementations
using single source code. For instance, with C# as the
target transpilation language, business logic methods can
be exposed using different technologies such as XML Web
Services, WCF, Remoting, WebApi Controllers, and REST
Services. Despite distinct foundational technologies, these
methods maintain equivalent business logic. The greater
the variety of nest implementations incorporated into the

124389

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

framework, the more adaptable the software is to different
operating platforms.

Additionally, as the transpiler expands to support new
programming languages and specific nest implementations
for them, existing source codes can be recompiled into
the technology with minimal programming effort. While
one might assume that nest implementations solely revolve
around HTTP communication compilation or specific archi-
tectural patterns, they can also encompass areas such as
asynchronous batch processes based on schedules, TCP
communication, or cloud functions for serverless schemes,
such as Azure Functions or AWS Lambda, which can handle
both HTTP requests and event-driven tasks.

The Presentation Layer, while primarily focusing on back-
end development, integrates the key front-end elements.
Within this layer, the invocation framework is incorporated
to facilitate serialization, message packaging, exception han-
dling, and service invocation, ensuring compatibility with the
exposed back-end services. Moreover, methods equivalent to
the exposed business logic are generated for easy front-end
invocation, and objects used for input and output parameters
are developed in the programming language of the user
interface, with multiple proxy versions tailored for various
technologies. In addition, front-end developers handle the
user interface layer, embedding specific presentation logic
and data manipulation while utilizing proxy methods to
display data or initiate transactions, thereby ensuring a
cohesive system operation.

Cross-component tools play a crucial role in the system
architecture. PostBuild Utility is pivotal for compiling
artifacts specific to each execution technology, spanning
the entire back-end layer and operating based on the
Framework Concept process, primarily focusing on the
sequential execution of the Preparation Process, integra-
tion of the runtime framework, and generation of back-
end proxies. When employing the database-first strategy,
where database design precedes programming, the DB
Gen component becomes essential. It can automatically
read the database table and view structures, subsequently
generating the necessary programming in formats com-
patible with the generated ORM. Each database engine
supported in the generation requires a distinct version of the
DB Gen.

Note that not all the components described in this section
will be implemented in the initial version. Their incorporation
may have proceeded gradually.

B. TECHNOLOGY SELECTION

The nMorph framework is a reference implementation that
puts the architectural design model proposed in previous
studies into practice. This implementation is beneficial for
determining the feasibility of the proposal and for measur-
ing the operational capacity that can be achieved, aiding
evaluations and experimentation in real-world scenarios.
The criteria used for reference implementation were as
follows:

124390

1) THE TRANSPILER

The core component of the proposed architectural approach is
the transpiler choice. Various transpilers in the market serve
specific purposes [8], with common uses sich as converting
linear algorithms to parallel ones; transpiling front-end
JavaScript variants such as Typescript, CoffeeScript, and
Dart; aiding in the migration of legacy systems to new
specific languages; adjusting industrial electronic circuits,
and other unique scenarios. A few years ago, a transpiler
named Haxe was introduced [9], and in this study, it boasted
the broadest compatibility with popular programming lan-
guages in the enterprise application development market.
Haxe supports transpilation to C#, Java, C++, Python,
and PHP, among others, thereby making it suitable for the
envisioned objectives.

Haxe is an open-source transpiler accompanied by a
suite of tools and a runtime environment. It translates
source code written in the Haxe programming language,
which is object-oriented and strictly typed, to any of its
target languages in a “‘one-to-many”’ fashion. Originally
designed for multi-platform game development, Haxe’s
application expanded over time to support various program-
ming languages, even though its primary usage today is
not for enterprise applications. It allows for algorithmic
translation that retains the object-oriented structure in the
target language, while integrating unique execution features
and ensuring syntactic equivalence between languages.

Given its compatibility with the languages frequently
employed in enterprise applications and its versatility in
source code translation, Haxe was chosen as the transpiler for
the development of the proposed framework. Future iterations
of this research might utilize different transpilers to produce
reference implementations using alternative technologies.

HaxeLib, Haxe’s library management tool, was considered
for its essential libraries, which are pivotal to the project’s
goals. Key libraries include hxjava for Java transpilation,
hxcs for C#, hxcpp for C++-, haxe-crypto for encryption and
security support, and hscript for runtime scripting, among
other complementary libraries.

2) DEVELOPMENT IDE

Similar to many other programming languages, Haxe struc-
tures its classes and methods within text files. Consequently,
several tools assist developers in coding using Haxe by offer-
ing contextual aids, visibility of classes and methods, and
code generation. For this project, HaxeDevelop was chosen
because it focuses on this specific language. HaxeDevelop,
a fork of the FlashDevelop IDE, offers a unified project
structure and file management system, making it ideal for
comprehensive compilation of components in a singular
sequence. Its visual assistance provides developers with an
edge, particularly when implementing a business logic layer.
Although the solution was designed using HaxeDevelop,
developers can utilize any IDE of their choice, because the
compiler operates as a command-line program, callable from
any tool, or even manually.

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

3) TARGET LANGUAGES

For the reference implementation aimed at determining the
operational feasibility of the referred architectural design
model, the selection of the target languages that best enable
testing and experimentation is crucial. At the time of the
study, Haxe supported transpilation to languages such as
Javascript, C++4, C#, Java, JVM, Python, Lua, PHP, Flash,
Hashlink, and NekoVM. Three languages were chosen from

this list.
o Java was selected because of its widespread adoption

across devices and servers, facilitated by its virtual
machine scheme which is compatible with almost
all platforms, including cloud environments. They are
extensively used for back-end development in enterprise
applications.

o« C# was chosen for its comprehensive support of
Microsoft technologies, which are widely adopted,
especially in the business sector and cloud. Also .Net
Core is considered because it offers compatibility across
various platforms beyond the Microsoft ecosystem, and
is a common choice for enterprise back-end application
development.

« PHP, an open-source native tool that runs in the
interpreted mode, is widely used for dynamic web
projects without inherent licensing costs. While it is
not typically used for back-end application development
because of its web-centric nature, it was chosen for
this project to demonstrate its potential equivalence in
back-end execution to other selected languages.

Although other supported languages, such as Javascript

with Node.JS or Python with Flask, are also prevalent and
versatile, this study limits its scope to the aforementioned
languages. Further research should explore other languages.

4) DATABASE ENGINES

For reference implementation on the nMorph platform, it is
essential to ensure compatibility with widely used enterprise
relational database management systems (RDBMS). The

chosen databases included the following:
o The Oracle Database [10], renowned for its robustness,

stability, and pioneering data management capabilities,
is a top choice among businesses owing to its vast
compatibility and comprehensive support.

o The Microsoft SQL Server [11], another widely adopted
RDBMS in the business sector, is known for its
transactional support, scalability, user-friendly graphical
environment, and performance. Recent versions have
supported non-Windows platforms.

o PostgreSQL [12], a free open-source database, has
recently gained popularity owing to its use in
open-source software projects and performance flexibil-
1ty.

e MariaDB [13], another open-source solution, is
lightweight, user-friendly, and provides vast community
support. By supporting MariaDB, there is inherent
support for MySQL [14], its licensed counterpart.

VOLUME 11, 2023

While other relational and non-relational databases are
gaining traction in the enterprise landscape, this study limits
its focus to these databases. Future studies should consider
supporting other databases.

5) APPLICATION SERVERS

The first version of the nMorph platform supports vari-
ous application servers contingent on target transpilation
technology:

o For the .net framework, given its Windows OS depen-
dency, the applicable application server is the Internet
Information Services (IIS), supporting only the versions
above .net Framework 4.0.

e« For .net Core, both IIS and the multi-platform
Kestrel can be employed, running on Windows, Linux,
or MacOS, considering versions 3.1 and 5.0.

« Java technologies are compatible with several applica-
tion servers and JDKs, including:

-- Tomcat 10 with JDK 11, Tomcat 9 with JDK 8.

-- TomEE 9 with JDK 11.

- - Glassfish versions 5.1 and 6.1 with JDKs 8 and 11,
respectively.

-- WebLogic, WebSphere, and Wildfly 24, all with
JDK 8. Java application servers can run on various
operating systems, including Windows, Linux, and
MacOS.

o For PHP, the primary support is for the Apache
+ PHP combination. However, it is adaptable as a
component on numerous application servers, such as the
IIS with FastCGI. Only PHP versions above 7.0.0 are
supported, aligning with the servers’ supported versions.
Depending on installation compatibility of the web
server, PHP can run on Windows, Linux, and MacOS.

Although these are verified application servers from the
research project, the compiled product might also function
on other platforms with similar execution parameters.

C. FRAMEWORK BUILDING PHASE

The implementation process involved constructing a software
solution based on the Haxe compilation architecture, while
adhering to all aspects and components of the transpiler-based
design model [5]. This necessitated the creation of several
software subprojects to implement each component.

To initiate this process, the layered design diagram defined
in the transpiler-based design model was referenced, which
determined each stage of the tool construction. The initial
implementation serves as the foundation. Thus, a framework
construction project was planned and executed.

Figure 1 illustrates layers and components implementation
diagram. Libraries including nMorph.common, nMorph.esb,
nMorph.orm, and nMorph.svc were developed for the
development environment layer, following the conceptual
guidelines set out in the previous section. This endeavor
was time-consuming because of the extensive technical
specifications laid out for these components, particularly

124391

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

in constructing the ORM and profiling the corresponding
connectors.

User Interface

Presentation
Layer

Proxy Objects | | Proxy Objects
for Javascript for C#

Proxy Objects
for others

Nest

Implementations Nest for .net WCF © Nest for .net Core| ' Nest for Tomcat,

1 ASMX / WebApi WebApi Glassfish, others
Nest for Batch Nest for Azure
Processes Wity 4Pl Functions
Nest for AWS Nest for TCP
Lambda Functions Server i GRS
3
Business Business @
Layer Services S
o
Business Business =
Logic Objects =
=
<
Data o
Layer Business Data o
e Access Database)
Engine 2]
S
Development ORM & Cormmon
Environment Database Security Methods
' connectors
Exi ion "
ceptlo Runtime

control and
Logging

Configuration Methods

FIGURE 1. Framework libraries.

Concurrently with ORM construction, a data access layer,
nMorph.db, was developed. This layer delineates objects
corresponding to the database tables and views. From this
model, the nMorph.db_gen tool was created to connect
to a development database, discover its structures, and
automatically generate objects for all tables and views,
thereby laying the groundwork for business logic operations.
This layer was then subjected to autogeneration.

Subsequent efforts have focused on business objects and
logic projects. The former specifically aims to assemble
complex structures that merge information from various table
sources and are beneficial as data transport structures at the
interface. Business logic defines the standard for generating
methods the proxy library. This was implemented using the
nMorph.objects and nMorph.logic libraries.

Finally, the Nest implementations were built by creating
specific solutions in each target language and devising
mechanisms to ensure compatibility of compiled artifacts
in transpilation so that they can be directly executed as
services. This layer also auto-generates the proxy, producing
methods and objects analogous to business logic and objects,

124392

but on the user interface side, significantly facilitating their
use. It should be noted from the referenced figure that
not all the theoretical elements of the proposed design
model have been implemented. The realized elements are
highlighted in green in the chart. Non-critical components,
which will be considered in future framework enhancement
and experimentation studies, are omitted.

Construction of the framework demanded extensive archi-
tectural components and code generation development.
The overarching concept is used to enhance developer
productivity ensuring that the written code consistently adds
business value and does not just fulfil structural architectural
requirements. Figure 2 shows the outcomes of the project
folder implementation and the corresponding components of
the design model. This correspondence is vital for bridging
the conceptual and theoretical aspects with the specific
framework implementation elements.

Following this exercise and after several prototype devel-
opment practices in the lab, the feasibility of its operation
for building transactional applications was validated. This
preparation lays the groundwork for the formal com-
mencement of subsequent experimentation stages, intending
that these experimentation exercises are viewed as real-
world experiences, gradually refining the procedures of the
constructed nMorph framework.”

D. FRAMEWORK LIBRARIES DETAILS

1) nMorph.common LIBRARY

This represents the foundational library for platform oper-
ations. This library encompasses all the essential Haxe
compilation elements along with classes and methods com-
mon throughout the architectural implementation. Notable

features include:
o Configuration Implementation: Through reading and

writing of flat files, this system ensures that the primary
tool operation parameters are not hard-coded but are
managed externally via files. This eliminates the need
for recompilation or application changes. Users can
define the unique configuration parameters as required
for each component.

« UUID/GUID Support: Given that certain languages lack
native support for data types, such as UUID (Universal
Unique IDentifier) or GUID (Globally Unique IDenti-
fier), a method was introduced to offer this support. The
methods generate random numbers adhering to the RDC
4122 standards [15] and others, ensuring broad support
across target languages.

« Exception Control Objects: These include methods that
enable the definition of security-specific objects, such as
logic and security exceptions. A helper function allows
developers to integrate managed exceptions anywhere
in the backend structure, differentiating them from
platform or infrastructure-specific exceptions.

o Int64 Data Type Handler: Especially beneficial for
platforms supporting Int64 natively, as it assists with
conversions to floating data types.

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

nMorph Framework
Solution Folders

Corresponding Design
Model Component

References
1_ui I
G2 client.html Web User Interface
¢ client.winforms
e proxy Auto-generated Proxy
i
Z‘IOQ C Service Publisher M
: logic
B #» Business Logic
t objects .
+ Services
REIVETS i | Business Objects Se"\""e';S:
. i esf
3 SEIVICE Implementations’
3_data for .Net, for
! db Data Access Java, for PHP
—
4_batch Deployment
& batch i..| Batch processes I\Sr;i:;gtes
5_framework exposure
t common Development Service
+ b framework: configuration
es nmorph.common
5 orm nmorph.orm
nmorph.svc
] SsvC -/
/)
6_tools
E db_gen
t gentool
£ jdk Tools:
) Tools, JDKs for
£ jdk-1.8.0_261 L independent Java
© idk compilation, Code
J -11.0.11 Generators, Utilities,
& linker Database first code
generator
: nuget
& vswhere
db_gen.bat _J
7. test)
build_dev.hxml
build_fast.hxml
build_prod.hxml
H Compilation
clean_build.hxml - Aummsﬁon R
£T compilation json HXML
myproj filter
myproj.mapper
TODO.txt
—

FIGURE 2. Framework folder structure.

o Serialization Methods: Utilizing Haxe’s native serial-
ization, it adopts a sequential reading format, opti-
mizing efficiency, particularly during reading. This
is particularly advantageous for processing incom-
ing service messages and reading the configuration
files.

o Interface Definitions: These can be implemented in
classes across subsequent layers.

Within the postBuild program, this is the sole component
where the Haxe-generated code, acting as the foundational
execution library, is not cleaned. Consequently, once com-
piled in the target language, this library remained the
only component housing execution platform element. The
subsequent layers directly utilize these elements, focusing
solely on their specific logic.

VOLUME 11, 2023

2) nMorph.svc LIBRARY

This library implements foundational methods useful for
revealing nMorph’s native services. nMorph’s native methods
pertain to its ability to offer web services with Haxe’s
inherent serialization, diverging from the predominantly used
JSON or XML in most technologies. However, this does not
indicate that this is the only choice. The PostBuild process
also produces services compatible with other serialization
methods in target technologies. However, native serialization
is anticipated to perform better, enhance data transportation
security, and streamline the generation of communication
layers to clients in a unified manner.

Within this library, the following components are found:

« Request Object: Incorporates session and security vali-
dations and a list of logic method calls, allowing multiple
logic calls in a single HTTP invocation. This boosts
communication channel efficiency and execution speed.

« Response Object: A processing outcome message,
an error code message (if any), and a result value list,
capturing the outcome of each invoked logic method.

« Logic Method Call Object: Specifies the module, class,
method, and parameters used for the dynamic method
call.

« Result Information Object: Dictates the result returned
by logic individually.

o Router Class: This is the core processing method for
incoming HTTP requests from any target technology.
This is the entry point for external calls into the
internally developed Haxe logic. This method adheres

to the process illustrated in Figure 3:
-- The HTTP request, in textual format within the

message body, arrives and enters the router for
processing.

-- The received text is deserialized, expecting a
Request Object.

-- Session and security validations ensure the request
validity. Invalid requests are denied by presenting a
response with an error message.

-- Given the ability to make several logic method calls
in one request, each is invoked accordingly.

-- The initial invocation step involves the use of
reflection for locating the class that implements
business logic. If the class is absent within the
execution environment, an error message halts
processing.

-- Subsequently, an instance of the identified object
holding the business logic, is created dynamically.
These objects are presumed to initially have a
parameterless constructor.

- - Invocation parameters are prepared in their respec-
tive formats for dynamic entry into the business
logic method.

-- Using Reflection methods for dynamic class and
method searches, ensuring compatibility with all
target technologies, the chosen method is invoked
dynamically. Failure to locate the desired business

124393

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

7

HTTP Request
(Body)

l

Deserialization

l

Security
Validation

%

Yes

No
For each Resolve Class —>|Create Instance —>{ Fill Parameters
Method Call

Add object to IAdd return value| Call Logic
the Array to object Method

Success
Message

I

Serialize Return
Object

Error Message

HTTP
Response
(Body)

FIGURE 3. Router process.

logic method results in an error message and halted
processing.

-- The business logic method’s return value is cap-
tured and added to an object housing each method’s
response.

- - These methods are appended to the response array,
ensuring that they are included in the result list
when multiple invocations occur.

-- Once all requests have been processed, an object
with a success message and the results from all
invoked methods are generated.

-- If processing errors arise, global exception capture
occurs. Exception management methods produce
an error code response. Error codes differ based on
the error type. If it is a business logic or security
exception, it is deemed an intentional exception set
by the developer, so the returned message is directly
displayed to the user. For general exceptions,
interpreted as infrastructure or platform errors, a log
file is generated, and only the file name is shown for
future reference.

-- The response object undergoes serialization via
Haxe’s native serialization method.

-- It is handed over to the target technology to be
relayed to the client as a response body. It is

124394

anticipated that the client possesses the necessary
methods for processing the deserialization of the
response and data utilization at the user interface.

3) nMorph.orm LIBRARY

This library implements an Object-Relational Mapping
(ORM) to enable the use of classes and methods for
executing queries and transactions on a relational database.
Non-relational databases have not yet been considered.
It auto-generates SQL statements in the native language of a
running database engine, incorporating transactional control,
change detection, and unified recording. This simplifies the
programming of the business logic and other layers within the
programming structure. This library provides developers with
rapid programming, versatility, and execution efficiency.

As a library implemented in Haxe, its implementation is
also transpiled alongside business logic. Therefore, it can
execute statements in the database equivalently across all
target programming languages and supported databases. This
generates a broad range of foundational technological support
for selection and interchange.

The design of this tool is generic and agnostic to the
database engine, which means that, by adding connectors for
new database engines in the future, its operational support can
be expanded without the need to alter the programming logic
that utilizes it.

In Figure 4, the internal components of the implemented
ORM are shown. These are detailed below, from bottom to
top, with reference to the diagram.

Business Logic Layers

Business Logic Layer Business Objects Layer

Data Access

Business Data Access Layer @rnErter 6]

ORM

Object Change Tracker

Object-based SQL Language

Query Generator Object-Relational Mapper Base Classes

Database Connectors Configuration

Database
Engine

FIGURE 4. ORM components.

VOLUME 11, 2023

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

« Database Engine -- The primary class is ModelObject, which imple-

-- The ORM design allows for the use of any relational ments variables for defining columns to map,

database engine that adheres to SQL standards for
connectivity to the tool and is supported within the
nMorph implementation.

Developers will integrate their tables, views, and
other elements within the database to work with
them during development and runtime. The current
ORM concept is based on the database-first strat-
egy.

Supported databases currently include SQL Server,
Oracle, PostgreSQL, and MySQL/MariaDB.

« Database Connectors
-- While the ORM’s design is intended to be database

engine agnostic, support for each database engine
brand intended for nMorph must be added. This
component provides native connection methods for
each target transpilable language. Connectors aim
to offer generic implementations so that ORM can
connect with a specific language and execution
technology.

This component also includes the implementation
of specific SQL statements for the supported
database engine, if required.

After the transpilation process, during the PostBuild
process, the database connectors were merged
with the main source code through code injec-
tion techniques. Thus, when the platform’s native
compilation is executed, an ORM with native
connections to supported databases is available.

« Configuration
-- For database connectors to operate, appropriate

parameters are required to establish a connection
with the database. This component defines the
essential parameters for assembling a connection
string depending on the supported database engine,
making it configurable as part of the general
nMorph configuration strategy, based on configu-
ration files.

The ORM configuration objects define parameters
such as the database engine, execution environment
(development, testing, and production), authen-
tication type (credentials and Active Directory),
data source, service name, SID, UserID, Password,
Database Name, Port, Connection Pool Size, and
other optional connection string texts.

Depending on the operating database engine and
provided parameters, the ORM generates the
corresponding connection string for a successful
connection.

« Base Classes
-- Mapping objects, which are generated equivalent

to the database objects, require base classes that
provide them with the basic functionalities needed
to operate with ORM.

VOLUME 11, 2023

a change controller for objects with modification
tracking, generic field access for reading and
writing, and a unified recording trigger.

« Object-Relational Mapper

-- When executing a query, object mapping is a key

element in easing the task for the programming
team of the business logic layers. Developers expect
the execution of database queries to translate table
and view data into objects and then use these objects
to generate insert, update, or delete transactions.
This component is used when obtaining database
results that need to be used in business logic as
objects.

nMorph implements a scheme that allows the direct
mapping of query results to a given provided object
model, which is an algorithm that matches class
field names with column names retrieved from the
database. In this manner, any object type can be
linked, and it will automatically fill or map fields
that match in name, even if the object does not fully
match the query structure.

nMorph also offers a mapping scheme based on
a dynamic data management structure in memory,
such as QuerySet, QueryTable, QueryColumn, and
QueryRow objects. These allow information man-
agement without a defined structure and enables
the structure to change dynamically as needed. This
object structure is inspired by what is available in
.net Framework’s System.Data.DataSet library.

o Query Generator

The query generator is a set of internal methods
spread throughout the implementation, allowing the
ORM to write the final SQL code that will be
sent to the database connector for execution on the
connected database engine.

To generate the query, object-based SQL language
is used, translating its composition and instructions
into the specific SQL code to be executed. The
generated code will vary in its writing form
depending on the connected database engine and
the implementation of the corresponding connector.
Each object used for writing the object-based SQL
language has its respective SQL query generation
implementation for each database through the
SCRIPT_PART method.

In addition, developers can obtain the text corre-
sponding to the generated SQL code to view the
queries produced by the query generator.

The query generator can write queries either as a
single or multiple queries at once. The latter is
required in certain scenarios where multiple table or
view results need to be accessed in the same query
to facilitate object assembly.

124395

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

-- Invoking Stored Procedures does not generate a

particular query but uses the database’s native
calling objects.

Values incorporated within the query construction
does not use string concatenation, to prevent SQL
injection. The parameters provided as part of the
native connectors are filled using query parameters.

o Object-based SQL Language

124396

This is the visible layer for developers, through
which they can use various specialized objects to
assemble the custom queries required for construct-
ing business logic layers.

This is not an independent programming language,
but rather a library of objects that concatenate to
form queries, as if working with SQL but through
objects. Hence its designation as a language,
facilitates developers understanding.

This object library’s functional conception aims
to allow developers to assemble queries in their
programming in the same logical way they would
assemble them using SQL. Hence, all query state-
ments start using the SQL object. At the end of each
query, methods are available to execute the batch
and to obtain the resulting data.

Starting with the SQL object, sequential objects can
be concatenated for different query statements. The
main methods are SELECT, INSERT, UPDATE,
DELETE. After these statements, subsequent ones
can be concatenated, such as FROM, WHERE,
JOIN, and many others. In Figure 5, the inter-
nal object and method definitions of the SQL
object with their possible navigation and query
construction paths are provided. A clause is a main
language statement that serves as the backbone of
the query structure. Only certain clauses can follow
others. For example, the SELECT clause can only
be followed by the FROM clause. Arrows in the
diagram indicate the expected clause sequence.

A clause contains internal information that deter-
mines its uniqueness within the query. The follow-
ing details the various objects available for this
purpose:

* Source refers to a data source that, typically
refers to the internal representation of a table
or view. Within nMorph, the following sources
were implemented: AliasSource, InlineView-
Source, StringSource, TableSource, and View-
Source.

* Sentence is a method that refers to a field,
a function that can be applied to a field,
a value, a subquery, or an aggregate func-
tion. In nMorph, the following sentences are
available: Ag, Assign, Cast, FieldAliasSentence,
FieldIndexDefinitionSentence, Fn, Mt, St, Sub-
QuerySentence, and Val. The latter allows for the

incorporation of specific values into the query
such that they can be passed as parameters to the
native connector.

% A Condition is a comparison between fields
primarily used for filtering, and it can be
concatenated with several other conditions using
the AND and OR operators.

* Additionally, ConditionGroup allows for the
assembly of complex conditions separated by
groups.

* FieldSentence is a specialized form of Sentence
that specifically refers to the definition of a field
within a table or view.

% Set refers to the method that allows for the
assignment of a Sentence that has a value to
be assigned to a FieldSentence that determines
the field to which that value will be assigned.
This element is commonly used with Update and
Insert clauses.

% Field is a specialized form of Sentence that
manages a data type from the database, trans-
lated into ORM language. Among these, the
following are available: BiglntegerSentence,
BigTextSentence, BinarySentence, BooleanSen-
tence, CharSentence, DateTimeSentence, Dec-
imalSentence, FloatSentence, IntegerSentence,
NBigTextSentence, NCharSentence, NVarchar-
Sentence, RealSentence, SmalllntegerSentence,
UUIDSentence, VarcharSentence. These objects
are mainly used for building classes equivalent
to those in the database.

Once the query is assembled, various methods
are available for execution. The selection of an
appropriate method depends on the desired query
outcome. Executing any of these methods invokes
internal SQL sentence generation methods and
invokes the native connector’s methods to run the
sentence in the connected database engine. The
execution statements are as follows:

% SCRIPT: Used to generate the query in text
format. This mode does not execute the query in
the database.

* Execute: Executes the statement directly and
returns an untyped dynamic object.

* Register: Registers this query within an existing
Queue related to a change control context.

* Queue: Adds this query to an execution queue.
It does not execute at this moment but when
the query queue is executed together in a single
transaction.

% Bulk: Registers the query within an existing
Queue related to a bulk query execution.

% ReadValue: Reads a single value from the
executed query. Reads the first column and cell
of the response and returns it as a simple value.

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

Where Clause

Condition

|

Group By Clause Order By Clause

 — Array

<Sentence>

Array
<Sentence>

vlnner join / Left Join / Right Join

—

I

Having Clause

f

Source

Condition 2

Condition

Delete Clause
el Source
Select Clause From Clause
Array | 7
<Sentence> il
—
Insert Into Clause Columns Clause
> > Array
Source FieldSentencep
Values Clause
Array [
<Sentence>
Update Clause Set Clause
| Source — Array<Set> —

Union Clause

Select Clause

FIGURE 5. ORM query objects.

* ReadTable: Reads a table in the form of the
QueryTable object, where it internally represents
the information read from the query through
QueryRows and QueryColumns.

* Read<T>: A generic method that executes the
query and automatically transforms the query
result into the data type passed as a generic
parameter. It matches column names for field
mapping. The passed generic object must have
an empty constructor. Returns an array of objects
of the generic type.

% ReadOne<T>: A generic method that executes
the query and automatically transforms the query
result into the data type passed as a generic
parameter, similar to the previous method. In this
case, it only reads one record from the query
result and returns a single instance of the generic

type.

VOLUME 11, 2023

-- In Figure 6 section a, you can see examples of

queries made with objects provided by the ORM
and their corresponding queries sent to the database.

o Data Access Generator Tool

-- The object-based SQL language provides the

fundamental structure for assembling queries to
the database in a dynamic, flexible, and multi-
platform manner, as explained in previous sections.
However, its use in this form would be very
extensive, minimally automated, and complex if
a developer used it to develop business logic
layers. Therefore, there is a need for a higher level
of abstraction, built through specialized objects
based on the data model of each solution. This
is crucial for simplifying and encapsulating data
access, reducing development time and improving
code readability and comprehension for developers.

124397

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

124398

a) ORM Query examples

// Haxe
var result = SQL
.SELECT()

.FROM(StringSource.SET("ExampleTable"))
.WHERE (Condition.SET(FieldSentence.SET("Columnl"), Op.Equal, Val.string("Data")))

.Read<ResultClass>();

—— SQL

SELECT *

FROM ExampleTable
WHERE Columnl = 'Data'

// Haxe

sQL

.INSERT(StringSource.SET("ExampleTable"))

.COLUMNS ([FieldSentence.SET("ID"), FieldSentence.SET("Coll"), FieldSentence.SET("Col2")])
.VALUES([Val.uuid(UUID.newUUID()), Val.string("vall"), Val.string("Val2")])

.Execute();

== SQOL
INSERT INTO ExampleTable (ID, Coll, Col2)
VALUES ('6E2604CO-FDOF-4EAC-871F-1ADSECF5AAEF', 'Vall', 'val2')

b) ORM Typed Object usage

//Haxe
var result = SQL
.SELECT()

// Generated Object Table Source
.FROM(ExampleData.TableSource)

// Generated Object Column Definition
.WHERE (Condition.SET(ExampleData.Columnl, Op.Equal, Val.string("Data")))

.Read<ResultClass>();

—— SOL

SELECT *

FROM ExampleTable
WHERE Columnl = 'Data'

c) ORM Tracked object usage

// Haxe
var ctx = new Context();

var rData = SQL
.SELECT()
.FROM(StringSource.SET("ExampleTable"))
.WHERE(Condition.SET(FieldSentence.SET("Columnl"), Op.Equal, Val.string("Data")))

.Read<ResultClass>(ctx); // Link to the Context

rData.Columnl = "New Value";

ctx.Save();

== SQL

UPDATE ExampleTable

SET Columnl = 'New Value'

WHERE ID = '6E2604CO-FDOF-4EAC-871F-1ADSECFSAAEF

FIGURE 6. ORM example code.

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

-- Because this abstraction layer must be built based
on the data model of each solution, it cannot be
constructed as an internal part of the ORM, but
within the business data access layer, which is part
of the business logic layers.

-- Consequently, to make this concept generic and
applicable to any software project, a source code
generator was implemented to run at development
time. This generator can connect to the database
engine, and through data structure discovery state-
ments, it writes classes equivalent to the database’s
tables and views. This tool follows the database-
first methodology, similar to the Entity Framework.
These classes implement inheritance in the base
classes and use other ORM objects. They also
contain methods to simplify queries and fields rep-
resenting relationships, so they can be directly used
for business logic. It is expected that these objects
can be used for data transport, even for sending or
receiving information from the application’s front-
end. The generated source code is in the Haxe
language to ensure its transpilation capability and
use in the business logic layer.

- - The generation process includes the following main
elements:

* Generate a class for each table and view found in
the database.

* Generate a static instance for the Source object,
referencing the table equivalent to the generated
object. This will be used as a reference in FROM
statements, for example.

* Generate static instances referring to the
database columns, through Sentence objects
specialized in the database data types. This will
serve to reference them in query statements such
as SELECT or WHERE.

* Generate quick filter methods, such as static
WHERE functions, to directly incorporate filters
and obtain response objects.

* Generate direct query object retrieval methods,
such as BYPK, to obtain a response record based
on the primary key.

x Integrate private fields and public access func-
tions to represent each table column in fields
with equivalent Haxe language data types.

% Include array or reference type fields for repre-
senting tables that have relationships, so com-
posite objects can be built based on the
database’s relationships.

* Implement methods of tracking the Object
Change Tracker to facilitate change detection on
data and joint recording.

- - Once the data access layer source code is generated,
queries can be typed using the generated objects.
In Fig 6 section b., it is possible to visualize an

VOLUME 11, 2023

example of a query with the generated objects,
along with its SQL statement.

-- In the nMorph implementation, the data access
generation tool is called “db_gen.”

« Object Change Tracker

-- To facilitate the data manipulation process carried
out by the ORM and the work with the classes
generated by the Data Access Generator Tool,
an object called Context has been incorporated.
For all data access layer objects linked to this
object, an automatic change detection mechanism
is maintained.

-- In this way, once the developer feeds data into an
object and links it to a context, business logic can
directly and naturally manipulate the object’s prop-
erties. After making all changes, the developer can
invoke the context’s recording method, reflecting
all changes from all objects in a single transaction.
All data changed in the properties of objects linked
to the context will be detected, and ORM’s specific
statements will be automatically created to reflect
these changes in the database. Finally, the context’s
change list is cleared for further manipulation and
recording if necessary.

-- An example of context object handling is shown
in Figure 6 section c, where it is possible to see
the manipulation of an object and the final SQL
statement that would be executed in the database
engine.

4) nMorph.service LIBRARY

This library implements initialization methods for service
exposure in a unified mode for all the platforms. The primary
element is the reading of the configuration file, which is
intended to be implemented only once and to function in
all environments. The PostBuild process discovers classes
containing configuration properties and sets them in this
library through precompilation generation.

This library has been considered to incorporate code
that makes any other required element compatible for the
initialization and operation of nest implementations, in a
unified way for all embedded technologies.

5) nMorph.linker TOOL

A single root file utilizing Haxe Make technology is available
to run the build process for a solution based on nMorph. This
is a file with a .hxml extension containing various instruc-
tions and execution parameters for transpilation. Therefore,
to compile the entire nMorph project, one only needs to
execute the following command: ‘““haxe build_prod.hxml”.
This runs the entire process required to obtain the execution
artifacts, starting from a single source code. This file calls
other .hxml files, one for each layer of the nMorph solution,
and within each layer is a specific call to the nMorph.linker
component.

124399

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

This console program implements the PostBuild Utility
provided in the software architecture design model detailed
in a previous study. This utility allows the code to be
prepared prior to transpilation, after transpilation, executes
various code preparation and cleanup procedures, compiles
and generates execution artifacts, and has them ready to run
on their respective target platforms, as explained later in this
section. Throughout the nMorph construction process, this
program is called multiple times; therefore, its process adapts
based on the component calling it and its input parameters.
The execution process of nMorph.linker is as follows.

o Parameter Reading and Processor Initialization

- - The parameters are passed as initialization parame-

ters for the console program. They read parameters
from the solution’s directory folder, the current
subproject folder, subprojects referenced from the
current one, the current generation namespace,
compilation environment definition (Fast = Quick
Compilation, Dev = full development compila-
tion, Prod = full production compilation), logging
method definition (Console, log file, both), and
rendering method definition of the current subpro-
ject (PreCompile, Publish, ORM, UI, Logic, Batch,
PostBuild).

The program additionally reads general compila-
tion parameters through the compilation.json file,
which is typically located at the root of the
nMorph solution. This file defines the major and
minor version numbers with which all the solution
components will be compiled. Note that the version
management for compilation is provided by these
parameters.

If the environment is Fast or Dev, the transpilation
target folder is “out”. If it is a Prod environment,
the target folder is “‘deploy”. Based on this, the
path to the transpiled source code output folder was
determined.

« Linking for .net Framework and .net Core

124400

For .net 4.0, it compiles in all the environments,
whereas .net Core 3.1 and .net Core 5.0 run only
for the Dev and Prod environments.

The .net 4.0 preparation output folder is ““cslinked.”
The .net Core 3.1 preparation output folder is
“cscore31linked,” and .net Core 5 output folder is
“csnetSlinked.”

Regardless of their content, if these folders exist,
they are deleted before starting the process.

All transpiled codes are transferred to each pro-
cessing folder. If it is nMorph.common, the code
is transferred in its entirety, including in the base
libraries. If it is not in this library, the code is
cleaned up and only specific business logic or
specific subproject code is transferred.

For nMorph.common, a code injection process
is performed for certain libraries that must be

adapted to nMorph’s execution scheme. These are
serialization, deserialization, date management, and
byte management libraries.

For nMorph.orm, a code injection process is
performed by taking the specific connector code
from the .net platforms for supported databases.
Assembly property files were added to define
specific compilation versions.

A dynamic .net Visual Studio project was created
using a .csproj extension that includes all incor-
porated elements and defines references to other
projects.

A library restoration process is executed through
Nuget commands, referring to the generated pack-
ages .config files in the target project.

A direct compilation process is executed, by invok-
ing .net Visual Studio executable file, through
parameters that execute its compilation without the
need to open its interface. This ensures that the
compilation produces complete final publication
artifacts, and there is a usable code solution for
a user who wishes to customize it directly in
the destination source code, if needed. The final
executable product is a .dll file extension.

« Linking for Java with JDK 8 and JDK 11

Java compilation occurs only for Dev and Prod
environments, assuming that debugging and devel-
opment execution will initially be performed in .net,
and the Java solution will be produced only when a
full build is desired.

A folder with a specific JDK version will be
utilized. For example, for JDK 8, the base folder
will be “jdk8_0_261_linked,” and for JDK 11, the
base folder will be “jdk11_0_11_linked.”

For Java, to ensure the availability of specific
JDK versions, these JDK folders are incorporated
within the nMorph solution. nMorph can continue
to incorporate support for the main JDK versions
as needed. The selection of JDK 8 and JDK 11 is
because they are the main distinguishing versions
given in the application servers of this technology.
Regardless of their content, if these folders exist,
they are deleted before starting the process.

All transpiled codes are transferred to each pro-
cessing folder. If it is nMorph.common, the code
is transferred to its entirety, including the base
libraries. If it is not in this library, the code is
cleaned, and only a specific business logic or
specific subproject code is transferred.

In Java, a source code file cannot contain more than
64KB in a single line. Although this is unlikely,
during Haxe transpilation, it might happen because
of the reflection data writing that this technology
has to make it agnostic to the target technology.
This information is written in a field called ““__rtti”,

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

which internally has an XML code written in a
single line. To avoid potential later Java compilation
problems, a code subdivision process is executed,
searching for this field and dividing it into multiple
lines such that no line reaches the compiler’s
proposed maximum size.

For nMorph.orm, a code injection process is
performed by taking the specific connector code
from the Java platforms for supported databases.

A compilation file called ‘“FileList.txt” was cre-
ated. It is a text file in which the names of the files
that will be part of the compilation are described
line by line.

The Java compiler is invoked, inputting the
“FileList.txt” file and reference projects as param-
eters so that the compiler recognizes all elements
for compilation. This process generates .class
extension files.

Because subprojects are proposed as separate
components, it is necessary to unify the compiled
elements into a single execution unit. Therefore,
only a unique file containing all the compiled
elements only is generated. The final product is a
Jjar file extension

o PHP Publication

-- PHP is not a compiled language, but is only

interpreted. This implies that it does not require
a post-transpilation compilation process. Instead,
specific procedures are requiered to consolidate all
the source code into a single folder for execution as
a unified entity.

All transpiled codes are moved to each execution
folder. If it pertains to nMorph.common, then the
entire code, including the basic libraries, is trans-
ferred. If not, the code is cleaned, and only parts
related to business logic or specific subprojects are
transferred.

At the end of the entire process, all source code
is consolidated into a single executable folder,
operable from the root.

o Generation of Standard Services for Each Technology

-- Although nMorph provides a native service expo-

sure method, it is suitable for proprietary projects,
but not for third-party backend integration projects.
Standard technologies are necessary in these sce-
narios. In this step, an automated source code
generation process is executed, allowing logic
methods to be interpreted as operational methods
for the target technologies.

Automatic interface exposure generations for
ASMX XML Web Services, Windows Communica-
tion Foundation WCF, and WebApi REST Services.
The latter is compatible with both, .net Framework
and .net Core. For Java, a SOAP Web service
with Spring and a JAX-RS REST API service are

VOLUME 11, 2023

automatically generated. For PHP, a web service
exposure based on an interpreter is generated.

« Compilation of Executable Services
- - Throughout the nMorph construction process, each

the partial components of each subproject are
created separately. It is essential to incorporate
them directly into a single solution that represent
the service call entry point that the platform will
support. The corresponding nested implementation
for each technology was used, which already con-
tains integration source code and standard service
codifications for each technology.

In the final stages of nMorph construction, an addi-
tional compilation process is executed for each
technology. This compiles the nested implementa-
tion, linked libraries, and source code of the services
into a single, directly executable solution.

For .net Framework and .net Core, a direct compi-
lation with Visual Studio .net was performed using
parameters that allow this process to run without
a visual interface. The result is a solution that
is ready to run services using these technologies.
Separate solutions are available for each supported
version. For the final deployment, Visual Studio’s
publishing tools or Xcopy-based publishing can be
used.

Java-based communication relies primarily on
servlets. The nesting compilation cannot be generi-
cally performed for all application servers but lever-
ages the Servlet implementation libraries provided
by each. For Tomcat 10, TomEE, Glassfish 5.1,
and Glassfish 6.1, the CoreJakarta.java application
server library will be integrated for use with the
Jakarta libraries. For Tomcat 9, Weblogic, Web-
sphere, and WildFly, the CoreJavax.java library was
integrated for use with the JavaX libraries. As all
application-server diversity must be supported in
a single process, a separate folder and specific
compilation for JDK 8 and JDK 11 will be created.
Each compilation references the JAR libraries
compiled throughout the process, the generated
source code of the web services, and the base
servlets library of the application server. Finally,
a packaging procedure is executed, resulting in .war
file, available separately for each application server,
and compatible JDK. This file is finally deployed
on nMorph’s integrated application servers for the
developer to choose their preferred deployment or
working server.

For PHP, no additional compilation process is
required because it is an interpreted language. The
generated code is integrated into a single folder,
which is the root of the portable publication server
used for development. Thus, the code can be
executed directly. The generated PHP code can be
run on any PHP version above 7.0.0.

124401

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

¢ Generation of Back-end Proxies

-- When using native services, nMorph provides a

Typescript/Javascript front-end library for easy and
swift back-end connection. This library consists of
base and solution-specific methods.

An exemplary website was developed within a
Visual Studio solution, embedding the generated
library and reference screens. This allows the test-
ing of the entire front-end and back-end execution
chain, including database transactions and business
logic.

Regarding base methods, nMorph uses a subpro-
ject named Proxy containing references to the
Haxe libraries for native serialization and other
data transformation methods, ensuring client-server
consistency. This project was then transpiled to
Javascript. The generated source code functions
as a single functional unit; therefore, the script’s
container structure must be modified for use as an
open library across all website screens.
Concerning the solution’s specific methods, the
generator references all the business logic objects
and methods marked for exposure. In this case,
Typescript classes and methods that implement
their invocation are written. These libraries equip
programmers to call them as internal functions and
retrieve the call results for interaction with the final
screens. This framework can invoke multiple logic
methods in a single call.

After these generation processes, a Typescript
compilation process for the generated folder is
run, providing the equivalent Javascript version,
allowing the website execution.

o Generation of Configuration Files

-- Once the code is deployed, there is a root folder for

configuration files, providing a unified location for
development application servers to read the execu-
tion parameters. Configuration files were serialized
using native serialization methods. If these files are
missing in the target folder, they are auto-generated
based on the default configurations.

« Batch Process Preparation

-- Although the execution of a web application as

124402

a direct consumer of the exposed logic methods
has been largely analyzed, the back-end can also
be utilized via batch processes. These processes
are typically used for long-durations or for asyn-
chronous processing.

nMorph has a specific subproject for programming
logic methods to be invoked using this methodol-
ogy.

If targeting .net Framework or .net Core, the
compilation process of the subproject changes to
produce an .exe file. This program can be manually
executed or scheduled in the OS using the Windows

Task Scheduler or CRON in Linux, to name a few
examples.

-- For Java, a JAR file is generated, linking all incor-
porated libraries and allowing standard command
execution. This program can also be manually
executed or scheduled on the OS using the Windows
Task Scheduler or CRON in Linux, among other
methods.

-- For PHP, no specific preparation is required,
but its execution is done through direct console
commands, which finds the entry point of the batch
program.

It should be noted that nMorph’s construction mechanism
is ready to operate under Continuous Integration (CI)
methodology, allowing the entire solution to be compiled
with a single command, generating artifacts and deploying
them to the appropriate paths for automatic availability on
the chosen application server.

Currently, nMorph does not propose a mechanism for
scheduled or automated testing. This aspect could be a subject
for further investigation beyond the current research.

E. SOFTWARE DEVELOPMENT LIFE CYCLE PROCESS
CONSIDERATIONS

The nMorph framework introduces a novel approach to
designing multi-programming language software. When
unveiling its internal structure, one can discern the technical
prerequisites necessary for its construction and operational
elements that cater primarily to back-end developers. How-
ever, it’s imperative to draw a correlation between the
nMorph framework and the Software Development Life
Cycle (SDLC). Broadly speaking, the SDLC encompasses
phases such as analysis and planning, design, development,
testing and deployment, and maintenance and support.

For this examination, we’ve prepared the Figure 7, which
delineates an input-process-output schema. Here’s a detailed
elucidation:

In the ‘Input’ section, the primary input elements are the
software requirements, either from the client or from the
envisioned product. To address these, specific methodologies
and tools from requirements engineering will be employed.
The use of the nMorph framework doesn’t influence or
modify these methodologies.

The ‘Process’ section lays out the various SDLC phases.
During the analysis and planning, as well as the design phase,
prototyping tools or other preferred methods and tools will
be adopted by the team. The nMorph framework does not
influence these phases. However, in the development, testing
and deployment, and maintenance and support stages, there
are variations introduced by the nMorph framework. This
stems from the need to primarily switch development tools,
as traditional programming languages are superseded by
languages compatible with nMorph. This entails preparation
of development environments, identification of suitable
application servers for development, testing, and production

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

Requirements Engineering Prototyping and Design

Input Process Output
; } n Software Software
& Software Ana|y3|§ and Design Development Testing and Maintenance Produict Brotlict
equirements Planning Deployment and Support Veretem 4 Vierstem @

nMorph framework for Backend Layers

Multi-Programming

methodologies and tools methodologies and tools

Front-end development tools Languages software

FIGURE 7. SDLC related to nMorph.

stages, utilization of integrated development environments
(IDEs), code versioning tools, and the training of the software
development team. This is especially relevant as most
individuals may initially be unfamiliar with this emerging
technology.

It’s noteworthy that nMorph predominantly addresses the
back-end layers of software, meaning front-end layers will
be developed using the chosen programming language and
framework. nMorph automatically crafts a proxy layer, aiding
front-end developers in invoking logic methods exposed from
the back-end. Thus, they must familiarize themselves with
this to streamline their development cycle.

In the ‘Output’ section, with the integration of nMorph,
one can not only achieve a complete and functional software
but also implement it across various programming languages
simultaneously, facilitating its deployment in diverse environ-
ments.

Regarding documentation implications, quality assurance,
change control, project and time management, employing the
nMorph framework necessitates no particular alterations.

F. FRAMEWORK REPLICATION ARTIFACTS

The source code of the framework was organized and pub-
lished on GitHub (https://github.com/anfebafu-epn/nMorph)
for reference to the aforementioned implementation.

Ill. EMPIRICAL EXPERIMENT: THROWAWAY
PROTOTYPES
A. CONTEXT
The implementation of the nMorph framework covers all
conceptual elements proposed in the design model [5].
However, it is worth noting that the criteria and validity level
of the software architecture design proposal and framework
are conditioned by the generation of usage experiences
and applications, as well as the quality of their outcomes.
A greater number of practical exercises and real scenarios
will provide a better opportunity for improvement, thereby
offering stronger support and a foundation for scientific
contribution and its acceptance for widespread application.
Thus, it is neccessary to take the initial steps to establish
the practical validity of the framework’s application. It is
essential to set up different types of application and usage

VOLUME 11, 2023

exercises in controlled environments to facilitate data col-
lection, identify and incorporate enhancements, and stabilize
all components, gradually increasing the reliability of its
application and thereby gaining confidence for subsequent
larger-scale exercises.

Consequently, a laboratory test scenario was designed
involving individuals other than from the framework develop-
ment team, involving external developers. This study aimed
to test the framework components by proposing a unique
predefined exercise with defined functionalities related to
basic bank account management, allowing the establishment
of certain comparative metrics and necessary feedback. The
expected result was to have information relating to their
development experience, its operation, perceptions, and the
general acceptability of the proposal through a survey and
tabulation of practices found in the source code.

B. OBJECTIVE

Engage external programmers in a controlled testing exercise
through which a throwaway prototype is implemented.
Instructions would guide participants to implement business
logic in widely known simple banking transactions. This
implementation was to be done twice, once directly in a
designated target language and once in the Haxe language,
using the nMorph framework.

This dual implementation provides comparable informa-
tion between the solutions. Data collection was performed
through an in-depth survey and source code review, allowing
for result analysis, generating a better understanding of
its applicability, perceptions of the ease of use of the
framework, perceptions of the development team’s efficiency,
and providing an opportunity for tool stabilization. The main
objective is to gain a deeper understanding of the framework’s
application experience for programming business logic in
external actors facing the newly proposed technology for the
first time.

C. RESEARCH DESIGN

An in-depth survey method was chosen because it involves
a controlled exercise with a defined, limited, unique, and
comparable scope, based on perceptions. This allowed the
involved individuals to fill out a detailed questionnaire

124403

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

about their experience while using the nMorph framework.
The survey facilitated collection of both quantitative and
qualitative data.

In addition, the resulting source code also served for a
detailed analysis of the programming practices or issues
encountered by the participants during the exercise. This
information helped to identify patterns to improve the
stability and maturity of the tools. At the end of the exercise,
the source code solutions were not used for any additional
purposes, thus making them throwaway prototypes.

This design aimed to find prominent evidence from various
perspectives that could generate new observations regarding
the applicability of the nMorph framework. The primary
focus was to answer why developers would use certain
elements in their programming and explain the origin or
correlation of the practices effectively applied when using
new technologies.

The survey design parameters are as follows:

1) SCOPE

Development of an application with basic functions appli-
cable to a bank account to demonstrate the applicability of
implementing business logic using the nMorph framework,
compared to implementing business logic in an assigned
programming language.

2) PRIMARY METHOD

Quasi Experiment: The Quasi Experiment approach [16]
is ideal for real-world settings, such as this research.
Without requiring complete randomization or control over
external factors, this method allows a comparative analysis
between the nMorph framework and traditional programming
languages, reflecting real-world scenarios and offering direct
insights into the framework’s practical applicability.

3) SAMPLE SELECTION

An open invitation was extended to the group of participants
who met the target group. Nineteen junior developers were
enrolled. Participants were students from the final level of
the software development career. Fourteen of them completed
the survey forms after finishing the exercise activities.
Confidence intervals for the collected data were calculated
based on the actual sample size, which is an element included
in the result analysis.

4) PROCEDURE

o Recruitment of novice software programmers who
participated in the exercises.

e A draw was held, assigning a different programming
language to each participant, and choosing between
PHP, C#, and Java.

« Each participant received specific educational material
about their assigned language, in addition to specific
content on the Haxe language, nMorph framework, and
proposed ORM.

124404

« Adequate time was given to participants to review the
material and apply practice exercises to ensure mastery
of the technologies involved.

o Complementary lectures and instructions for the main
exercise to be developed were provided.

« Each participant executed the same programming exer-
cise twice. First, in the assigned programming language
and second in the Haxe language using the nMorph
framework.

o A survey form was handed out to be filled out during
the exercise, which was collected along with the source
code.

o Procedures for processing, data analysis, and informa-
tion tabulation were performed to generate conclusions.

5) DATA COLLECTION

The survey was developed in Excel. It was handed out to each
participant at the start, noting the various perception variables
of knowledge, understanding, and time consumption during
and at the end of the development process. In addition, each
participant had to submit two source code solutions: one
developed in the assigned language and the other using the
nMorph framework.

6) DATA ANALYSIS

Information from the Excel format was cleaned and trans-
ferred to a single Excel format consolidating information
from all participants. Formulas and correlation analysis were
applied to the obtained values to explain the various behaviors
and factors to be observed.

7) ACTORS IN ANALYSIS
Novice software developers who participated in the exercise.

8) MAIN RESEARCH QUESTION
To what extent is the nMorph framework applicable for
novice developers writing business logic?

9) SUB-QUESTIONS

- What are the main comparative parameters for determining
the efficiency and effectiveness of applying the nMorph
framework compared to applying a direct target language?
- What programming practices are applied by programmers
using the nMorph framework compared to those used in other
languages? - What challenges or difficulties were presented
during the study that could help improve the framework for
future exercises?

D. EXECUTION
1) Recruitment of Programmer Participants
An agreement was established with a local university’s
software programming department to invite various
students interested in participating in the project.
Nineteen applications were received, and ultimately,
14 individuals participated in the exercise from start to

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

2)

3)

end. The participants’ profiles corresponded to those of
novice programmers.

They were students at the final level of the software
programming degree. All participants had honed their
skills in algorithm creation, were familiar with various
programming languages, had experience with database
connections, and had knowledge of several software
development techniques and methodologies, intrinsic
to the professional course’s curriculum. For these
participants, the presented project was an opportunity
to acquaint themselves with new technologies and
garner experiences to prepare them for professional
projects in their future careers.

Programming Language Lottery

During the nMorph framework implementation, the
target programming languages for transpilation were
selected. Accordingly, it was imperative that a double
implementation be executed during the exercise pre-
sented to the participants. Initially, using a direct target
programming language, and then, the Haxe language
by employing the nMorph framework. This dual
approach allowed for a comparison of the experiences
in both scenarios. A virtual meeting was held with all
participants, during which a lottery was conducted, and
a programming language - either PHP, C#, or Java - was
randomly assigned to each of them.

Education on the Assigned Programming Language
Although the students had received formal education
at the university about various target programming
languages, it could not be guaranteed that they
had comprehensive and unified knowledge of the
programming language allocated to them through the
lottery. As a result, an explicit education process was
initiated to ensure equal footing for all and minimize
any disparity due to foundational knowledge. Given
that business logic typically requires a mechanism
for database connections, generating queries, and
transactions, this educational process also covered the
use of an ORM framework specific to each target
programming language to ensure comparability with
the ORM proposed within the nMorph framework.
Courses for the following primary technologies were
procured: For C#, the focus was on the language syntax
of C# and the database connection to the SQL Server
using the Entity Framework. For Java, the emphasis
was on the language syntax for Java and the database
connection to the SQL Server using JPA. For PHP, the
participants were introduced to the language syntax for
PHP and how to connect to the SQL Server database
using Propel.

Specific online video courses for these selected
technologies were acquired from specialized Inter-
net platforms and provided to the participants. An
8-week period was allocated for the participants to
autonomously augment their education. Upon complet-
ing this phase, a foundational knowledge evaluation

VOLUME 11, 2023

4)

5)

was conducted using a simple exercise to ensure that
the essential concepts were reasonably assimilated
before initiating the project’s primary exercise.
Education on Haxe and the nMorph framework

None of the participants had prior knowledge of the
Haxe programming language. Therefore, an introduc-
tory seminar on language concept and transpilation
techniques was necessary. The participants were
provided with Haxe programming language-related
documentation for progressive learning. They were
given four weeks to supplement their education on
the newly introduced technology. Subsequent ses-
sions were dedicated to the nMorph framework and
the proposed ORM, completed with live demon-
strations and query resolutions. All sessions were
recorded and provided to the participants for later
reference.

Execution of the Main Exercise

After the participants completed their education phase,
an explanatory session was held, and they were given
specific instructions related to programming a business
logic layer to implement basic bank account transaction
functions. Given their familiarity with real-life bank
transactions, the participants quickly grasped the logic
behind bank account movements. This real-world
relevance was intentionally chosen to reduce business
comprehension gaps and to allow participants to focus
primarily on programming practices while applying
languages and frameworks. At the beginning of the
exercise, participants were also provided with an Excel
survey to be gradually filled out during the exercise
and completed at its end. Figure 8 shows the design of
the instrument used to monitor the exercise execution
phase.

The exercise instructed participants to develop the
same task twice. The first consisted of development
in the programming language assigned by lottery,
and the second in the Haxe programming language.
Therefore, the measurement variables requested in
the evaluation format were made twice for the two
expected implementations.

Regarding the scope of the exercise, the specific devel-
opment requirements were as follows. The business
logic layer had to have methods for creating a bank
account, registering a deposit, registering a withdrawal,
and executing a bank transfer between accounts. The
validation program required the creation of five bank
accounts, execution of ten deposits indiscriminately in
the created bank accounts, execution of ten withdrawals
indiscriminately in the created bank accounts, and
execution of five bank transfers between the accounts.
Furthermore, there was a need to make two withdrawals
with insufficient funds to verify the validations and to
make the two bank transfers with insufficient funds to
confirm the validations. Evidence of the transactions
had to be displayed on the screen, and a procedure was

124405

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

Hoja de seguimiento de desarrollo

Nombre:

Lenguaje asignado:

Aplicacion con Lenguaje Asignado

Pivel de Tiempo de Andlisis Tiempo Desarrollo Tiempo Pruebaes (en Dificultad percibide Wivel de
(en minutos)

Conocimienta del [en minutos)
Lenguaje (1 = Hada,
10= Experto)
Capa Légkes
1. Método para crear una cuenta bancaria

Observaciones o Problemas encontrados.
minutos) {15 bbcil, 10 = dificil) Entendimiento (1 =

no entendi nada, 10

= totakmente claro]

2. Método para depbsito

3. Método para retire.

4. Meétodo para trangferencia

Proceso Consola Prueba

5. Crear § cuenlas bancanas

&. Hacer 10 depésitos indistntamente en dichas cuentas creadas
7. Hacer 10 retiros incistintamente en dichas cuentas creadas

8. Hacer § transferencias bancarias

9. Hacer 2 retiros con saldo insuficiente

10. Hacer 2 transferencias con sakdo insuficiente

11, Borrar todos los movimientos y todas las cuentas (para poder repeti el ejercicia)

Aplicacién con Lenguaje Multi-plataforma

Nivel de Tiempo de Andlisis Tiempo Desarrollo Tiempo Pruebas (en Dificultad percibids Nivel de
{en minutos)

Conocimicnta del [en minutos)
Lenguaje (1 = Nads,
10« Experto}

Capa Logica

1. Método para crear una cuenta bancaria

Observaciones o Problemas encontrados
minutos) {1 bhclt 10 = dificll) Entendimiento (1 =

no entendi nada, 10

= totalmente claro)

2. Métedo para depésit

3. Método para retiro.

4. Métado para transferencia

Process Consola Prueba

5. Crear § coentas bancarias

8. Hacer 10 depdsitos ndistintamente en dichas cuentas creadas
7. Hacer 10 retiros indistiniamente en dichas cuentas creadas

8. Hacer § transferencias bancarias

8. Hacer 2 retiros con saldo insuficiente

10. Hacer 2 transferencias con saldo insuficiente

11, Borrar 1odos los movimientos y todas 1as Cuentas (para poder repetir el ejercicio)

FIGURE 8. Survey instrument part 1.

needed to delete all transactions and database accounts
so that the exercise could be repeated later.

In the survey, the following variables were evaluated
for each requested development requirement:

o Level of knowledge (1 = none, 10 = expert)

o Accumulated time spent on solution analysis and
design (in minutes)

o Accumulated time spent on solution development
(in minutes)

e Accumulated time spent on solution testing (in
minutes)

o Perceived difficulty of the requirement (1 = easy,
10 = difficult)

« Level of understanding of business logic (1 = did
not understand anything, 10 = entirely clear)

« Text about observations or problems found during
requirement implementation

These variables were measured separately for imple-
mentation in the assigned programming language and
Haxe language using the nMorph framework.

Each participant was given access to a virtual machine
deployed on a public cloud service. All participants
had the same processing capabilities and development
tools. Each cloud virtual machine had 4 vCores, 8GB
of RAM, and 128GB solid-state drive storage. In this
way, the potential gap that might occur owing to
differences in processing capacity or the use of tools
was minimized. This mitigated any potential impact
on the execution time for each phase, which might
have occurred if each student had used their own
computer. A timeframe of six weeks was allotted for

124406

the exercise execution and submission of the developed
tools (questionnaire and source code).

The instruments were presented in Spanish to align
with the primary language of the involved novice
developers.

E. DATA ANALYTICS METHODS

The primary assessment tool was a Excel file containing the
survey and specific evaluation information for each partic-
ipant involved in the study. After completing the exercise,
we gathered 14 Excel files that provided 189 evaluation
variables collected from each participant. A program was
developed to execute an automated consolidation process
given the volume of data contained in each filled-out format.
This program reads these variables from the format com-
pleted by the participant and integrates them in a consolidated
manner into a single Excel format, enabling consolidated
analysis and easing the construction of evaluation matrices
for each variable.

Data were evaluated directly in Excel to generate graphs
and the correlation variables presented in the results.
As for the collected source code, each participant submitted
two folders. The first contained the source code for the
implementation of the exercise in the randomly assigned
programming language. The second contained the source
code of the exercise’s implementation in Haxe language using
the nMorph framework.

F. EXPERIMENT RESULTS

Figure 9 shows the criteria used for the interpretation of the
analyses conducted using the Pearson correlation coefficient.

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

Interpretation will be provided based on the notion that values
close to 0 indicate no correlation, whereas as values approach
the limits of 1 and —1, there is progressively a stronger
degree of correlation. The Pearson correlation coefficient is
denoted by the letter R. This correlation coefficient is used
for interpreting the results when comparing between various
quantitative variables collected in the study. In the graphs, the
coefficient of determination, R2, is presented to visualize how
closely one variable explains the variations in relation with
another variable [17].

e

-1 -0,5 0 0,5 1

T Inverse Correlation T

FIGURE 9. Pearson scale.

Direct Correlation T

After processing and analyzing the gathered information,
the established interpretations are presented in the following
sections.

1) ABOUT BUSINESS LOGIC

e Measurement 1: For Measurement 1 in the Business
Logic layer using the assigned language, there was
a moderate positive correlation between the perceived
difficulty and the time taken for analysis, suggesting
that higher perceived difficulty might lead to longer
analysis times. Additionally, there was a slight negative
correlation with language knowledge and a low negative
correlation with understanding.

Correlations in Analysis Phase (Assigned Language)

a R?=0.0139

R?=0.0977 14

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00

Time (minutes)

® Language Knowledge (AL) ® Percevied Difficulty (AL)
Understanding (AL) ~ weeeeees Linear (Language Knowledge (AL))

<<<<<<<<< Linear (Percevied Difficulty (AL)) Linear (Understanding (AL))

FIGURE 10. Measurement 1: Correlations in analysis phase (AL).

+ Measurement 2: In the Business Logic layer using the
Haxe-nMorph transpiler language, there was a slight
negative correlation between language knowledge and
analysis time. However, both perceived difficulty and
understanding have negligible correlations with analysis
time, indicating a minimal influence of these variables
on the analysis duration.

o Measurement 3: In the Business Logic layer using the
assigned language, during the development phase, there
was a moderate positive correlation between under-
standing and development time. However, language

VOLUME 11, 2023

Correlations in Analysis Phase (nMorph)

e R2=6E-05
(o d
SRR S H
..................................... 2 = ®
PP Y e e LYY Y900 FVVVUGN o Trre— R’=0.081
o0 ° L]
ol rensssnacbasssanassnssenlasnsssnsssasssshussasssnssnesdssssasesnasasepores ¥
.
o o® .
L] L]
L]
0 20 40 60 80 100 120 140 160 180 200
Time (minutes)
® language Knowledge nMorph ® Perceived Difficulty nMorph
Understanding nMorph ~ eeeseees Linear (Language Knowledge nMorph)

--------- Linear (Perceived Difficulty nMorph) Linear (Understanding nMorph)

FIGURE 11. Measurement 2: Correlations in analysis phase (nMorph).

knowledge and perceived difficulty showed only slight
correlations, suggesting that these factors have limited
impact on the duration of the development phase.

Correlations in Development Phase (Assigned Language)

R? =0.1653

8 .) R’ =0.0474

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00
Time (minutes)

® Language knowledge (AL) @ Percevied Difficulty (AL) Understanding (AL)

<wseeees Linear (Language Knowledge (AL)) ++++se-+ Linear (Percevied Difficulty (AL)) Linear (Understanding (AL))

FIGURE 12. Measurement 3: Correlations in developmentt phase (AL).

o Measurement 4: In the Business Logic layer using the
Haxe Transpiler with nMorph, during the development
phase, there is a moderate positive correlation between
understanding the task and development time. This
suggests that as comprehension of the task increases,
so does the time spent on development, but other factors
also play a role in the duration of the development.

Correlations in Development Phase (nMorph)

. R2=.0.3325
.
R? = 0.0957...
3o e R
°
. e Jom— !
? S E— . —
.
. reresercgyeen .
. 2
s . . : R200638
. .
.
0 20 40 60 80 100 120 140 160 180 200
Axis Title
@ Language Knowledge nMorph @ Perceived Difficulty nMorph
Understanding nMorph ++.- Linear (Language Knowledge nMorph)
-------- Linear (Perceived Difficulty nMorph) Linear (Understanding nMorph)

FIGURE 13. Measurement 4: Correlations in development phase
(nMorph).

e Measurement 5: In the Business Logic layer using
the assigned language, during the testing phase, there
was a moderate positive correlation between language
knowledge and task understanding with testing time.
This suggests that higher scores in these areas might lead

124407

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

to increased testing duration, although these correlations
do not fully determine the overall dependency between
the variables.

Correlations in Testing Phase (AL)

R?=0.2656
R?=0.2328-
. . b et .
. 3 . [¥ S |
.
)
e B T =
° R?=0.0608
. L .
.
10.00 2000 30.00 1000 50.00 60.00 70.00
Time (minutes)
® Language Knowledge (AL) ® Percevied Difficulty (AL) Understanding (AL)

++-- Linear (Language Knowledge (AL)) -+ Linear (Percevied Difficulty (AL) Linear (Understanding (AL)

FIGURE 14. Measurement 5: Correlations in testing phase (nMorph).

o Measurement 6: In the Business Logic layer using the
Haxe - nMorph transpiler during the testing phase, there
was a slight positive correlation between task under-
standing and testing time. However, the correlations
between language knowledge and perceived difficulty
were negligible, indicating no significant relationship
with the testing duration.

Correlations in Testing Phase (nMorph)

. R?=0242
.
: H i R?=0.0014
.
. .
A 'Y @
R S
. 200309
) e . . 0309,
. .
.
0 10 0 30 a0 0 60 70 80

Time (minutes)

® Language Knowledge nMorph ® Perceived Difficulty nMorph

Understanding nMorph +uuo- Linear (Language Knowledge nMorph)

Linear (Perceived Difficulty nMorph) Linear (Understanding nMorph)

FIGURE 15. Measurement 6: Correlations in testing phase (nMorph).

o Measurement 7: In the Business Logic layer using the
assigned language for the entire development cycle,
there was a moderate positive correlation between
perceived difficulty and the overall time spent across
all phases. This suggests that, as participants found
tasks more challenging, the overall development time
increased slightly. However, the relationship is not
strong enough to fully explain the variance in develop-
ment time.

e Measurement 8: In the Business Logic layer using the
Haxe - nMorph transpiler for the entire development
cycle, there is a slight positive correlation between
the understanding of the exercise and the overall time
spent across all phases. However, this relationship is
not substantial enough to indicate a clear dependency
between these factors.

o Measurement 9: The Business Logic layer, when
comparing user ratings for Assigned Language and
nMorph, the data suggests some interesting correla-
tions between understanding, perceived difficulty, and

124408

Correlations in Entire Cycle (AL)

R? = 0.0507
¢ on Z
g St R2=0.0009.
. R*=0.1381
L SU— -
50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 450.00

Time (minutes)

® Language Knowledge (AL) ® Percevied Difficulty (AL)
Understanding (AL) ++ssaees Linear (Language Knowledge (AL)
-+« Linear (Percevied Difficulty (AL) Linear (Understanding (AL)

FIGURE 16. Measurement 7: Correlations in entire cycle (nMorph).

Correlations in Entire Cycle (nMorph)

o
. R? = 0.0603
.. 2
e e R? = 6E-05
. pd =
. » ® ol R? = 0.0042
g e @, Sk et
.
. @ . L
L L
L]
) 50 100 150 200 250 300 350 400 450 500

Time (minutes)

® Language Knowledge nMorph ® Perceived Difficulty nMorph

Understanding nMorph ++evv20x Linear (Language Knowledge nMorph)

-------- Linear (Perceived Difficulty nMorph) Linear (Understanding nMorph)

FIGURE 17. Measurement 8: Correlations in entire cycle (nMorph).

language knowledge. There was a strong negative corre-
lation between knowledge of the assigned language and
its perceived difficulty, suggesting that as participants
were more knowledgeable, they found the tasks less
challenging. Similarly, increased language knowledge
correlates positively with understanding the exercise,
reinforcing the idea that expertise and comprehension
go hand in hand. Additionally, there is a noteworthy
positive correlation between understanding the exercise
in the assigned language and understanding it in Haxe -
nMorph, indicating a consistent level of comprehension
across both platforms for most participants. The other
variables display moderate or low correlations, indicat-
ing that they were relatively independent or only slightly
dependent on one another.

Variable Analysis (LA vs nMorph)

300 825 0 700 900 65 000 800 800 900 900

FIGURE 18. Measurement 9: Variable analysis.

VOLUME 11, 2023

A.B

astidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

s

Asigned nMorph

between variables Language Knowledge | Perceived Diffi iing| Language Knowledge | Perceived Diffi

Language Knowledge N/A -0.79472 0.88543 0.21605 -0.10923
-0.79472 N/A -0.67968 -0.17324 0.19096
0.88543 -0.67968 N/A 0.10128 -0.07703

0.43894
-0.26256
0.62345

Perceived Difficulty

Understanding

Knowledge 0.21605 -0.17324 0.10128 N/A -0.49994 0.45040
iculty -0.10923 0.19096 -0.07703 -0.49994 N/A -0.44637
0.43894 -0.26256 0.62345 0.45040 -0.44637 N/A

FIGURE 19. Measurement 9: Correlations.

o Measurement 10: Focusing on the Business Logic layer

FIGURE 20.

using the Assigned Language, the data highlights how
participants allocated their time across different phases
of the prototype’s implementation. Specifically, the
participants spent 33% of their time in the analysis
phase, a significant 47% in development, and 20%
in testing. Although the software development phase
consumed the most time, it is noteworthy that the
combined time spent on analysis and testing was
substantial, emphasizing the thoroughness applied in
both the preparatory and validation stages when using
the assigned language.

Time per phase (Asigned Language)

26.34;20%

43.63;33%

62.38 ;47%

= Analysis (AL)

= Development (AL)

Testing(AL)

Measurement 10: Time per phase (assigned language).

o Measurement 11: Focusing on the Business Logic

layer with the Haxe transpiler language - nMorph,
the participants’ time allocation across the prototype
implementation phases is evident. They dedicated
36% of their time to the analysis, 46% to software
development, and 18% to testing. Despite the use
of the Haxe transpiler language, the time proportions
remain strikingly similar to those observed in the
assigned language. This underscores that the choice of
language, whether assigned or Haxe, did not result in
any significant variations in the time spent across each
phase.

o Measurement 12: Centered on the Business Logic layer

and comparing languages, a distinct difference emerged
in the time consumption of the analysis phase between
the assigned language and Haxe. The data revealed
that participants generally took longer to use Haxe,
with an average additional duration of 11.11 minutes.
A review of individual participants’ times reinforces this
observation, as the majority showed increased durations
with Haxe compared to the assigned language. This
indicates a potentially steeper learning or adaptation
curve with Haxe during the analysis phase.”

VOLUME 11, 2023

FIGURE 21.

200.00
18000
16000
14000
12000
10000
80.00
60.00
40.00
20.00

Time per phase (nMorph)

27.14;18%

54.73 ;36%

70.57 ; 46%

= Analysis nMorph

= Development nMorph

Testing nMorph

Measurement 11: Time per phase (nMorph).

Analysis Times

1 2 3 a 5 6 7 s s 10 1 12 13 14

—Analysis

Assigned == Analysis nMorph

FIGURE 22. Measurement 12: Analysis times.

Measurement 13: Focusing on the Business Logic
layer and comparing between different languages,
a noticeable time difference is observed in the develop-
ment phase between the assigned language and Haxe.
On average, the participants took longer with Haxe, with
an added duration of 8.20 minutes. A closer look at
individual timings reveals that while most participants
required more time with Haxe, three instances showed
a decrease in time with Haxe. This suggests that while
many participants might have experienced challenges
adapting to Haxe, a select few found it more efficient
or compatible with their development approach.

Development Times

——Developm

——Development (AL)

Morph

FIGURE 23. Measurement 13: Development times.

Measurement 14: When examining the Business Logic
layer and comparing the different languages, the time
taken by participants in the testing phase was analyzed.
Based on the data, the time distribution for testing
between the assigned language and Haxe appears to
be closely aligned. On an average scale, there is a
negligible time difference of merely 0.80 minutes. This
indicates that the transition from the assigned language
to Haxe does not significantly impact time efficiency
in the testing phase, suggesting that both languages
offer a relatively consistent testing experience for
participants.

Measurement 15: During the Business Logic layer phase
and comparing languages, the accumulated time taken

124409

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

Testing Times
8000
7000
60.00
5000
2 om0
Z 2000
2000
10.00

1 2 3 a 5 6 7 E il 10 1 12 13 14
Axis Title

——Tosting(Al) == Testing nMorph

FIGURE 24. Measurement 14: Testing times.

across all tasks — Analysis, Development, and Testing —
shows a discernible pattern. On average, Haxe required
20.11 additional minutes (a 15.19% increase) compared
to the assigned language. There were three instances in
which Haxe required less time.

Examining the specific phases, Haxe needed an
extra 11.11 minutes in Analysis (a 25.46% increase),
8.20 minutes in Development (a 13.14% increase),
and only 0.8 minutes in Testing (a 3.05% increase).
Additionally, the perceived difficulty of using Haxe
increased by 0.7 points (or 19.80%), while its perceived
understanding reduced by 0.5 points (or 5.75

In essence, while Haxe might be marginally more
time-consuming across most phases and perceived
slightly more challenging, there is a slight decrement
in understanding when participants use Haxe over the
assigned language.

Entire Cycle Times

FIGURE 25. Measurement 15: Entire cycle times.

o Measurement 16: This analyzes the Business Logic
layer, compares the Assigned Language (AL) and Haxe
- nMorph, and computes the correlation coefficients
between time spent in different phases. The findings
include: a) A high correlation coefficient between the
analysis time for both the Assigned Language and
nMorph. b) Strong correlation between development and
testing times between the two languages. Examining the
specific coefficients for Assigned Language: The corre-
lation between Analysis and Development is 0.551964,
Analysis and Testing is 0.441132, and Development
and Testing is 0.535227. For nMorph: The correla-
tion between Analysis and Development is 0.559605,
that between Analysis and Testing is 0.495925, and
that between Development and Testing is 0.705076.
Comparing across the languages: a) The correlation
between the Analysis times of AL and nMorph is
strikingly high 0.965148. b) For Development, it was
0.872661, and for Testing, it is 0.949311. Most of
the other coefficients in the analysis are of medium

124410

magnitude. This suggests that there is a consistency in
the data entry by participants, and it indicates a strong
alignment in the time taken across similar phases for
both Assigned Language and nMorph.

Correlati fici Assigned Language nMorph
between phases Analysis | Development | Testing Analysis | Development | Testing
Analysis N/A 0.551964 | 0.441132 | 0.965148| 0.670860 | 0.586436
Asigned Development 0.551964 N/A 0.535227 | 0.361429| 0.872661| 0.603424
Testing 0.441132 | 0.535227 N/A 0.333433| 0.539227 | 0.949311
Analysis 0.965148| 0.361429 | 0.333433 N/A 0.559605 | 0.495925
nMorph Development 0.670860 | 0.872661| 0.539227 | 0.559605 N/A 0.705076
Testing 0.586436 | 0.603424 | 0.949311| 0.495925| 0.705076 N/A

FIGURE 26. Measurement 16: Correlation between phases.

2) ABOUT USER INTERFACE

While the primary focus of the study pertains to business
logic and the back-end layers, one can observe certain
indicators associated with the implementation of the user
interface originating from the new procedures and complexity
of nMorph for developers. These indicators facilitate a
comparative understanding of the analyses conducted on
business logic.

e Measurement 17: On the User Interface layer, the
assigned programming language is examined as a col-
lective whole during the analysis phase. No discernible
correlation was observed between the examined vari-
ables. The table data further supports this observation:
The correlation between ‘Analysis’ and ‘Language
Knowledge’ as well as ‘Understanding’ is slight,
while there is virtually no correlation with ‘Perceived
Difficulty.” This suggests that for this phase, knowledge
of the programming language and understanding have
a minimal relationship with the time taken for analysis,
and perceived difficulty does not influence it at all.

Correlation in Analysis Phase (AL)

R?=0.0787 R?=0.0516

¢ LT RSRIIns. SO NS B
............................... i
- °
.
° []
o S e It R~ 2aaaeaaey
L] = .
el R? = 0.0009
L] ° 19
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

Time (minutes)

@ Language Knowledge (AL) @ Percevied Difficulty (AL)

Understanding (AL) ~ weeseene Linear (Language Knowledge (AL))

-+« Linear (Percevied Difficulty (AL)) Linear (Understanding (AL))

FIGURE 27. Measurement 17: Correlation in analysis phase (AL).

o Measurement 18: It focuses on the User Interface layer
using the transpiler language Haxe - nMorph, the data
shows a moderate correlation between ‘Perceived Diffi-
culty’ and the time taken for analysis. This means that as
the perceived difficulty of the task increases, the analysis
time may also increase. Additionally, the provided
table data reveals a slight negative correlation between

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach IEEEACC@SS

‘Analysis’ time and both ‘Language Knowledge’ and Correlation in Development Phase (nMorph)
‘Understanding.” This suggests that as one’s knowledge
or understanding improves, analysis time may decrease . . . ,
. . . " - k4 ° R¥=0:0001-®
slightly. However, the central determinant of analysis .
time seems to be the perceived difficulty. T —0 .l
. : .. o .
.
Correlation in Analysis Phase (nMorph) 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00
Time (minutes)
® Llanguage Knowledge nMorph ® Perceived Difficulty nMorph
L] L] . 3 Understanding nMorph wesseseee Linear (Language Knowledge nMorph)
.....................) g, S * * R?=0.1861 ++ex2« Linear (Perceived Difficulty nMorph) Linear (Understanding nMorph)

FIGURE 30. Measurement 20: Correlation in development phase
(nMorph).

500 10.00 1500 000 .00 3000 .00 the presented correlation coefficients were not suffi-
Time (minutes) . .
ciently robust to fully explain the complete depen-

® Language Knowledge nMorph ® Perceived Difficulty nMorph . . e .
i e S dency between these variables. Specifically, while the
--------- Linear (Perceived Difficulty nMorph) Linear (Understanding nMorph) Correlations Wlth ‘Testing’ tlme fOr bOth ‘Language
FIGURE 28. Measurement 18: Correlation in analysis phase (nMorph). Knowledge’ and ‘Exercise Understanding’ are slight,

the correlation with ‘Perceived Difficulty’ is low.
o Measurement 19: Focusing on the User Interface layer

using the assigned language for the development phase, Correlation in Testing Phase (LA)

the data reveals no significant correlation between

the analyzed variables. Specifically, the correlations t) —— e
between ‘Development’ time and ‘Language Knowl- s '.: . B R -00667 8
edge’, ‘Perceived Difficulty’, and ‘Understanding’ are

all negligible. This indicates that these variables may I s
not be influential in the time taken for the development S st e e O N B0
phase in this context. °| -)

Time (minutes)

Correlation in Development Phase (AL) o

d Difficulty (AL)
evied Difficulty (AL))
T R*=0.008 FIGURE 31. Measurement 21: Correlation in testing phase (AL).
o0 ». .
G S W St NS])
° ° o Measurement 22: In the User Interface layer using the
Haxe - nMorph transpiler language during the testing
° L . hase, a moderate correlation was observed with the
R’=.0.0013, p
PR PR T ‘Perceived Difficulty’ variable. This suggests that as
. - ; ’ . .
perceived difficulty increases, the time taken for testing
10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 . . .
Time (minutes) may also increase. Conversely, the correlations with
® Language Knowledge (AL) ® Percevied Difficulty (AL) Understanding (AL) ‘Testing’ time for both ‘Language Knowledge’ and
Linear (Language Knowledge (AL)) Linear (Percevied Difficulty (AL)) Linear (Understanding (AL)) . . Ky
‘Exercise Understanding’ are slight, indicating a weaker
FIGURE 29. Measurement 19: Correlation in development phase (AL). relationship between these variables and testing time.

o Measurement 20: Focusing on the User Interface layer
with the transpiler language Haxe - nMorph during
the development phase, there is a slight correlation
with the ‘Perceived Difficulty’ variable. However, this
correlation coefficient is not substantial enough to con-
clusively depict the dependency between the variables.

Correlation in Testing Phase (nMorph)

R?=0.3355

R2=0.0742
R2=0.0687

Specifically, the correlations between ‘Development’ e
time and ‘Language Knowledge’ and ‘Understanding’) o e e o o
are negligible, while the correlation with ‘Perceived o Longunae Knowidge ntdorph o porceved Diffclty doroh

o oo 5 . Understanding nMorph ~ seeeeeeee Linear (Language Knowledge nMorph)
Difficulty’ islow. Unear (percied Dificlty Morgh) - Unea Understaning or)

o Measurement 21: In the User Interface layer using the
assigned language during the testing phase, A slight
correlation was observed for the variables ‘Language o Measurement 23: For the entire development cycle of
Knowledge’ and ‘Exercise Understanding.” However, the User Interface layer using the assigned language,

FIGURE 32. Measurement 22: Correlation in testing phase (nMorph).

VOLUME 11, 2023 124411

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

a slight correlation was observed between the total time
spent across all three phases (analysis, development,
and testing) and ‘Language Knowledge’. However, this
correlation was not substantial enough to fully explain
the dependency between variables. Meanwhile, there
was virtually no correlation with ‘Perceived Difficulty’,
and a low correlation with ‘Exercise Understanding’,
implying that these factors have a minimal impact on
the total time spent during the development cycle.

Correlation in Entire Cycle (LA)

. R?=0.0354
........ e eemassssssfassssssess il o.0695)
L] L]
L]
o R2=00003 ®
e
® ° o ® o e
° o .
20.00 40.00 60.00 80.00 100.00 120.00 140.00

Time (minutes)

® Language Knowledge (AL) ® Percevied Difficulty (AL)
Understanding (AL) ~ weeeene Linear (Language Knowledge (AL))

«s+se2+2- Linear (Percevied Difficulty (AL)) Linear (Understanding (AL))

FIGURE 33. Measurement 23: Correlation in entire cycle (AL).

e Measurement 24: Throughout the entire development
cycle of the User Interface layer using the Haxe
- nMorph transpiler language, there is a moderate
correlation between the cumulative time for all three
phases (analysis, development, and testing) and ‘Per-
ceived Difficulty’. This suggests that, as the perceived
complexity increases, the total execution time for the
entire cycle is likely to extend. Conversely, there is only
a slight correlation between ‘Language Knowledge’ and
‘Exercise Understanding’, indicating that these variables
have less influence on the overall time taken for the
development process.

Correlation in Entire Cycle (nMorph)

.
R?.=0.0506.

R.= 00632+
R? = 0.3472

Time (minutes)

® Perceived Difficulty nMorph

++++- Linear (Language Knowledge nMorph)

++s+ Linear (Perceived Difficulty nMorph) Linear (Understanding nMorph)

FIGURE 34. Measurement 24: Correlation in entire cycle (nMorph).

o Measurement 25: When comparing variables between
the Assigned Language (AL) and nMorph in the User
Interface layer, participants provided scores out of 10 for
their knowledge of the language, perceived difficulty,
and exercise understanding. Analyses of correlations
revealed a strong negative correlation between ‘Per-
ceived Difficulty’ and ‘Language Knowledge’ for AL,

124412

[T

Correlatic ficie

suggesting that as participants’ language knowledge
increased, their perceived difficulty decreased. A strong
positive correlation exists between ‘Understanding of
the Exercise’ and ‘Language Knowledge’ for AL,
indicating that better language proficiency leads to a
better understanding of the tasks. A strong negative
correlation was observed between ‘Perceived Difficulty’
and ‘Understanding’ for AL, meaning that as partic-
ipants’ understanding improved, they found the tasks
less challenging. For nMorph, none of the correlation
coefficients were particularly high, implying that the
variables for this language were either independent
or slightly dependent. Notably, the variables analyzed
for the Haxe - nMorph language did not show any
significant dependence.

FIGURE 35. Measurement 25: Variable analysis.

Asigned

nMorph

Language
Knowledge

Perceived | Understandin
Difficulty €

Perceived |Understandin
Difficulty €

i [
between variables .

Asigned

-0.87542 0.88186
-0.87542 N/A -0.80314 | -0.33254
0.88186 | -0.80314 N/A -0.00380 | -0.17272 0.51077

Language Knowledge N/A 0.17742 | -0.02820 0.33671

0.45781 | -0.35660

Perceived Difficulty

Understanding

nMorph

Language Knowledge 0.17742 | -0.33254 | -0.00380 N/A -0.44039| -0.08573
-0.02820 0.45781| -0.17272| -0.44039 N/A -0.19546

0.33671| -0.35660 0.51077 | -0.08573 | -0.19546 N/A

Perceived Difficulty

Understanding

FIGURE 36. Measurement 25: Correlation between variables (nMorph).

Measurement 26: In the User Interface layer, using
the Assigned Language for prototype implementa-
tion, participants’ time allocation across different
phases was examined. The data revealed that the
most time-consuming phase was software development,
accounting for 47% (25.97 min) of the entire process.
The analysis and testing phases accounted for 25%
(13.93 min) and 28% (15.69 min) respectively, indi-
cating that combined, they exceeded the time spent
on actual development. This suggests an emphasis on
thorough planning and verification in the process, with
the development phase consuming less than half of the
total time.

Measurement 27: In the User Interface layer, using
the Haxe Transpiler — nMorph for prototype imple-
mentation, the time distribution across different phases
was analyzed. Participants spent 42% of their time
(28.12 minutes) on software development, while the

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

Time per Phase (AL)

15.69 ; 28% 13.93;25%

25.97 ;47%

= Analysis (AL) = Development (AL) = Testing(AL)

FIGURE 37. Measurement 26: Time per phase (AL).

analysis and testing phases each consumed 29% of
the time, equating to 18.90 and 19.13 minutes respec-
tively. Interestingly, these proportions closely aligned
with the time distributions observed when using the
Assigned Language. This suggests that regardless of the
programming language-be it the Assigned Language
or Haxe—the time commitment for each phase remains
consistent, with no significant variation in phase-wise

time allocation due to the choice of language.
Time per Phase (nMorph)

19.13;29%
18.90 ; 29%

28.12;42%

= Analysis nMorph = Development nMorph Testing nMorph

FIGURE 38. Measurement 27: Time per phase (nMorph).

o Measurement 28: A comparative study was conducted
in the User Interface layer to understand the time
taken by participants during the Analysis phase using
two different languages: the Assigned Language and
the Haxe language. The data revealed that participants
typically spent slightly more time analyzing using
Haxe as opposed to Assigned Language. On average,
the difference in time commitment between the two
languages amounted to approximately 4.97 minutes
more with Haxe. This indicates that, during the Analysis
phase, participants found the Haxe language to be
marginally more time consuming than the Assigned

Language.

Analysis Time

1 2 3 4 5 6 7 & 9 10 1 12 13

——Analysis (AL) === Analysis nMorph

FIGURE 39. Measurement 28: Analysis time.

VOLUME 11, 2023

o Measurement 29: Within the User Interface layer,

a comparison was undertaken to assess the time
consumed by participants in the Development phase
using both the Assigned Language and the Haxe
language. The findings suggest that the Haxe language
required a slightly longer duration for development
tasks when compared to the Assigned Language. On an
average scale, the time difference observed amounted
to an additional 2.15 minutes when using Haxe. This
suggests that for the Development phase, participants
encountered a modest increase in time commitment with
the Haxe language compared to the Assigned Language.

Development Time

1 2 3 4 5 6 7 8 9 10 1 1 13 14

——Development (AL) == Development nMorph

FIGURE 40. Measurement 29: Development time.

o Measurement 30: In the User Interface layer, an analysis

was conducted to determine the time required by
participants during the Testing phase using both the
Assigned Language and the Haxe language. The data
reveal that the Haxe language, on average, necessitated
a marginally extended duration for testing tasks, about
3.44 minutes more, when juxtaposed with the Assigned
Language. This indicates that during the Testing phase,
participants experienced a slight increase in the time
spent using the Haxe language compared to the Assigned
Language.

Testing Time

FIGURE 41. Measurement 30: Testing time.

o Measurement 31: Analysis of User Interface implemen-

tation time across different Programming Languages.
In this evaluation, a thorough comparison was con-
ducted between an assigned programming language and
nMorph in the context of their performance across
various development phases. The analysis was primarily
centered on the full cycle time, comprising the stages
of analysis, development, and testing. The unit of
measurement was the time each participant took to
complete the entire cycle.

When observing the cycle’s entirety, it was discerned
that using nMorph leads to a slightly prolonged duration
compared to the assigned language. On an average, this

124413

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

disparity amounted to 10.56 minutes. Delving deeper
into the individual stages.

1. In the analysis phase, nMorph exhibited a 35.68%
increase in time, equivalent to 4.97 minutes. 2. During
the development phase, there was an 8.29% increase,
translating to an additional 2.15 minutes. 3. In the testing
phase, a 21.90% increase was observed, which was
approximately 3.44 minutes.

Collectively, the entire cycle time showed an elevation
of 18.99%, equaling 10.56 minutes when using the
nMorph framework. In addition to the time metrics,
other parameters were also gauged: 1. There was a
discerned increase in perceived difficulty of 27.17%,
equating to a change of 0.73 points. 2. Conversely,
understanding decreased by 12.03%, which is a reduc-
tion of 1.07 points.

These observations suggest that while using nMorph
might be slightly more time-intensive and perceived
as slightly more challenging, it also results in a slight
reduction in the understanding of the exercise as
compared to the assigned language.

Further dissection of the data revealed a general trend of
increased implementation time with nMorph compared
to the assigned language. Notably, time variance is more
pronounced in the User Interface than in Business Logic.
This could potentially be attributed to nMorph’s primary
focus on business logic. To elaborate:

1) For User Interface: Analysis: 35.68% increase
(4.97 min); Development: 8.29% increase (2.15 min);
Testing: 21.90% increase (3.44 min); Full cycle time:
18.02% increase (10.02 min); Perceived Difficulty:
55.85% increase (1.51 points); Understanding: 7.99%
decrease (-0.71 points).

2) For Business Logic: Analysis: 25.46% increase
(11.11 min); Development: 13.14% increase (8.20 min);
Testing: 3.05% increase (0.8 min); Full cycle time:
15.19% increase (20.11 min); Perceived Difficulty:
19.80% increase (0.7 points); Understanding: 5.75%
decrease (-0.5 points).

Furthermore, the data emphasized that regardless of
the programming language used, business logic con-
sistently required more time than the user interface.
For instance, with the assigned language, the dif-
ferences in time taken between business logic and
the user interface were 29.70, 36.41, and 10.65 min-
utes for analysis, development, and testing respec-
tively. Similar trends were observed for nMorph, with
time differences of 35.83, 42.45, and 8.01 minutes
respectively.

Finally, when examining individual participants’ perfor-
mance in the realm of business logic, it was evident
that there were variations in the time taken between
the assigned language and nMorph. For instance,
Participant 1 took 65.71 minutes with the assigned
language but required 88.57 minutes with nMorph.
These discrepancies among the participants could be

124414

attributed to their individual proficiencies, familiarity
with the languages, or other personal factors.

In summary, while nMorph demonstrated a somewhat
extended implementation time across all stages when
juxtaposed against the assigned language, its primary
inclination towards business logic could justify this
observation. Furthermore, individual variations suggest
that developers’ experiences and comfort with the tools
at hand can significantly influence outcomes.

Entire Cycle Time

—Total (Al) =T,

FIGURE 42. Measurement 31: Entire cycle time.

o Measurement 32: Correlation Analysis between nMorph

and Assigned Language Across Development Phases in
User Interface Implementation.

This study sought to understand the relationships
between the time taken during different developmental
phases by comparing an assigned language (AL) and
nMorph. Using the correlation coefficient as a metric,
the following observations were:

1) A high correlation was observed between the testing
time using nMorph and the analysis time using AL,
as evidenced by a coefficient of 0.848329. This suggests
that intricacies during the analysis phase in AL might
have a mirrored impact during the testing phase when
using nMorph.

2) There was a significant correlation between the
testing times of nMorph and AL, standing at 0.937851.
This indicates that the testing behaviors were consistent
between these two languages.

3) The development time in nMorph and AL also
correlated strongly with a coefficient of 0.840780,
hinting at analogous development processes irrespective
of language.

4) The testing and analysis phases within AL correlated
notably with a coefficient of 0.832958, implying that
the challenges faced during AL’s analysis might directly
influence its testing phase.

Although these high coefficients pinpoint areas of par-
ticular interest, many other coefficients in the analysis
occupy a medium magnitude. This underscores the
fact that, in several phases, the time factors for AL
and nMorph might not be as strongly intertwined.
Nevertheless, the presence of multiple high correlation
values emphasizes a considerable degree of alignment
between the phases of both the nMorph and AL.

In summary, Measurement 32 illuminated the inter-
connected dynamics between nMorph and AL during
different developmental phases, suggesting areas of

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

synergy and potential opportunities for streamlined

processes.
Correlation Assigned Language nMorph
between phases Analysis | Development | Testing Analysis | Development| Testing
Analysis N/A 0.566697 | 0.832958 | 0.522543 0.536282 | 0.848329
Asigned Development | 0.566697 N/A 0.378838 | 0.271353 0.840780 | 0.236939

Testing 0.832958
Analysis 0.522543
nMorph Development | 0.536282
Testing 0.848329

0.378838 N/A 0.417179| 0.213071
0.271353 | 0.417179 N/A 0.454041 g
0.840780 1| 0.454041 N/A 0.223429
0.236939 1| 0516707 | 0.223429 N/A

FIGURE 43. Measurement 32: Correlation between phases.

3) ABOUT C# ASSIGNMENT

Additionally, it is feasible to conduct specific comparative
analyses for participants assigned to C#, in comparison with
nMorph. This was primarily to determine whether the use of a
particular target technology and its learning curve facilitated
or hindered the adoption of nMorph.

o Measurement 33: The analysis of the Business Logic
layer using the C# programming language breaks
down the proportion of time spent in different phases.
Specifically, with C#, 36% of the time was dedicated to
the analysis, representing 65.65 hours. The development
phase took the largest share with 45% of the time, which
is equivalent to 81.65 hours. Testing, on the other hand,
constituted 19% of the time, amounting to 33.25 hours.
These data provide insight into how resources and efforts
are distributed when constructing software using C# in
the Business Logic layer.

Phase times (C#)

33.25;19%

65.65 ;36%

81.65;45%

= Analysis = Development Testing

FIGURE 44. Measurement 33: Phase times (C#).

o Measurement 34: For the Business Logic layer, indi-
viduals initially assigned to C# used the nMorph pro-
gramming language to measure the distribution of time
across various phases. Specifically, with nMorph, 39%
of the time, translating to 76.75 hours, was allocated to
analysis. Development accounted for the largest portion
at 43% of the time, equivalent to 86.60 hours. Testing
required 18% of the time, amounting to 36.00 hours.
These data suggest a relatively even distribution of effort
across phases when utilizing nMorph for those initially
familiar with C#.

VOLUME 11, 2023

Phase times (nMorph)

36.00;18%

76.75 ;39%

86.60 ; 43%

= Analysis nMorph

= Development nMorph

Testing nMorph

FIGURE 45. Measurement 34: Phase times (nMorph).

o Measurement 35: In the Business Logic layer, a time
comparison was conducted between the C# program-
ming language and nMorph during the Analysis phase.
The data suggest that participants generally took slightly
more time when working with nMorph when compared
to C#. On average, the time difference was noted to
be 11.10 min. For instance, while Participant 1 spent
9 min on C#, they took 15 min with nMorph. Similarly,
Participant 2 used 95.5 minutes for C# and 130 min for
nMorph. However, it should be noted that Participants
3 and 5 exhibited no difference in time between the two
languages.

Analysis Time C# / nMorph
200.00

150.00
100.00
50.00
1 2 3 4 5
C# Participants

———Analysis ====Analysis nMorph

FIGURE 46. Measurement 35: Analysis time (C# - nMorph).

o Measurement 36: In the Business Logic layer, a time
comparison was made between C# and nMorph dur-
ing the Development phase. The data illustrate that,
on average, participants spent an additional 4.95 minutes
when working with nMorph compared to C#. For
example, Participant 1 took 53.25 minutes with C# but
only 22.5 minutes with nMorph. Conversely, Participant
4 spent 41.25 minutes on C# and 82.5 minutes on
nMorph. However, it is important to highlight that both
Participants 3 and 5 demonstrated no time difference in
their use of the two languages.

o Measurement 37: In the Business Logic layer, a com-
parative analysis of the time spent during the Testing
phase between C# and nMorph was conducted. From the
gathered data, it emerges that participants, on average,
took about 2.75 minutes longer with nMorph than
they did with C#. Notably, Participant 1 completed
testing more swiftly with nMorph, taking only 15 min,

124415

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

200.00
180.00
160.00
140.00
120.00
100.00
80.00
60.00
40.00
20.00

Development Time C# / nMorph

1 2 3 4
Ct Participants

——Development === Development nMorph

FIGURE 47. Measurement 36: Development time (C# - nMorph).

80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

compared to 23.75 min with C#. On the other hand,
Participant 3 took 60 min with C# and 75 min with
nMorph. Meanwhile, Participants 2 and 4 also showed
a slight increase in testing time when using nMorph.
Participant 5, however, exhibited no difference in the
time spent on the two platforms.

Testing Time C# / nMorph

1 2 3 4 5
Ci Participants

——Testing == Testing nMorph

FIGURE 48. Measurement 37: Testing time (C# - nMorph).

500.00
450.00
400.00
350.00
300.00
250.00
200.00
150.00
100.00

50.00

Measurement 38: Within the Business Logic layer,
a comprehensive assessment was conducted comparing
the total time taken by participants to complete the
full cycle, encompassing Analysis, Development, and
Testing phases, using C# and nMorph. The data sug-
gests that, on average, participants took approximately
18.80 min longer when working with nMorph than
with C#. For instance, Participant 1 finished the cycle
more swiftly using nMorph, taking 52.5 min, in contrast
to 86 min with C#. In contrast, Participant 2’s time
increased from 170.5 min with C# to 223 min with
nMorph. Participants 3 and 4 also exhibited increased
cycle times with nMorph, whereas Participant 5 main-
tained consistent times across both platforms.

Entire Cycle C# / nMorph

1 2 3 4 5
Ci Participants

———Total =m==Total Haxe

FIGURE 49. Measurement 38: Entire cycle time (C# - nMorph).

4) ABOUT JAVA ASSIGNMENT

Moreover, we could undertake detailed comparisons for
participants who worked with Java, in contrast to nMorph.

124416

The main objective was to ascertain whether employing a
distinct target technology, such as Java, and its associated
learning process either eased or complicated the transition to
nMorph.

o Measurement 39: Within the Business Logic layer,
an evaluation was conducted focusing on the distribution
of time across the different phases of construction
using the Java programming language. The data indicate
that the Development consumed the most significant
portion of time at 61.88 min, which constitutes 59%
of the total time. This is noticeably higher than that in
other languages. The Analysis and Testing phases took
22.50 min (22%) and 20.00 min (19%) respectively. The
prominence of the Development time suggests that Java
might require a more extended developmental phase
than its counterparts in this context.

Phase times (Java)

20.00 ; 19%

22.50;22%

61.88;59%

= Analysis = Development Testing

FIGURE 50. Measurement 39: Phase times (Java).

o Measurement 40: In the Business Logic layer, the
time distribution for different construction phases was
assessed for participants assigned to Java when using
nMorph for the task. The data revealed that Devel-
opment demanded the most substantial segment of
time at 64.38 min, accounting for 60% of the entire
duration. This is notably higher in comparison to other
languages, echoing similar trends observed in Java. The
Analysis phase took 26.56 min (24%), while Testing
was completed in 16.88 minutes (16%). The relatively
close proportions of time distribution across the phases
suggest a balanced approach, but the dominance of
Development time reinforces the idea that the nMorph
might have inherent complexities in the development
phase, at least for those originally familiar with Java.

o Measurement 41: In the Business Logic layer, a compar-
ative analysis of the time taken during the Analysis phase
was conducted between Java and nMorph. The data
indicate that participants spent an additional 4.06 min-
utes when working with nMorph compared to Java.
Specifically, Participant 1’s analysis time increased by
2.5 minutes, Participant 2’s by 2.5 minutes, Participant
3’s, 2.5 minutes, and Participant 4, 8.75 minutes. This
suggests that those familiar with Java might face a

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

Phase times (nMorph)

16.88 ; 16%

26.56 ; 24%

64.38 ; 60%

m Analysis nMorph = Development nMorph Testing nMorph

FIGURE 51. Measurement 40: Phase times (nMorph).

40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00

slightly steeper learning curve or require additional time
to adapt to the nMorph environment during the analysis
phase.

Analysis Times Java - nMorph

Java Participants

= Analysis === Analysis nMorph

FIGURE 52. Measurement 41: Analysis times (Java - nMorph).

90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

Measurement 42: In the context of the Business
Logic layer, a comparison was made between Java
and nMorph regarding the time utilized during the
Development phase. On average, participants spent an
additional 2.50 minutes when working with nMorph
compared to Java. Specifically, while Participant 1 and
Participant 2 had relatively similar development times
across both languages, Participant 3 was quicker by
7.5 minutes with nMorph, and Participant 4 took an
additional 16.25 minutes when using nMorph. This
suggests a slight variance in adaptability among the
participants when transitioning from Java to the nMorph
environment during the development process.

Development Times Java - nMorph

Java Participants

———Development === Development nMorph

FIGURE 53. Measurement 42: Development times (Java - nMorph).

Measurement 43: In the Business Logic layer, when
examining the Testing phase, a comparison was made
between the time taken by Java and nMorph. Interest-
ingly, on average, participants consumed 3.13 minutes

VOLUME 11, 2023

less when testing with nMorph than with Java. Breaking
this down: Participants 1 and 2 maintained consis-
tent times across both languages, while Participants
3 and 4 were faster with nMorph by 10 minutes and
2.5 minutes respectively. This indicates that in the testing
phase, nMorph might offer efficiencies or familiarity
that enable participants to complete tasks more swiftly
than Java.

Testing Times Java - nMorph
35.00

30.00
25.00
20.00
15.00
10.00

5.00

Java Participants

———Testing emm=Testing nMorph

FIGURE 54. Measurement 43: Testing times (Java - nMorph).

o Measurement 44: In the Business Logic layer, dur-
ing the complete cycle encompassing the Analysis,
Development, and Testing phases, there was a compar-
ison of time consumption between Java and nMorph.
On average, participants took 3.44 minutes more when
working with nMorph compared to Java. To detail
this further: Participant 1 spent 5 minutes more on
nMorph, Participant 2 used 1.25 minutes more with
nMorph, Participant 3 actually used 15 minutes less
on nMorph, and Participant 4 spent 22.5 minutes more
with nMorph. This suggests that while nMorph may
generally require slightly more time overall, individual
experiences can vary, with some participants finding
efficiency in certain aspects of the cycle with nMorph.

Entire Cycle Java - nMorph

140.00

120.00
100.00
80.00

60.00

40.00
20.00

Java Participants

———Total ====Total Haxe

FIGURE 55. Measurement 44: Entire cycle times (Java - nMorph).

5) ABOUT PHP ASSIGNMENT

Additionally, it is valuable to conduct specific analyses for
participants who were accustomed to PHP, and then compare
their experiences with nMorph. This will help us understand
whether familiarity with a particular technology, such as PHP,
either simplifies or hinders their adaptation to nMorph.

o Measurement 45: In the Business Logic layer, when
analyzing time allocation across the phases for PHP,
it was observed that the participants devoted 36% of
their time to Analysis, 41% to Development, and 23%
to Testing. This distribution indicates that although

124417

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

Development consumes the most time, there is a
significant amount of time dedicated to Analysis, almost
on par with Development. The least amount of time was
allocated for Testing. This pattern provides insight into
the demands of working with PHP in different stages
of construction and suggests that both Analysis and
Development require close attention and considerable
time commitment.

Phase times (PHP)

24.50;23%

38.50 ; 36%

4350 ; 41%

= Analysis = Development Testing

FIGURE 56. Measurement 45: Phase times (PHP).

o Measurement 46: Within the Business Logic layer, when
observing the time distribution for the nMorph language
among those who were initially assigned to PHP, the
following allocations were noticed: 39% of the time
was dedicated to Analysis, 42% to Development, and
19% to Testing. This distribution reveals a balanced time
commitment between the Analysis and Development
phases, with both demanding almost equal attention.
However, the Testing phase required slightly less time
to complete. The data suggest that when transitioning
from PHP to nMorph, participants encountered a similar
pattern of time allocation across phases, highlighting the
comparative characteristics of the two languages in the
construction process.

Phase times (nMorph)

26.50;19%

55.25;39%

59.50; 42%

m Analysis nMorph

= Development nMorph

Testing nMorph

FIGURE 57. Measurement 46: Phase times (nMorph).

o Measurement 47: Within the Business Logic layer,
a comparison of the time taken during the Analysis phase
between PHP and nMorph was conducted. On average,

124418

160.00
140.00
120.00
100.00
80.00
60.00
40.00
20.00

participants took 16.75 minutes longer with nMorph
than with PHP. More specifically, Participant 1 took an
additional 11.25 minutes using nMorph, Participant 2
had a slight increase of 1.25 minutes, Participant 3
took an added 23.75 minutes, and notably, Partic-
ipant 4 required an extra 47.5 minutes. However,
Participant 5 remained consistent in both languages.
These data underscore that while some participants
adjusted seamlessly between languages, others faced
more pronounced differences, contributing to the aver-
age increased time spent on nMorph during the Analysis
phase.

Analysis Times PHP - nMorph

1 2 3 4 5
PHP Participants

——Analysis =——Analysis nMorph

FIGURE 58. Measurement 47: Analysis times (PHP - nMorph).

120.00
100.00
80.00
60.00
40.00

20.00

Measurement 48: In the Business Logic layer, a com-
parison of the time taken during the Development
phase between PHP and nMorph reveals some distinct
variations among participants. The average additional
time spent with nMorph compared with PHP was
16.00 min. To break it down: Participant 1 needed
7.5 min more with nMorph, while Participant 2 spent
18.75 min less. Participant 3 took a notable 37.5 min
longer with nMorph, Participant 4 required an additional
45 min, and Participant 5 used 8.75 min more. These
fluctuations indicate that participants’ adaptability to
nMorph varied considerably, with some finding it more
time-consuming and others actually experiencing a
decrease in development time when switching from
PHP.

Development Times PHP - nMorph

1 2 3 4 5
PHP Participants

———Development === Development nMorph

FIGURE 59. Measurement 48: Development times (PHP - nMorph).

Measurement 49: In the Business Logic layer, a compar-
ison was made between the time consumed during the
Testing phase for both PHP and nMorph. On average,
participants took 2.00 minutes longer when using
nMorph than they did with PHP. Diving deeper:
Participant 1 took 3.75 minutes longer with nMorph,
while Participant 2 finished 5 minutes faster. Partici-
pant 3 needed an additional 12.5 minutes with nMorph,

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

Participant 4 took 1.25 minutes more, and Participant 5
used 2.5 minutes less. This suggests that while some
participants found testing in nMorph to be slightly more
time-intensive, others actually experienced a reduction
in the time required compared to PHP.

Testing Times PHP - nMorph

3 4
PHP Participants

———Testing =m==Testing nMorph

FIGURE 60. Measurement 49: Testing times (PHP - nMorph).

o Measurement 50: In the Business Logic layer, the overall
development cycle time was compared between PHP
and nMorph. On average, using nMorph resulted in an
additional 34.75 minutes compared to PHP. From the
provided data: Participants 1, 3, 4, and 5 recorded more
time with nMorph; Notably, Participant 2 took less time
using nMorph; This observation suggests that nMorph
often requires more time, but the individual outcomes
may differ.

Entire Cycle Times PHP - nMorph

250.00

200.00

100.00

50.00

1 2 3 4
PHP Participants

———Total ====Total Haxe

FIGURE 61. Measurement 50: Entire cycle times (PHP - nMorph).

6) GLOBAL RESULTS

Measurement 51: The data indicate variations in time across
different phases when comparing the nMorph language with
others. Moreover, the data included variables related to the
perceived difficulty and understanding of tasks.

Key Insights: - In the analysis phase, the times for
C# and PHP were comparable, taking roughly a third
more time than their baseline when using nMorph. Java
exhibited a 23.48% increase. - The development phase
showed a stark contrast: while C# and Java had modest time
increases with nMorph, PHP’s development time skyrocketed
by over 132%. - In testing, Java displayed a 10.42%
decrease in time with nMorph, whereas C# had a minor
increase and PHP had a 16.46% boost. - For the entire
development cycle, PHP participants experienced the greatest
time increase at 31.02%, with C# and Java trailing at 10.38%
and 7.16% respectively. - Regarding perceived difficulty,
nMorph appeared to be the most challenging for the C#
participants, with a 49.75% increase. PHP trailed behind at

VOLUME 11, 2023

35.85%, and Java was deemed significantly less difficult
at 11.25%. - In terms of understanding, C# and Java
participants found nMorph somewhat more challenging,
as reflected by negative percentages. Meanwhile, PHP
participants demonstrated a slight increase in understanding
with a 10.03% boost.

The data suggest that while transitioning to nMorph, those
accustomed to PHP experienced the most significant adjust-
ments in development time, even though their understanding
improved. On the other hand, C# users experienced the
steepest increase in difficulty, despite the relatively modest
time increase.

cH Java PHP
Analisis 33.19% 23.48% 32.75%
Desarrollo 14.96% 16.76% 132.18%
Pruebas 1.85% -10.42% 16.46%
Tiempo total de ciclo 10.38% 7.16% 31.02%
Dificultad Percibida 49.75% 11.25% 35.85%
Entendimiento -9.30% -4.37% 10.03%

FIGURE 62. Measurement 51: Time variations.

7) OPEN-ENDED QUESTIONS
Upon analyzing the responses to the open-ended questions,
the following main criteria were identified:

« Most participants did not report any issues or remarkable
events during the exercise execution.

o There was a notable to mention about the lack of
information available online to address infrequent
problems. Participants commented due to the lack of
documentation. Although this criterion was explicitly
mentioned, it was only a concern for two participants.
Supplementary documentation was not required for
the exercise execution. This could suggest that there
might have been oversight in reviewing the mate-
rials provided before the exercise by these specific
participants.

o Several participants mentioned having faced minor
issues but were able to find solutions relatively easily.

o The feedback emphasized that the provided materials
and corresponding training were highly beneficial in
achieving the goals of the proposed exercise.

G. EXPERIMENT INSIGHTS

1) OUTCOMES

This study utilized a quasi-experimental approach to assess
the efficacy of the nMorph framework for novice soft-
ware developers. Data were gathered from 14 advanced
students from a software programming course. Participants
were randomly assigned to a programming language: C#,
Java, or PHP (AL). A preliminary educational process
was implemented to equalize their understanding of these
languages and familiarize them with Haxe, which is essential
for the nMorph framework. Following this, participants
executed a programming task twice, once using the assigned
language and other with Haxe and nMorph framework.
During this exercise, they monitored themselves their timings
and perceptions. 51 specific measurements were collected
and analyzed in-depth.

124419

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

Experiment Research Questions Analysis: applications (C#, Java, and PHP). No other variables

« To what extent is the nMorph framework suitable for directly influencing the measured efficiency and effec-

novice developers’ business logic coding?

The programming task was executed successfully,
demonstrating the full applicability of the nMorph
framework for business logic coding within the context
of a disposable prototype.

Which comparative parameters are key to determining
the efficiency and effectiveness of the nMorph frame-
work compared with the direct application of a target
language?

Key findings related to efficiency and effectiveness
based on participants’ perceptions during exercise are as
follows.

-- Finding 1: There was no significant correlation
between Perceived Difficulty and timing for anal-
ysis, development, testing, or the entire cycle.
This suggests that perceived complexity does not
necessarily dictate the duration of task execution,
regardless of whether the assigned languages or
Haxe with nMorph are used.

-- Finding 2: No significant correlation was observed
between Language Proficiency and timing for
analysis, development, testing, or the entire cycle.
This implies that higher proficiency in the assigned
languages or Haxe does not necessarily lead to
faster or slower task execution.

-- Finding 3: There was no significant correlation
between Task Understanding and timing for anal-
ysis, development, testing, or the entire cycle.

-- Finding 4: Several perception variables were found
to be significantly correlated. Higher Language
Proficiency is associated with lower Perceived
Difficulty. Higher Language Proficiency leads to
a better Task Understanding. Greater Task Under-
standing was associated with a lower Perceived
Difficulty. This correlation was more pronounced
for the assigned languages than for Haxe.

-- Finding 5: On average, participants spent 33%
of their time in the analysis phase, 46% in the
development phase, and 21% in testing phase.
A specific variation was observed for participants
using Java, who spent a greater proportion of their
time in the development phase.

-- Finding 6: Haxe development took longer than
any of the assigned languages, with an estimated
average variation of 15%.

-- Finding 7: There was a pair-wise correlation
between Analysis time with the assigned language
and nMorph, Development time with the assigned
language and nMorph, and Testing time with the
assigned language and nMorph.

In summary, utilizing nMorph with Haxe would, require
an additional 15% execution time compared to other
commonly used programming languages in enterprise

124420

tiveness metrics were identified.

What programming practices are applied by program-
mers using the nMorph framework in comparison with
those used in other languages?

The objective of the exercise was to evaluate the business
logic coding executed by participants. It was observed
that for the C# and Java languages, the solutions were
more structured, defined as projects, and utilized object-
oriented programming. For PHP, the solutions appeared
simpler, generally consisting of single files with linear
programming.

Regarding database connection, participants assigned to
C#, predominantly used the Entity Framework. Those
assigned to Java used JPA and direct connections.
PHP participants mostly employed direct connections,
with one individual using Propel. Not all participants
employed an ORM for database connectivity; several
opted for direct query operations.

For programming with Haxe, the source code structure
was consistent across all participants. All utilized the
basic programming template provided by the nMorph
framework and engaged with the ORM provided by
nMorph. A general deficiency was noticed in the inclu-
sion of explanatory comments within the implemented
logic.

The developed algorithms showcased various approaches
to the proposed problem. Except for one participant,
all participants achieved the goal of data manipulation
in the assigned database tables and accomplished all
transactions. The majority employed reusability in
implementing the money transfer transaction between
accounts, which involved both a withdrawal and a
deposit. This was observed in both the assigned language
and with Haxe.

Not all participants provided adequate validation in their
developed transactions. The applied validations were
overly simplistic and did not address several potential
issues, with a few exceptions.

Regarding the user interface, participants were instructed
to develop a textual console solution as the focus of
the study was on their business logic development
capability. Nevertheless, some participants opted for
native technologies in the assigned language, such as
asp.net for C# or Spring for Java. These decisions
may introduce variability in the execution time of the
exercise.

While each participant applied technology based on their
interpretation, it was confirmed that the programming
logic in both the assigned language and Haxe met
the expected algorithm and functional objectives for
the exercise. Functional implementations equivalent
to those achieved with the assigned programming
languages were attainable with the nMorph framework
and Haxe.

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

o What challenges or difficulties were encountered during
the study that could enhance the framework for future
exercises?

The primary challenge was unfamiliarity with the
technologies used in the exercise. Although participants
received comprehensive training in the assigned lan-
guage and detailed lectures on Haxe and the nMorph
framework at onset of the exercise, proficiency in
these technologies requires time and experience. The
execution time of the exercise did not allow extended
educational efforts. For future exercises, earlier train-
ing on related technologies, especially regarding the
nMorph framework, will help to reduce knowledge gaps.
Technically, a difficulty noted was the lack of specific
documentation for the technologies utilized. While
abundant documentation is available for the assigned
programming languages, Haxe’s is more limited, and
nMorph’s is virtually non-existent as its operational
foundation and dissemination are still under research
development. Although the education sessions and
videos provided aimed to mitigate this factor, some
participants remained concerned. It is crucial for the
framework to have comprehensive, organized documen-
tation to ensure developers have adequate support and
confidence in developing their business logic.

The measurement strategy relied on a data form that
captured the developer’s perceptions of the exercise.
This method introduces subjectivity, possibly skewing
data. For a more comprehensive efficiency and efficacy
assessment, metrics should not solely rely on participant
self-recording, but also employ external supervisory
mechanisms and data collection tools.

Despite the proposed exercise was very useful to under-
stand the adoption of a first group of developers, it is
important to note that it was limited and straightforward.
The collected data may differ considerably in larger,
longer projects. The information serves as a reference for
those new to these technologies but should not be con-
sidered definitive concerning the nMorph framework’s
application. Various complementary methods should
be sought to establish better applicability and validity
by incorporating real-world scenarios, case studies,
dissemination elements, and others.

2) REFLECTIONS ON FINDINGS

The investigation into “Business Logic” provides insightful
data regarding the relationship between analysis time and
perceived task difficulty, suggesting that tasks deemed more
challenging take longer to analyze. Intriguingly, language
familiarity exhibited a negative correlation with analysis
time, indicating that those with greater language fluency can
analyze tasks more swiftly. However, language familiarity did
not appear to significantly impact development time. When
examining the testing phase, a correlation was noted among
language knowledge, task comprehension, and test time in the
assigned language. For the Haxe-nMorph transpiler, however,

VOLUME 11, 2023

only task comprehension showed a correlation with testing
time.

Considering language disparities, participants with higher
knowledge of the assigned language found the tasks less
daunting, resulting in better task understanding. Participants
generally took longer in the analysis phase when employing
Haxe as opposed to the assigned language, averaging an
additional 20.11 minutes across all tasks with Haxe.

Findings from the “User Interface” domain indicate a
marginal correlation between programming language famil-
iarity and analysis time during the UI phase. When using the
Haxe-nMorph transpiler, a moderate increase in analysis time
was observed as the perceived difficulty increased. Despite
these variations, the distribution of time across the analysis,
development, and testing phases remained fairly consistent,
irrespective of the language employed.

Regarding specific language assignments, such as C# and
Java, insights revealed variations in time allocation across
phases. For instance, those assigned to C# followed by
nMorph exhibited an equitable distribution of effort across
phases. However, when comparing nMorph with C# and Java,
differences in the time spent in each phase were discerned.
However, PHP analysis revealed that although PHP and
nMorph shared time distribution parallels, transitioning from
PHP to nMorph often resulted in added time requirements,
especially during the analysis and development phases.

In global outcome terms, the data suggest that those
accustomed to PHP experienced the most significant shifts
in development time when switching to nMorph. While
understanding improved, C# users experienced the steep-
est increase in task difficulty, despite a modest time
increment.

These insights offer a clear understanding of how language
familiarity and comprehension can influence various devel-
opment process phases and underscore efficiency disparities
between the assigned language and the Haxe-nMorph tran-
spiler.

IV. DISCUSSION
A. ABOUT THE RESEARCH QUESTIONS
e RQI: In the context of multi-programming language

software development, how does the nMorph frame-
work’s transpiler-based approach demonstrate feasibil-
ity and efficacy compared to traditional programming
languages?
In the evolving realm of multi-programming language
software development, the nMorph framework has
emerged as a beacon of innovation, offering a com-
prehensive solution to the contemporary challenges of
adaptability, scalability, and performance. Rooted in
a transpiler-based architecture, the nMorph framework
introduces a transformative approach that empowers
developers to code in a singular language. This code can
then be transpiled flawlessly into a multitude of target
languages, ensuring the preservation of the integrity of
the core design.

124421

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

The true demonstration of its feasibility lies in nMorph’s
meticulous design, which is tailored to serve enterprise
back-ends. Through transpilable languages, it provides
assurance of unwavering performance, irrespective of
platform-specific compilations. Its architecture, laden
with features such as ORM & Database Connectors, and
a security layer, is indicative of its efficacy in handling
various back-end responsibilities with finesse. Further-
more, the back-end functionalities in the framework can
be expressed through diverse methods, all supported by
state-of-the-art tools, such as the PostBuild Utility and
DB Gen component.

The selection of the Haxe transpiler as the nucleus of
the framework emphasizes its compatibility prowess,
especially with dominant enterprise languages such
as Java, C#, and PHP. This choice alone showcases
the framework’s pragmatic direction, ensuring it aligns
with the current technological landscape, supported
by databases like Oracle Database, SQL Server, and
MariaDB, as well as servers such as IIS and Apache.
The nMorph framework’s transpiler-based approach
offers a unique perspective in its comparison with
traditional programming languages. An empirical exper-
iment conducted on throwaway prototypes offers a clear
perspective on its real-world viability. Novice devel-
opers, when exposed to both traditional languages and
the Haxe language with nMorph, provided insights that
underscored the framework’s potential while highlight-
ing certain challenges. Despite the observed variations
in perceived difficulty and the slightly extended time
participants took with Haxe, the application of nMorph
framework in business logic development remains
promising. Notably, these challenges can be mitigated
through enhanced training and documentation.

The experiment results revealed that while transition-
ing to nMorph, the time allocated across different
development phases varied depending on the original
programming language in use. For instance, developers
accustomed to PHP experienced the most significant
adjustments in development time, with a marked 31.02%
increase for the entire cycle, despite an improvement
in their understanding. Conversely, C# participants,
although witnessing a comparatively modest time
increase of 10.38%, reported a substantial rise in
perceived difficulty by 49.75%. Java developers showed
nuanced transitions, with an increase in analysis and
development times, but a time-saving of 10.42% in the
testing phase when using nMorph.

Furthermore, when analyzing the Business Logic layer,
it was observed that the nMorph framework led to longer
analysis and development times in some cases, with
developers consistently dedicating significant portions
of their time to the development phase regardless
of the programming language. Yet, there were inher-
ent similarities in time allocation and correlations
between traditional languages and nMorph during

124422

various development phases. This suggests that while
nMorph introduces certain challenges, especially in
terms of perceived difficulty and time allocation in some
phases, it still aligns well with conventional program-
ming paradigms. The insights underscore nMorph’s
feasibility in integrating with existing workflows while
highlighting areas that might demand more attention or
optimization in its transpiler-based approach compared
to traditional programming languages.

The quasi-experimental design of this study, which
encompassed novice developers, indicates that while the
nMorph framework is entirely applicable for business
logic coding within prototyping contexts, its integration
with Haxe does present an additional execution time
of approximately 15% in comparison to traditionally
used enterprise languages such as C#, Java, and PHP.
Key metrics such as Perceived Difficulty, Language
Proficiency, and Task Understanding, intriguingly, did
not exhibit significant correlations with the timing of
various development phases, emphasizing that time
expenditure may not necessarily align with perceived
complexities or proficiencies. Furthermore, it’s notewor-
thy that even though participants assigned to different
languages like C# and Java displayed structured, project-
defined solutions with object-oriented programming,
their transition to Haxe using the nMorph framework
yielded solutions with consistent source code structures.
However, proficiency in these technologies, especially
nMorph, remains a challenge due to the preliminary
stage of its documentation and its relative novelty in the
development community. Technical barriers notwith-
standing, the functionality and outcomes achieved
with the nMorph framework and Haxe mirrored those
achieved with traditional programming languages. Thus,
while the nMorph transpiler-based approach under-
scores potential and viability in multi-language software
development, its efficacy, in terms of time efficiency,
remains moderately lower than that of its traditional
counterparts.

In conclusion, the nMorph framework, with its
transpiler-based approach, not only demonstrates fea-
sibility in the multi-programming language software
development sphere but also shows a marked effi-
cacy when juxtaposed with traditional programming
languages. Although there are areas for improvement,
the advantages it offers in terms of customization,
technological longevity, and brand independence make
it a compelling choice for the future of software
development.

RQ2: How does the implementation of the nMorph
framework influence the experience and efficiency of
developers, especially in comparison to commonly used
programming languages (C#, PHP, or Java) for business
logic development?

In the realm of multi-programming language software
development, the nMorph framework introduces a

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

distinctive transpiler-based architecture, enabling devel-
opers to code in one language and then transpile it into
multiple target languages, ensuring the preservation of
the core design. A few key observations emerge when
analyzing its influence on novice developers.

Firstly, the design of nMorph framework focuses
on catering to enterprise back-ends with its layered
architecture that encompasses various functionalities,
from ORM & Database Connectors to data access layers.
This sophisticated design, is meant to guarantee con-
sistent performance across different platform-specific
compilations. For novice developers, navigating such
an expansive framework may present an initial learning
curve, particularly if they are familiar with traditional
programming languages.

This empirical study provides valuable insights into
the framework’s influence on novice developers. When
tasked with implementing business logic using both
the Haxe language with nMorph and their designated
programming languages (C#, PHP, or Java), there were
evident variations in their experiences. Participants took,
on average, 20.11 minutes longer with Haxe and the
nMorph framework than with their designated language.
Specific challenges arose depending on the traditional
language they were using, for instance, PHP users faced
significant time shifts in development, whereas C# users
found the framework particularly challenging.

These data accentuate the importance of individual
developer proficiency and familiarity with the lan-
guage in influencing software development outcomes.
Although nMorph offers a revolutionary approach, its
implementation seems to extend the development phases
for novice developers compared to traditional languages.
A pivotal aspect of this extension is the perceived task
difficulty, which has a direct correlation with extended
analysis durations. Interestingly, while language profi-
ciency influenced the speed of analysis, it seemed to
have a limited impact on overall development time.

In terms of efficiency, the introduction of the nMorph
framework seems to generally increase the develop-
ment time across the board when compared with the
commonly used languages, specifically C#, PHP, and
Java. For instance, developers transitioning from PHP
to nMorph experienced the most significant increase in
development time across the entire cycle, averaging an
additional 34.75 minutes. When comparing the entire
development cycle, PHP participants exhibited the most
substantial time increase at 31.02%, with C# and Java
trailing at 10.38% and 7.16%, respectively. On the
other hand, some phases, like the testing phase for
Java developers, showed improved times with nMorph,
suggesting specific efficiencies within certain aspects of
the development process.

Regarding the experience, the perceived difficulty
of nMorph varied among participants with different
primary languages. C# participants found the transition

VOLUME 11, 2023

to nMorph to be the most challenging, reflecting a
49.75% increase in perceived difficulty. In contrast, Java
participants deemed the framework to be significantly
less troublesome with only an 11.25% increase in
difficulty. Notably, despite the longer time demands
with nMorph, PHP participants showed an enhanced
understanding, suggesting that while the framework
might be more time-intensive, it could potentially offer
clearer or more comprehensible constructs, at least for
those transitioning from PHP.

Moreover, certain perceptions were tied to the program-
ming language and the framework. Higher language
proficiency was linked to lower perceived difficulty
and enhanced task understanding. However, this under-
standing didn’t necessarily translate to expedited task
execution. For instance, a deep understanding of C# or
Java did not always lead to faster development times.
Additionally, participants using Java spent a notably
larger proportion of their time in the development
phase, while those accustomed to PHP observed the
most considerable shifts in development time when
transitioning to nMorph. The study further highlighted
a consistent approach among developers using the
nMorph framework, which was evident in their adher-
ence to the basic programming template and the
utilization of the ORM provided by nMorph. While
solutions crafted in C# and Java were more structured
and typically followed object-oriented programming
principles, those in PHP were simpler and often linear.
A commonality across all languages, however, was
the emphasis on business logic coding, with most
participants achieving the intended data manipulation
in the assigned database tables. In essence, while
the nMorph framework facilitates achieving equivalent
functional implementations, it necessitates a longer
execution time compared to traditional languages,
underscoring a nuanced trade-off between familiarity,
efficiency, and adaptability in the realm of business logic
development.

In conclusion, the nMorph framework, while promising,
influence the experience of novice developers by pre-
senting a steeper learning curve and extending develop-
ment times when compared to traditional programming
languages for business logic development. However,
these challenges also point towards the necessity for
more robust training and documentation to aid novice
developers in transitioning smoothly between languages
and frameworks.

RQ3: Considering the transition between traditional
programming approaches and the nMorph framework,
to what extent does a developer’s language proficiency
impact adaptability, scalability, and performance out-
comes in software construction and practice?

A empirical experiment was conducted with a group
of developers proposing several measurements. Several
insights arise:

124423

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

1) Adaptability: The experiment showed a varied
experience for developers based on their lan-
guage proficiency. Participants took an average of
20.11 minutes longer when using Haxe-nMorph
then when using their familiar designated lan-
guage. Such findings underscore the potential
challenges developers might face in adapting
to the nMorph framework, especially if their
proficiency in the designated language is high.
However, it is worth noting that adaptability is
not solely dependent on language proficiency; task
comprehension and perceived difficulty also play a
crucial role.

2) Scalability: While the study’s primary focus was
not on scalability outcomes, the multifaceted archi-
tecture of the nMorph framework, with its diverse
responsibilities and tools, indicates a design aimed
at scalable solutions. However, if developers are
not proficient in understanding and implementing
the framework, this can impact the scalability
of the constructed software because of potential
errors or inefficient code practices.

3) Performance: Language proficiency was shown to
influence the speed of analysis but had a minimal
direct impact on the overall development time.
This suggests that while a developer’s language
proficiency can influence the initial phases of
software construction, it might not have a substan-
tial direct impact on the ultimate performance of
the software. However, indirect impacts, such as
potential errors or less optimized solutions due to
unfamiliarity, could affect performance outcomes.

A developer’s language proficiency influences adapt-
ability, scalability, and performance outcomes and
it is crucial when transitioning between traditional
programming and the nMorph framework.

It’s evident that a developer’s familiarity with a par-
ticular language plays a pivotal role in adaptability
when transitioning to the nMorph framework. When
observing time allocation, participants from the PHP
background experienced the most significant shifts in
development time, with an overall increase of 31.02%
when using nMorph. Java developers, on the other
hand, displayed varied outcomes, with an average
increase of 7.16% across all phases, yet outperforming
during the testing phase. C# developers experienced a
10.38% increase in time across the cycle, highlighting
a moderate adjustment required. However, perceived
difficulty was most pronounced for C# participants,
registering a 49.75% increase, suggesting that while the
time difference might not be as drastic, the complexity
and challenge faced were more evident. Conversely,
PHP developers, despite the time challenges, showcased
a 10.03% improvement in understanding, implying that
their adaptability was gradually improving.

124424

Moreover, while the scalability and performance out-
comes varied across languages, inherent trends emerged.
In terms of development phase, the shift to nMorph
from traditional languages like PHP showed a stark
contrast with an over 132% increase in time, sug-
gesting potential scalability concerns. However, Java
developers experienced a decrease in testing time by
10.42%, hinting at potential performance efficiencies
when scaling with nMorph. The overall adaptability,
as reflected by understanding and perceived difficulty
metrics, indicates that each language background brings
its unique challenges and advantages when transitioning
to nMorph. Thus, a developer’s language proficiency
profoundly impacts the outcomes in terms of adaptabil-
ity, scalability, and performance when integrating with
the nMorph framework.

In examining the transition from traditional program-
ming paradigms to the nMorph framework, language
proficiency emerges as a pivotal factor influencing
adaptability, scalability, and performance outcomes
in software construction and practice. The findings
illustrate that participants’ familiarity with the assigned
language, whether it be C#, Java, or PHP, does
not necessarily correlate with the duration of task
execution, suggesting that proficiency in the traditional
programming languages does not guarantee quicker
adaptability to the nMorph framework. Furthermore,
while higher language proficiency was associated with
reduced perceived task difficulty, this did not directly
translate into efficiency gains in the use of Haxe
with the nMorph framework. Remarkably, a more
profound understanding of the assigned language led
to better task comprehension, but this advantage
diminished when transitioning to Haxe, indicating a
potential adaptability challenge. With respect to scala-
bility, participants using traditional languages like C#
and Java exhibited structured, project-based solutions
that leveraged object-oriented programming. In con-
trast, Haxe solutions, under the nMorph framework,
showed a consistent source code structure across all
participants, suggesting a standardized approach that
might offer scalability benefits in larger team set-
tings. Performance-wise, while developers proficient in
C# or Java experienced variations in time allocation
across different development phases, those accustomed
to PHP witnessed the most pronounced shifts when
transitioning to nMorph, especially during the analysis
and development phases. This variance underscores the
differential impact of language proficiency on perfor-
mance outcomes when transitioning from traditional
programming approaches to the nMorph framework.
In essence, while language proficiency influences task
comprehension and perceived difficulty, its direct impact
on adaptability to the nMorph framework varies, and
its implications for scalability and performance are
multifaceted.

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

In conclusion, while the nMorph framework presents a
promising approach to multi-platform software devel-
opment, a developer’s language proficiency plays a
significant role in adaptability, influencing the initial
phase of software construction. Its effect on scalability
and performance, though indirect, can arise from
potential pitfalls or inefficiencies due to a lack of
familiarity. Thus, for optimal outcomes in adaptability,
scalability, and performance, a balance between lan-
guage proficiency and comprehensive understanding of
the framework is essential. This study also highlights the
importance of intensive training and robust documenta-
tion to support developers in making this transition.

B. ABOUT PREVIOUS ARTICLES BY THE AUTHORS

Given the vast scope of the nMorph framework’s introduction
and its empirical experiment, understanding the authors’
previous researches provides an invaluable context. Let us
delve into the authors’ prior work and their relationship with
the nMorph framework.

o Transpiler-Based Architecture for Multi-platform Web
Applications [18]
Relevance to the Current Study: This initial research
was the foundation for the nMorph framework, centering
on a transpiler-based architectural design for building
multi-platform web applications. It directly correlates
with nMorph’s principle of writing code in one language
and transpiling it into multiple languages, with a focus
on C#, Java, and PHP. Using the Haxe transpiler, the
experimental prototype can be seen as a precursor to the
nMorph framework.
Insight & Contribution: By presenting preliminary
results of using Haxe for transpiler-based architecture,
this article solidifies the basis upon which the nMorph
framework was built.

o A systematic review on Transpiler usage for Transaction-
Oriented Applications: [19]
Relevance to the Current Study: This systematic litera-
ture review highlights the gaps in the existing literature
regarding transpiler implementations for transaction-
oriented applications. The nMorph framework, which is
essentially a transpiler-based methodology, is a direct
response to the needs identified in this review.
Insight & Contribution: By determining that tran-
spilers had not been previously used for multi-platform
transaction-oriented applications, the authors identified
a significant opportunity. This article not only provided
the academic rationale for the nMorph framework’s
inception, but also established the significance of
multi-platform and multi-programming-language soft-
ware architecture for better adaptability in software
development.

o Transpilers: A Systematic Mapping Review of Their
Usage in Research and Industry [8]

VOLUME 11, 2023

Relevance to the Current Study: The systematic mapping
review provides a comprehensive overview of how
transpilers have been employed in diverse sectors over
a decade. The vast applications, from Al, and graphics,
to software development, underscore the versatility of
transpilers. The intention of the nMorph framework
to transform multi-platform software development fits
within this larger narrative, particularly as the article also
highlights transactional software and multi-platform
applications as future research areas for transpilers.
Insight & Contribution: This article paints a broader
picture of transpilers in both academia and industry,
hinting at their rising importance. The suggested areas
for future research not only set the stage for specialized
tools such as the nMorph framework, but also emphasize
the framework’s timely introduction in the context of
current trends and demands.

o Transpiler-Based Architecture Design Model for

Back-End Layers in Software Development [5]
Relevance to the Current Study: This study serves as a
keystone for the nMorph framework. While the afore-
mentioned research touched upon a transpiler-based
architectural design for multi-platform web applications
[18], this study dives deeper into the integration of tran-
spilers into the back-end layer. It proposes a complete
methodology, from abstract concepts to detailed designs,
for the automated transformation of business logic from
one source code into multiple programming languages.
The nMorph framework is an evolution or enhanced
manifestation of this model, focusing on multi-platform
back-end software development.
Insight & Contribution: By introducing both the con-
ceptual and practical elements of using transpilers in
software design and architecture, this study sets the
groundwork for the nMorph framework. The collabora-
tive To-do-list application provides a hands-on example
of the model’s applicability, and more importantly,
its feasibility. Thus, while this paper discusses the
architecture model, the nMorph framework appears to be
its tangible realization, incorporating the lessons learned
from this initial implementation.

The tapestry of the authors’ research trajectory, starting
from the significance of transpilers, moving to their specific
architectural model and culminating in the nMorph frame-
work, offers an insightful journey. Each work builds upon
the previous, with the “Transpiler-Based Architecture Design
Model for Back-End Layers in Software Development™ [5]
serving as the direct precursor to the nMorph framework.
While initial research established the landscape and gaps
in the field, this particular article sets the theoretical and
practical framework, upon which the nMorph was crafted,
to address the challenges of modern software development.
The combined body of work represents a meticulous
progression, with each step paving the way for the next, in the
quest for enhanced adaptability, scalability, and performance
in software development.

124425

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

C. ABOUT RELATED ARTICLES

The article on “Compiler-compiler of multi syntax program-
ming languages * [20] emphasizes ensuring software reli-
ability through N-version programming, where redundancy
arises from software components’ diversity. In contrast,
this study aims to enable developers to code in a unified
language, subsequently transpiling it into multiple target
languages, thus harmonizing modern software development
needs with the complexities of growing digital systems.
The former article proposes a multi-syntax programming
language compiler rooted in existing flex and bison specifi-
cations to facilitate error detection. This approach leans on
the Haxe transpiler, tailoring the framework for enterprise
back-end development, and integrating features like ORM
and Database Connectors. An empirical study on the nMorph
framework indicated participants took longer using it com-
pared to traditional languages, but benefits of multi-language
outputs counterbalanced this. The ‘“Compiler-compiler”
article focuses on simplifying error detection in multi-syntax
software for industrial applications. In comparison, the
nMorph framework suggests future exploration of its real-
world applications, with an emphasis on refining based on
user feedback and in-depth case studies.

The ‘“Multi-programming language software systems
modularization™ article [21] recognizes the challenges posed
by the deviation of evolving software systems from their
original structures. A key emphasis is on understanding
large-scale applications written in multiple languages, such
as Mozilla Firefox 3.7, which employs over twenty pro-
gramming languages. In comparison, the current study
focuses on providing developers with a unified platform
to code and then transpile into various target languages,
retaining the software’s core integrity and addressing the
intricacies of modern digital systems. The modulariza-
tion article introduces the concept of multi-programming
language modularization, proposing a technique to com-
prehend applications composed in multiple programming
languages. This is aimed at aiding the understanding of
complex applications. The nMorph framework, on the other
hand, leans on the Haxe transpiler, tailored especially
for enterprise back-end development. It integrates features
like ORM, Database Connectors, and a dedicated security
layer, facilitating smooth transitions between languages such
as Java, C#, and PHP while ensuring compatibility with
multiple databases and servers. The modularization article
showcases the applicability of their approach on Mozilla
Firefox, highlighting its capability to yield a modularization
close to what human experts would produce. The nMorph
study conducted a real-world usability experiment, which
indicated certain challenges in transitioning to nMorph,
primarily contingent upon a developer’s foundational lan-
guage. Despite the longer time taken, the multi-language
and multi-platform benefits counterbalance the investment.
The nMorph research underscores the importance of con-
tinuous refinement through feedback and detailed case
studies.

124426

The “Comparison of the most popular object-oriented
software languages and criterions for introductory pro-
gramming courses with analytic network process: A pilot
study” article [22] addresses the challenge of selecting the
appropriate programming language for introductory courses.
This decision-making process is multi-faceted, involving
various closely interrelated factors. The study leverages the
Analytic Network Process (ANP) methodology, aiming to
simplify and streamline the decision-making process in the
context of these multiple criteria. In contrast, this article
introduces a paradigm shift. With the nMorph framework,
the traditional challenge of selecting a single programming
language becomes obsolete. Instead of being confined to
one language choice, developers are empowered to code
in a unified language, which can then be transpiled into
multiple target languages. This maintains the software’s
original integrity while providing flexibility across platforms.
The first article uses ANP to evaluate and rank programming
languages based on a set of predefined criteria. The approach
is analytical, focusing on a weighted decision-making process
that accounts for the interactions between the criteria. The
nMorph framework, however, centralizes around the Haxe
transpiler. This innovative toolset allows for seamless tran-
sitions between popular languages like Java, C#, and PHP.
Furthermore, the framework integrates essential features
tailored for enterprise back-end development, ensuring com-
patibility with various databases and servers. The ANP-based
study provides stakeholders with a structured method to
assess and rank programming languages, potentially guiding
educational institutions in crafting their introductory pro-
gramming courses. However, it operates under the traditional
assumption that one must choose a singular language. On the
other hand, the nMorph framework liberates developers
from this constraining decision. The multi-language, multi-
platform outputs that nMorph facilitates render the initial
language selection unnecessary. Developers can implement
software solutions in parallel across platforms without the
traditional barriers. Thus, with nMorph, the emphasis shifts
from ‘“which language to choose” to ‘“how to effectively
leverage multi-language capabilities.”

D. THREATS TO VALIDITY
Understanding the validity of the research is paramount in
gauging the reliability and generalizability of its findings.
In evaluating our study on the nMorph framework, we iden-
tify potential threats across internal, external, and construct
validity and also elucidate the measures taken to mitigate
these threats.
1) Internal Validity
o Sample Size and Characteristics: The limited
sample of 14 students from the same software
development university program may not be broad
enough to draw conclusive insights. Their novice
status further exacerbates this concern. Mitigation:
Despite the small sample size, the participants
were carefully chosen to represent a diverse

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

range of proficiency levels within their academic
cohort. This was done to capture a spectrum
of experiences and reduce bias stemming from
proficiency variance among students.

o Laboratory Scenario: The controlled environment
of the laboratory might not reflect the real-world
intricacies and challenges faced in practical soft-
ware development. Mitigation: Although the study
was executed in a controlled environment, the
assigned tasks were modeled after real-world
challenges. The banking transaction exercise was
designed to emulate a common development
project, with the aim of making the experience as
authentic as possible.

2) External Validity:

o Generalizability: Given the nascent status of the
nMorph framework as a non-generally-available
product, the broad applicability of the results is
potentially constrained. Mitigation: We emphasize
the exploratory nature of this study and advo-
cate caution when attempting to generalize its
outcomes. The primary goal was to gain initial
insights rather than provide a universal conclusion.

« Participant Demographics: This study’s focus on
novice developers from a single university could
hinder the relevance of the findings to profes-
sionals and other demographic groups. Mitigation:
The research was explicit in its objectives, which
were centered on gauging the adaptability of
novice developers to the nMorph framework.
Future research is planned to involve a more
diverse participant pool, including professional
developers, to enhance external validity.

3) Construct Validity:

o Measurement Tools: Relying predominantly on
post-implementation surveys and source code
analysis might lead to an incomplete under-
standing of the participants’ experiences. Miti-
gation: By integrating both qualitative (surveys)
and quantitative (source code analysis) tools,
we attempted to capture participants’ experiences
holistically. Additionally, the researchers main-
tained open communication channels with partic-
ipants, encouraging them to share any challenges
or insights beyond the structured survey.

o Operational Definitions: Constructs like *“diffi-
culty” or “proficiency” may be subjectively inter-
preted across participants, posing potential validity
threats. Mitigation: Clearly defined constructs
were provided before the start of the experiment.
The participants underwent a brief orientation to
ensure a shared understanding of the terminologies
and metrics.

In summary, while this study on the nMorph framework
offers valuable initial insights, potential validity threats were

VOLUME 11, 2023

actively recognized and addressed where possible. This
marks an essential first step in a broader research journey,
with plans for future studies to further substantiate and
expand upon these findings, enriching the body of knowledge
surrounding the nMorph framework.

V. CONCLUSION AND FUTURE WORK

A. CONCLUSION

In the rapidly evolving landscape of software development,
the imperative of adaptability, scalability, and performance
has never been more pronounced. The nMorph framework,
drawing inspiration from the “Transpiler-Based Architecture
Design Model for Back-End Layers in Software Develop-
ment,” emerges as a potential solution to these challenges.
This revolutionary framework allows developers to craft code
in a single language, which can then be effortlessly transpiled
into multiple target languages, ensuring that the core integrity
of the original design remains uncompromised.

The nMorph framework boasts of a multifaceted architec-
tural design tailored to robust enterprise back-end systems.
By embracing transpilable languages, it ensures consistent
performance regardless of the platform-specific output.
It is complemented by a suite of specialized libraries
and tools, with the Haxe transpiler taking center stage,
ensuring seamless integration of the platform’s web services,
ORM functionalities, service exposure, and streamlined build
process.

However, its real-world applicability, as revealed by an
empirical experiment using throwaway prototypes, presents
a more nuanced picture. When novice programmers were
tasked with implementing business logic using the nMorph
framework in Haxe and then comparing it to conventional
languages, several salient points emerged. Notably, there was
discernible variation in perceived task difficulty and the time
taken across different development phases. On average, Haxe
implementations took 20.11 minutes longer than conven-
tional languages. Further delving into individual language
dynamics, the nMorph framework presented heightened
challenges for PHP users in terms of duration, and for C#
users in terms of complexity. Another pivotal observation
was the role of language proficiency, which had a marked
influence during the analysis phase but saw its impact taper
off during the development phase.

In concluding remarks, the nMorph framework, with
its transformative potential, undeniably stands to reshape
the approach to multi-platform software development. Its
innovative methodology and a gamut of dedicated tools
underscore its potential to redefine how developers navi-
gate multi-language projects. However, empirical research
offers a note of caution, highlighting the importance of
understanding the intricacies of individual languages and
their associated challenges. The pronounced learning curve,
especially for those unfamiliar with the Haxe language
and nMorph framework, underscores the pressing need for
comprehensive documentation and robust training resources.

124427

IEEE Access

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

As the framework charts its future trajectory, the inclusion
of intensive training modules and a broader spectrum of
data-collection methodologies can significantly smoothen the
transition between traditional languages and the nMorph
paradigm.

To encapsulate this, the nMorph framework heralds a
new era in software development, marrying innovation with
practicality. However, its successful deployment mandates
a deep-seated understanding of its capabilities, paired with
focused training to unlock its myriad possibilities.

B. FUTURE WORK

The initial findings and insights derived from our research on
the nMorph framework provide a promising foundation upon
which we can build further studies. As we move forward, the
following areas will be prioritized to bring the framework to
its full potential and maximize its benefits for the broader
software development community. Those are presented in
priority order.

1) Real-World Case Studies: While empirical experiment
with novice programmers provided valuable initial
insights, it is imperative to test the framework’s
capabilities in real-world scenarios. We aim to col-
laborate with industry partners to implement nMorph
in practical projects, and gauge its performance and
adaptability in diverse settings. This will provide a
more comprehensive view of the strengths and limita-
tions of the framework, driving necessary refinements.

2) Broader Demographics: To ensure the wide appli-
cability of the framework, our next steps involve
replicating the study with different stakeholder groups.
This includes professionals with varying experience
levels, teams from different industries, and possibly
integrating non-developers such as systems analysts or
project managers. Their feedback and experience will
help address the spectrum of challenges encountered in
real-world software development.

3) Diverse Scenarios: The initial study centered on a
banking transaction exercise. In future studies, we aim
to explore other application domains, ranging from
e-commerce and healthcare to entertainment and
education. This will test the flexibility of nMorph in
catering to the distinct requirements and constraints
inherent to different sectors.

4) Framework Enhancement: As we collect more data and
feedback, there is a continual evolution of the nMorph
framework. Areas highlighted for improvement, such
as automated testing, are prioritized. New tools and
libraries may also be integrated based on emerging
needs.

5) Comprehensive Documentation and Training: Based
on the findings that underline the importance of
robust documentation and training, efforts should be
directed towards creating detailed user guides, tutori-
als, and workshops. These resources aim to facilitate

124428

a smoother transition for developers that adopt the
nMorph framework.

6) Collaboration and Open-Source Initiatives: Consider-
ing the potential impact of the nMorph framework
on multi-platform software development, we are con-
templating open-source collaborations. This will allow
developers worldwide to contribute to the framework,
making it more robust and rich in features.

In conclusion, the nMorph framework’s journey has
just begun. Although the initial results are promising,
there is an expansive roadmap ahead. By delving into
real-world case studies, broadening our participant demo-
graphics, and refining the framework continually, we aim
to use it in a transformative era of multi-platform software
development.

REFERENCES

[1] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline, 1st ed. Upper Saddle River, NJ, USA: Prentice-Hall,
1996.

[2] M. Fowler, Patterns of Enterprise Application Architecture. Reading, MA,
USA: Addison-Wesley, 2012.

[3] T. Erl, SOA Principles of Service Design (The Prentice Hall Service-
Oriented Computing Series From Thomas Erl). Upper Saddle River, NJ,
USA: Prentice-Hall, 2007.

[4] S. Newman, Building Microservices. Sebastopol, CA, USA: O’Reilly
Media, 2021.

[S] A.Bastidas Fuertes, M. Pérez, and J. Meza, ““Transpiler-based architecture
design model for back-end layers in software development,” Appl. Sci.,
vol. 13, no. 20, p. 11371, Oct. 2023.

[6] System Requirements for Java, Oracle, Austin, TX, USA, 2023. Accessed:
Aug. 10, 2023.

[7] .Net Core Release Notes, Microsoft, Redmond, WA, USA, 2023. Accessed:
Sep. 10, 2023.

[8] A. Bastidas Fuertes, M. Pérez, and J. Meza Hormaza, ‘““Transpilers:
A systematic mapping review of their usage in research and industry,”
Appl. Sci., vol. 13, no. 6, p. 3667, Mar. 2023.

[9] Haxe Foundation. (2023). Haxe—The Cross-Platform Toolkit. Accessed:
Aug. 10, 2023. [Online]. Available: https://haxe.org/

[10] Oracle. (2023). Oracle Database. Accessed: Aug. 10, 2023. [Online].
Available: https://www.oracle.com/database/

[11] Microsoft. (2023). Microsoft SQL Server. Accessed: Aug. 10, 2023.
[Online]. Available: https://www.microsoft.com/en-us/sql-server/

[12] The PostgreSQL Global Development Group. (2023). PostgreSQL:
The World’s Most Advanced Open Source Relational Database. Accessed:
Aug. 10, 2023. [Online]. Available: https://www.postgresql.org/

[13] MariaDB Foundation. (2023). MariaDB: The Open Source Relational
Database. Accessed: Aug. 10, 2023. [Online]. Available: https://mariadb.
org/

[14] Oracle Corporation. (2023). MySQL: The World’s Most Popular Open
Source Database. Accessed: Aug. 10, 2023. [Online]. Available: https://
www.mysql.com/

[15] P. J. Leach, M. Mealling, and R. Salz, A Universally unique Identifier
(UUID) Urn Namespace, document RFC 4122, Internet Engineering
Task Force (IETF), Jul. 2005. [Online]. Available: https://datatracker.
ietf.org/doc/html/rfc4122

[16] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Berlin, Germany:
Springer, 2012.

[17] J. Cohen, Statistical Power Analysis for the Behavioral Sciences.
New York, NY, USA: Routledge, 2013.

[18] B. F. Andrés and M. Pérez, “Transpiler-based architecture for multi-
platform web applications,” in Proc. IEEE 2nd Ecuador Tech. Chapters
Meeting (ETCM), Oct. 2017, pp. 1-6.

[19] F. A. Bastidas and M. Pérez, “A systematic review on transpiler usage
for transaction-oriented applications,” in Proc. IEEE 3rd Ecuador Tech.
Chapters Meeting (ETCM), Oct. 2018, pp. 1-6.

VOLUME 11, 2023

A. Bastidas Fuertes et al.: nMorph Framework: An Innovative Approach

IEEE Access

[20] A. S. Kuznetsov, R. Y. Tsarev, T. N. Yamskikh, A. N. Knyazkov,
A. N. Pupkov, and F. A. A. Laleye, “Compiler-compiler of multi syntax
programming languages for creating N-version software,” J. Phys., Conf.
Ser., vol. 1333, no. 7, Oct. 2019, Art. no. 072014.

[21] M. Kargar, A. Isazadeh, and H. Izadkhah, ‘“Multi-programming lan-
guage software systems modularization,” Comput. Electr. Eng., vol. 80,
Dec. 2019, Art. no. 106500.

[22] Z. Anik and O. F. Baykog, “Comparison of the most popular object-
oriented software languages and criterions for introductory programming
courses with analytic network process: A pilot study,” Comput. Appl. Eng.
Educ., vol. 19, no. 1, pp. 89-96, Mar. 2011.

ANDRES BASTIDAS FUERTES (Member, IEEE)
received the degree in computer system engi-
neering and the dual master’s degree in strategic
software management and high enterprise man-
agement. He is currently pursuing the Ph.D.
degree in computer science with a specialization
in software engineering with Escuela Politécnica
Nacional University. He is the CEO of Smartwork
S.A. and an ISO Auditor. He possesses interna-
tional MCPD, MCP, MCTS, and other technical
certifications, as well as a Six Sigma Green Belt certification and SCRUM
Master. He specializes in the insurance and financial industries. He is also
a consultant on multiple digital entrepreneurship platforms and a software
architect, conceptualizer, designer, and implementer of software solutions,
as well as a designer and implementer of business processes, technology
strategy design, digital transformation mentors, and university teachers.
He has more than 20 years of experience in software development and
technological implementation in the industry. He has participated in more
than 200 comprehensive IT solutions in both private and public sectors.

VOLUME 11, 2023

MARIA PEREZ received the Ph.D. degree in
computer science and mathematical modeling.
She is currently an Assistant Professor with the
Department of Computer Science and Informatics,
Escuela Politécnica Nacional, Quito, Ecuador.
She has participated in several projects, such
as computer vision, pattern recognition, digital
images, and information systems, and several
publications in journals with impact factors. Her
research interests include artificial intelligence and
vision, in particular, computer methods for early diagnosis and classification
of cancerous lesions. She has been a reviewer of several international
congresses and journals. Among the other roles, she performs.

JAIME MEZA (Member, IEEE) received the
master’s degree in business administration and
computer engineering and the Ph.D. degree (cum
laude) in project and systems engineering from the
Polytechnic University of Catalonia, Spain. He is
currently a Postdoctoral Researcher with the Uni-
versity of Fribourg, Switzerland; a Full Professor
with Universidad Técnica de Manabi, Ecuador;
and a Staff Member of IEEE e-government STC.
He has been a teacher for more than 15 years with
multiple universities in Ecuador as well as an academic guest with the
Polytechnic University of Catalonia, Spain, and the University of Freiburg,
Switzerland. In the professional field, he has held various management
positions, such as the project manager, the chair, an IT advisor, and an auditor,
at the local and national levels in companies and government institutions. His
research projects seek to reduce tax evasion/fraud, improve tax collection
using Al systems and advanced analytical techniques, and collaborative
spatial urban planning supported by cognitive and recommendation systems.
His research interests include collective intelligence, soft computing,
recommender systems, and models of collaborative cognition to improve
public services and higher education.

124429

