
Received 22 August 2023, accepted 28 October 2023, date of publication 6 November 2023, date of current version 10 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3330665

An Empirical Study of DDPG and PPO-Based
Reinforcement Learning Algorithms for
Autonomous Driving
SANJNA SIBOO1, ANUSHKA BHATTACHARYYA 1, RASHMI NAVEEN RAJ 1, (Member, IEEE),
AND S. H. ASHWIN2
1Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka
576104, India
2Standard Chartered Global Business Services, Bengaluru 560103, India

Corresponding author: Rashmi Naveen Raj (rashmi.naveen@manipal.edu)

This work was supported by the Manipal Academy of Higher Education, Manipal.

ABSTRACT Autonomous vehicles mitigate road accidents and provide safe transportation with a smooth
traffic flow. They are expected to greatly improve the quality of the elderly or people with impairments by
improving their mobility due to the ease of access to transportation. Autonomous vehicles sense the driving
environment and navigate through it without human intervention. And, Deep Reinforcement Learning (DRL)
is witnessed as a powerful machine learning solution to address a sequential decision problem in autonomous
vehicles. The detailed state-of-the-art work in autonomous vehicles using DRL algorithms along with future
research directions is discussed. Due to the high dimensional action space, two continuous action space DRL
algorithms: Deterministic Policy Gradient (DDPG) and Proximal Policy Optimization (PPO) are chosen to
address the complex autonomous driving problem. The proposed DDPG and PPO based decision-making
models are trained and tested using the TORC simulator. Both the algorithms are trained for the same
number of episodes for lane keeping as well as multi-agent collision avoidance scenarios. To the best of our
knowledge, this is the first paper to present the comparative performance analysis of these two algorithms,
and DDPG is found to perform better in terms of higher reward and faster convergence than PPO. Hence,
DDPG is a suitable option in the design of a decision model for autonomous driving.

INDEX TERMS Machine learning, deep reinforcement learning, deep deterministic policy gradient,
continuous space, autonomous vehicles, proximal policy optimization.

I. INTRODUCTION
Autonomous vehicles also known as driverless vehicles
navigate through the environment without any human
intervention. These vehicles use different sensors such as
LiDAR, cameras, GNSS, sonar, etc. to understand vari-
ous environmental conditions and take actions accordingly
[1]. Different control systems for brakes, lane keeping,
steering, etc. work together using sensory information to
decide on different possible trajectories and strategies. The
expeditious technological development in sensor technology,
image processing, control system design, and inter-vehicular

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wang .

communication systems has enabled progress in reliable
autonomous driving.

Generally, road vehicles are classified into 6 levels from
level 0 to 5 based on their autonomous capabilities by SAE
International [2]. The first three levels (0 to 2) depend more
on human driving with almost no automated assistance to
the driver. For example, Tesla cars provide level 2 automated
assistance. The next three levels (3 to 5) are automated
drivers with little to no human assistance. Some major
developments in the field include Waymo providing self-
driving taxi services (with SAE level 4) with fully driverless
taxis in 2020. Cruise, under General Motors, has developed a
level 4 and 5 EV named Origin. Another company, Argon AI
is working with Volkswagen and Ford in the development of
level 4 software [3].

125094

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0005-3353-7706
https://orcid.org/0000-0002-7683-4955
https://orcid.org/0000-0001-9032-4401


S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

The need for autonomous driving arises from several
different factors including safety, reduced road accidents
due to human error, improved traffic flow, efficiency, and
convenience. Human error is a key cause of many car
accidents, and autonomous vehicles can reduce this risk by
relying on sensors and complex algorithms to make decisions
and adapt to road conditions [4]. Another advantage is it
increases mobility for those who cannot drive themselves,
such as the elderly or people with impairments. Self-driving
cars can greatly improve the quality of their lives by giving
them access to transportation. Last but not least, autonomous
driving technology can aid in easing traffic congestion and
enhancing overall road efficiency. The standard building
blocks of autonomous driving systems are:
Sensing: A modern autonomous driving system’s sensor

architecture has been notable for including multiple sets of
cameras and LiDARs etc for providing the 3D position of the
vehicle. The sonar sensors that can detect the siren of public
safety vehicles should also be included as input sensors.
Perception and Localization: The perception module’s

goal is to create an intermediate-level depiction of the
environmental state that will later be used by the system to
eventually create the driving policy.
Scene Representation: The main aim of sensor fusion is

to generalize to situations where the environment becomes
more abstract. Mapping is a critical component of automated
driving. Maps also play a vital role as vehicles’ current
location can be pinpointed within the map. Due to the
magnitude of the problem, traditional mapping techniques
are supplemented with semantic object detection to provide
reliable disambiguation.
Planning and Decision Making: The trajectory planning

module is a critical component of the autonomous driving
pipeline. This module must generate motion-level commands
that steer the agent given a route-level plan-generated map.
Control: A controller defines various actions required at

each point along the path based on a predetermined map or
expert driving recording of the same values at eachway-point.

Early autonomous vehicle systems relied significantly
on precise sensory data to provide accurate environment
perception. The control of these self-driving vehicles was
handled by rule-based controllers, the parameters of which
were set by the developers and manually adjusted after
simulation and field testing. The disadvantage of this
approach was that it was time-consuming and difficult to
generalize to new scenarios [4]. Autonomous vehicles should
have a control system to manage different traffic conditions
such as highways, traffic jams, the presence of emergency
vehicles, and public safety systems like ambulances, fire
safety, or police vehicles, etc.

Machine Learning (ML) plays a crucial role in the devel-
opment and operation of autonomous vehicles by enabling
them to perceive, interpret, and make decisions based on
complex data they receive from their environment. ML algo-
rithms are usually classified into three broad categories:
supervised, unsupervised, and Reinforcement Learning (RL).

In supervised learning, the model is trained using labeled
data available beforehand. The algorithm then learns from
this labeled data to generalize patterns and relationships,
enabling it to make accurate predictions on new, unseen
data. Opposite to that of supervised, unsupervised deals with
learning unlabeled data. The third category is RL, where
an agent improves its performance in a task by constantly
interacting with its surroundings.

RL was introduced to incorporate ambient intelligence
into autonomous systems to address the aforementioned
issue. RL can be used to solve many real-world problems
[5], [6] but sometimes, there exist certain situations where
conventional RL algorithms fail to provide desirable results.
This is mainly because the state and/or action spaces involved
in these problems are very high-dimensional. Researchers
have investigated various RL algorithms in the field of
autonomous vehicles [7], [8], [9], [10], [11]. When it comes
to traditional RL algorithms, it is not feasible to store and
map all the state-action pairs. Hence, there is a need to use
neural networks and inculcate Deep Learning (DL) into RL.
The neural networks help estimate the states and the possible
state-action pairs. This makes the solution more manageable
and generalizes an otherwise immeasurable state space.
To make it more efficient in dealing with high dimensional
sensory data, Deep Reinforcement Learning (DRL) with
continuous state and action spaces has been developed.
The usual approach to discretize continuous variables is
often not feasible since it leads to dimensionality issues
termed as ‘Curse of Dimensionality’. These issues arise while
dealing with high dimensional data and action/state spaces,
requiring more time and expensive resource utilization. The
exceptional performance of DL techniques has expanded
its application in autonomous vehicles [4]. To the best
of our knowledge, this is the first paper to compare the
performance of Deep Deterministic Policy Gradient (DDPG)
and recently developed Proximal Policy Optimisation (PPO)
based DRL algorithms. The contributions of the research
are:

• Various DRL-based research papers are discussed and
contributions are highlighted.

• DDPG and PPO oriented state-of-the-art developments
are discussed

• A comparative performance analysis of DDPG and PPO
algorithms observed through The Open Racing Car
Simulator (TORCS) is presented.

• Future scope in autonomous vehicles is also discussed.

The rest of the paper is organized as follows: section II covers
the background and functioning of the DRL algorithms.
In section III, a comprehensive review of research related to
this topic is presented and summarised in a table. Section IV
defines the elements of the RL model and discusses the
performance analysis of DDPG and PPO based algorithms
in lane keeping, obstacle detection, and overtaking scenarios.
Section V covers future scope with section VI concludes this
paper.

VOLUME 11, 2023 125095



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

II. PRELIMINARIES
A general overview of the basics of RL and DL along with its
different elements and various DRL algorithms is provided in
this section.

RL consists of three main elements: the agent, the
environment, and the reward. The agent is driven by the
algorithm to interact with the environment, and in turn, gain
feedback from the environment in the form of a reward.
An RL problem can be expressed as a Markov Decision
Process (MDP), which consists of the following factors:
S : Set of all states occurring in the environment, s ∈ S.
A: Set of all actions that can possibly be taken by the agent,

a ∈ A to perform.
p(st+1|st , at ): State transition model describing the change

in environment state depending on the action taken at by an
agent in the current state st .
p(rt+1|st , at ): Reward model that describes the reward

value rt+1 that the agent receives from the environment as
feedback for taking a certain action in that time step.

γ : The discount factor that controls the importance of
future rewards.

DL is a type ofMLwithmultiple layers of neural networks.
The term deep is due to the presence of multiple layers.
DL has the potential to automatically extract the feature sets
from the data set and perform tasks like object detection,
image classification, etc., without the need for many manual
sequential steps like data pre-processing, feature selection,
classification, etc. as required in ML [12], [13].
The RL algorithm aims to maximize the reward (based

on the context of the problem) by driving the agent from
one state to another through actions and adjusting the actions
depending on the rewards received from the environment in
turn. The use of DLwith RL has extended the scope of RL to a
variety of challenging applications. The three commonly used
DRL algorithms for autonomous driving are Deep QNetwork
(DQN), DDPG, and PPO. DQN deals with discrete state-
action spaces and is more suitable for low-dimensional action
space. DDPG and PPO are continuous space DRL algorithms
that are suitable for most real-world problems.

A. DEEP Q NETWORK
DeepMind first proposed DQN or Deep-Q Networks in
2015 in an effort to bring the benefits of DL to RL [14].When
the state space is discrete, Q-networks can quickly formulate
it into a table. However, as the number of states increases,
or when the states are continuous, it becomes impossible to
search all possible state-action pairs to find the optimal value
of Q. This is where DQN comes into play, which uses deep
neural networks to parameterize the Q-function as Q(s, a, w).
The state is given as input, and all possible actions’ Q-value is
generated as output. The state space can be extended to higher
dimensions or even made continuous using neural networks.

B. DEEP DETERMINISTIC POLICY GRADIENT ALGORITHM
DDPG is a model-free, off-policy RL algorithm specifically
designed for problems with continuous action spaces. It is an

extension of the well-known Deterministic Policy Gradient
(DPG) algorithm and uses deep neural networks to represent
the policy and value function.

When the execution starts the current state s of the agent
is fed into the actor network. The actor-network selects the
desired action denoted by a and sends it back to the agent.
The agent performs that particular action, obtains a reward
r (using the reward function), and then moves on to the
next state. The entire experience consisting of (s, a, r, s′) is
stored in an experience relay buffer. Random sampling is
done on the buffer, after which a few samples are stored in
a mini-batch. The reason why random sampling is done is to
ensure that the agent not only focuses on recent experiences
but also on samples from a diverse set of experiences. This
helps to prevent over-fitting, where the agent only learns to
respond to specific situations and is unable to generalize to
new situations.

From the mini-batch, the current state value s, is fed into
the critic network. The main goal of the critic network is to
evaluate how efficient the action was in that particular state.
The critic network calculates the Q-value for the state-action
pair denoted by Q(s, a) using Equation 1.

Q∗(s, a) = E[r(s, a) + γ maxQ(s′, a′)] (1)

where r(s, a) is the reward obtained by taking action a in state
s, γ is the discount factor, which determines the importance
of future rewards, µ(s′) is the policy of the actor-network,
which specifies the best action to take in-state s′ according to
the current estimate of the Q-value function.

The next state value s′ from the mini-batch is then fed into
the target actor network. The main goal of the target actor
network is to output an action a′ that is best suited in state s′.
The next state and action value is then passed onto the

target critic network which evaluates the action generated by
the target actor and calculates Q(s′, a′).
Using values Q(s, a) and Q(s′, a′) the loss function is

calculated as shown in Equation 2 which is used to update
the critic network and helps it evaluate the actions in a better
way.

Loss =
1
N

∑
i

(yi − Q(si, ai|θQ))2 (2)

Additionally, the policy gradient is calculated using the Q
value of (s, a), which is then used to update the actor network.
This enables the actor to make improved decisions.

The working of the algorithm in the TORCS environment
is shown in Figure 1.

C. PROXIMAL POLICY OPTIMIZATION
PPO was introduced in 2017 [15], and aims to give the
reliability of Trust Region Policy Optimisation (TRPO) while
using only first-order optimization. It is based on the policy
gradientmethods, whichwork on policy and there is no replay
buffer, and a batch of experiences that are used to update
the policy are discarded. The objective function of policy

125096 VOLUME 11, 2023



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

FIGURE 1. DDPG block diagram.

gradient methods is shown in Equation 3

LPG(θ ) = Êt

[
logπθ (at | st) Ât

]
(3)

the first term is the log of the output of the policy, which is
probabilities of actions based on observed states(which are
taken as the input). The second term Ât denotes the advantage
of taking a specific action. It’s computed as the difference
between the actual reward of taking action and the expected
reward. Hence if it is positive, then the probability of the
action taken gets increased according to the Equation 3 and
vice versa. This intuitively means that the policy, rather than
giving a 100% probability to an action, slowly increases
or decreases its probability of happening according to the
rewards and advantages.

To prevent the updates from changing the policy too
abruptly and producing unexpected trajectories, the concept
of TRPO was introduced. The objective now is defined as
shown in Equation 4

LCPI (θ ) = Êt

[
πθ (at | st)

πθold (at | st)
Ât

]
= Êt

[
rt (θ )Ât

]
(4)

Here, instead of a log, the ratio of the updated policy outputs
and the old policy outputs is considered. This is denoted by
rt (θ ). This ratio would be greater than 1 when the action at is
more likely with the newer policy and between 0 and 1 if the
action is less likely.

LCLIP(θ ) = Êt

[
min

(
rt (θ )Ât , clip (rt (θ ), 1 − ϵ, 1 + ϵ) Ât

)]
(5)

Basically, this clipping function is used to limit the effect
of the gradient update so that the probability of an action
doesn’t become too high or too low, leading to unpredictable
behaviors in the trajectories. This clipping ensures that, with
each update, the new policy doesn’t stray too far from the
previous policy and hence prevents the policy from going
downhill at a certain step.

The actor uses the old and new policy to get the ratio of the
probability of a certain action given each policy. The critic
gives the value function for calculating the advantage. Both
ratio and advantage are then used in the clipped objective
function to give a new policy update to the actor. The critic
also gives a value function for TD error which is then used

FIGURE 2. PPO block diagram.

in loss function Lv which updates the new value functions for
the critic. The block diagram of PPO is shown in Figure 2

III. LITERATURE SURVEY
A lot of advancements and research are going on in the field of
autonomous vehicles. A comprehensive literature review has
been done with three different sections. Section III-A covers
research in different aspects of autonomous driving, algo-
rithms, and methods generally used. Sections III-B and III-C
focus more on articles that have used DDPG and PPO
algorithms for lane-keeping implementations.

A. GENERAL BASED PAPERS
Chae et al. [8] proposed a braking system that utilized DRL.
The system determines when brakes are to be applied in
real world by assessing the collision risk based on sensor
data. For the brake control policy, the authors employ a DQN
and conduct computer simulations. The experimental results
demonstrate that the control agent exhibits desirable actions,
successfully avoiding collisions without any mistakes in
diverse unknown territory. Safety tests were conducted and
it was observed that the model could successfully avoid
collision for time to collision values above 1.5s. Ashwin and
Naveen Raj [16] proposed a DQNbased algorithm for various
overtaking scenarios with collision avoidance.

Antonio and Maria-Dolores [17] attempted to improve
safety by predicting the 5G communication network latency
on the intersection management system of autonomous
vehicles. Xia et al. [9] proposed a new control strategy
that combines the experience of professional drivers with
a Q-learning algorithm that uses filtered experience replay.
The experimental results demonstrated on TORCS showed
that their proposed model significantly reduced the time
required for learning by 71.2% compared to the existing
neural-fitted Q-iteration algorithm. Additionally, the stability
of self-driving vehicles increases by approximately 32% in
comparison.

The work by Zhang et al. [18] focused on using Double
DQN (DDQN) to build the vehicle speed control model.

VOLUME 11, 2023 125097



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

In Q-Learning, an agent selects an action with the best
Q-value, whichmight not be an optimal choice. To resolve the
overestimation, two separate Q-value estimators (Double Q)
are used. The authors also reported that the DDQN model’s
score was very high compared to that of the DQN algorithm.
Li et al. [19] designed aDRL approach to prevent collisions in
different intersection scenarios while ensuring optimal travel
efficiency. The paper used the DQN algorithm to train their
DRLmodel. Three crossing scenarios with the most accident-
prone intersections were designed on CARLA to test this
model. The proposed method gave a more consistent and
stable result than the other two algorithms, i.e. Monte-Carlo-
sampling-based method and the Bayesian-network-based
method, which showed an overly conservative approach.

Karthikeyan et al. [20] introduced a novel method to navi-
gate intersections called DRL-based autonomous intersection
management. This model consists of two components: the
brake-safe control model and the intersection controller.
The intersection controller comprises the environment,
agent, priority assignment model, and queue. The priority
assignment model uses the DQN algorithm to decide which
vehicles should be allowed to pass or forbidden. The authors
tried various different reward functions and found one of
those functions to have an 83 percent improvement in
throughput for navigating intersections. Sallab et al. [21]
proposed different methods for an end-to-end autonomous
driving model (lane-keeping assistance) that took raw sensor
inputs and outputs driving actions. Two algorithms Deep
Deterministic Actor-Critic Method (DDAC) and DQN were
used for this purpose. The algorithms were tested on tracks
that contained both straight and curved parts. For straight
tracks, the performance of both the algorithms was the same
but for the curved part of the track performance of DDAC
was much better than DQN. Thus DDAC algorithm has an
excellent performance on both straight and curved parts of
the track.

He et al. [22] proposed an improved version of the
DDPG algorithm using double critic networks and a priority
experience replay mechanism. This enhanced algorithm
was then applied to develop a lane-following method.
Experimental results conducted on the TORCS platform
demonstrated that the proposed algorithm achieved excellent
lane-following results under various road conditions. Wang
et al. [23] proposed two strategies using different DRL
algorithms for lane-keeping assistance. The first algorithm
used was the DQN, which operates with a discrete action
space. The second algorithm employed was DDPG, which
operates with a continuous action space. The environment as
well as the agent dynamics are also modeled in simulink.
Comparing the two algorithms, it was observed that the
DDPG agent performed better, as it ran fewer episodes, took
less time, and achieved a higher average reward.

Sharma et al. [11] proposed a DL technique for imple-
menting both lateral and longitudinal control in autonomous
vehicles. TORCS simulator was used for evaluating the

implementation. Based on the road course, two different
neural networks were trained to predict vehicle speed and
steering. The trained model could complete an entire lap
without going off track. The limitation in this paper was
the fact that the speed and steering networks were not able
to obtain 100 % efficiency in other tracks. More data from
different tracks was required in order to make the technique
more generalized to different tracks. Radwan et al. [24]
proposed a paper to obtain the most optimal algorithm for
the autonomous vehicle to avoid hurdles or barriers in a 3D
environment obtained through the Unity game engine. The
training was done using two algorithms: Soft Actor-Critic
(SAC) and PPO. While training with and without obstacles,
PPO showed better performance and obtained greater rewards
than SAC. Future work included the addition of recurrent
neural networks to extract features from camera sensors.

Li et al. [10] proposed a framework for autonomous
vehicles to make decisions in lane-changing scenarios using
DRL. This method incorporated risk awareness into the
reward function of any DRL algorithm for improving the
safety of the vehicle. The framework was trained on CARLA
simulator under two circumstances (one with stationary
obstacles and the other with mobile obstacles). The proposed
method outperformed other traditional methods in terms
of performance, safety, and efficiency. Elallid et al. [25]
proposed an RL-based technique using DQN to control
autonomous vehicles in challenging scenarios involving
pedestrians and moving vehicles. The model was tested on
CARLA simulator. The reward function was designed in such
a way that the model returned−200 if there was any collision
with the vehicle/pedestrian and 100 if the agent reached the
required destination. The results showed that the collision
rate after 5000 episodes had decreased and the vehicle
was able to avoid crashing with pedestrians and moving
vehicles.

Sallab et al. [26] proposed a framework that incorporated
Recurrent Neural Networks along with DRL algorithms
(DQN and DDAC) enabling the vehicle to handle scenarios
with imperfect observations. The model was tested in an
open-source car racing simulator ie TORCS for lane-keeping
scenarios. Both the algorithms showed successful results,
however, DDAC delivered better performance due to the
presence of continuous policy which helped choose smoother
actions. Alzubaidi et al. [27] proposed an Emergency Vehicle
(EMVs) aware Lane Changing Decision (LCD) model using
DQN. This algorithm was used for training and testing since
the addressed issue had infinite state spaces. The framework
was tested on an open-source implementation known as
Highway-en which could be used to easily create custom
actions and observations for autonomous vehicles. The results
proved that the proposed technique was more efficient than
the rule-based Minimizing Overall Braking Induced by Lane
(MOBIL) since the agent in the former case took lesser time
to change lanes when an EMV was approaching and avoided
blocking its path.

125098 VOLUME 11, 2023



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

Fayjie et al. [28] proposed a DRL-based strategy to
facilitate navigation and avoid obstacles in an urban envi-
ronment. DQN was used as the DRL algorithm along with
two types of sensors: cameras and lasers in front of the
car. The goal of the paper was to maximize the positive
rewards obtained during the entire training process. The
environment is designed in Utility Game Engine as it
allowed training the DQN algorithm to drive the vehicle
and take almost real-time driving decisions. Results showed
that the developed model was capable of taking correct
decisions and avoiding obstacles. Ye et al. [29] proposed a
DRL method for decision-making in autonomous vehicles
on highways, where the action horizon is continuous. The
proposed method incorporates a deep neural network to
estimate the value function of the RL algorithm, which allows
for continuous action selection. The algorithm was trained
using a combination of on-policy and off-policy methods to
improve the stability and convergence rate of the learning
process. The method was evaluated using a simulated
highway scenario and its performance was compared to other
baseline methods. The results showed that the proposed
approach performed better than the baseline algorithms in
terms of safety, efficiency, and comfort.

Huang et al. [30] proposed an efficient deep RL approach
for autonomous driving that incorporates imitative expert
priors. In RL, the sample complexity can be hugely reduced
and learning speed accelerated with the help of human
demonstrations. The proposed method uses a Deep Neural
Networks (DNN) to approximate the value function of
the RL algorithm, which allows for continuous action
selection. The algorithm is trained using a combination of
expert demonstrations and on-policy methods to improve the
stability and convergence rate of the learning process. The
proposed method outperformed the baseline algorithms in
terms of efficiency and stability.

Baheri et al. [31] presented a safe DRL system where
both rule-based and learning-based safety approaches are
leveraged. The system consists of two modules, one based
on common driving practices and other based on data-driven
safety patterns. The data-driven module incorporates a look-
ahead beyond immediate rewards to predict safety in future.
The DDQN algorithm was combined with this safety system
and used to train the RNN used for the agent. This method
led to fewer collision and an adaptive decisionmaking system
and accelerated the learning process.

Guan et al. [32] presented a centralized coordination
scheme of autonomous vehicles at traffic signal-less inter-
sections. Model accelerated PPO (incorporation of a prior
model into the algorithm) was proposed to increase the speed
of learning. The environmental model is used to generate
virtual samples that the algorithm can train on. This leads
to a greater sample efficiency for an on-policy algorithm.
A set of rules were set for the environment consisting
of a four way intersection with single lanes regarding the
expected movement of vehicles. This method achieved a

human-like policy with optimal traffic efficiency. The model
was compared against a coordination scheme based on the
model predictive control method. The results showed shorter
computation time periods and better efficiency of vehicle
management at the intersection.

Holen et al. [33] presented a road detection method
that combines road detection algorithms with reinforcement
learning. Here, the agent is trained using PPO in a simulated
environment. MobileNet, a convolutional neural network
used in the road detection algorithm, provides feedback to the
DRL algorithm whenever the vehicle is off the road. It was
trained and tested on two simulated environments, a Unity
environment and a simpler gym environment. Results showed
that the agent was able to drive past more checkpoints with
the help MobileNet hence improving the training results.
Hence combining a road detection algorithm with DRL led
to improved results and greater efficiency in training without
modifying the environments.

Li et al. [34] proposed a framework that separates the
perception and control modules of a vision-based lateral
control system. The control module, which is based on
reinforcement learning, employs the track attributes predicted
by the perception module, which uses a multi-task learning
(MTL) neural network to predict them from a driver-view
image. To increase data economy, the authors also suggested
a DRL environment based on TORCS called Visual TORCS
(VTORCS). With the driver-view picture as its input, the
suggested framework combines both modules to produce
the MTL-RL controller, which can direct the vehicle’s
run along the track’s centre. Cai et al. [35] proposed a
deep imitative reinforcement learning technique(DIRL) that
combines imitative learning and model based DRL. The
method acquires driving knowledge through both learning
from human teachers and improving through interaction with
a safe offline world model.The key contributions include
the introduction of Reveries-net, an uncertainty-aware deep
network for learning a probabilistic world model, and the
use of DIRL for training an end-to-end policy for visual
control. The proposed method outperformed previous IL and
RL methods with regard to task performance and sample
efficiency.

Chen et al. [36] proposed an interpretable DRL method for
end-to-end urban driving. The model takes camera images as
well as LiDAR images as input. The method uses a sequential
latent environment model to compress high-dimensional
observations into a low-dimensional latent space, enabling
a semantic birdeye mask to be generated and providing an
explanation of how the learned policy behaves. The authors
compared it to baselines of DDPG, DQN, SAC and TD3
and observed that it generally outperformed all of these
algorithms.Mushtaq et al. [37] proposed a strategy consisting
of two stages to regulate traffic in self-driving settings
through the utilization of DRL and Smart Re-routing(SR)
methods. The DRL implementation is based on DQN. The
initial stage focuses on enhancing traffic flow at intersections

VOLUME 11, 2023 125099



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

by developing a flexible traffic signal control system, whereas
the subsequent stage employs an intelligent re-routing
technique to divert traffic that approaches intersections
towards alternative routes, thus preventing traffic congestion
at these locations. Fernando et al. [38] reviewed the current
approaches and methods in the field of inverse reinforcement
learning(IRL) with regard to the challenges of autonomous
driving. Supervised learning models such as CS-LSTM and
MATF-GAN, GAIL, L-IRL, and D-IRL were evaluated and
discussed. Future possible breakthroughs in the field were
also discussed.

Aoki et al. [39] developed a system for autonomous vehi-
cles called a cooperative perception scheme that utilizes DRL
to improve the accuracy of detecting surrounding objects.
The system optimizes the network load by intelligently
selecting the data to transmit. The DRL approach was based
on DQN. A special simulation was created using SUMO
traffic simulator, CARLA vehicle simulator, and a SUMO-
CARLA bridge to convert the mobility data of SUMO for
CARLA. Hoel et al. [40] discussed a framework for tactical
decision making combining learning and planning. Based on
AlphaGo algorithm the method is applied to two highway
driving in a simulation. The MOBIL change strategy was
utilized for modeling the lane changes made by surrounding
vehicles. The framework is shown to outperform commonly
used baseline methods, and a comparison with the Monte
Carlo tree search and the neural network policy separately
proved the advantage of combining planning and learning.
TheMCTS/NN agent obtained from the proposed framework
is shown to be capable and is able to focus the tree search on
the most promising regions.

B. DDPG BASED PAPERS
DDPG is one of the significant algorithms in the field of
autonomous vehicles. Huang et al. [41] proposed different
methods for an end-to-end autonomous driving model (Lane
Keeping Assistance) that takes raw sensor inputs and outputs
driving actions in a single agent scenario. The proposed work
established the exact mapping using the DDPG algorithm on
TORCS simulation software.

Gongsheng et al. [42] proposed a vehicle control algorithm
designed on a TORCS simulator combined with DDPG.
Combined with an actor-critic algorithm, experience play-
back, and a separate target network, DDPG has more robust
effects. This method made driving the car more steady and
demonstrated excellent learning in less training time.

This study focused on addressing the challenges of
autonomous driving, particularly in scenarios involving lane
changes, overtaking, and yielding. Hongsuk Yi [43] proposed
a solution using a multi-agent-based deep deterministic pol-
icy gradient algorithm to control the actions of autonomous
vehicles. When the car reached its target, a positive high
reward value was defined, and a negative reward value was
defined when it reached the incorrect location or when an
accident had occurred. The simulation results demonstrated
that the thoroughly trained autonomous vehicleswere capable

of navigating a continuous lane-changing road environment
successfully.

Wang et al. [44] proposed a technique to overcome
the limitations of lane-changing behavior with DDPG to
ensure safety and comfort. The reward function, which plays
a significant role in learning the optimal policy. Despite
initially frequently running off the road boundary, the RL
vehicle agent ultimately achieves smooth and stable lane
changes with a 100% success rate in diverse driving situations
simulated in the study.

Zou et al. [45] proposed a method that combined
DDPG and imitation learning (DDPG-IL) to overcome the
limitations of traditional DDPG algorithms. The architecture
collected training data (through IL) and stored it in an
expert pool first. The algorithm then utilized a combination
of the demonstration data and its own exploration data for
learning. This helped the algorithm converge faster to a stable
state. Experimental comparisons conducted on the TORCS
racing simulator demonstrate that the DDPG-IL algorithm
outperformed the traditional DDPG algorithm.

Zhang et al. [46] proposed a safe and efficient car-
following strategy for autonomous driving vehicles based
on DDPG algorithm. To ensure safety, the constraint was
meant to limit the acceleration of the following vehicle.
The physical constraint was also included to prevent abrupt
changes in acceleration. Moreover, with the consideration
of factors such as jerks, speed errors, and more, the reward
function was designed with the aim of enhancing passenger
comfort, promoting stability in traffic flow, and improving
overall traffic efficiency. Different car trajectories were
extracted from the NGSIM dataset for training and testing
the model’s performance. The results showed the usage of
DDPG algorithm along with multiple constraints can easily
improve the efficiency of the autonomous vehicle and prevent
collisions. Future works include considering other aspects in
the reward functions like fuel efficiency etc and making use
of more complex environments.

C. PPO BASED PAPERS
Chen et al. [47] used (PPO) with Pure Pursuit (PP) for the
vehicle controller architecture. The PP method was used to
get a steering control command while the PPO algorithm
was used to create a correction command that kept a check
on the inaccuracies resulting in a more robust and adaptive
controller. This method resulted in the vehicle following
the target path more accurately for different speeds and
trajectories.

Folkers et al. [48] presented a design approach for a non-
linear controller by using the PPO algorithm and defining
the policy as a neural network. The training was done on a
simulator with obstacles and a more complex environment.
The model was tested on a full-sized research vehicle. The
controller could handle unknown obstacles and sharp turns
by performing evasive manoeuvring.

Ye et al. [49] used the SUMO simulator with a two lane
implementation to train the vehicle using safe PPO for lane

125100 VOLUME 11, 2023



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

changing, overtaking, slowing down and stopping in traffic.
They took the state space from all surrounding vehicles
around the main agent to train the main algorithm for actions
like braking, changing lanes and slowing with respect to the
states of the vehicles around it. They accounted for factors
like efficiency, safety and comfort in their reward function to
provide a smoother training trajectory. As a result, they are
able to achieve 95-99% success rate in dense traffic with an
average collision rate of 0.5%.

Chen et al. [50] utilised several intelligent driver model
(IDM) parameters to take into consideration various driving
styles such as aggressive, normal and defensive. PPO
with self attention is used to train the main agent. Their
model provided better results than DQN and baseline PPO
implementation. Their model gave best results with defensive
and interactive vehicles while worse but acceptable results
with aggressive vehicles. They also observed a decrease in
performance proportional to increasing complexity in the
environment.

Wu et al. [51] developed an approach based on PPO
in which they combine a curiosity-driven technique called
random network distillation (RND) to produce an intrinsic
reward signal that motivates the agent to investigate its sur-
roundings more effectively. In order to avoid overestimation
bias, the evaluation network with smaller predicted values
was chosen in the paper’s auxiliary critic network, which was
added to the original actor-critic framework. The technique
was tested in the TORCS driving simulator for the lane-
keeping task and the overtaking task and compared to existing
DRL techniques. The findings of the trial demonstrated that
the strategy they suggested might increase the effectiveness
of training and control performance in driving tasks.

Coad et al. [52] proposed a model-free RL based PPO
technique for trajectory planning in self-driving cars. The
training was done on a Tesla K80 GPU with 32 parallelized
environments using the above-mentioned algorithm. Using
PPO resulted in a smoother and more efficient path. It also
led to less latency to query for the next trajectory. Due
to the presence of safety constraints, the vehicle could
avoid collisions with obstacles by initializing an emergency
stoppingmodule. Future work included using IRL to learn the
reward function weights.

Based on this review, we identified a lack of literature that
combined lane-keeping and obstacle detection for multiple
agents to bring forward a more comprehensive solution to
improve autonomous driving. Furthermore, there is a lack of
comparison of such algorithms for this specific problem and
environment. Hence, the comparative analysis of DDPG and
PPO algorithms in terms of training as well as performance
analysis is investigated.

IV. AN EMPIRICAL STUDY OF DDPG AND PPO
ALGORITHMS
The section discusses the RL model, various scenarios con-
sidered for implementation, and a comparative performance
analysis of the two algorithms.

TORCS, SUMO [53], and CARLA [54] are the commonly
used open-source simulators. SUMO is preferred for large
networks. TORCS and CARLA were selected as both
represented unique characteristics and use cases. TORCS
is a racing simulator that provides racing tracks and other
racing cars as traffic. CARLA is an urban simulator with
intersections, buildings, traffic signals, civilian traffic and
civilian cars.TORCS being a simpler simulator in which arti-
ficial intelligence support and training are provided by extra
plugins such as gym and server-client connections. CARLA
is more complex and is more graphically demanding. It has
a python interface that makes it easy to use directly after
installation. After trying and testing out both simulators,
TORCS was deemed better for the purposes and scope of
the research. There are some implementations that use a
modified version of the above mentioned simulators. Some
papers also have custom 3D environments using Unity and
Unreal gaming engine. Furthermore, gym environment gives
a more simplistic 2D environment popularly used for double
lane problems.

A. REINFORCEMENT LEARNING ELEMENTS
As mentioned in Section II, an RL problem is designed
as an MDP. The state space, an action space, and rewards
corresponding to favorable state-action pairs for a certain
time step are given below.

1) STATE SPACE
The state space for the TORCS environment typically
consists of several variables that describe the current state of
the race and the car being controlled. Various sensor readings
contribute to the state space and include the velocity of the
car, the angle between the car and the track axis, the distance
between the center of the lane and the car, the distance
between the track edge and the car as well as rotation speed of
the wheels as shown in Table 1. For the purpose of obstacle
and collision avoidance ‘opponents’ and ‘collision’ sensors
are used. These sensors provide information on the distance
of the closest opponents with a range of 200m and the current
damage of the car (the higher the value, the more damage to
the vehicle).

Damage sensors in TORCS offer information about the
state of various automotive components such as the engine,
tires, etc. This sensor monitors many aspects of the vehicle
and provides feedback to the operator or the DRL algorithm
that controls the vehicle in case any collision takes place.
This information can then be used by the algorithm to make
decisions on how to adapt its driving strategy or by the user
to assess the state of the car and adjust their racing tactics
accordingly.

2) ACTION SPACE
Agent’s action space is represented in the form of an array
a=(Steering, Acceleration, Brake) and is depicted in Table 5.

VOLUME 11, 2023 125101



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

TABLE 1. Table of different states.

• An Acceleration value of 1 means that the agent has
completely pressed the accelerator pedal and a value
of 0 means the agent has completely let go of the
accelerator.

• Similarly, the brake value of 1 means full brake applied
and 0 is that the brake pedal is not pressed.

• Steering value of −1 means that the car is on the right
side and 1 represents that the car is on the left side.

3) REWARDS
Designing appropriate rewards ensure that the agent knows
its priorities well which enables the agent to drive safely and
get trained faster. The ultimate purpose of the agent is to
maximize the rewards. For lane-keeping implementation, the
reward function is as shown in Equation 6

R = vcos(θ ) − vsin(θ) − v(δ) (6)

where v = velocity of the car, θ = angle between the car
and the track axis, δ = also termed as offset is the distance
between the car and the track center.

While implementing collision avoidance, a damage sensor
comes into play. The reward function as such does not change,
and only a penalty will be applied in case the damage sensor
gets activated. If the difference between the current and
previous damage sensor values is greater than 0, a collision
is considered to have occurred. And in this case, the reward
function will change into Equation 7

R′
= vcos(θ ) − vsin(θ ) − v(δ) − 50 (7)

R′
= R− 50 (8)

B. LANE KEEPING IMPLEMENTATION
TrackPos sensor and angle sensor are used for this purpose.
The trackPos sensor provides uswith the distance between the
car and the track axis. Its value is then normalized between
−1 and 1. In case the car(agent) is on the left side of the track
axis this sensor outputs value 1, if it’s on the right side then
the sensor outputs −1. If the car is on the center of the track
axis then this sensor outputs a value of 0.

Initially when the execution starts these sensor readings are
obtained from the server car and analyzed. The termination
conditions are first checked. These conditions include if
the agent is out of track, or if the agent has reversed its

direction, and lastly, if the agent is stuck or making no
progress. If at least one of the above-mentioned termination
conditions are satisfied then the process is terminated.
If none of the termination conditions are true, we feed the
sensor readings to our DRL algorithm to obtain an action
and calculate the reward using the already defined reward
function (R=vcos(θ)-vsin(θ)-v(trackPos)).
The reward function is designed in such a way that the

agent always tries to position itself in the center of the lane.
In case the agent starts to go off-track then θ and trackPos
values start to increase. This will cause sin(θ) to increase
which in turn will cause cos(θ) value to decrease thereby
resulting in a negative reward value. This will cause the agent
to steer back to the center of the lane and avoid going out of
the track.

C. OBSTACLE DETECTION AND AUTO BRAKING
When driving in the lane and if you suddenly encounter
an obstacle, the first thing that comes into your mind is
applying the brakes and stopping. Opponent sensors are used
to facilitate this feature in an autonomous agent. Four of
the 36 vector opponent sensors are present in front of the
car and are used for detecting front obstacles, the remaining
sensors are used for detecting side and rear obstacles. When
the simulation starts and before the action is performed by the
agent the opponent sensor readings are analyzed.

• If any front obstacle is present within 50 to 20 m,
acceleration is made zero so that the vehicle slows down
due to the presence of friction between the road and the
wheels and ultimately comes to a halt.

• If the distance is less than 20 then brakes are applied
with a value of 0.7. This ensures that the vehicle’s speed
is reduced in a faster manner in order to avoid any
collision.

• For side obstacles, if the distance between the obstacle
and agent is less than 10 then we apply complete brakes
(i.e. value 1.0) so that the autonomous vehicle comes to
a stop.

D. COLLISION AVOIDANCE AND OVERTAKING
A multi-agent environment is used for the implementation of
these two scenarios. The interaction of multiple agents in an
environment is termed as amulti-agent environment. Training
in this environment results in the DRL model being more
scalable and robust. For multi-agent training, the algorithm
gets feedback on a collision with another vehicle through the
damage sensor. The higher the damage from the collision,
the greater the values received from the damage sensor. Here,
however, the exact value of the damage is not required since
our objective is no collision. If the difference between the
current and previous damage sensor value readings is greater
than 0, a penalty is imposed on the reward function which was
shown in Equation 7.
With the help of this newly generated reward, the agent

realizes the need to avoid collisions in order to obtain

125102 VOLUME 11, 2023



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

TABLE 2. Summary of the related literature.

VOLUME 11, 2023 125103



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

TABLE 2. (Continued.) Summary of the related literature.

TABLE 3. Summary of the DDPG-related literature.

TABLE 4. Summary of the PPO related literature.

TABLE 5. Table of actions.

positive rewards throughout the entire duration of the episode.
The agent is then continuously trained using the specific
algorithms and ultimately learns how to avoid collision by

overtaking the vehicles or stopping at a safe distance from
them.

E. RESULTS
After extensive training with different hyper-parameter
values, the following results provide a comparison between
DDPG and PPO. The states and actions taken by an agent
from its start to end state are recorded as an episode.
Maximum episode length is defined as amaximum number of

125104 VOLUME 11, 2023



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

FIGURE 3. Training results for 100 episodes.

steps for which the algorithm runs. The episode can terminate
before it depending on the actions.

Different hyper-parameter values have been taken for
both algorithms. The values were chosen after review of
implementations of these algorithms as well as hit-and-
trial.For DDPG the learning rates and tau for actor and critic
networks are 0.001 respectively, For PPO, the learning rates
for actor and critic are both 1e-4. As PPO uses clipping, the
clipping factor is taken as 0.1.

1) SINGLE AGENT
Under the single-agent scenario, the agent is trained under
100,200 and 500 episode durations. The graphs for each of
these episode durations are obtained as shown in Figures 3,
4, and 5. It is observed in the beginning that the rewards
increase gradually. After some episodes though, the reward
might fluctuate between high and low values. This happens
because the algorithm tries to optimize between exploration
and maximizing rewards. Too little exploration will lead to
poor generalization while too much exploration will lead
to fewer rewards. Hence, in some episodes, the agent tries
to explore a new route by changing its actions which can
lead to early episode termination and hence a significant
drop in reward values. Low rewards will indicate the agent
to get back to its previous action path. Each algorithm has

FIGURE 4. Training results for 200 episodes.

properties that distinguish them and can influence the training
results in a specific environment. One of the most prominent
differences is DDPG being off-policy as opposed to PPO
which is on-policy. This influences how the final policy after a
number of episodes will behave.While DDPG selects the best
overall policy that gives us the maximum reward, PPO returns
the current training policy regardless of its performance
compared to previous policies. Hence, in a small number of
episodes, PPO may give better results quickly, but it can have
a bad policy at the end of the training. In contrast, DDPG
steadily learns from experiences and exploration and gives
the best policy from the whole training period.

Another difference is the use of experience replay inDDPG
and its absence in PPO. Without the replay buffer, the PPO
algorithm suffers from a phenomenon called catastrophic
forgetting, wherein, because of frequent updates to the
policy and a complex environment with a huge number of
states, the algorithm starts forgetting previous behaviors and
hence starts crashing and giving poorer rewards. This is
shown properly in multi-agent training, where the dynamic
environment leads to frequent updates of conflicts with
previous training and can lead to poorer results. This can be
combated by keeping a replay buffer, as done in the DDPG
algorithm, where storing the previous trajectories and reusing
them can help with better and more stable training. Table 6
below summarizes the above-mentioned findings.

VOLUME 11, 2023 125105



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

FIGURE 5. Training results for 500 episodes.

TABLE 6. DDPG vs PPO comparison.

It can be observed that for all the 3 different episode
durations themaximumoverall reward obtained by theDDPG
is more than that of PPO. For 100 episodes the overall
maximum reward for DDPG is 24.5%more than that of PPO.
Similarly for 200 and 500 episode durations the maximum
reward obtained for DDPG are 79.3% and 86.2% more than
that of PPO.

2) MULTI-AGENT
200 episodes of both algorithms were trained on CG track
2 and the rewards were obtained as shown in Figure 6. Here
it is observed that DDPG’s maximum reward is 64.2% more
than that of PPO.

It was observed that in the case of DDPG, the maximum
reward obtained during the entire duration of the episode is
double that of the PPO. This could be due to the fact that
DDPG is an off-policy algorithm that selects the best overall

FIGURE 6. Multi-agent training results for 200 episodes.

policy to obtain the maximum reward while PPO is an on-
policy algorithm.

Additionally, DDPG incorporates exploration through the
use of noise, which promotes agent discovery of better
policies. This exploration capability is beneficial in multi-
agent environments where agents need to find effective
strategies through trial and error.

V. RESEARCH DIRECTIONS
Even though there is a significant contribution by researchers
in the field of autonomous vehicles, the progress is far
behind the real-time requirements. Further investigations are
necessary to address the challenges in various aspects of the
autonomous industry. A few of the research directions are
listed below:

• Training the autonomous vehicle for acceptable behav-
ior requires continuous states and actions that increase
the dimensionality of the problem and further lead
to exponential growth in computational complexity.
Thus, designing a DRL-based control system with low
overhead to reduce the cost of deployment is really a
challenge.

• Most of the research has been conducted in a simulated
environment. There are certain limitations to how well
the training will account for real-life driving situations.
Many physical factors such as friction, air drag, weather

125106 VOLUME 11, 2023



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

conditions, and road conditions cannot be adequately
represented in simulations. Hence, there is a need for a
low-cost testbed or an infrastructure that the researcher
can use to verify the designed models.

• The multi-agent scenario only takes into account the
main agent’s sensors for training which is inadequate
to have higher accuracy. In the future, the states of
all surrounding vehicles for making decisions for lane
changing, overtaking, etc., can be considered for better
generalization.

VI. CONCLUSION
The concept of autonomous driving has sparked a lot of
interest and attention in recent decades because it is thought
to provide numerous benefits for individuals and society,
including increased road safety, reduced traffic congestion,
accidents, and death, and time and pollution savings on
commuting. There has been a lot of work and experimentation
going on regarding this topic to enable cars to learn
their environment, make human-like decisions, and drive
autonomously. Reinforcement learning opens up avenues to
train the agent to take action in such complex and stochastic
environments and generalize it for similar environments.

In the investigation, two different DRL algorithms, DDPG
and PPO which can handle high-dimensional state and action
spaces have been trained and tested in a simulator for
single and multi-agent scenarios. Their results are compared
to highlight the differences in how the algorithms work
and how efficient they are for this particular problem and
environment. Certain characteristics of each algorithm play
to their advantage or disadvantage when they are trained in a
complex road environment with many states and action pairs
at each step and larger training periods. A simple multi-agent
implementation is done with the addition of a collision sensor
to the other sensors used for a single agent.

Furthermore, a comprehensive literature survey covers the
different algorithms and novel methods researched in the past
few years in different problem areas related to autonomous
driving such as intersections, parking, stationary obstacle
avoidance, etc. Research for this problem area using DDPG
and PPO has also been covered separately to give a general
overview of the past usage of these algorithms specific to
autonomous driving.

ACKNOWLEDGMENT
(Sanjna Siboo, Anushka Bhattacharyya, Rashmi Naveen Raj,
and S. H. Ashwin contributed equally to this work.)

REFERENCES
[1] B. R. Kiran, I. Sobh, V. Talpaert, P.Mannion, A. A. A. Sallab, S. Yogamani,

and P. Pérez, ‘‘Deep reinforcement learning for autonomous driving: A
survey,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 6, pp. 4909–4926,
Jun. 2022.

[2] Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle
Automated Driving Systems, SAE, J3016, 2021.

[3] S. Singh and B. S. Saini, ‘‘Autonomous cars: Recent developments,
challenges, and possible solutions,’’ IOP Conf. Ser., Mater. Sci. Eng.,
vol. 1022, no. 1, Jan. 2021, Art. no. 012028.

[4] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, ‘‘A survey of deep
learning applications to autonomous vehicle control,’’ IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 2, pp. 712–733, Feb. 2021.

[5] Z. Yao, X. Liang, G.-P. Jiang, and J. Yao, ‘‘Model-based reinforcement
learning control of electrohydraulic position servo systems,’’ IEEE/ASME
Trans. Mechatronics, vol. 28, no. 3, pp. 1446–1455, Jun. 2023.

[6] R. N. Raj, A. Nayak, and M. S. Kumar, ‘‘A survey and performance
evaluation of reinforcement learning based spectrum aware routing in
cognitive radio ad hoc networks,’’ Int. J. Wireless Inf. Netw., vol. 27, no. 1,
pp. 144–163, Mar. 2020.

[7] Z. Zhu and H. Zhao, ‘‘A survey of deep RL and IL for autonomous
driving policy learning,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9,
pp. 14043–14065, Sep. 2022.

[8] H. Chae, C. M. Kang, B. Kim, J. Kim, C. C. Chung, and J. W. Choi,
‘‘Autonomous braking system via deep reinforcement learning,’’ in Proc.
IEEE 20th Int. Conf. Intell. Transp. Syst. (ITSC), Oct. 2017, pp. 1–6.

[9] W. Xia, H. Li, and B. Li, ‘‘A control strategy of autonomous vehicles based
on deep reinforcement learning,’’ in Proc. 9th Int. Symp. Comput. Intell.
Design (ISCID), vol. 2, Dec. 2016, pp. 198–201.

[10] G. Li, Y. Yang, S. Li, X. Qu, N. Lyu, and S. E. Li, ‘‘Decision making
of autonomous vehicles in lane change scenarios: Deep reinforcement
learning approaches with risk awareness,’’ Transp. Res. C, Emerg.
Technol., vol. 134, Jan. 2022, Art. no. 103452.

[11] S. Sharma, G. Tewolde, and J. Kwon, ‘‘Lateral and longitudinal motion
control of autonomous vehicles using deep learning,’’ in Proc. IEEE Int.
Conf. Electro Inf. Technol. (EIT), May 2019, pp. 1–5.

[12] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan,
O. Al-Shamma, J. Santamaría,M.A. Fadhel,M.Al-Amidie, and L. Farhan,
‘‘Review of deep learning: Concepts, CNN architectures, challenges,
applications, future directions,’’ J. Big Data, vol. 8, no. 1, pp. 1–74,
Mar. 2021.

[13] I. H. Sarker, ‘‘Deep learning: A comprehensive overview on techniques,
taxonomy, applications and research directions,’’ Social Netw. Comput.
Sci., vol. 2, no. 6, Nov. 2021, Art. no. 420.

[14] J. Fan, Z. Wang, Y. Xie, and Z. Yang, ‘‘A theoretical analysis of deep
Q-learning,’’ in Proc. 2nd Conf. Learn. Dyn. Control, 2020, pp. 486–489.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
‘‘Proximal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[16] S. H. Ashwin and R. N. Raj, ‘‘Deep reinforcement learning for autonomous
vehicles: Lane keep and overtaking scenarios with collision avoidance,’’
Int. J. Inf. Technol., vol. 15, no. 7, pp. 3541–3553, Oct. 2023.

[17] G.-P. Antonio and C. Maria-Dolores, ‘‘AIM5LA: A latency-aware
deep reinforcement learning-based autonomous intersection management
system for 5G communication networks,’’ Sensors, vol. 22, no. 6, p. 2217,
Mar. 2022.

[18] Y. Zhang, P. Sun, Y. Yin, L. Lin, and X. Wang, ‘‘Human-like autonomous
vehicle speed control by deep reinforcement learning with double
Q-learning,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2018,
pp. 1251–1256.

[19] G. Li, S. Li, S. Li, Y. Qin, D. Cao, X. Qu, and B. Cheng, ‘‘Deep
reinforcement learning enabled decision-making for autonomous driving
at intersections,’’ Automot. Innov., vol. 3, no. 4, pp. 374–385, Dec. 2020.

[20] P. Karthikeyan, W.-L. Chen, and P.-A. Hsiung, ‘‘Autonomous intersection
management by using reinforcement learning,’’ Algorithms, vol. 15, no. 9,
p. 326, Sep. 2022.

[21] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, ‘‘End-to-end deep
reinforcement learning for lane keeping assist,’’ 2016, arXiv:1612.04340.

[22] R. He, H. Lv, S. Zhang, D. Zhang, and H. Zhang, ‘‘Lane following method
based on improved DDPG algorithm,’’ Sensors, vol. 21, no. 14, p. 4827,
Jul. 2021.

[23] Q. Wang, W. Zhuang, L. Wang, and F. Ju, ‘‘Lane keeping assist for an
autonomous vehicle based on deep reinforcement learning,’’ SAE Tech.
Paper 2020-01-0728, 2020.

[24] M. O. Radwan, A. A. H. Sedky, and K. M. Mahar, ‘‘Obstacles avoidance
of self-driving vehicle using deep reinforcement learning,’’ in Proc. 31st
Int. Conf. Comput. Theory Appl. (ICCTA), Dec. 2021, pp. 215–222.

[25] B. B. Elallid, N. Benamar, N. Mrani, and T. Rachidi, ‘‘DQN-based
reinforcement learning for vehicle control of autonomous vehicles
interacting with pedestrians,’’ in Proc. Int. Conf. Innov. Intell. Informat.,
Comput., Technol. (3ICT), Nov. 2022, pp. 489–493.

[26] A. El Sallab, M. Abdou, E. Perot, and S. Yogamani, ‘‘Deep reinforcement
learning framework for autonomous driving,’’ 2017, arXiv:1704.02532.

VOLUME 11, 2023 125107



S. Siboo et al.: Empirical Study of DDPG and PPO-Based RL Algorithms for Autonomous Driving

[27] A. Alzubaidi, A. S. A. Sumaiti, Y.-J. Byon, and K. A. Hosani, ‘‘Emergency
vehicle aware lane change decision model for autonomous vehicles using
deep reinforcement learning,’’ IEEE Access, vol. 11, pp. 27127–27137,
2023.

[28] A. R. Fayjie, S. Hossain, D. Oualid, and D.-J. Lee, ‘‘Driverless
car: Autonomous driving using deep reinforcement learning in urban
environment,’’ in Proc. 15th Int. Conf. Ubiquitous Robots (UR), Jun. 2018,
pp. 896–901.

[29] X. Ye, X. Tang, and K. Yu, ‘‘Decision-making for autonomous vehicles on
highway: Deep reinforcement learning with continuous action horizon,’’
2022, arXiv:2008.11852.

[30] Z. Huang, J. Wu, and C. Lv, ‘‘Efficient deep reinforcement learning with
imitative expert priors for autonomous driving,’’ 2021, arXiv:2103.10690.

[31] A. Baheri, S. Nageshrao, H. E. Tseng, I. Kolmanovsky, A. Girard, and
D. Filev, ‘‘Deep reinforcement learning with enhanced safety for
autonomous highway driving,’’ 2020, arXiv:1910.12905.

[32] Y. Guan, Y. Ren, S. E. Li, Q. Sun, L. Luo, and K. Li, ‘‘Centralized
cooperation for connected and automated vehicles at intersections by
proximal policy optimization,’’ IEEE Trans. Veh. Technol., vol. 69, no. 11,
pp. 12597–12608, Nov. 2020.

[33] M. Holen, R. Saha, M. Goodwin, C. W. Omlin, and K. E. Sandsmark,
‘‘Road detection for reinforcement learning based autonomous car,’’ in
Proc. 3rd Int. Conf. Inf. Sci. Syst. New York, NY, USA: Association for
Computing Machinery, Mar. 2020, pp. 67–71.

[34] D. Li, D. Zhao, Q. Zhang, and Y. Chen, ‘‘Reinforcement learning and deep
learning based lateral control for autonomous driving [application notes],’’
IEEE Comput. Intell. Mag., vol. 14, no. 2, pp. 83–98, May 2019.

[35] P. Cai, H.Wang, H. Huang, Y. Liu, andM. Liu, ‘‘Vision-based autonomous
car racing using deep imitative reinforcement learning,’’ IEEE Robot.
Autom. Lett., vol. 6, no. 4, pp. 7262–7269, Oct. 2021.

[36] J. Chen, S. E. Li, and M. Tomizuka, ‘‘Interpretable end-to-end urban
autonomous driving with latent deep reinforcement learning,’’ IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 6, pp. 5068–5078, Jun. 2022.

[37] A.Mushtaq, I. U. Haq,M. U. Imtiaz, A. Khan, and O. Shafiq, ‘‘Traffic flow
management of autonomous vehicles using deep reinforcement learning
and smart rerouting,’’ IEEE Access, vol. 9, pp. 51005–51019, 2021.

[38] T. Fernando, S. Denman, S. Sridharan, and C. Fookes, ‘‘Deep inverse
reinforcement learning for behavior prediction in autonomous driving:
Accurate forecasts of vehicle motion,’’ IEEE Signal Process. Mag., vol. 38,
no. 1, pp. 87–96, Jan. 2021.

[39] S. Aoki, T. Higuchi, and O. Altintas, ‘‘Cooperative perception with deep
reinforcement learning for connected vehicles,’’ in Proc. IEEE Intell.
Vehicles Symp. (IV), Oct. 2020, pp. 328–334.

[40] C.-J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and
M. J. Kochenderfer, ‘‘Combining planning and deep reinforcement
learning in tactical decision making for autonomous driving,’’ IEEE
Trans. Intell. Vehicles, vol. 5, no. 2, pp. 294–305, Jun. 2020.

[41] Z. Huang, J. Zhang, R. Tian, and Y. Zhang, ‘‘End-to-end autonomous
driving decision based on deep reinforcement learning,’’ in Proc. 5th Int.
Conf. Control, Autom. Robot. (ICCAR), Apr. 2019, pp. 658–662.

[42] Z. Gongsheng, P. Chunmei, D. Jiang, and S. Junfeng, ‘‘Deep deterministic
policy gradient algorithm based lateral and longitudinal control for
autonomous driving,’’ in Proc. 5th Int. Conf. Mech., Control Comput. Eng.
(ICMCCE), Dec. 2020, pp. 740–745.

[43] H. Yi, ‘‘Deep deterministic policy gradient for autonomous vehicle
driving,’’ in Proc. Int. Conf. Artif. Intell. (ICAI). Athens, Greece: The
Steering Committee the World Congress in Computer Science, 2018,
pp. 191–194.

[44] P. Wang, H. Li, and C.-Y. Chan, ‘‘Continuous control for automated lane
change behavior based on deep deterministic policy gradient algorithm,’’
in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2019, pp. 1454–1460.

[45] Q. Zou, K. Xiong, and Y. Hou, ‘‘An end-to-end learning of driving
strategies based on DDPG and imitation learning,’’ in Proc. Chin. Control
Decis. Conf. (CCDC), Aug. 2020, pp. 3190–3195.

[46] Y. Zhang and R. Yan, ‘‘Safe car-following strategy with multi-constraints
based on deep reinforcement learning for autonomous driving vehicles,’’ in
Proc. IEEE Int. Conf. Unmanned Syst. (ICUS), Oct. 2022, pp. 1151–1156.

[47] I.-M. Chen and C.-Y. Chan, ‘‘Deep reinforcement learning based path
tracking controller for autonomous vehicle,’’ Proc. Inst. Mech. Eng. D,
J. Automobile Eng., vol. 235, nos. 2–3, pp. 541–551, Feb. 2021.

[48] A. Folkers, M. Rick, and C. Büskens, ‘‘Controlling an autonomous vehicle
with deep reinforcement learning,’’ in Proc. IEEE Intell. Vehicles Symp.
(IV), Jun. 2019, pp. 2025–2031.

[49] Y. Fei, X. Cheng, P.Wang, C. Chan, and J. Zhang, ‘‘Automated lane change
strategy using proximal policy optimization-based deep reinforcement
learning,’’ 2020, arXiv:2002.02667.

[50] X. Chen, J. Wei, X. Ren, K. H. Johansson, and X. Wang, ‘‘Automatic
overtaking on two-way roads with vehicle interactions based on proximal
policy optimization,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jul. 2021,
pp. 1057–1064.

[51] Y. Wu, S. Liao, X. Liu, Z. Li, and R. Lu, ‘‘Deep reinforcement learning
on autonomous driving policy with auxiliary critic network,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 34, no. 7, pp. 3680–3690, Jul. 2021.

[52] J. Coad, Z. Qiao, and J. M. Dolan, ‘‘Safe trajectory planning using
reinforcement learning for self driving,’’ 2020, arXiv:2011.04702.

[53] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wiessner,
‘‘Microscopic traffic simulation using SUMO,’’ in Proc. 21st Int. Conf.
Intell. Transp. Syst. (ITSC), Nov. 2018, pp. 2575–2582.

[54] A. Dosovitskiy, G. Ros, F. Codevilla, M. Antonio, and V. Koltun,
‘‘CARLA: An open urban driving simulator,’’ CoRR, vol. abs/1711.03938,
pp. 1–16, Nov. 2017.

SANJNA SIBOO is currently pursuing the
B.Tech. degree in computer and communication
engineering with a minor specialization in com-
putational intelligence with the Manipal Institute
of Technology, Manipal Academy of Higher
Education, Manipal, Karnataka, India.

She is a Software Developer with Microsoft,
Hyderabad, India. Her research interests include
cloud computing, artificial intelligence, and
machine learning.

ANUSHKA BHATTACHARYYA is currently pur-
suing the B.Tech. degree in computer and commu-
nication engineering with a minor specialization in
big data with the Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal,
Karnataka, India.

She is a Technical Associate with the GSK
Global Capability Centre, Bengaluru, India. Her
research interests include machine learning, data
science, and big data.

RASHMI NAVEEN RAJ (Member, IEEE)
received the B.E. degree in electrical and elec-
tronics engineering from Mangalore University,
Karnataka, India, in 2001, and the M.Tech. degree
in digital electronics and advanced communication
and the Ph.D. degree in cognitive radio ad hoc
networks from the Manipal Academy of Higher
Education, Manipal, Karnataka, India, in 2009 and
2021, respectively.

She is currently an Associate Professor with
the Department of Information and Communication Technology, Manipal
Institute of Technology, Manipal Academy of Higher Education. She has
17 years of teaching experience to engineering students with the National
Institute of Technology Karnataka and the Manipal Institute of Technology.
She has published many articles in good journals. Her research interests
include cognitive radio networks, machine learning, and autonomous driving
vehicles.

S. H. ASHWIN received the B.Tech. degree in
computer and communication engineering from
the Manipal Institute of Technology, MAHE,
Manipal, Karnataka, India, in 2022, with a
minor specialization in computational mathemat-
ics. He is a Development Engineer with Standard
Chartered Global Business Services, Bengaluru,
India. His research interests include reinforcement
learning and cyber security.

125108 VOLUME 11, 2023


