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ABSTRACT Recognizing the semantic categories of low-resolution (LR) aerial photos is an indispensable
technique in geoscience and remote sensing. However, it is also a challenging task in practice.
In this work, a semi-supervised perceptual feature selection (SPFS) pipeline is proposed for LR aerial
photo categorization, focusing on selecting high quality perception-guided visual features. Specifically,
by mimicking human vision system, a novel low-rank model is designed to decompose each LR aerial photo
into multiple visually or semantically salient foreground regions coupled with the background non-salient
regions. This model can: 1) produce the a gaze shifting path (GSP) simulating human gaze behavior; and
2) generate hierarchical deep representation for a GSP. Afterward, a semi-supervised feature selection (FS) is
leveraged toward a succinct set of discriminative deep GSP features, wherein only labels of LR aerial photos
are required. Based on the selected features, a classifier is trained for visual categorization. Comprehensive
experimental results have validated our method’s advantage.

INDEX TERMS Aerial imagery, semi-supervised, cross-resolution, human perception.

I. INTRODUCTION
Owing to the remarkable progress in carrier rocket, remote
sensing, and satellite communication, hundreds of earth
observation satellites have been launched sinceOctober 1957.
According to the orbital altitudes, these satellites can be
categorized into the high- (>2000km) and low-altitude ones
(200∼2000km). Distinguished from low-altitude satellites,
high-altitude ones cover a comparatively larger area with
a longer orbital period. Thus resolutions of aerial photos
captured by these high-altitude satellites are typically lower
than the low-altitude ones. In practice, effectively understand-
ing the semantic categories of these LR aerial photos is a
useful technique inmany computer vision tasks. For example,
by periodically monitoring the geographical distribution of
animals, forests, and swamps from an LR aerial photo,
the biodiversity and wildlife trends can be well tracked.
It is significant for keeping habitats inside their sanctuaries,
especially for the endangered animals like pandas. Moreover,
to optimize the planned path for long-haul driverless trucks,
we have to accurately recognize the semantic categories of
a variety of regions inside each LR aerial photo, based on
which the shortest path between locations can be rapidly and
dynamically calculated.
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In computer vision, multiple categorization/annotation
models have were designed to characterize aerial photos with
mid/high resolutions (spatial resolution ≤10m). Represen-
tative work includes: 1) shallow/deep-learning-based object
localization using weak labels [55], [56]; 2) graph models to
enhance semantic propagation for aerial photo labeling [5],
[6], [7]; and 3) carefully-designed hierarchical architectures
for visual segmentation toward aerial photos [8], [9], [10].
As far as we know, however, the existing approaches cannot
effectively encode LR aerial photos due to two reasons:

• Typically, there are tens of foreground objects within
each LR aerial photo, as shown on the top of Fig.1.
To calculate the semantics of an LR aerial photo,
we expect a bionic model that simulates the process
of human perceiving the foreground salient regions.
Actually, building a deep model that can simultaneously
extract the visually/semantically salient regions and
engineer the deep features for these extracted regions is
non-trivial. Potential challenges include: i) determining
the sequence of humans observing the extracted salient
regions (e.g., the path displayed in Fig.1, 2) refining the
contaminated labels of the training LR aerial photos, and
3) transferring image-level semantic labels into multiple
regions inside an LR aerial photo;

• Compared to HR aerial photos, LR ones are usually
with an inferior image quality, as they are more sensitive
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FIGURE 1. Top: salient aerial image patches sequentially observed by
humans (marked by path A → · · · → G) as well as the blurred
playground (marked by red dashed box). Bottom: three HR aerial photos
capture sub-regions of the LR aerial photo (the middle details the blurred
playground inside the LR aerial photo).

to a variety of uncontrollable factors, e.g., the varying
weather/lighting conditions and possibly communica-
tion interference. This brings a limited number of
labeled LR aerial photos, coupled with a rich set of
labeled HR ones. Thus, we expect a semi-supervised
feature selector that is trained by partially-labeled LR
aerial photos, which is an nontrivial task. Potential
difficulties include how to uncover the underlying
correlations among LR and HR aerial photos in the
feature space.

In this work, a so-called SPFS framework is formulated
that adopts the deeply-learned perceptual experiences from
HR aerial photos to enhance LR one categorization. Given
a considerable quantity of HR and LR aerial photos, part of
which are unlabeled. We first project their internal regions
onto the feature space constructed based on discovering
the visual and semantic channels collaboratively. Afterward,
to mimick human visual perception, a deep low-rank model
is designed to decompose each LR aerial photo into a
sequence of visually/semantically salient foreground regions,
i.e., gaze shifting path (GSP) coupled with the non-salient
backgrounds, wherein the deep representation for each GSP
is calculated simultaneously. Aiming at a concise set of
discriminative features shared between HR and LR aerial
photos, a SPFS algorithm selects a concise set of high quality
features shared between LR and HR aerial photos, wherein
only a small faction of labeled samples are required. Besides,
SPFS can optimally preserve the graph structure of LR/HR
aerial photos during feature selection. Finally, the selected
features are integrated into a kernel SVM for LR aerial photo
categorization.

II. RELATED WORK
A. SEMANTICALLY MODELING AERIAL PHOTOS
Dozens of computational models were developed to ana-
lyze aerial photos. For visual modeling at image-level,
Zhang et al. [57] constructed a novel topological feature to
model the inter-region connection inside each aerial photo.
And a kernel-induced vector is calculated as the image

representation for categorization. Xia et al [59] formulated
a weak model that semantically labels HR aerial photos at
image-level. Akar et al. [60] proposed the so-called random
forest and object-level feature extractor to classify each
aerial image. The authors [62] developed a hierarchical CNN
architecture for identifying the multiple labels of HR aerial
photos describing many downtown areas. In [58], the authors
utilized a deep model to classify remote sensing images.
A domain-specific scenic picture set is leveraged to fine
tune the deep architecture. In [43], a cross-modality learning
framework is proposed to collaboratively learn five deep
models for categorizing aerial images, wherein pixel-level
and spatial-level features are exploited complementarily.
Researchers [11] designed a multi-resolution model to learn
the weights of aerial image features both horizontally
and vertically. In [64], Bazi et al. formulated a vision
transformer for aerial image classification, wherein the
long-term contextual dependencies among regions can be
intrinsically encoded.

For region-level modeling, Wang et al. [4] proposed
a deep learning model for discovering salient objects in
each aerial image. In [1], a focal loss deep architecture
is proposed that optimally discovers vehicles from aerial
images. In [63], The authors developed a learning model
toward aerial photos by intelligently extracting intersections
and streets. In [18], Yu et al. integrated feature enhancement
and soft label assignment into an anchor-independent object
detector toward aerial images. In [19], Wang et al. proposed a
deep rotation-invariant detector that effectively estimates the
angles of multi-scale objects inside aerial images. In [54],
Chalavadi et al. proposed a parallel deep model called
mSODANet that hierarchically learns contextual features
from multi-scale and multi-FoV (field-of-views) ground
objects.

B. SUPERVISED FEATURE SELECTION (FS)
In supervised FS, each feature’s discrimination is quantized
by its correlation with the labels. Nie et al. [15] formulated
an effective FS algorithm by optimizing an objective function
based on an l12-norm regularization. A fast and incremental
FS framework particularly designed for high-dimensional
features was formulated by [16]. Gui et al. proposed an
attention-guided feature scoring algorithm in a supervised
setting. Based on an elaborately-designed smooth hinge
loss, a sparsity-regularized model was proposed to obtain
a subset of discriminative features. In [17], an l12-norm
coupled with an exclusive lasso was incorporated for FS,
wherein the redundant and contaminated features can be
optimally abandoned. An effective measure was proposed for
identifying discriminative features. In [14], Ahadzadeh et al.
proposed a double-stage FS based on particle swarm
optimization toward high-dimensional features. Stage one
globally removes low quality features while stage two locally
searches the highly discriminative ones. Noticeably, the
above FS handle features in the original space, whereas
practically the samples may be distributed in the high-order
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kernel space. Song et al. [30] designed a kernel-induced FS
to maximize the correlation between the selected features
and labels. In [31], Masaeli et al. proposed an HSIC-based
implicit FS algorithm (a.k.a. feature transformation) using
an l1/l∞-norm regularizer. Further, Yamada et al. [32]
formulated the novel dual augmented Lagrangian in order
to search for a global optimum. Researchers [33] proposed
a kernel-induced feature selector that effectively acquires
a subset of covariates that is most discriminative. In [34],
Leng et al. extracted the features of both palmprints with
2D discrete cosine transform for constructing a dual-source
space. And highly discriminative coefficients are optimally
preserved for visual retrieval. Moreover, in [35], the standard
cancelable palmprint coding is upgraded to 2D space.
The so-called perpendicular orientation transposition and
multi-orientation score level fusion collaboratively enhance
the 2D cancelable palmprint codes.

FIGURE 2. The pipeline of the LR aerial photo categorization by our
designed SPFS framework. Our method first projects regions from HR/LR
aerial photos into the feature space, based on which the deep low-rank
algorithm is used to extract GSPs and generate the deep features
accordingly. Then the SPFS is leveraged to select highly discriminative
features, which are subsequently fed into the multi-class SVM for visual
categorization.

III. OUR PROPOSED METHOD
An overview of our method is presented in Fig.2. Our method
involves three key components: deep low-rank algorithm
for GSP calculation, the semi-supervised perceptual feature
selection, and the SVM training. The inter connection
between these components are annotated by the blue arrows.

A. DEEP LOW-RANK ALGORITHM FOR GSP LEARNING
In practice, there are multiple fine-grained objects inside
each LR aerial photo. Biological studies [2] have shown that
humans usually attend to a few salient objects in the visual
cognition process. In our scenario, to understand each LR
aerial photo, we typcially first attend to the ground salient

regions, wherein the background regions are kept almost
unprocessed. Such human visual perceptual behavior is infor-
mative for categorizing LR aerial photos. Herein, we propose
a deep low-rank algorithm that sequentially selects salient
image patches to construct gaze shifting paths (GSPs). And
the corresponding deep features can be jointly engineered.

The theory of human visual perception indicates the
high correlation (self-representativeness) of the non-salient
background image patches inside each scenery. Contrastively,
the foreground salient image patches are almost uncorrelated.
This observation motivates us to decompose the feature
matrix X ∈ RT×N of each LR aerial photo into the salient
and non-salient parts,

X = Y + E, (1)

where N counts the image patches within each LR aerial
photo and T its feature dimensionality. Y ∈RT×N preserves
feature columns preserves feature columns corresponding to
the non-salient background image patches (the other columns
are all zeros). E ∈ RT×N represents feature columns
corresponding to the salient image patches (the other
columns are all zeros).

Aiming at a unique solution, multiple constrains are
proposed to constrainY and E. In our work, two observations
are made. First, only a small fraction of image patches within
each LR aerial photo are salient and will the detailedly
processed by human vision system. This mathematically
reflects that E is a sparse matrix. Second, the high correlation
of the non-salient background image patches indicates that
Y is a low-rank matrix. Based on these, we select the
salient image patches by seamlessly integrating a sparsity and
low-rankness constraint into (1):

min
Y,�

∥Y∥∗ +αl1(E)+βl2(Y, f (ϒ,X) +γ�(ϒ)), (2)

where ∥·∥∗ is the matrix nuclear norm representing a convex
approximation to matrix rank function, l1(E) quantizes the
sparisty of E, f (ϒ,X) selects non-salient background image
patches from each LR aerial photo, and l2(Y, f (ϒ,X))
penalizes the loss of non-salient background image patches
selection. �(ϒ) serves as a regularizer. α, β, and γ are
positive coefficients balancing the trade-off among terms.
More concretely, to ensure a highly sparse E, l1(·) is defined
as:

l1 (E) = ∥E∥ , (3)

Practically, each element in matrix Y is nonnegative.
Herein, we set l2 (a, b) = (a − b)2 /2 to calculate the image
patches selection error. Thereby, the objective function (2)
can be upgraded into:

min
Y,�

∥Y∥∗ +α ∥E∥1+β ∥Y−f (ϒ,X)∥2F +γ�(ϒ)), (4)

To precisely select the non-salient background image
patches inside each LR aerial photo, we formualte a
deep semantic model f (ϒ,X). It includes L layers of
linear/nonlinear transformations. The deep representation
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from the top layer is denoted by h(x) and Xi is the T -
dimensional column feature vector from the i-th image patch.
Meanwhile, the current layer’s output is utilized as the input
of the next layer. Mathematically, this can be represented as:

h (Xi) = gL(Xi), (5)

gl (Xi) = φ(Zlhl−1(X+ξ l)), l = 1, · · · , L, (6)

where φ(·) denotes the activation function and gl (·) the l-th
layer’s output. Zl and ξ l represent the transformation matrix
and the bias corresponding to the l-th layer respectively. The
first layer’s input isXi, based on which the first layer’s output
is calculated as:

gl (Xi) = φ(ZlXi+ξ l ), l = 1, · · · , L, (7)

We want the deeply-learned feature h(Xi) sufficiently dis-
criminative for selecting the non-salient background image
patches.Without loss of generality, we adopt a linearmapping
function to such selection process:

f (ϒ,X) =Zh(X), (8)

where parameter set ϒ = {Z1, · · · ,ZL,ξ1, · · · ,ξL}.
To mitigate overfitting, we design a regularizer to penalize

model complexity. Herein, the regularization function �(ϒ)
is given as:

� (ϒ) =
1
2
(∥Z∥

2
F +

∑L

i=1
(∥Zl∥2F + ∥ξl∥

2
2)), (9)

By leveraging the definition in (3,8,9), the objective
function (4) can be upgraded into:

min
Y≥0,Z1,Z,ξ1,�

∥Y∥∗ +α ∥E∥1 + β ∥Y−Zh (X)∥2F

+
γ

2
(∥Z∥

2
F +

∑L

i=1
( ∥Zl∥2F + ∥ξ∥

2
2 )), (10)

The above optimization is non-convex over all the
variables. In our implementation, we follow the iterative
algorithm in [3] to solve it. Thereafter, denoting Y∗ as (10)’s
solution, the saliency score of the i-th image patch in an LR
aerial photo is calculated by:

s (X i) =
∥∥E∗ (:, i)

∥∥
2 , (11)

where E∗
=X−Y∗, and E∗(V, i) denotes the i-th column

of E∗. A larger s(Xi) means that the i-th image patch is
more visually/semantically salient. Given an LR aerial photo,
we sequentially link the top K salient image patches to
constitute its gaze shifting path (GSP). Thereby, the deepGSP
representation is obtained by sequentially concatenating the
deep features of its constituent K image patches.
During the deep low rank model learning, the loss function

is the objective function in (10). The number of epochs is
200 and the learning rate is set to 0.005 and the entire deep
network is pre-trained using the ResNet-152 [36].

B. SEMI-SUPERVISED PERCEPTUAL FEATURE SELECTION
(SPFS)
Practically, the above deep GSP features might be inade-
quately discriminative. Herein, we expect to further obtain a
subset of deep GSP features to enhance the subsequent visual
categorization. Semi-supervised FS obtains high quality
features by uncovering the binary relationships among
labeled and unlabeled LR/HR aerial photos, which is suitable
for our objective.

Without loss of generality, we assume that all the LR aerial
photos are unlabeled while the entire HR ones are labeled.
We denote as the feature matrix of the D-dimensional deep
GSP features from both LR and HR aerial photos during
training. The first M rows correspond to the M labeled HR
aerial photos while the succeeding rows correpond to the
unlabeled LR ones.N is the total number of training samples.
Similarly, we denote L=

[
y1, · · · ,yM ,yM+1, · · · ,yN

]
∈

{0, 1}N×C as the label matrix of the training LR/HR aerial
photos, wherein C counts the semantic categories. Herein,
yij represents the j-th category label of yi(1 ≤ i ≤ C). We set
yij= 1 if the i-th sample belonging to the j-th category, and
yij= 0 otherwise. Meanwhile, if the i-th sample is unlabeled,
we simply set yi as a C-dimension row vector with all zeros.

Denoting Q ∈ RD
× C as the projection matrix for FS,

a general FS can be formulated by minimizing the error:

min
Q

L (Q) +τR(Q), (12)

where the first term calculates the loss and the second one
represents the regularizer.

We define the affinity graph E, wherein each entity Eij
indicates the similarity between hi and hj. Herein, we simply
set Eij = 1 if hi and hj are the K nearest neighbors, and
Eij = 0 otherwise. Herein, the K nearest neighbors is built
upon the standard KNN algorithm [66]. KNN searches the
K nearest samples to a reference one in the feature space,
wherein K is determined by users. In our implementation,
we set K=5. We set F as a diagonal matrix as Fii =

∑N
j=1 Eij.

Afterward, we set T = F − E as the graph Laplacian.
To optimally exploit the entire samples, we define a

predicted label matrix as P=
[
p1, · · ·pN

]
∈ RN

× C toward
the entire training samples by leveraging the transductive
classification [65], where pi ∈ RC is the predicted category
label of sample xi. In our solution, we enforce P maximally
satisfy the smoothness of both ground-truth category label
and the affinity graph. Mathematically, P is calculated using
the following objective function:

argminP,Qtr
(
PTTP

)
+tr

(
(P − Y)T V (P − Y)

)
+ σ

∥∥∥XTQ−P
∥∥∥ +τR(Q), (13)

where
∥∥XTQ−P

∥∥ denotes the loss function and R(Q)
functions as a regularizer penalizing the projection matrix Q
for optimal FS; σ ∈ [0, 1] and τ ∈ [0, 1] weight the loss
function and regularizer respectively.
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Due to the high sparsity and robustness of the non-
convexity, the l1,p-matrix norm is applied to define regular-
izer R(Q) in our SPFS framework (p ∈ (0, 1]). In this way,
the regularizer can be formulated as:

R (Q) = ∥Q∥2,p =

(∑D

i=1

∥∥∥Qi
∥∥∥p
2

)1/p

, (14)

In our implementation, we set p= 1/2. The solution of (14)
is detailed in [21]. In practice, if we set p to a different value,
then the optimization might be non-convex and we cannot
obtain a global optimal solution.

C. KERNEL-INDUCED FEATURE VECTOR FOR
CATEGORIZATION
It is noticeable that the selected deep GSP features may
be distributed on the high-order kernel feature space.
Herein, a kernel-induced quantization method is employed
to calculate each LR aerial photo’s representation. For an LR
aerial image, the object patches are extracted to build its GSP,
which are simultaneously converted into deep GSP features
for SPFS. Then, the selected deep GSP feature from the i-th
LR aerial photo is accumulated into a kernel-induced vector
vi= {vi1,vi2· · · ,v1N ,} where N counts the training LR/HR
aerial photos and N counts the testing LR aerial photos. The
j-th element of vi is calculated as:

vij ∝ exp(−dJ(bu,bv)), (15)

where −dJ(·, ·) computes the Euclidean distance between
pairwise selected deep GSP features. Given N testing LR
aerial photos, we can obtain an N × N kernel matrix at the
training stage and anN×N

′

kernel matrix at the testing stage.
The first matrix is utilized to learn a classifier for LR aerial
photo classification, while the second one is employed for
testing.

IV. EXPERIMENTS
We validate our LR aerial photo categorization using four
experiments. We first introduce our self-compiled image set,
which includes >3.7 million LR/HR aerial photos collected
from the top 100 metropolises from different continents.
Based on this, we compare our approach with 17 state-of-the-
art deep categorization models from three perspectives: accu-
racy, stability, and time consumption. Thereafter, we evaluate
our categorization accuracy by adjusting themultiple inherent
parameters, based on which the optimal parameters are
suggested. Lastly, we design an ablation study to evaluate
each key module in our SPFS-based LR aerial photo
categorization pipeline. Simultaneously, we visualize a set of
attractive image patches selected by our SPFS-based FS.

A. KERNEL-INDUCED FEATURE VECTOR FOR
CATEGORIZATION
To comprehensively evaluate the our categorization model,
we have to experiment on a massive-scale LR/HR aerial
photo set from many categories. To our best knowledge,
however, there is no such data set. We spend enormous
efforts to compile a huge data set containing over 3.6 million

FIGURE 3. The number of HR/LR aerial images selected by us.

LR/HR aerial photos. The sources of these LR/HR aerial
photos are Google/Apple/Bing Maps, based on which we
design a crawler software that spent 4310 hours to search
and download LR/HR aerial photo. More specifically, we use
the name of 100 most popular metropolitan cities (as
detailed in Fig. 3) throughout the world as the keywords to
search Google/Apple/Bing Maps. In total, there are 46 cities
from North America, 38 from Europe, ten from Asia, four
from Oceania, and two from South America. Subsequently,
we crop LR/HR aerial photos from the cached maps, wherein
the typical resolutions of HR aerial photos are between 5K ×

5K and 22K × 22K . In our implementation, we restrict the
HR aerial photos’ resolution upper bound to 22K × 22K .
Meanwhile, the resolutions of LR aerial photos are between
0.35K×0.35K and 2K×2K .We adopt these settings because:
1) we want to make each HR aerial photo associated with four
categories mostly, 2) we enforce that there are maximally 5%
overlapping areas between any pairwise LR/HR aerial photos,
and 3) too few pixels inside an LR aerial photo will make it
technically impossible to perceive its semantics.

FIGURE 4. Foggy (left) and blurred sensitive military (right) regions.

During our data set compilation, we notice that a few
LR/HR aerial photos are blurred due to bad weathers or
sensitive military regions, as exemplified in Fig. 4. Actually,
our method focuses on discovering object patches with
different scales and subsequently learn deep perceptual
features for visual categorization. Practically, bad weathers
will decrease the visibility of LR/HR aerial photos and in
turn hurt the fairness of categorization accuracy comparison.
Therefore we abandon LR/HR aerial photos whose 20%
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pixels are unclear, wherein the clearness is measured by
the blur estimation algorithm proposed by Tong et al. [47].
To quantitatively show the effectiveness of the above
refining process, we use the IQA (image quality assessment)
algorithm [48] to calculate the quality scores of LR/HR aerial
photos in our data set. As reported in Fig. 5, over 74% of our
refined LR/HR aerial photos are scored over 0.7.

FIGURE 5. Statistics of LR/HR aerial photos with different quality scores
in our complied LR/HR aerial photo set.

After collecting the million-scale LR/HR aerial photos,
we have to annotate them to obtain the corresponding cate-
gory labels. Herein, 106 volunteers first manually annotate
23.8% HR aerial photos in each metropolitan city, wherein a
total of 47 different category labels were utilized. Afterward,
we train a multi-label SVM and employ it to annotate the
category labels of the rest LR/HR aerial images. Then, the
same 106 volunteers manually correct the labels calculated
by SVM. It is noticeable that multiple category labels are
associated with intolerably small number of LR/HR aerial
photos. This makes it infeasible to train a generalizable
categorization model corresponding to these category labels.
In our implementation, if the number of LR/HR aerial photos
corresponding to a category label is smaller than 200,000,
Then we abandon this label. In this way, we finally obtain
18 different category labels as detailed in Table 1. Thereafter,
we notice that 99.983% LR/HR aerial photos have fewer than
four category labels, while the rest very few LR/HR aerial
photos have larger numbers of category labels (from five to
15). These LR/HR aerial photos usually contain a rich set of
small regions (< 200 × 200) that are possibly contaminated.
Thus we simply abandon them. Lastly, we order the entire
LR/HR aerial photos by their file names. The entire HR aerial
photos are employed for training. For each category, the first
half LR aerial photos constitute the training set while the rest
are employed for testing.

B. COMPARATIVE STUDY
1) ACCURACY COMPARISON
Herein, we test our LR aerial image classification by
evaluating its effectiveness and efficiency with a bunch of
competitors.

TABLE 1. The selected 18 categories and the corresponding LR& HR aerial
photo numbers.

We first conduct a comparative study with seven deep
categorization models [23], [24], [25], [26], [27], [28], [29]
that intrinsically encode some prior knowledge of different
aerial photo categories. We notice that the source codes
of [23], [24], [27], and [28] are publicly available. Thereby,
we conduct comparative study wherein the parameter settings
are set as default. For [25], [26], and [29], the source codes are
unavailable to our knowledge. In this way, we re-implement
them. We have tried our best to make the re-implemented
models perform similarly to the results reported in their
publications.

Nowadays, many deep generic recognitionmodels perform
impressively on categorizing aerial photos. Herein, we launch
a comparative study between our method and ten deep
generic object classification models: the SPP-CNN [52],
CleanNet [12], discriminative filter bank (DFB) [13], multi-
layer CNN-RNN (ML-CRNN) [20], multi-label graph con-
volutional network (ML-GCN) [45], semantic-specific graph
(SSG) [46] and multi-label transformer (MLT) [49]. Further-
more, since LR aerial photo categorization can be deemed
as a sub-topic of scenery classification, we additionally
experiment using three well-known scenery understanding
models [22], [42], [44]. For these models, only the source
codes of [22] are unavailable. Thus we re-implement them
using C++.

Moreover, we compare our method with [67] and [68].
We observe that our method outperforms those aerial
image classifiers not specifically designed for LR aerial
photo categorization. Besides, [67] and [68] cannot encode
auxiliary information from HR aerial photos. Thus their
performances are inferior.

For the categorization models implemented by ourselves,
the experimental setups are briefed as follows. In [25],
we utilize the ResNet-152 [36] as the backbone, which is
subsequently upgraded into a multi-label variant. Except for
the last fully-connected layer (unit number is fixed at 13),
while the remaining layers are pre-retained using the ResNet
learned from ImageNet [53]. For [26], the weights in the
1536-D LSTM layer are calculated using a random number.
For [29], the domain adaptation is implemented from the
RSSCN7 [28] to our compiled LR\& HR aerial photo set.
The ResNet101V2 [36] is employed as the backbone and
the stochastic gradient descent optimizes the entire deep
model. The network loss is calculated by the mean squared
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TABLE 2. Accuracies with Standard Errors of the 19 Categorization Models (Experiments are repeated 20 times).

error. For [22], we retrain the object bank [51] based on
our refined 18 LR/ HR aerial photo categories, wherein
the average-pooling strategy is applied. We employ the
liblinear to solve the SVM classifier, wherein the 7-fold cross
validation is utilized.

For the above 18 compared object/scene classification
algorithms, we repeatedly test each model ten and the
results are displayed in Table 2. To quantify the stability
of these categorization models, we report their standard
errors simultaneously. We observe that the per-category
standard errors produced by our method are significantly and
consistently lower than its competitors. This demonstrated
that our method is the most stable. In summary, the following
conclusions can be made:

1) Our method outperforms the other aerial photo cat-
egorization models remarkably due to three reasons.
First, to facilitate deep model training, our competitors
typically resize each original aerial photo to a fixed
and much smaller size (e.g., 128 × 128) for the
subsequent hierarchical feature engineering. This hurts
the learning of an LR aerial photo categorization
model since many tiny but discriminative visual details
will be lost. Second, expect for our method, none
of the seven counterparts can select high quality
features by leveraging discriminative information from
HR aerial photos. Third, only our method generates
GSPs sequentially capturing the semantics of LR
aerial photos perceived by humans. They are further

incorporated into a CPKP-based FS for calculating
category labels. Comparatively, the seven counterparts
only globally/locally characterize each LR aerial photo,
wherein the perceptual visual features are neglected.

2) The seven generic object recognition algorithms per-
form inferiorly than ours because of three reasons.
First, these generic recognition models generally
handle medium-sized images typically containing tens
of salient objects. They can hardly discover the tiny
but discriminative regions inside each LR aerial photo.
Second, our method can flexibly incorporate the prior
knowledge of HR aerial photos. Contrastively, the
seven generic object recognition models cannot encode
such information. Third, by leveraging our CPKP-
based FS, our method can dynamically abandon those
indiscriminative regions. But the seven generic object
recognition models do not have this function.

3) The three scene categorization models perform unsat-
isfactorily on LR aerial photos. This is because
they deeply and implicitly learn a descriptive set
of scene-aware semantic categories, such as ‘‘birds’’
and ‘‘tables’’, which infrequently appear on our LR
aerial photo set. Moreover, the three categorization
methods can successfully handle sceneries captured
at horizontal view angles. But our collected LR
aerial photos are captured at overhead view angles.
Apparently, such view angle gap will decrease the
categorization accuracy.
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TABLE 3. Training/testing Time of the 18 Categorization Models (Each Bold Number Represents the Best Result).

2) TRAINING/TESTING TIME COMPARISON
It is generally acknowledged that time consumption is a
key criterion reflecting the performance of a classification
algorithm. Then, we report the training and testing time of
the aforementioned 18 aerial photo categorization models.
As shown in Table 3, during training, only two baseline
models are faster than our pipeline. This is because the
architectures of [45], [52] are much simpler than ours.
Meanwhile, we observe that the per-category accuracies
of [45], [52] are noticeably lower than ours. For the
testing time comparison, our method can be conducted at
a significantly faster speed than all the baseline methods.
Notably, distinguished from model training that can be
conducted offline, outstanding testing time is comparably
more valuable to many time-sensitive AI systems, such as
weather forecasting and automatic navigation.

Our LR aerial photo categorization pipeline involves three
key modules: 1) GSP learning using the deep low-rank
algorithm, 2) CPKP-based FS, and 3) feature classification
for category labels. During training, the time consumed for
eachmodule is: 9h12m (m1), 10h11m (m2), and 3h58m (m3).
During testing, the time cost of each module is: 77ms (m1),
3ms (m2), and 12ms (m3). We observe that most of the
training time is spent for module 1 and practically this can
be accelerated by Nvidia GPUs.

C. EVALUATION BY TUNING PARAMETERS
There are two sets of tunable parameters to be evaluated.
The first set denotes the weights balancing multiple attributes
in the low-rank algorithm, i.e., α, β, and γ , as well as
the deep layer number L. The second set includes the
polynomial kernel degree Q and the target dimensionality
for CPKP-based FS V . Herein, we report the LR aerial
photo categorization accuracy by adjusting the two sets of
parameters.

To analyze the first set of parameters, we set the default
values of α, β, γ and L to 0.3, 0.1, 0.15, and 7 respectively.
In our implementation, the default values are determined by
10-fold cross validation. Herein, the validation set contains
54000 samples, which is constituted by selecting 3000 LR
aerial photos from each category. More concretely, we tune
each of α, β, and γ from 0.05 to one with a step of 0.05. And
all the possible parameter combinations are enumeratively
employed to test the LR aerial photo categorization. The
parameter combination receiving the highest categorization
accuracy is reported as the default values. Based on this,

we adjust one of the three parameters while keep the others
unchanged. Each parameter is increased from 0.05 to one
with step of 0.01, wherein the corresponding categorization
accuracy is reported. As the three curves displayed on the top
of Fig. 6, the three parameters consistently increase stably
and then peak. Afterward, they all decrease to a low level.
Such monotonicity properties indicate the feasibility to tune
the three parameters toward an optimal level in practice.
As shown at the bottom of Fig.6, the accuracy increases stably
when L is increased from one to 7. Thereafter, the accuracy
maintains stably. We notice that a deeper categorization
model indicates more parameters to be learned, which may
cause model overfitting practically. Thus we set L = 7.

FIGURE 6. LR aerial photo categorization accuracies by varying α, β, and
γ (top) and L (bottom).

D. ABLATION STUDY
As aforementioned, our method is comprised of two key
modules: 1) GSP learning using the low-rank algorithm,
2) semi-supervised FS. Herein, we test the importances of
these modules in our HR aerial photo categorization pipeline.
Specifically, each module is replaced by a different one. Then
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the performance decrement/increment is presented. Also,
insights are provided to elaborate the underlying reasons for
the observed results.

TABLE 4. LR aerial photo categorization accuracy increment/decrement.

In the first place, to evaluate the effectiveness of the
low-rank algorithm, two experimental settings are deployed.
We first abandon the sparse constraint term ∥E∥1 in (10)
(marked by ‘‘S11’’). Afterward, we abandon the regularizer
∥Z∥

2
F +

∑L
i=1 (∥Zl∥

2
F + ∥ξ∥

2
2) in (10) (marked by ‘‘S12’’).

We report the variation of categorization accuracy in Table 4.
Herein, the intersection of column ‘‘Si’’ and row ‘‘Oj’’
denotes the setup ‘‘Sij’’. Noticeably, abandon the regularizer
converts the deep feature learning to a shallow one. And
a shallow feature engineering module will cause a sharp
performance decrement. Also, removing the sparse constraint
will greatly decrease the accuracy. This observation shows
the necessity to mitigate the overfitting of our designed
low-rank algorithm. Next, to evaluate the performance of
the geometry-preserving FS, we remove such function and
use the full feature set for LR aerial image categorization
(S21). Then, we remove the two terms σ

∥∥XTQ − P
∥∥ (S22)

and τR(Q) (S23) respectively and report the categorization
accuracies. As shown in 4, abandoning the FS module causes
the largest categorization accuracy drop. This demonstrates
the importance of feature selection in LR aerial image
categorization.

V. CONCLUSION
Recognizing aerial images is an indispensable application
in deep neural networks [9], [37], [38], [39], [40], [41],
[62],. We proposed a novel LR aerial photo categorization
pipeline, wherein deep perceptual features are extracted and
refined by propagating the prior knowledge of HR aerial
photos into LR ones. Our work includes three key modules:
1) a deep low-rank algorithm that learns deep features from
LR/HR aerial images; 2) a novel SPFS-based FS that selects
high quality features on the high-order feature space, and
3) a kernel SVM classifier that is learned from the selected
features. Experiments shown the competitiveness of our
approach.

One shortcoming of our categorization pipeline is that
the feature selection is conducted in the original feature
space, whereas practically the deep GSP features might be
distributed in the nonlinear high-order feature space. In the
future, we plan to design a high-order feature selection
algorithm to further enhance the quality of the selected
features.
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