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ABSTRACT Millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems have
attracted much attention from both researchers and industry professionals, as they are seen as a suitable
solution to the growing demand for cellular services in fifth-generation (5G) and sixth-generation (6G)
wireless communication systems. In mmWave MIMO systems, iterative hybrid precoding/combining algo-
rithms, which use a combination of analog and digital precoders, have gained significant interest because
they perform comparably to fully digital precoding/combining while operating at reduced complexity due
to a lower number of radio frequency (RF) components. However, the problem with these algorithms is that
their convergence requires a substantial number of iterations. This paper solves this problem and introduces
a fast convergence iterative hybrid precoding/combining algorithm using momentum and Newton’s method
(FIHB-MN) for mmWave MIMO systems. Simulation results demonstrate the faster convergence of the
algorithm’s objective function compared to other iterative methods in the literature. Moreover, FIHB-
MN provides performance similar to unconstrained digital precoding and combining with only a few
iterations. The simulation results also confirm that the spectral efficiency as well as the bit error rate (BER)
performances of the proposed FIHB-MN algorithm outperforms other hybrid beamforming methods in the
literature, all while maintaining low computational complexity.

INDEX TERMS mmWave MIMO systems, hybrid design algorithms, momentum gradient descent, New-
ton’s method.

I. INTRODUCTION
For low-latency communications, millimeter wave
(mmWave) technologies with hundreds of antennas have
been a focus of research for 5G, and 6G wireless commu-
nication due to their ability to significantly increase spectral
efficiency and system throughput [1], [2], [3], [4]. Although
the path loss is significantly higher at these frequencies, large-
scale antenna arrays can be deployed because the size of the
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antenna elements is much smaller than at lower frequencies,
resulting in a high array gain with beamforming [5], [6].

Digital precoding/combining technology without con-
straints can achieve the maximum theoretical gain of massive
MIMO systems that require each transmission/ reception
antenna to be linked to a separate power-consuming radio
frequency (RF) chain, which will result in a high hardware
cost and power consumption. In order to avoid these prob-
lems, there is a need to significantly reduce the number of
RF chains while ensuring minimal performance degradation.
This has led to the emergence of hybrid analog/digital archi-
tectures as a critical research area in the development of
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massive MIMO mmWave systems. By employing a signifi-
cantly smaller number of RF chains compared to the quantity
of antennas, these architectures circumvent the drawbacks of
analog beamforming and offer a trade-off between complex-
ity and performance [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20].

In the literature, there are two types of hybrid precoding
and combining techniques: full array [7], [8] and subarray
[21], [22], [23]. In the full array structure, every RF chain
is linked to all the antenna elements, whereas in the subarray
arrangement, each RF chain is connected to a portion of the
antenna elements. This paper considers a full array configura-
tion. The performance of hybrid precoding and combining in
a full array configuration approaches that of the digital con-
figuration, with a notable reduction in the required number of
RF chains compared to the digital approach.

The use of simultaneous orthogonal matching pursuit
(SOMP) technique was proposed in [7] for mmWave
MIMO systems, presenting a full array hybrid design. This
approach demonstrated performance comparable to the digi-
tal approach while significantly reducing hardware complex-
ity. However, addressing the sparse optimization problem
in [7] requires high computational complexity, particularly
when considering the constraints of known array geome-
tries. In [8], we introduced and examined a low-complexity
hybrid design for mmWave MIMO systems using an iterative
approach. Several SOMP-based hybrid designs have been
proposed in [9], [10], and [11]. In [13], the authors proposed
joint hybrid precoding strategies using the singular value
decomposition and equivalent channel concept in mmWave
massive MIMO systems. Hybrid design for the downlink
multiuser mmWave MIMO channels was presented in [14].
The suggested scheme in [14] iteratively designed analog
precoders and combiners using an alternating optimization
technique and achieved rate balancing among users through
a power allocation algorithm. The study in [15] investi-
gated partially-connected hybrid beamforming for maximiz-
ing spectral efficiency. In [19], the authors investigate the
application of modified user grouping and hybrid precoding
methods to facilitate information decoding and energy har-
vesting in hardware-impaired mmWave massive MIMO non
orthogonal multiple access systems. In [21], [22], and [23],
we proposed several hybrid designs for subarray structure.
In [22] and [23], an iterative hybrid designs for the non-
overlapped SA and overlapped SA were proposed and stud-
ied. In [24], an approach to hybrid design is introduced that
employs greedy method, without making any assumptions
about the channel structure or array geometry. The authors in
[25] present a low-complexity hybrid design called alternate
minimization (HD-AM).While the spectral efficiency of HD-
AM is high, it is applicable only when the number of data
streams equals the number of RF chains. A hybrid precoding
algorithm based on manifold optimization (MO-AltMin) is
presented in [26]. While MO-AltMin offers high spectral
efficiency, it comes with a high. The authors in [26] also

introduced a low-complexity PE-AltMin algorithm.When the
number of RF chains is equal to the number of data streams,
the spectral efficiency of the PE-AltMin algorithm matches
that of the MO-AltMin algorithm. However, it is outper-
formed by MO-AltMin with a larger number of RF chains.
A heuristic hybrid beamforming algorithm was proposed in
[27]. In [28] and [29], a gradient projection algorithm is used
to design the hybrid beamforming, with the goal of mini-
mizing the Euclidean distance between the digital and the
hybrid precoding matrices. In [30], an iterative hierarchical
hybrid precoding technique was proposed, where the digital
and analog precoding are separately optimized, resulting in
performance comparable to that of PE-AltMin. However,
high computational complexity is the main drawback of all
the solutions in [27], [28], [29], and [30]. Hybrid design
algorithms in multi-user scenarios were proposed and studied
in [31], [32], [33], [34], [35], and [36].

In the literature, there exists much research on iterative
solutions to solve the optimization problem of the hybrid
design. These works, such as the work in [8], yields a per-
formance comparable to the digital precoder and combiner.
However, the existing solutions require a large number of
iterations to converge. The main objective of this paper is to
propose a hybrid design solution for mmWave MIMO sys-
tems that requires a smaller number of iterations to converge
to a performance that is comparable to the digital solution.

The novelty of this paper is as follows: To the best of our
knowledge, there is no existing literature that has examined
the application of gradient descent with momentum andNew-
ton’s method for designing hybrid precoding and combining
in mmWave MIMO systems. The absence of prior research
in this field has motivated us to study this topic.

The contributions of this paper can be summarized as
follows:

• In this paper, a fast iterative hybrid design, named FIHB-
MN, is proposed for mmWave wave MIMO systems.
The key advantages of the proposed FIHB-MN approach
include its similar performance to fully digital methods
and its rapid convergence. We apply separate optimiza-
tion of analog and digital precoding/combining. Based
on the initial normalized analog precoding/combining,
we apply the momentum term and Newton’s method to
the gradient descent in the design of the analog precod-
ing/combining. The suggested method is guaranteed to
converge to a local optimum point without requiring any
assumptions about the channel. In this paper, a single-
user scenario is assumed, and the extension to multi-user
scenario will be considered in future work.

• Simulation results are carried out to evaluate the spec-
tral efficiency as well as the BER performances of the
proposed FIHB-MN hybrid design. The results verify
that the proposed FIHB-MN algorithm outperforms the
existing hybrid design algorithm in [7], [8], [24], and
[25], while maintaining low complexity. Our results also
demonstrate that gradient descent with momentum and
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Newton’s method can significantly improve the perfor-
mance of the proposed hybrid design and reduce the
objective function with only 10% of the number of
iterations in [8].

The remainder of the paper is organized as follows.
Section II describes the mmWave channel and system mod-
els, Section III introduces the proposed FIHB-MN scheme.
The complexity of the proposed FIHB-MN scheme is stud-
ied and compared in Section IV, while Section V provides
simulation results. Finally, our conclusions are drawn in
Section VI.
Notations: Upper-case boldface letters represent matrices,

while lower-case non-boldface letters denote vectors. The
symbol ‘b’ denotes a scalar. The notation (.)H represents the
conjugate transpose of a matrix, and Bi represents the ith col-
umn of matrix B. Bi,j denotes the entry located at the ith row
and jth column of matrix A. The norm ∥.∥F is the Frobenius
norm of a matrix, and the function tr (.) represents the trace
function. The operator diag(.) represents a diagonal matrix,
⊘ denotes element-wise division, and IM is an identity matrix
of size M × M.

II. DOWNLINK SYSTEM MODEL
A. mmWave CHANNEL MODEL
In this paper, we adopt a Saleh-Velenzuela (SV) model [3],
[4], [5], [6], [7] to represent a mmWave channel and the
narrowband clustered channel can be written as

H =
√
NBSNMS/NclNray

×

∑
i,l

αil3r(∅ril, θ
r
il)3t (∅til, θ

t
il)ar(∅

r
il, θ

r
il)at (∅

t
il, θ

t
il)

∗

(1)

where NBS and NMS are the number of antennas at the base
station (BS) and the mobile station (MS), respectively. Ncl
and Nray are the number of clusters, and the number of
paths in each cluster, respectively. αil ∈ C is the gain of
the l th path and the ith cluster, and ∅

t
il

(
θ til

)
, ∅ril

(
θ ril

)
are the

l th pat’s azimuth (elevation) angles of departure and arrival
(AODs/AOAs) in the ith cluster, respectively, with uniform
distribution. Also 3t

(
∅
t
il, θ

t
il

)
and 3r(∅ril, θ

r
il) denote the

transmit and receive antenna element gain at specific AOD
and AOA. In this article, unity gain is assumed for all antenna
elements. Finally, at(∅til, θ

t
il)

H and ar(∅ril, θ
r
il) are the antenna

array response vectors at the BS and MS, respectively. In this
paper, we consider a uniform planar arrays (UPA)withw1 and
w2 elements on width and height (Array size = w1w2), and
the array response vector can be expressed as [7], [8], [21],
[22], and [23]

a (∅, θ) =
1

√
N
[1, · · · ,e

j
(
2π
λ

)
d(msin(∅) sin(θ)+n cos(θ))

,

· · · ,e
j
(
2π
λ

)
d((w1−1)sin(∅) sin(θ)+(w2−1) cos (θ))

]T (2)

where 0 ≤ m < w1 and 0 ≤ n<w2. λ is the wavelength of the
signal, and d is the antenna spacing.

B. SYSTEM MODEL
Fig. 1 shows the block diagram of the mmWave MIMO
system with hybrid precoding and combining. We assumed
one MS with NMS

RF RF chains and NMS antennas and one BS
with NBS

RF RF chains and NBS antennas [8]. NS data streams
with NS≤NMS

RF ≪NMS in the MS and NS≤NBS
RF≪NBS in the

BS are used to support communication between a single MS
and the BS. The received signal at the MS can be written as
[7] and [8]

y = (WRFWBB)H(
√
PrHPRFPBBs + n)

= WH(
√
PrHPs + n) (3)

where Pr is the average received power, H ∈ CNMSxNBS

denotes the channel matrix, s ∈ CNsx1 is the baseband
transmitted signal with E

[
ssH

]
=

1
NS

INS , and n is the NMSx1
vector of i.i.d. CN (0, σ 2) additive complex Gaussian noise.
PBB is the NBS

RFxNS baseband precoder, PRF is the NBSxNBS
RF

RF precoder. WBB is NMS
RF xNS baseband combiner andWRF

is the NMSxNMS
RF RF combiner. P = PRFPBB provides the

NBSxNS hybrid precoder, andW = WRFWBB is theNMS×Ns
hybrid combiner.

Since PRF, andWRF are implemented by the analog phase
shifters, all elements of PRF, andWRF should have the same
amplitude but different phases, so that

∣∣[PRF]i,j
∣∣2 =

1
NBS

and∣∣[WRF]k,m
∣∣2 =

1
NMS

. Therefore, the norms of the elements
of PRF and WRF are equal [7], [8]. In order to satisfy the
total power constraint, we normalize the baseband precoder
and combiner, so that ∥WRFWBB∥

2
F = ∥PRFPBB∥

2
F = N S

[7], [8].
In this paper, the ZF and the MMSE are considered to

detect the received signal and perfect channel estimation is
assumed. The estimates of the transmitted symbols ŝ using
ZF and MMSE can be represented by (4) and (5) as follows

ŝ = WZFy (4)

ŝ = WMMSEy (5)

where WZF = (Heff)−1 is the ZF and WMMSE =

(HH
effHeff + σ 2INr)

−1HH
eff is the MMSE. Heff = WHHP is

the effective channel [31]. Due to their significantly lower
dimensions, which depend on the number of data streams NS
[31], the effective channel Heff has much lower complexity
than the original mmWave channel matrix H. Consequently,
it becomes feasible to implement these detectors with reduced
complexity. The main advantage of the ZF and MMSE
schemes is their lower computational complexity compared
to that of the ML and sphere decoding techniques.

The spectral efficiency can be written as [7] and [8]

R = log2

∣∣∣∣INs +
Pr
NS

R−1
n WHHPPHHHW

∣∣∣∣ (6)

where Rn = σ 2WHW denotes the noise covariance matrix.

III. THE PROPOSED HYBRID BEAMFORMING
This section presents the description of the proposed
algorithm,which combines gradient descent, momentum, and
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FIGURE 1. mmWave system with hybrid precoding and combining architectures [7].

Newton’s method. The equations related to the precoder are
derived, given that the derivation process for the combiner
follows a comparable approach. Our objective is to maximize
the spectral efficiency in (6) through the minimization of the
Euclidean distance between the optimal unconstrained digital
precoding and the hybrid precoding. This can be expressed as(

Popt
RF,Popt

BB

)
= argmin

PRF,PBB

∥∥Popt − PRFPBB
∥∥2
F

st. PRFεF
∥PRFPBB∥

2
F = Ns (7)

where F includes all possible RF precoding matrices that
satisfy the amplitude constraint. Popt = V1 = V(:, 1:Ns) is
the optimal solution of the unconstrained hybrid precoding,
and V can be obtained via the singular value decomposition
(SVD) of H (H = U6VH). The optimization problem in (7)
can be solved in two steps as outlined below:

1. Solving for PBB while keeping PRF fixed, the problem
can be rewritten as(

Popt
BB

)
= argmin

PBB

∥∥Popt − PRFPBB
∥∥2
F (8)

It is possible to expand the objective function in (8) as∥∥Popt − PRFPBB
∥∥2
F

= NS−2tr
(
PoptPRFPBB

)
+tr(PH

BBP
H
RFPRFPBB) (9)

The least square solution of PBB in (9) can be expressed as
follows:

PBB =

(
PH
RFPRF

)−1
PRFPopt (10)

2. Solving for PRF while keeping PBB fixed, the problem
can be rewritten as:(

Popt
RF

)
= argmin

PRF

∥∥Popt − PRFPBB
∥∥2
F (11)

Similar to step 1, when the derivative of equation (9) is set
to zero with respect to PRF while holding PBB constant, the
result is:

∇f (PRF) = −PoptPH
BB + PRFPBBPH

BB = 0 (12)

Since PBBPH
BB cannot be inverted when NS < NBS

RF , we use
the gradient descent method to obtain an iterative solution for
PRF as follows

Pk+1
RF = PkRF − α∇f

(
PkRF

)
Pk+1
RF = PkRF + α(Popt − PkRFPBB)PH

BB

Pk+1
RF = PkRF + αPresPH

BB (13)

where Pres = Popt - PkRFPBB represents the residual precod-
ing matrix. Note that equation (13) fulfills the characteristic
of the gradient descent approach using a step size α. This
guarantees that PRF will converge to a feasible local optimal
solution.
The proposed FIHB-MN algorithm in this paper uses a

combination of the momentummethod and Newton’s method
to effectively eliminate the zig-zag effect of the negative
gradient during convergence. Additionally, the algorithm
automatically determines the learning rate α, eliminating the
need for manual selection. In the momentum method, the
first couple of iterations will provide a crude moving average
over the past gradients because we do not have enough values
yet to average ove; the solution is to use what’s called bias-
corrected version. In Newton’s method, the Hessian PBBPH

BB
of the objective function in (11) isNRF

BS xN
RF
BS matrix. Because

NRF
BS is small, then the inversion of the Hessian (PBBPH

BB)
−1

is
easy to compute. However, PBBPH

BB cannot be inverted when
NS < NBS

RF ; therefore, we use the preconditioning method to
avoid inverting the Hessian in its entirety but only inverting
the diagonal entries. From (13), we improve the performance
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of the proposed hybrid design by adding the momentum term
Zk and Newto’s Method as follows:

Zk = (βZk−1+(1−β)∇f

(
PkRF

)
)/(1 − βk ) (14)

Pk+1
RF = PkRF + αZk (diag(PBBP

H
BB))

−1
(15)

where α> 0 is the step size or learning rate, that controls
the distance of the negative gradient direction from the RF
precoder PkRF, and β is the momentum decay term. Large β

amounts to a long-range average, whereas small β amounts
to only a slight correction relative to a gradient method. We
use the learning rate α with Newto’s method because we do
not use the full inversion of the Hessian, we only invert the
diagonal entries. Notice that if k is large, βk will be almost
zero and thus, will not change the values of Zk at all. By
using (9) and (10) in the proposed hybrid design, we can
improve its performance with fewer number of iterations.
From our simulation results, we can confirm that the gradient
descent with momentum can improve the proposed hybrid
design and significantly reduce the objective function with
a smaller number of iterations K .
This approach is applicable when NS = NBS

RF . However,
it is important to note that whenNS < NBS

RF , wemust complete
the NBSxNBS

RF matrix PRF after initialization. In every itera-
tion, we add a column to PRF, achieving maximum reduction
in the residual.

Algorithm 1 outlines the pseudo-code of the FIHB-MN
solution. The algorithm takes Popt∈CNBSxNS and the maxi-
mum number of iterations K as inputs. When NS < NBS

RF ,
the algorithm requires K≥NBS

RF - NS to calculate the PRF,
and K≥ 1 when NBS

RF = NS . When 1≤NS≤NBS
RF , the algorithm

initializes PRF with the element-wise normalization of Popt,

i.e., PRF = Popt⊘
(∣∣Popt

∣∣ √NBS

)
, and the momentum term

Z ∈CNRFxNS with zero matrix. Then in step 4, PBB is com-
puted using (10). After that, the residual precoding matrix
Pres, the momentum term Z, and the proposed PRF are
updated in steps 5, 6 and 7 respectively. Step guarantees
that PRF has constant-magnitude entries, suitable for analog
phase shifters in RF implementation. When NS < NBS

RF ,
the element-wise normalization of the first column of Uzin
Pres = U6VH is added as a new column to the FRF
in steps 10 and 11. Upon completing K iterations, the
algorithm obtain the proposed FRF and PBB matrice, mini-
mizing

∥∥Popt − PRFPBB
∥∥
F . Steps 1 and 1 satisf the transmit

power constraint and output the proposed PP
= PRFPBB. The

same approach can be used to calculateWP
RF.

The main difference between FIHB-MN algorithm and our
hybrid design in [8] is the addition of the momentum term and
the Newto’s method to the gradient descent in the design of
analog precoding/combining. It is worth noting that in step 8,
the utilization of

√
NBS serves as an effective method to

ensure that the diagonal elements of PH
RFPRF are normalized

to one. This normalization is crucial due to the requirement
that PH

optPopt = INs . Therefore, its components should also
exhibit a semi-unitary arrangement [25]. The RF precoder

PRF can undergo another normalization step to achieve unit
modulus and we have conducted verification and confirmed
that this adjustment does not impact the results.

It is worth noting that the behavior of PBB depends on the
relationship between NS and NBS

RF . When NS is equal to NBS
RF ,

PBB is a square matrix that approximates unitarity, character-
ized by PH

BBPBB ≈ PBBPH
BB ≈ INS . Conversely, when NS is

less thanNBS
RF , PBB becomes a non-square matrix that approx-

imates semi-unitarity, indicated by PH
BBPBB ≈ INs [7], [25].

Consequently, each iteration of Algorithm 1 works towards
minimizing the objective function

∥∥Popt − PRFPBB
∥∥2
F , lead-

ing to a monotonic decrease in the error term with every iter-
ation. Given the existence of a lower bound in the objective
function, it is assured that the proposed FIHB-MN algorithm
will converge towards local optimum points. Simulation
results section will confirm the monotonically decreasing
nature of the objective function throughout the iterations and
its eventual convergence to the lower bound. Moreover, the
proposed designwithmomentummethodmakes the objective
function converge faster compared to conventional gradient
descent method.

IV. COMPLEXITY ANALYSIS
In this section, we evaluate the complexity of the proposed
FIHB-MN design using Algorithm 1. For the sake of sim-
plicity in complexity analysis, let’s denoteN as the maximum
value of {NBS ,NMS}.
Similarly, we define NRF as the maximum value of{
NBS
RF ,NMS

RF

}
. Additionally, K andM represent the maximum

number of iterations for the proposed FIHB-MN algorithm
and the hybrid design using alternating minimization (HD-
AM) in [25]. Table 1 presents a comprehensive complexity
analysis, which evaluates the total number of floating-point
operations per second. Given the considerations regarding
angular resolution and correlation functions within the sparse
hybrid algorithm in [7], the proposed FIHB-MN algorithm
and hybrid design algorithms in [8], [24], and [25] pro-
vide a notable reduction in complexity when compared with
the sparse hybrid algorithm in [7], especially when NS≪N .
When K = M , the complexity of the proposed FIHB-MN
algorithm is twice that in [8] and [25]. However, as we will
see in the simulation results section, the proposed FIHB-
MN algorithm provides better performance than that in [8]
and [25] with a smaller number of iterations. Furthermore,
the HD-AM algorithm in [25] can only be applied in a
scenario where NS = NRF , whereas the proposed FIHB-
MN algorithm can be applied in all scenarios.The proposed
FIHB-MN algorithm and the greedy algorithm in [24] have
almost the same complexity. This is due to the fact that the
proposed algorithm can outperform the algorithm in [24] with
a relatively small value of K.
The complexity of the proposed FIHB-MN algorithm is

also lower than that of the MO-AltMin algorithm in [26]. On
the other hand, the MO-AltMin algorithm is characterized by
its high complexity, and the update of the analog precoder
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Algorithm 1 Proposed FIHB-MN design
Input:
1: Input Popt∈CNBSxNS and the K .

FIHB-MN Algorithm:
2: Initialization: PRF = Popt⊘

(∣∣Popt
∣∣ √NBS

)
and

Z =FRF.0
3: for i = 1 :K do
4: Calculate: PBB =

(
PH
RFPRF

)−1
PH
RFPopt

5: Update the residual: Pres = Popt - PRFPBB
6: Update: Z = (βZ + (1−β)PresPH

BB)/(1−β i)

7: Update: PRF = PRF + αZ(diag(PBBP
H
BB))

−1

8: Element-Wise Normalization:
PRF = PRF⊘

(
|PRF|

√
NBS

)
9: If i ≤ NBS

RF - NS
10: Pres = U6VH

11: Normalized and add the first column of U as a new
column to PRF:
PRF =

[
PRF (U)1 ⊘

(
|(U)1|

√
NBS

) ]
12: end if
13: end for
14: Compute PBB =

(
PH
RFPRF

)−1
PRFPopt

15: Normalize PBB as PBB =
√
N S

PBB
∥PRFPBB∥F

16: return PP
= PRFPBB

Output:
Output the Analog PRF∈CNBSxNBS

RF with the element wise
normalization and baseband PBB ∈ CNBS

RFxNS , such that∥∥Popt − PP
∥∥
F is reduced and

∥∥PP
∥∥2
F = NS , where

PP
= PRFPBB.

TABLE 1. Complexity comparison.

within MO-AltMin requires a line search algorithm [26].
Therefore, the algorithms in [7], [8], [24], and [25] are used
as performance benchmarks in the simulation results section.

V. SIMULATION RESULTS
In this section, we present the simulation results of the
spectral efficiency as well as the BER to evaluate the per-
formance of the proposed FIHB-MN algorithm. In our sim-
ulations, we utilize a 16QAM modulation scheme without
error-control coding for the ZF detection algorithm. Further-
more, we assume a constant mmWave channel throughout
the transmission of one block of data for all cases examined.
The channel model, described by (1), assumes the aver-
age power is equal to 1 for all clusters. To implement the
sparse hybrid design, we use the AoD/AoA beamforming

codebooks, which represent the exact array response of the
mmWave channel, at the BS and MS.

TABLE 2. Simulation parameters.

For the implementation of the sparse hybrid algorithm in
[7], we employ the AoD/AoA beamforming codebooks at
both the BS and MS. For fairness, all precoding/combining
solutions are subjected to the same total power constraint.
Further details about the simulation setup are summarized in
Table 2.

A. SPECTRAL EFFICIENCY PERFORMANCE
This subsection evaluates the sum rate achieved by the pro-
posed FIHB-MN algorithm and the hybrid design algorithms
in [7], [8], [24], and [25].

The best values of β and α are determined simultaneously
using a 3-dimensional graph as shown in Fig. 2. The graph
illustrates the spectral efficiency performance of the proposed
FIHB-MN design in a 64 × 16 UPAs mmWave system with
NS = 3,NBS

RF = NMS
RF = 4, and K = 15, across differ-

ent values of the parameters α and β. It is observed that
when β is set close to 1, the proposed FIHB-MN design
exhibits poorer performance due to the momentum term Zk
collecting very small values of the past gradients. The figure
highlights that the maximum spectral efficiency is achieved
when β=0.455 and α=1.366, which closely aligns with the
values chosen for the rest of the experiments.

Figs. 3 and 4 depict the spectral efficiency performance
versus the number of RF chains for various hybrid pre-
coding/combining algorithms, including the proposed FIHB-
MN design with different values of K , the optimal digital
algorithm, and the hybrid design algorithms in [7], [24],
and [25] for a 64 × 16 mmWave system. In Fig. 3, NS =

NBS
RF = NMS

RF , SNR = 0 dB and K = M are considered. The
proposed FIHB-MN algorithm outperforms that in [25] for
M > 1 and the greedy algorithm in [24] for Ns = NBS

RF =

NMS
RF = 2, 3, and 4.
Fig. 3 shows that the proposed FIHB-MN algorithm pro-

vides an improvement over that in [7] for all numbers of
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FIGURE 2. The spectral efficiency performance versus α and β of the
proposed FIHB-MN design in a 64 × 16 UPAs mmWave system with
NS = 3, NBS

RF = NMS
RF = 4, and K = 15.

FIGURE 3. The spectral efficiency versus the number of RF Chains.

RF chains and outperforms the HD-AM algorithm in [25],
even with increasing K and M. This indicates that utilizing
the proposed FIHB-MN algorithm is more favorable than
employing the HD-AM algorithm in [25] when dealing with
a scenario where NS = NBS

RF = NMS
RF .

Fig. 4 studies the spectral efficiency performance for sce-
narios where NBS

RF = NMS
RF ≥ NS . NS ∈ {1, 2, 4}, and a

SNR = 0dB are assumed. It is evident that the proposed
FIHB-MNalgorithm and the greedy algorithm in [24] provide
superior performance compared to the sparse algorithm in
[7] and the proposed FIHB-MN algorith closely approxi-
mates the optimal solution with only K = 6 iterations. It
requires a small number of RF chains (NBS

RF = NMS
RF <

2NS ) to provide optimal performance when compared to the
sparse algorithm in [7] and the greedy algorithm in [24].
The proposed FIHB-MN algorith demonstrates significant
performance improvement over the greedy algorithm in [24]
when NS ∈ {2, 4}. Also, it is clearly seen that the proposed
algorithm with K = 6 outperforms the greedy algorithm in
[24] as well as the sparse algorithm in [7] and its performance
improves gradually when K > 6.

FIGURE 4. The spectral efficiency versus the number of RF Chains.

In summary, the proposed FIHB-MN algorith outperforms
the HD-AM in [25] when NS = NBS

RF = NMS
RF and K = M >

1 and outperforms the hybrid algorithms in [7] and [24] when
NBS
RF = NMS

RF ≥ NS with a small value of K .
Figs. 5 and 6 demonstrate the spectral efficiency of the

proposed FIHB-MN algorithm with K = 15, the iterative
hybrid design algorithm in [8] with different values of K ,

and the unconstrained digital algorithm for a 64 × 16 mmW
system with NS > NBS

RF = NMS
RF , and NS = NBS

RF = NMS
RF ,

respectively. From Figs. 5 and 6, it is evident that the pro-
posed FIHB-MN algorithm with K = 15 achieves a spectral
efficiency very close to that of the unconstrained digital
algorithm. Conversely, the iterative hybrid design algorithm
in [8] needs a significantly larger number of iterations (K =

150) to attain performance similar to the proposed FIHB-MN
algorithm with K = 15, particularly for NS ∈ {2, 4} in Fig. 5
and for all data stream ranges in Fig. 6. Therefore, the iterative
hybrid design algorithm in [8] requires high computational
complexity to match the performance of the proposed FIHB-
MN algorithm in this paper.

FIGURE 5. Average spectral efficiency versus the number of RF chains
when SNR = 0 dB.

In summary, the performance results indicate that when
NS> 1 and NRF≥NS , the proposed FIHB-MN algorithm can
achieve higher performance with a small value of K com-
pared to the iterative hybrid design algorithm in [8]. In
scenario where NS = 1, K=1 is the appropriate value for
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FIGURE 6. Spectral efficiency versus the number of RF Chains.

the proposed FIHB-MN algorith when NRF = NS . When
NRF > NS , the appropriate value of K for the proposed FIHB-
MN algorithm is K = NRF − NS .

Fig. 7 studies the average value of the objective function∥∥Popt − PRFPBB
∥∥2
F against the number of iterations K for

the proposed FIHB-MN algorith and the iterative hybrid
design algorithm in [8]. We assume mmWave system with
NS = 3,NBS

RF = NMS
RF = 4 and NS = NBS

RF = NMS
RF = 4.

The results indicate that the proposed FIHB-MN algorithm
achieves a lower objective function value than that in [8]
across different numbers of iterations. AsK exceeds 1000, the
objective functions for all designs converge to a lower bound.
Notice that the objective function of the proposed design
only employing the momentum method (without Newton’s
method) falls between the iterative hybrid design algorithm
in [8] and the proposed FIHB-MN algorithm with both the
momentum method and Newton’s method. After the number
of iterations K exceeds 1000, the objective functions for all
designs converge to a lower bound. The objective function of
the proposed FIHB-MN algorithm with only the momentum
method (without using the Newto’s method) is in the middle
between the hybrid design in [8] and the proposed design,
with the momentum method and Newto’s method. Although
the momentummethod decreases the objective function com-
pared the hybrid design in [8], without using the Newton’s
method, we need to find the appropriate learning rate α

through trial and error which is not a trivial task. Note that
when NRF > NS , the value of β increases to 0.4 instead
of 0.3 because the optimization problem is ill-conditioned,
which means that there are some directions where progress
is much slower than in others. Thus, we use a larger value
of β to obtain more stable directions of descent. In scenarios
where NRF > NS , the average value of the objective function
is notably lower than the scenarios where NRF = NS . This
is due to the enhanced capability of the proposed FIHB-MN
algorithm and the iterative hybrid design algorithm in [8] to
more precisely approximate the optimal design.

The proposed design with only the momentummethod can
improve the performance compared to that in [8] as shown

in Fig. 7, but it is better to use the momentum method and
Newton’s method in our proposed design to improve the
performance much more with fewer number of iterations K .

Fig. 7 confirms the convergence property of the proposed
FIHB-MN algorithm.

Figs. 8 (a) and (b) show a closer look at the average
value of the objective function

∥∥Popt − PRFPBB
∥∥2
F versus the

number of iterations K for a 64 × 16 mmW system, which
was displayed in Fig 7.

FIGURE 7. Average value of the objective function versus the number of
iteration K.

As we can see from both Figs. 8 (a) and (b), the iterative
hybrid algorithm in [8] needs a very large value ofK , approx-
imately K=150, to achieve a performance similar to that of
the proposed FIHB-MN algorithm with K = 15. Therefore,
the iterative hybrid algorithm in [8] needs high computational
complexity in order to match the performance of the proposed
FIHB-MN algorithm. This plot confirms the results presented
in Figs. 5, and 6.
Table 3 presents the average simulation running time of

the proposed FIHB-MN algorithm and the iterative hybrid
design algorithm in [8] with K=15, and K=150, respectively.
The simulations consider a 64 × 16 mmW system with
NS = NBS

RF = NMS
RF = 3. It is clear that the complexity of

both the proposed FIHB-MN algorithm and the hybrid design
in [8] increases with the number of iterations K . However,
as illustrated in Figs. 5, and 6, the proposed hybrid FIHB-
MN algorithm achieves superior performance while requiring
only K/10 iterations compared to the algorithm in [8]. On
the other hand, the average simulation running time of the
proposed FIHB-MN algorithmwhenK=15 is lower than that
of the algorithm in [8] when K=150. This indicates that, the
proposed FIHB-MN algorithm is much faster than that in [8].

TABLE 3. Average running time of the proposed FIHB-MN algorithm and
the algorithm in [8].
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FIGURE 8. Average value of the objective function versus the number of
iteration K for the proposed algorithm and the iterative hybrid algorithm
in [8]. (a) NBS

RF = NMS
RF = NS = 4. (b) NBS

RF = NMS
RF = 4 and NS = 3.

The spectral efficiency of different hybrid design algo-
rithms in a 64 × 16 mmWave system with NS = 4, and
NBS
RF = NMS

RF = 4 is presented in Fig. 9. A value of K = 15
is assumed for the proposed FIHB-MN, the iterative hybrid
design algorithm in [8], and the HD-AM algorithm in [25].
Comparing the results, the proposed FIHB-MN demonstrates
optimal performance similar to the optimal digital solution.
It outperforms the HD-AM algorithm in [25], and iterative
algorithm in [8] with a slight gain and performs better than the
greedy algorithm in [24] and the sparse algorithm in [7], espe-
cially at higher SNR values, where it exhibits higher gains.
The proposed FIHB-MN design shows promising results and
outperforms the other techniques in various SNR scenarios,
making it a compelling solution for mmWave systems with
64 × 16 UPAs.
Fig. 10 illustrates the impact of the channel estimation

errors on the spectral efficiency of four different hybrid
designs in a 64 × 16 mmWave system with K = 15,
NS = 4, and NBS

RF = NMS
RF = 4. From the figure, it is

evident that both the proposed FIHB-MN algorithm and the
iterative hybrid design algorithm in [8] exhibit higher robust-
ness compared to the sparse algorithm in [7]. Furthermore,
both algorithms closely approach the performance of the

optimal design across the entire range of variance. Regarding
the spectral efficiency performance, the proposed FIHB-MN
algorithm outperforms the iterative algorithm in [8] for small
variance values. However, as the variance increases, their
performance starts to overlap, indicating that both approaches
are highly effective in handling higher variance values.

FIGURE 9. Spectral Efficiency versus the SNR when NBS
RF = NMS

RF = 4.

FIGURE 10. Spectral Efficiency performance versus the variance of the
error in the CSI for different hybrid designs.

B. BER PERFORMANCE
This subsection evaluates the BER performance of the pro-
posed FIHB-MN algorithm and compares it with other hybrid
designs.

In Fig. 11, the BER of proposed FIHB-MN algorithm with
ZF detector is studied for different values ofK , and compared
to the sparse algorithm in [7], the optimal digital design, and
the greedy algorithm in [24]. The simulation is performed
for a 16 QAM 64 × 16 mmWave systems with NBS

RF =

NMS
RF =4 and NS = 3. Fig. 11 shows that the proposed FIHB-

MN algorithm with ZF provides a performance that closely
matches that of the digital solution. It also outperforms the
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sparse algorithm in [7] with ZF detector across the entire
SNR range. Comparing it to the greedy algorithm in [24]
with ZF detector, the proposed FIHB-MN algorithm performs
similarly when K is the smallest (K = NBS

RF - NS = 1), but
outperforms the greedy algorithm asK increases. Fig. 11 also
illustrates that moderate values of K, such as K = 6 or 10,
are adequate to outperform other hybrid algorithms and attain
BER levels closely approaching the optimal one.

FIGURE 11. BER versus the SNR when NBS
RF = NMS

RF = 4.

Furthermore, the performance gain of the proposed FIHB-
MN algorithm is significant when K increases from 1 to 6,
but becomes marginal after K = 6.

Fig. 12 demonstrates the BER performance of different
hybrid design algorithms with ZF detector in a 16 QAM
64 × 16 mmW system with NBS

RF = NMS
RF = 3 and NS = 3

data streams. To ensure fairness, we assume that K equals
M. The results show that the proposed FIHB-MN algorithm
(K = 1), the HD-AM algorithm (M = 1) in [25], and the
greedy algorithm in [24] have overlapping performance and
superior performance compared to sparse algorithm in [7].
With increasing values of K and M , the proposed FIHB-
MN algorithm exhibits superior performance compared to
the HD-AM algorithm in [25]. Note that in this paper,
the proposed FIHB-MN algorithm outperforms the HD-AM
algorithm in [25] when K = M > 1, achieving significant
improvements of more than 6 dB in comparison to the sparse
algorithm in [7], particularly for K > 1.
Fig. 13 illustrates the BER performance of different

hybrid design algorithm with ZF detector in a 16 QAM
64 × 16 mmW system. The algorithms include the proposed
FIHB-MN with K = 15, the iterative hybrid design in [8]
with different values of K , and the unconstrained digital
precoding/combining. From the results obtained in Fig. 13,
it is clear that the iterative hybrid design in [8] requires a
high value of K (K = 150) to achieve a performance similar
to the proposed FIHB-MN in this paper with a significantly
lower number of iterations (K = 15). This indicates that the
computational complexity of the iterative hybrid algorithm in

FIGURE 12. BER versus the SNR when NBS
RF = NMS

RF = 3.

[8] is significantly higher than that of the proposed FIHB-MN
algorithm presented in this paper.

FIGURE 13. BER versus the SNR when NS = 4.

FIGURE 14. BER versus the SNR when NS = 3.

Fig. 14 compares the BER performance of different hybrid
design algorithms with ZF detector in a 16 QAM 64 × 16
mmW system when NBS

RF = NMS
RF = 4 and NS = 3.

Results show that the proposed FIHB-MN algorithm achieves
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a BER close to that of the unconstrained digital algorithm.
It is also clear that the iterative hybrid design algorithm in
[8] requires a high computational complexity (K = 150) to
achieve a performance similar to that of the proposed FIHB-
MN algorithm with K=15.

VI. CONCLUSION
In this paper, we proposed a new low-computational com-
plexity hybrid precoders and combiners called FIHB-MN, for
a single-user mmWave MIMO systems. Under the assump-
tion of perfect channel estimation, we formulate an optimiza-
tion problem to find the hybrid precoding/combining pair that
closely approximates the optimal unconstrained digital pair.
The proposed design incorporates the momentum method
to mitigate the zig-zag effect of the negative gradient and
Newton’s method to automatically determine the parame-
ter α. The proposed hybrid design approach does not rely
on any assumptions and works in all scenarios, even when
NBS
RF = NMS

RF ̸=NS . Our simulation results show that the
proposed solution exhibits significantly lower computational
complexity compared to the sparse algorithm in [7], the iter-
ative algorithm in [8], and the HD-AM algorithm in [25] due
to its fast convergence. It achieves superior performance with
only one-tenth the number of iterations when compared to the
hybrid design in [8] and the HD-AM technique.
Moreover, when selecting a reasonable value of K ,

the computational complexity of the proposed FIHB-MN
algorithm closely aligns with that of the greedy algorithm in
[24], while still delivering improved performance.

Results also demonstrated that the proposed FIHB-MN
algorithm, with a reasonable value of K , outperforms the iter-
ative hybrid design algorithm in [8], the HD-AM algorithm
in [25] when NS = NBS

RF = NMS
RF and K = M , and the

sparse algorithm in [7], and the greedy algorithm in [24]
in all cases. Additionally, the proposed FIHB-MN algorithm
achieves better BER performance when compared with that
in [7], [8], and [24], and close to the optimal solution. For
future work, it would be interesting to explore extending our
proposed FIHB-MN algorithm to the multiuser scenario.
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