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ABSTRACT The Tor network, renowned for its provision of online privacy and anonymity, faces the
constant threat of correlation attacks that aim to compromise user identities. For almost two decades,
these correlation attacks were based on statistical methods. However, in recent years, deep learning-based
correlation attacks have been introduced to make them more accurate. Nevertheless, in addition to being
accurate, fast correlation attacks on Tor are crucial for assessing the real-world viability of such attacks
because reduced correlation time aids in estimating its practical implications. Moreover, a reduction in
correlation time also helps improve efficiency and ensures practical relevance of the attack. The existing
state-of-the-art implementation of a correlation attack on Tor suffers from slow performance and large
memory requirements. For instance, training the model required 133 GB of memory, and correlating 10,000
flows takes about 976 seconds. In this paper, we present a novel GPU-based correlation strategy and a
fast traffic flow loading technique to reduce time complexity by 7.12× compared to existing methods.
Our computational approach, reliant on PyCUDA, facilitates the parallelization of operations used in the
attack, thereby enabling efficient execution through the utilization of GPU architecture. Leveraging these two
approaches, we introduced an improved correlation attack, which shows high accuracy and fast performance
compared to state-of-the-art methods. Moreover, we address resource limitation issues by reducing memory
consumption by 47.37% during the training phase, which allows the model to be trained with much fewer
resources.

INDEX TERMS Anonymity network, correlation attack, parallel computing, traffic analysis, Tor network.

I. INTRODUCTION
The internet has emerged as a vast, linked network due to
the rapid technological advancement in the past decades.
However, this advancement has raised the possibility of
digital surveillance, which creates privacy concerns in the
community. The necessity for dependable privacy-enhancing
solutions is becoming more prevalent than in the past
as we evolve into a deeply connected society. This is
especially important for people living under totalitarian
regimes and for whistle-blowers who want to protect their
identities. Furthermore, military and commercial entities rely
on anonymous networks to provide secure communication
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across public networks. As a result, the pursuit of anonymous
communication protocols has become critical across a wide
range of internet applications. To address these issues, several
anonymous communication methods have been proposed.
Early systems like JAP [1] and Mixminion [2] suffered
from latency concerns, which resulted in limited adoption.
As a result, newer low-latency systems have replaced them,
providing more efficient and secure communication.

In response to these concerns, the Onion router (Tor)
network [3] emerged as a potential solution to online privacy
and security concerns. It provides the means for users
to protect their online identities and communications by
encrypting and relaying network traffic through a series
of nodes, obscuring the relationship between the sender
and receiver [3], [4]. However, this anonymity also creates
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opportunities for malicious activities, making it a double-
edged sword. As a result, it is critical for cybersecurity and
law enforcement agencies to understand the vulnerabilities
within anonymous communication protocols. Our research
focuses on examining the limitations and potential weak-
nesses of the Tor network, which is one of the most widely
used anonymous communication systems.

Despite its robust protection, Tor is not completely imper-
vious to attacks [5], [6]. To identify Tor users, researchers
have employed various methods, such as browser-based [7],
timing [8], correlation [9], [10], watermarking [11], and
fingerprinting attacks [12], [13]. Of all these methods, the
correlation attack is considered the most effective [14]
because it meticulously scrutinizes the traffic that flows
through the Tor network. Through statistical analysis and
traffic monitoring, correlation attacks can establish links
between incoming and outgoing packets, ultimately revealing
the connection between sender and receiver within the Tor
network [15], [16], [17].
The Tor network is designed with a specific threat model in

mind, which acknowledges the potential risks of end-to-end
flow correlation attacks. Yet, more extensive security studies
on Tor, such as [16], treat correlation as a primary concern.
These studies often only address a fraction of the flows that
potential adversaries might observe. They outline techniques
to tweak Tor protocols, manipulate internet routing structures,
optimize network positioning, andmanage resources to either
enhance or restrict flow observation. Consequently, the extent
to which end-to-end flow correlation attacks pose a genuine
threat to the Tor network remains uncertain.

However, applying these attacks to Tor traffic presents a
challenge because the traffic between the client and the entry
relay differs considerably from the traffic between the exit
relay and the destination server. This is because the nature of
Tor traffic undergoes significant transformations at different
stages of its journey. When the user’s data travels from
their device to the entry relay, it is encrypted, mixed with
other user’s data, and broken into fixed-size cells. These
transformations create a complex and randomized traffic
pattern that is difficult to correlate directly with the original
user. On the other hand, when leaving leaves the exit
relay heading to the destination server, the data undergo
another set of transformations and encryption layers. These
multi-stage changes introducemultiplexing, buffering delays,
flow control mechanisms, etc., that obscure the relationship
between the client and the final destination. As a result,
attempting to link entry relay traffic with exit relay traffic
becomes intricate and challenging for attackers launching
correlation attacks on Tor traffic. For instance, Sun et al. [18]
discovered that using Spearman’s rank correlation [19] for a
small set of entry flows required almost 100MB of traffic per
flow for satisfactory performance. To overcome this obstacle,
Nasr et al. [9] developed DeepCorr, a Tor-specific correlation
method that leverages deep neural networks to precisely
classify pairs of flows as correlated or uncorrelated using
significantly less traffic.

Another limitation in the process of correlating Tor flows
from end-to-end is the pairwise comparison restriction of the
attack [20], [21], [22]. Such attacks analyze the correlation
between the packet times and sizes of a flow entering and
leaving the Tor network in order to determine whether they
belong to the same connection. To reveal the identities
of multiple flows, attacks must evaluate the correlation
between all conceivable incoming and outgoing connections.
Consequently, for N Tor connections, the attacks have
to conduct N 2 comparisons, raising a scalability issue.
This leads to an increase in computational time, especially
if the number of flows is huge (tens of thousands) at
a given moment, resulting in a poor Bayesian detection
rate (BDR). Note that the BDR is a crucial metric for
assessing the efficacy of detection systems or algorithms
using Bayesian statistics. It is imperative to evaluate the
probability of detection mechanisms identifying or detecting
specific patterns, which indicates a correlation between the
two ends.

To resolve these problems, Oh et al. [10] presented a
modified triplet approach to compare entry and exit flows.
Although their results were satisfactory, model real-world
implementation was minimal. For example, consider a
scenario where we need to correlate 10,000 network traffic
flows using the DeepCoFFEA method proposed in [10].
Each flow in the network involves crucial steps for analyzing
the correlation between packets. However, this process is
non-trivial. It requires significant computation, particularly
when dealing with hundreds and thousands of packets.
Even in a controlled lab setting, where the conditions are
ideal, the analysis might take several hours to complete
due to the complex calculations required. In real-world
applications, the network data is constantly changing and
demands almost real-time analysis. Due to the sheer amount
of computations involved, the algorithm becomes impractical
for such scenarios. Therefore, there is a critical need for
efficient and scalable correlation attacks based on deep
learning for real-time analysis. This way, the analysis can
be done in almost real-time without compromising the
accuracy of the results. Additionally, the training space’s
intricacy poses a challenge as it requires substantial memory
allocation. This necessitates the need for advanced computing
techniques to perform the analysis efficiently and accurately.

Network flow analysis involves a crucial step of analyzing
the correlation between packets. However, this process is not
a simple one. It requires a significant amount of computation,
particularly when dealing with multiple packets. Even in
a controlled lab setting, where the conditions are ideal,
the analysis might take several minutes to several hours to
complete due to the complex calculations required.

In real-world applications, the network data is constantly
changing and demands real-time or near-real-time analysis.
However, the time complexity of the algorithm becomes
impractical for such scenarios. Therefore, there is a critical
need for efficient and scalable correlation attacks based
on deep learning for real-time analysis. This way, the
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analysis can be done in real-time or near-real-time without
compromising the accuracy of the results.

However, the training space’s intricacy poses a challenge
as it requires a substantial allocation of memory. This
necessitates the need for advanced computing infrastructure
to perform the analysis efficiently and accurately.

In summary, slow timing performance and high memory
consumption are two primary reasons that limit the study of
correlation attacks on the Tor network to being carried out
only on small datasets. This seriously limits the possibility
of conducting such an experiment on a larger dataset to
emulate a practical, real-world situation. In this paper,
we address the above-mentioned challenges and significantly
improve the performance of deep learning-based correlation
attacks. The following are the major contributions of this
paper:

1) First, we propose a pioneering approach that har-
nesses the parallel processing capabilities of GPUs
to accelerate the correlation attack process. To the
best of our knowledge, this is also the first work to
explore utilization of a parallel architecture like the
GPU in correlation attacks. The proposed technique
efficiently computes correlation similarities between
flows by parallelizing calculations using GPU process-
ing power. Our proposedmethod surpasses the previous
conventional CPU implementation in [10], delivering
a 13.765× improvement in threshold definition and is
7× faster for the voting mechanism.

2) We develop a highly effective method for loading data,
which works in tandem with our GPU implementa-
tion, leading to a significant decrease in correlation
time. A greater length in the flows may improve
performance, although it also increases correlation
attack time. However, our technique can speed up
the processing of flows and improves performance by
10.86× compared to DeepCoFFEA [10].

3) Finally, our research delves into the significant issue
of memory consumption to train deep learning models
for correlation attacks. Traditional correlation attacks
demand huge amounts of random access memory
(RAM) [9], [10], thus preventing scalability and hin-
dering large dataset analysis. We propose a technique
to significantly reduce memory consumption by the
system while training the deep learning model. The
proposed technique achieves a noteworthy reduction
of 47.37% in RAM consumption for model training
in correlation attacks compared to [10]. This break-
through paves the way for analyzing more extensive
datasets and enhances the overall efficiency of the
attack process.

4) We havemade the source code for our proposedmethod
publicly available at https://github.com/yasirali0/fast _
correlation_attack_on_tor. We hope that this will allow
other researchers to easily reproduce our findings and
even inspire further studies and research on GPU
acceleration for deep learning approaches.

Our proposed attack involves a network-level adversary
that closely monitors Tor flows between clients and entry
guards, as well as exit flows between exit relays and
destination servers. This is achieved by adversaries running
their own relays, as demonstrated in Fig. 1. The adversaries
then extract packet timing and size information, which are
subsequently utilized to train two deep neural network (DNN)
models, A and B. Inputs for A and B are Tor flows and exit
flows, respectively. It is a crucial property of A and B that
if a correlation exists between Tor flow t and exit flow x,
then d(A(t), B(x)) ≥ τ for some correlation metric d and
threshold τ . On the other hand, if such a correlation is not
present, then d(A(t), B(x)) < τ .
The adversary then applies A and B to k consecutive

flow windows, resulting in extraction of feature embedding
vectors. The pairwise correlation matrix is subsequently
computed, and if two flows are deemed correlated by d in
at least k-l windows (for a small threshold), the adversary
concludes that the flows are indeed correlated. Otherwise,
the flows are considered to be uncorrelated. This approach
exponentially amplifies the difference between true positives
and false positives.

The remainder of this paper is organized as follows:
Section II provides background information and an overview
of related work in correlation attacks, highlighting the gaps
our research addresses. Section III presents the methodology
and technical details of our proposed approach. Section IV
presents the experimental setup and showcases the results
and performance improvements achieved. Finally, Section V
concludes the paper, highlighting the significance of our
contributions.

II. BACKGROUND
In this section, we discuss the GPU architecture and the
PyCUDA programming model. We also discuss previous
work related to correlation attacks and PyCUDA.

A. OVERVIEW OF GPU ARCHITECTURE AND PYCUDA
PROGRAMMING
A GPU is composed of several streaming multiprocessors
(SMs), each of which contains hundreds of CUDA cores. For
instance, the RTX3080 model boasts 128 cores. To simplify
GPU programming for general-purpose computing, NVIDIA
developed the CUDASoftware Development Kit. The CUDA
programming model organizes numerous threads into blocks,
and multiple blocks form a GPU grid, as illustrated in Fig. 2.
Each thread and block has its own indexing for parallel
computing. NVIDIA GPUs group 32 threads into one warp
to enable efficient instruction scheduling andmemory access.
It is important to note that warp divergence can occur when
threads within a warp execute different paths, resulting in a
significant performance penalty.

In this paper, we explore PyCUDA, which provides a
Pythonic interface to the CUDA driver API. With PyCUDA,
we can allocate and manage GPU memory, transfer data
between the CPU and GPU, and execute CUDA kernels from
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FIGURE 1. Implications of the threat model on Tor networks.

FIGURE 2. The GPU architecture represents the grid, blocks, warps, and
threads in CUDA.

Python. Additionally, PyCUDA offers tools for profiling and
debugging CUDA applications.

B. RELATED WORK
1) CORRELATION ATTACKS
Previous correlation techniques were used to link network
flows, each utilizing various traffic features such as packet
timings, packet sizes, and flow rates. However, these methods
have their advantages and disadvantages. For example,
Chothia and Guha [23] utilized mutual information metrics,
which have higher accuracy but require longer feature
vectors. On the other hand, Levine et al. [24] explored the
Pearson correlation for linearly correlating the packet timing
of Tor flows, but this method was limited to shorter flows.
Sun et al. [18] focused on passive correlation attacks on
Tor and presented the RAPTOR attack using Spearmen’s
correlation, which monitors both ends of a higher fraction
of Tor connections through asymmetric traffic analysis.

However, these statistical correlation metrics had solubility
issues and required long-flow data samples for acceptable
results.

DeepCorr by Nasr et al. [9] employs deep learning to
scrutinize Tor flows, yielding consistently accurate outcomes
across diverse scenarios compared to previous methods.
By using only 100 packets of flow data, it outperformed
RAPTOR [18] in terms of true positive rate (TPR) and
false positive rate (FPR), although it had a lower BDR.
However, DeepCorr has limitations, including computational
complexity and the requirement for retraining every three
to four weeks to adapt to current Tor network conditions.
Oh et al. [10] introduced DeepCoFFEA, which utilizes fea-
ture embedding networks and amplification. They employ a
triplet loss function to train the model, aiming to perform cor-
relation using cosine similarity. DeepCoFFEA successfully
tackles the issue of low BDRs encountered in prior research,
delivering 5% higher accuracy than DeepCorr. Nevertheless,
despite these advances, the scalability and time complexity
of DeepCoFFEA underlined a pressing gap in real-time
Tor traffic analysis. Tian et al. [25] developed a perturbation
method for correlating traffic. This approach underscores
the importance of implementing effective techniques for
managing the dynamic landscape of Tor traffic in a timely
and efficient manner. Despite notable advancements in
correlation techniques, there remain critical research gaps
that require attention. It is imperative to develop more
efficient, scalable, and data-independent methods that can
meet the ever-evolving and real-time demands of Tor traffic
analysis.

2) PARALLEL COMPUTATION USING A GPU AND PYCUDA
In the past, various data processing techniques that were
commonly used to correlate data fell short in terms of
meeting software performance standards. To address this
issue, the GPU framework has been utilized to optimize
correlation algorithms, resulting in substantial improvements
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in performance. For instance, Zhu et al. [26] used the parallel
computing power of the GPU to correlate data for radio
astronomy. Similarly, Lee [27] explored application of a
GPU to accelerate the sequence alignment by Fourier-space
cross-correlation. León-Sandoval and Barbosa-Santillán [28]
demonstrated the power of PyCUDA to elevate data pro-
cessing capabilities in machine learning for meticulous
analysis of numerical data. Furthermore, Dallas et al. [29]
emphasized the efficacy of GPU utilization in enhancing the
efficiency in statistical analysis of large data sets.

C. CORRELATION ATTACKS AND DEEPCOFFEA
The goal of a correlation attack on the Tor network is to link
a user’s entry and exit nodes, thereby de-anonymizing the
traffic. The attacker tries to identify patterns in network traffic
and timing that could expose the user’s identity or activity.
A successful attack would compromise a user’s privacy by
linking their online activities to their real-world identity.
The effectiveness of the attack is measured by the ability to
consistently and accurately associate a user’s entry and exit
nodes, thus breaking the anonymity provided by Tor’s layered
encryption and routing.

Oh et al. [10] DeepCoFFEA is a precise method for
conducting correlation attacks on the Tor network with high
accuracy. Utilizing deep learning capabilities, Oh et al. [10]
successfully improved the accuracy and efficiency of these
attacks, potentially facilitating the de-anonymization of Tor
users. To address the existing limitations, they suggested
the integration of two components, metric learning, and
amplification, forming the DeepCoFFEA technique. Metric
learning is employed to train a deep neural network that
can extract informative features from network traffic data.
This feature-extraction process enhances the discriminative
power of the attack, allowing a more accurate classifica-
tion of flows that belong to the same Tor circuit. The
authors presented detailed experimental results, demon-
strating that DeepCoFFEA achieved significantly higher
classification accuracy compared to traditional correlation
attacks [10].
In addition, Oh et al. [10] presented a method for enhanc-

ing the attack accuracy through an amplification mechanism.
This mechanism breaks down the flows into smaller,
partially overlapping sub-flows or windows. DeepCoFFEA
can evaluate each one separately and aggregate the results
using ensemble voting. This amplification mechanism has
proven effective in significantly reducing false positives,
improving the accuracy of attacks. The correlation attack
proposed in DeepCoFFEA is performed in five steps.

1) Data Loading: N Tor and exit flows are loaded
into memory. This involves retrieving and storing the
necessary flow data for further analysis.

2) Embedding Generation: The flow data are fed into
a CNN that transforms them into a lower-dimensional
representation that captures the essential characteristics
of the flows.

3) Cosine Similarity Calculation: This involves measur-
ing the cosine similarity between each Tor and exit
node flow embedding pair to quantify a correlation.

4) Threshold Definition: This step sets threshold values
to determine the correlation between Tor and exit flows.
These threshold values serve as the decision boundaries
to evaluate the success of an attack.

5) Voting Mechanism: The mechanism determines
whether a Tor flow is correlated with an exit flow.
This step involves aggregating the results from the
similarity calculations using the defined thresholds.
The voting-based approach decides on the correlation
between each Tor flow and its corresponding exit flow.

Experiments on real-world Tor traffic datasets showed that
DeepCoFFEA was highly effective. It outperformed state-
of-the-art correlation attacks in terms of both precision and
recall. The authors conducted a comprehensive evaluation of
the performance under various scenarios, including different
network conditions and traffic loads.

III. METHODOLOGY
In this section, we discuss our proposed techniques to
address the issues of slow timing performance and high
memory consumption in DeepCoFFEA. First, we present
our proposed parallelization technique using PyCUDA to
reduce threshold and voting time. Then, we discuss our
memory offload mechanism and our technique to streamline
the memory complexity issue.

A. PARALLELIZATION TECHNIQUES USING PYCUDA
Referring to previous discussions in Section II-C, a cor-
relation attack can be executed in five steps. Table 1
depicts the time required for different steps in Deep-
CoFFEA for different numbers of flows. The majority
of the time is spent on data loading, threshold finding,
and by the voting mechanism. Note that threshold defini-
tion and the voting mechanism are more time-consuming
than data loading, and they are typically hard to scale
up. Consider when the number of flows increases from
5,000 to 10,000; data-loading time increases linearly
(≈ 1.99×) but the time for threshold finding and using the
voting mechanism increases quadratically (≈ 4.36× and
≈ 4.04×). This section describes the proposed parallelization
technique to speed up threshold definition and the voting
mechanism, which can be implemented through PyCUDA.

1) THE PARALLELIZATION TECHNIQUE FOR THRESHOLDS
The process of threshold finding is a critical component when
executing a correlation attack inDeepCoFFEA.However, this
process can be quite time-consuming because it involves two
distinct steps: sorting lists and performing computations to
determine the optimal cut-point. For sorting, implementation
of the bubble sort technique on a GPU can lead to a decline
in performance due to excessive irregular global memory
accesses. This limitation can hamper the efficiency of
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TABLE 1. Correlation times (in seconds) for different steps in DeepCoFFEA [10].

Algorithm 1 Determining the Threshold of Flows on a GPU
Input: Input similarity list Slist , Threshold similarity list Tsimi,
Tor Entry Flows TEt , Tor Exit Flows TEx
Output: Single Output list outs, Multiple Output list outm

// Total number of threads required
1: threads_tot = 1000 ▷ For 5K and 10K Flows
2: threads_tot = 698 ▷ For 2094 Flows

// CPU Part ▷ Sorting the Input Similarity list
3: Ssorted =sort.Slist

// GPU Part
4: Threshold_GPU((Thres_out), (Slist ), (Ssorted ),

(Thres_value), block=(threads_tot, 1, 1), grid=(1, 1)) ▷

Alg.2

GPU-based sorting operations and may require consideration
of alternative approaches. To tackle this issue, the CPU
handles the first part (list sorting), while the second part,
which possesses parallelism used to calculate the cut-point,
is executed by the GPU. Algorithm 1 outlines the process of
parallel threshold finding.

The algorithm determines the number of threads required
for various flows, seen in lines 1 and 2 of Algorithm 1. Once
the number of threads is determined, the list is sorted on the
CPU in line 3. Finally, the kernel is launched on the GPU in
line 4 to execute the cut-point calculation and to determine
the threshold of flows based on the threshold value provided.
Implementation of this technique allows for an efficient and
more accurate finding of thresholds for a correlation attack.

Algorithm 2 (Threshold_GPU) is a post-processing step
that assesses the similarities of Tor network flows based
on a specified threshold value. The algorithm enhances the
efficiency of flow analysis by exploiting GPU parallelism.
It operates on input similarity list Slist (comprising N × N
entries) and sorted similarity list Ssorted . Specified threshold
value Tv is provided as input to govern flow similarity
determination.

When launching a parallel execution with N threads,
each thread is assigned a unique ID (tid). The algorithm
calculates the number of lines to be processed concurrently,
denoted num_lines. The workload is divided evenly among
the threads, allowing for efficient parallel computation. The
subsequent loop iterates over a range of indices, starting
from 0 up to num_lines. Each iteration of the loop calculates
cut_point , which is crucial in identifying a separation point
in Ssorted . The computation of this cut point is based on
threshold value, Tv. It is calculated as a fraction of the size

Algorithm 2 Threshold_GPU: Post-Processing of the
Threshold to Vote on Tor Flow Similarity
Input: N × N -length input similarity list Slist and input
similarity sorted list Ssorted and Threshold Value Tv
Output: N × N -length single output list Thres_out
1: tid = thread ID

// Launch N threads in parallel
2: num_lines = num_flowstot_threads
3: for i from 0 to num_lines do
4: cut_point = (sizeof(Slist ) − 1)× (Tv100)
5: Thres_out [tid i×1000] = Ssorted [cut_point[tid] tid×

5000 i× 5000000]
6: end for

of Slist ((sizeof (Slist )−1)× (Tv100)) and establishes a pivotal
index within the sorted list that acts as a reference point for
subsequent analysis.

In the next step, Algorithm 2 extracts relevant information
from Ssorted using cut_point . The values are assigned to a
specific location on Thres_out (the output list) based on
thread ID, loop index, and offset constants. Each thread
contributes to the final output list in a coordinated manner.
In essence, Algorithm 2 utilizes parallelism to efficiently
compute flow similarity based on the predefined threshold.
The algorithm distributes tasks across threads and uses
an ingenious indexing strategy to process large volumes
of data on the GPU. This technique holds great promise
for accelerating flow analysis in Tor networks, advancing
network security and performance optimization.

2) PARALLELIZATION TECHNIQUE FOR THE VOTING
MECHANISM
Algorithm 3 outlines the parallel voting mechanism. It gen-
erates a single list indicating correlated flows, accurately
identifying all correlations. Lines 1 and 2 show the number
of threads required for different flow sizes, and then line 3
launches the GPU kernel for the voting mechanism to
correlate the flows. Finally, the results are stored in outs,
which can be used for final analysis.

Algorithm 4, responsible for determining the output list
(denoted outs), correlates the flows. Line 2 calculates the
necessary number of iterations for the loop, and line 4
transfers elements from ssimi to t . The appropriate index for
the output is then determined in line 5. If Ssimi is greater
than or equal to t , the corresponding line is executed, and the
output is stored in outs according to the calculated index.
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Algorithm 3 Voting in Parallel on the GPU
Input: Input similarity list Slist , Threshold similarity list Tsimi
Output: Single Output list outs

// Total number of threads required
1: threads_tot = 1000 ▷ For 5K and 10K Flows
2: threads_tot = 698 ▷ For 2094 Flows

// GPU Part
3: Voting_GPU((outs), (Tsimi), (Slist ),

block=(threads_tot, 1, 1), grid=(1, 1)) ▷ Alg.4

Algorithm 4 Voting_GPU: Post-Processing of the Threshold
to Vote for Tor Flow Similarity
Input: N × N -length input similarity list Slist and N -length
similarity threshold Tsimi
Output: N × N -length single output list outs
1: tid = thread ID

// Launch N threads in parallel
2: num_lines = num_flowstot_threads
3: for i from 0 to num_lines do
4: t[tid] = Ssimi[tid i× tot_threads]
5: con_num = i × num_lines tid × num_lines ×

tot_threads
6: for j from 0 to num_lines do
7: if Ssimi[i× tid j× tid] ≥ t[tid] then
8: outs[con_num = j × tid] = outs[con_num =

j× tid] 1
9: else

10: outs[con_num = j × tid] = outs[con_num =

j× tid]
11: end if
12: end for
13: end for

B. DATA-LOADING MECHANISM
In this section, we first explain why efficient data loading
is important, and we then explain our data-loading mecha-
nism in comparison with DeepCoFFEA’s [10] data-loading
mechanism. In the context of correlation attacks on the
Tor network, an efficient data-loading mechanism is crucial
to handling the substantial volume of network traffic. The
data-loading process plays a pivotal role in preparing flows
for subsequent analysis and correlation. Here, we outline our
innovative approach to efficiently load Tor and exit flows,
further reducing the time complexity of the correlation attack
as a whole.

Before explaining our strategy, we briefly explain the stor-
age format and data-loading mechanism of DeepCoFFEA.
The storage of Tor and exit flow basically means that the
necessary information that defines these flows, such as packet
timing, packet size, directions of packets, and so on, are
stored in a format suitable to executing the correlation attack.
In DeepCoFFEA, the Tor and exit flows are stored as an
associative array or dictionary. The dictionary data structure
allows the data to be looked up through their associated keys,

just like a hash table. The Tor flows have their own keys,
and the same is true for exit flows. At data-loading time,
DeepCoFFEA redundantly uses the lookup keys to load the
corresponding windows of Tor and exit flows.

Although the data-loading mechanism used in
DeepCoFFEA is acceptable, there is a basic redundancy in
their method. For each window, they need to provide the
key, which then points to the stored flow, which is then
passed to the deep learning model. This lookup method adds
extra delay, which is very important to address. Therefore,
we propose using a new data-loadingmechanism in which the
lookup keys or the pointers for Tor and exit flows are loaded
into memory only once, as illustrated in Fig. 3. They are then
used in the whole data-loading process to avoid extra lookup
time. By employing this strategy, a significant amount of time
(≈ 11×) is reduced compared to DeepCoFFEA as shown in
Table 3.

C. STREAMLINING MEMORY CONSUMPTION
Here we explain our strategy to reduce memory consumption
when training the deep learning model used later for
correlating the flows.

The main strategies to reduce memory consumption during
the training stage are dynamic memory allocation and
garbage collection. Dynamic memory allocation is employed
to allocate resources based on the current needs of the
training process, and the garbage collection is used at the
end of a training iteration to deallocate unnecessary memory,
freeing up space for the next training iteration. These adaptive
approaches ensure that memory is allocated only when
necessary, preventing unnecessary memory consumption and
allowing the system to use more data to train a more effective
correlationmodel. Thememory consumption of our proposed
method is 70GB, which is 47.37% less than the state-of-the-
art DeepCoFFEA [10], as shown in Table 2.

While dynamic memory allocation and garbage collection
are indeed well-established in mainstream training frame-
works, we would like to emphasize a crucial distinction in our
approach. In typical training frameworks, garbage collection
usually operates when the Python kernel stops execution or
in this case, when the whole training process is completed.
However, we take a proactive stance by analyzing the
training process, identifying memory-consuming variables,
deallocating their memory promptly by deleting references
as soon as they are no longer needed and invoking garbage
collection to free up thatmemory. This proactivemanagement
ensures that memory is freed up in amore granular and imme-
diate fashion, contributing to the efficient use of resources
throughout the training iterations. This meticulous analysis
and manual invocation of garbage collection allow the
memory space to be freed up promptly, optimizing memory
consumption in real-time during the training process. This
approach enhances the scalability and practicality of our
correlation attack model, where large memory consumption
can present obstacles for researchers and lead to scalability
issues.
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FIGURE 3. Data-loading mechanism. W represents the windows of flow.

TABLE 2. Training space complexity comparison.

In summary, while dynamic memory allocation and
garbage collection are fundamental techniques, introducing
a proactive and targeted approach to them allows the
reduction of memory consumption in a more immediate and
resource-efficient manner than the traditional frameworks.

IV. RESULTS
In this section, we delve into research findings and
experimental results. Experiments were carried out on
a machine running Ubuntu operating system equipped
with a 3.20GHz Intel Xeon Silver 4208 processor with
128GB of RAM. The performance was evaluated using
an NVIDIA Ampere A10 GPU. The training and test-
ing datasets used in the computational experiments were
obtained from DeepCoFFEA [10] and can be accessed at
https://github.com/traffic-analysis/deepcoffea. The training
dataset comprises 11 windows-separated Tor and exit traffic
flows, with inter-packet delays and packet sizes being the
two main features. For computational testing purposes, the
10k testing data was also utilized, which was collected by
DeepCoFFEA [10].

A. CORRELATION TIME
To improve the correlation attack time, we worked on
three steps: data loading, threshold finding, and voting
time. To demonstrate the advantages of our proposed
methods, we conducted experiments with varying numbers

of flows and compared the performance of the two methods.
Table 3 and Fig. 4 depicts the improvement in correlation
time from using our proposed methods compared to the
DeepCoFFEA [10] (DCF) method. Our proposed method
showed significant improvements. For example, when load-
ing data for 2094 flows, the DCFmethod took 24.62 seconds,
whereas our method only took 2.24 seconds (10.99× faster).
As the number of flows increased, the advantages of our
method becamemore apparent. For 10,000 flows, our method
outperformed the DCF, taking only 10.71 seconds compared
to 116.32 seconds.

The experimental evaluation of the proposed method has
demonstrated its superior performance in both threshold
finding and voting time when compared to the DCF method.
When processing 2094 flows, it took merely 1.50 seconds
to complete the threshold process and only 2.42 seconds for
voting (improvements of 10.66× and 7.18×). In contrast,
the DCF method required significant time, taking 15.99 and
17.38 seconds for threshold finding and voting, respectively.

Furthermore, the proposed method continues to exhibit
its dominance even when tested with a larger number of
flows, namely 10,000. In this case, it delivered 13.77× and
7.0× faster results for threshold finding and voting time,
respectively, completing the threshold finding process in only
31.03 seconds and the voting process in 56.63 seconds. These
results demonstrate that the proposed method is faster and
more efficient than the DCF method.

B. COMPARISON
The efficiency of the DCF method and the proposed method
are comprehensively compared in Table 4, taking into
account all the time components involved in the process.
For a fair comparison, we ran DCF method on our system
to record the time for all components involved in the
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FIGURE 4. Comparision of correlation times for data loading, threshold finding, and voting mechanism with DCF [10] for different flows.

TABLE 3. Correlation times (in seconds) for data loading, threshold
finding, and voting mechanism.

process. The code is available from the GitHub reposi-
tory https://github.com/traffic-analysis/deepcoffea. The table
clearly indicates that the proposed method consistently
outperformed the DCF method in terms of total time,
regardless of the flow quantity. The proposed method
achieved these time savings by significantly reducing data
loading, threshold finding, and voting time. Although there
may be minor increases in embedding time and cosine
similarity calculations, these differences are far outweighed
by substantial improvements in other areas.

Our proposed method yielded significant improvements
in correlation time. In particular, we observed 3.83× faster
processing for 2094 flows, with a processing time of
only 18.29 seconds compared to 70.07 seconds under the
DCF method. Consequently, our method facilitates nearly
real-time performance. This attribute renders our method
highly advantageous in time-sensitive scenarios where swift
analysis of user traffic patterns and identification of potential
vulnerabilities are of paramount importance.

Furthermore, our method demonstrated processing speeds
5.41× and 6.34× faster for 5000 and 7500 flows, respec-
tively. Notably, our proposed method achieved an impressive
7.12× faster correlation time for 10000 flows (correlating
the flows in just 137.19 seconds), whereas DCF took
976.99 seconds. We observed that performance gain was
more significant if the number of flows increased. This
shows that our work can be suitable for analyzing a
large-scale correlation attack with a large number of flows,
which was not possible for DCF. This advancement in
efficiency and scalability highlights the practical utility of our
GPU-accelerated deep learning-based approach in real-world
scenarios.

In addition to correlation time, reliability is another
important aspect of correlation attack. Reliability is measured
by TPR and FPR as defined in the DCF framework. The
performance of the correlation attack depends on the deep
learningmodel used to correlate Tor and exit flows. Currently,
DCF has achieved the best performance with 93% TPR
at 10−4% FPR. Our methodology employs the same deep
learning model used by DCF, while significantly reducing the
correlation time while maintaining the same level of TPR and
FPR.

C. DISCUSSION AND LIMITATION
Significant progress has been achieved in the realm of
GPU-based correlation attacks. Our approach has signifi-
cantly improved performance and simultaneously decreased
resource consumption. By leveraging the parallel processing
abilities of GPUs, we have expedited the correlation attack
process. This is discernible from noteworthy enhancements
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TABLE 4. Comparison of the proposed correlation attack with DCF [10] for different flows.

compared to traditional CPU implementations, as demon-
strated in the research presented in DeepCoFFEA. However,
our work only examines up to 10,000 flows, but it remains
unclear if it can efficiently manage more extensive datasets or
complex correlation tasks on a scale of ten or even a hundred
times larger. To handle such large datasets, more aggressive
techniques have to be developed to reduce memory consump-
tion, training time, and correlation complexity. This is an
interesting research direction that we would like to pursue in
the near future.

To ensure the reproducibility of our study, it is essential
to conduct various environmental tests and allow other
researchers to test our methodology under different con-
ditions. This may involve testing under different network
conditions, GPU architectures, or datasets. By publicly shar-
ing our codebase and tools, other researchers can replicate
our results, verify our claims, and potentially enhance our
methodologies.

V. CONCLUSION
The paper presented a comprehensive study on enhancing
the efficiency and effectiveness of correlation attacks on the
Tor network. By addressing the critical challenges of slow
performance, large memory consumption, and resource limi-
tations, we introduced innovative solutions that significantly
advance the field of online privacy and anonymity analysis.
Our proposed approaches include the GPU-based correlation
strategy and efficient data-loading technique, significantly
reducing the time complexity associated with correlation
attacks compared to existing methodologies. However, the
paper does not solely focus on performance improvements.
It also acknowledges the constraints posed by resource
limitations, particularly memory consumption during the
training phase.

From a practical perspective, our novel strategies present
a pathway for drastically improved efficiency in conducting
correlation attacks on the Tor network. Users and stake-
holders in the digital realm can significantly benefit from
our proposed methodologies because the correlation attacks
that are more complex can now be analyzed in a much
shorter time. The integration of GPU technology ensures
faster processing times, while optimized data handling
and resource-efficient solutions ensure that the correlation
attacks maintain high accuracy even with fewer resources.
These practical advantages cannot be understated, as they

potentially transform how correlation attacks are executed,
thus fortifying the very privacy safeguards that users
trust.

In essence, this work represents a substantial leap forward
in the domain of online privacy and security. By utilizing
advanced GPU technology, optimized data handling strate-
gies, and resource-efficient approaches, the paper brings
about a new era in correlation attack mitigation within the Tor
network. With enhanced accuracy, faster processing times,
and reduced resource requirements, the paper’s contributions
are poised to significantly bolster the defense against
correlation attacks and fortify privacy safeguards that users
rely upon in the digital realm. Although our work improved
the correlation attacks significantly, its performance is limited
to a medium-scale (up to 10,000 flows) network only.When a
larger and more sophisticated dataset is used, new techniques
must be developed to reduce memory consumption, training
time, and correlation performance.

For future research directions, there is immense potential
for further optimizing our method. As deep learning models
rapidly evolve, new techniques can refine our approach,
enhancing its efficiency and broadening its applicability.
Additionally, exploring the methodology’s relevance to other
privacy networks beyond Tor presents a promising avenue
worth investigating. Lastly, while our research addressed
memory constraints during training, developing even more
resource-efficient strategies, particularly in regard to compu-
tational power and storage, is worth pursuing.

It is worth considering how GPU-accelerated techniques
can be fine-tuned for greater efficiency. Furthermore, as the
digital landscape continues to evolve, how will correlation
attacks adapt, and how must our defenses evolve in response
to it? These pivotal issues present noteworthy research
challenges for future studies in this domain.
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