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ABSTRACT This work addresses the trajectory tracking problem for a non-holonomic differential drive
mobile robot with a constant time delay h at the input signal. To compensate for the adverse effects of the
input time delay on the vehicle, a non-linear prediction-observer scheme based on a sub-prediction strategy
that asymptotically estimates the future values of the state, h units of time ahead was introduced, and, thanks
to the characteristics of the system, a condition which depends only on the gains of the predictor-observer is
obtained for the convergence of the predicted states. Non-linear feedback based on the estimated future state
is proposed to tackle the trajectory tracking problem of a mobile robot. The closed-loop system describing
the prediction strategy and trajectory tracking solution was formally analyzed, showing the asymptotic
convergence of the prediction and tracking errors to the origin. Numerical and real-time experiments were
performed to evaluate the prediction-based control scheme, which show adequate performance.

INDEX TERMS Non-holonomic mobile robot, non-linear prediction, time delays, trajectory tracking.

I. INTRODUCTION
Since the eighteenth century, delays have been essentials in
studying dynamical systems because of the issues they raise.
The study of input time delays for linear or non-linear systems
is an important area of interest due to the influence that
time delays have on the stability of the close-loop system
when problems as regulation or trajectory tracking are faced,
since the closed loop system results on a retarded differential
equation. When the system, is not destabilized by the effects
of the time delay, it suffers for a large degradation of the
performance of the closed loop system [1], [2].

In particular, input time delays, which are often present
in networked or teleoperated control systems, are well
known to undermine the execution of feedback control,
and significant problems are observed in data transmission
through a network, such as variable sampling intervals or
communication constraints of protocol scheduling, among
others. These issues can be assessed using a time delay
approach in networked control system [3].
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The complexity of the time delays has been addressed
in several studies. For example, in a linear context, the
celebrated Smith predictor [4] proposes a solution for open-
loop linear stable systems that presents a strong restriction
on the class of systems that can be applied. However, some
modifications to Smith’s work have overcome limitations
such as large time delays and unstable systems [5], [6], [7].

Other approaches to control input delay-systems have
also been explored. For example, [8] introduced the idea
of finite spectrum assignment for input time delay systems,
and further works improved this result by considering other
types of delays and analyzing robustness [8], [9], [10], [11].
Meanwhile, [12] and [13] proposed a state-observer approach
to estimate the future states of a system using the ideas
of [14]. Finally, to address larger delays, an attractive solution
inspired by the state observer approach is the introduction of
a sub-predictor or chained-observer scheme that divides the
time delay [15], [16].

Non-linear time delay systems present a new and generally
difficult challenge. Some authors have proposed approaches
based on non-continuous controllers or high-gain predictors
with feedback controllers [17], [18]. In addition, a truncated
predictor was presented in [19] to estimate a system’s future
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state under the Lipschitz condition assumption. Also, the
original linear sub-predictor approach was extended to a
non-linear approach; see, for instance, [20], [21]. In [22],
a prediction scheme that estimates the values of unknown
delayed states from a cascade system was proposed.

Several studies on mobile robotics have been reported
the literature. One of the most important approaches is
related to prediction-based controls; an interesting survey
was presented in [23]. For instance, considering delayed
measurements, [24], [25] provides a solution for the kine-
matic model, and [26] uses a simplified dynamic model.
In addition, using prediction-based solutions, [27] and [28]
proposed a solution to the trajectory-tracking problem by
incorporating fuzzy techniques with a parallel distributed
strategy. The Smith predictor, together with sliding mode
control, was considered in [29] as a strategy to compensate
for a time delay on a differential-drive mobile robot, while
in [30], an integral-based prediction was considered for the
same purpose. A comparison of several control techniques
for trajectory tracking was presented in [31] for a modified
kinematic model of a mobile robot.

The dynamic model of a mobile robot with input or output
time delays has also been studied. The tracking problem
for small time-varying input delays was addressed in [32],
whereas the consensus problem for time-varying delays was
considered in [33] and [34]. A discrete-time approach has also
been reviewed for the control of input-delay mobile robots,
see for instance [35] for the tracking problem and [36] for a
synchronization strategy under input time delays.

The time delay problem in teleoperated mobile robots has
been a popular case study because of its various applications,
such as exploration, rescue, and surveillance. Consequently,
several authors have proposed GPI observers and state
prediction schemes for mobile robots [24], [37], [38].
The present work is devoted to trajectory tracking problem

using a non-holonomic mobile robot subject to an input time
delay. To overcome the adverse delay effects on performance
and stability of the closed-loop system, a generalization of
the linear sequential predictor presented in [16] to the non-
linear case was proposed, providing an alternative to the
sub-predictor in [15]. The obtained future estimated state
was used to design a non-linear feedback law that solves the
aforementioned tracking problem. The main results of the
work can be summarized as follows. a) It is presented a sub-
predictor observer that asymptotically converge to the future
value of the state, at time t + h independent of the trajectory
performed by the robot, subject to bounded linear and angular
velocities; b) Based on a Lyapunov-Krasovskii approach, it is
presented a sufficient condition for the convergence of the
prediction state that depends on the design parameters of
the observer stages and the involved original time delay h;
c) The convergence of the trajectory tracking errors, bymeans
of a feedback based on the estimated future states is formally
proof for the closed loop system showing that theoretically,

the proposed solution can handle any time delay by
increasing the number of sub-predictors.

The present strategy is related to the problem considered
in [27] or more recently in [28] where a parallel distributed
compensation PDC is applied to a fuzzy model of a kinematic
mobile robot. These two proposals have the disadvantage
of local predictor convergence and the characteristic that
stability results are based on linear matrix inequalities.
The solution proposed in [25] considers as a disadvantage,
a persistent excitation condition for the prediction strategy
and an upper bound for the maximum value of the input
time delay. In contrast to the restrictions founded in [25],
[27], and [28], in this work it is provided a predictor-observer
that globally asymptotically converges to the actual future
state independently of the evolution of the robot where the
limitation on the maximum time delay can be overcome
by considering additional non-linear sub-predictors. Further-
more, it should be pointed out that prediction strategies based
on the integral predictor of [39] or [40] produce approximate
future values due to implementation problems [41], which
motivates the use of approximate solutions of truncated
predictors [42].
The contributions of this study are as follows: Section II

develops the kinematic model of the delayed non-holonomic
robot used in this study. Section III presents the non-
linear sub-prediction scheme together with the corresponding
prediction error stability analysis. Section IV introduces the
prediction-based feedback control solution to the trajectory
tracking problem and stability analysis of the closed-
loop system. Finally, real-time experiments and numerical
simulation results are presented in Section V, and concluding
remarks are provided in Section VI.

II. KINEMATIC MODEL OF A (2,0) TYPE MOBILE ROBOT
Following [43] and [44], the kinematic model of a differential
drive mobile robot shown in Figure 1 is represented as,

ẋ(t) = v(t) cos(θ(t))

ẏ(t) = v(t) sin(θ(t))

θ̇ (t) = ω(t) (1)

where ξ (t) = [x(t), y(t), θ(t)]T denotes the state of the robot.
Point P = (x, y) in Figure 1 represents the Cartesian position
of the wheel axis center, θ (t) is the orientation of the vehicle
measured from the X axis, and u(t) = [v(t), ω(t)]T are
the control inputs corresponding to the linear and angular
velocities, respectively.

Kinematic model (1) is obtained based on the assumption
that the robot has a rigid body that moves on a flat surface
and that the vertical axis of the wheels is perpendicular
to the ground. Under these conditions, the following non-
holonomic constraint is satisfied [45], [46],

ẋ(t) sin(θ(t)) − ẏ(t) cos(θ(t)) = 0. (2)
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FIGURE 1. Differential drive mobile robot.

FIGURE 2. Mobile robot teleoperation scheme.

A. TIME DELAY IN THE CONTROL INPUTS
As mentioned previously, one of the problems associated
with the teleoperation of robots is the time delay that can
be produced by the environment or heavy data processing.
A scheme for a remote-controlled mobile robot is presented
in Figure 2. Here, h1 > 0 is the time it takes the data to move
from the robot sensors to the computer, whereas h2 > 0 is
the time the control input u(t) is computed and injected into
the robot. It should be noted that h1 can be considered as a
time delay at the output of the robot, whereas delay h2 acts at
the input of the vehicle; therefore, for the design purpose of
a feedback law, a total time delay h = h1 + h2 in the input-
output path is assumed.

Thus, according to Figure 2, the system takes the input
delay form,

ẋ(t) = v(t − h) cos(θ(t))

ẏ(t) = v(t − h) sin(θ(t))

θ̇ (t) = ω(t − h). (3)

III. PREDICTION SCHEME
To design a prediction strategy to solve the trajectory tracking
problem, instead of considering kinematicmodel (3), an alter-
native representation ξr (t) = [xr (t) yr (t) θr (t)] is obtained

using the following globally invertible transformation, xr (t)yr (t)
θr (t)

 =

 cos (θ(t)) sin (θ (t)) 0
− sin (θ(t)) cos (θ (t)) 0

0 0 1

 x(t)y(t)
θ (t)

 (4)

that produces the body frame representation along the Xr−Yr
frame,

ẋr (t) = v(t − h) + ω(t − h)yr (t)

ẏr (t) = −ω(t − h)xr (t)

θ̇r (t) = ω(t − h). (5)

A. ADVANCED SYSTEM
The design of a feedback law that solves problems such as
regulation or trajectory tracking requires the estimation of
the future values of the states ξr (t) of the mobile robot (5)
to compensate for the time delay.

To obtain the future values, h units of time in the future,
of the state ξr (t) of system (5), a non-linear prediction
strategy based on well-known linear sub-predictors [15], [16]
is developed.
Assumption 1: For a fixed time delay h in system (5), there

exists an integer n ∈ N such that,

h̄ =
h
n
, (6)

where h̄ is a small enough time delay.
With condition (6), future values of ξr (t) may be defined as,

wj1(t) = xr (t + jh̄) = w(j−1)1(t + h̄)

wj2(t) = yr (t + jh̄) = w(j−1)2(t + h̄)

wj3(t) = θr (t + jh̄) = w(j−1)3(t + h̄) (7)

for j = 1, 2, . . . , n.
From (7), the advanced systems are obtained for

j = 1, 2, . . . , n, as,

ẇj1(t) = v(t − (n− j)h̄) + ω(t − (n− j)h̄)wj2(t)

ẇj2(t) = −ω(t − (n− j)h̄)wj1(t)

ẇj3(t) = ω(t − (n− j)h̄). (8)

When j = n, a delay-free system that evolves h seconds
ahead is obtained

ẇn1(t) = v(t) + ω(t)wn2(t)

ẇn2(t) = −ω(t)wn1(t)

ẇn3(t) = ω(t). (9)

B. SUB-PREDICTORS CHAIN
A Luenberger-type predictor-observer, based on advanced
dynamics (8)-(9), is introduced below. The observer for
system (9) corresponds to the predictor of system (5). For
j = 1, 2, . . . , n, it takes the form

˙̂wj1(t) = v(t − (n− j)h̄) + ω(t − (n− j)h̄)ŵj2(t)

+ λj1ewj1 (t − h̄)
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˙̂wj2(t) = −ω(t − (n− j)h̄)ŵj1(t) + λj2ewj2 (t − h̄)
˙̂wj3(t) = ω(t − (n− j)h̄) + λj3ewj3 (t − h̄) (10)

where λj1, λj2, λj3 ∈ R+⧹0 and the injection errors ewji are
defined for j = 1 in the form,

ew11 (t) = xr (t + h̄) − ŵ11(t) = w11(t) − ŵ11(t)

ew12 (t) = yr (t + h̄) − ŵ12(t) = w12(t) − ŵ12(t)

ew13 (t) = θr (t + h̄) − ŵ13(t) = w13(t) − ŵ13(t)

(11)

and for j = 2, . . . , n as,

ewj1 (t) = ŵ(j−1)1(t + h̄) − ŵj1(t)

ewj2 (t) = ŵ(j−1)2(t + h̄) − ŵj2(t)

ewj3 (t) = ŵ(j−1)3(t + h̄) − ŵj3(t). (12)

Remark 1: Note that the injection errors for j = 1 defined
in (11) have the property that ew1i (t − h) is defined in time
t, allowing the injection of these signals to the predictor-
observer, referring to the actual position of the vehicle.

C. PREDICTION ERRORS
Unlike the injection errors, the prediction errors w̃j(t) =

[w̃j1(t) w̃j2(t) w̃j3(t)]T for j = 1, 2, . . . , n are defined as,

w̃j(t) = wj(t) − ŵj(t). (13)

Lemma 1: The prediction errors w̃j converge to zero if and
only if the injection errors ewk converge to zero.

Proof:Given the definition of the injection errors
(11)-(12),

ŵ1(t) = ξ (t + h̄) − ew1 (t)

ŵ2(t) = ŵ1(t + h̄) − ew2 (t) = ξ (t + 2h̄) − ew1 (t + h̄)

− ew2 (t)

yielding,

ŵj(t) = ξ (t + jh̄) −

j∑
k=1

ewk (t + (j− k)h̄)

= wj(t) −

j∑
k=1

ewk (t + (j− k)h̄). (14)

Then, the prediction errors can be rewritten as,

w̃j(t) = wj(t) + ewj (t) − ŵj−1(t + h̄)

= wj(t) + ewj (t) + ewj−1 (t + h̄) − ŵj−2(t + 2h̄)

this is,

w̃j(t) =

j∑
k=1

ewk (t + (j− k)h̄). (15)

Because the prediction error w̃j(t) is the sum of the
injection errors ewk (t), the convergence of ewk (t) implies
convergence of the prediction error. ■

D. INJECTION ERRORS CONVERGENCE
As mentioned in Subsection III-C, the convergence of the
injection errors ewji , is directly related to the stability and
efficiency of the prediction errors w̃n. The time derivative of
the injection errors is given by

ėwj1 (t) = ω(t − (n− j)h̄)ewj2 (t) + λ(j−1)1ew(j−1)1(t)

− λj1ewj1 (t − h̄)

ėwj2 (t) = −ω(t − (n− j)h̄)ewj1(t) + λ(j−1)2ew(j−1)2(t)

− λj2ewj2 (t − h̄)

ėwj3 (t) = λ(j−1)3ew(j−1)3(t) − λj3ewj3 (t − h̄) (16)

where, for j = 1, it is considered λ01 = λ02 = λ03 = 0.
The definition ēwj(t),

ēwj(t) =

[
ewj1(t)
ewj2(t)

]
allows rewriting system (16) as,

˙̄ewj(t) = Aj(t)ēwj (t) + 3jēwj (t − h̄) − 3j−1ēwj−1 (t) (17a)

ėwj3(t) = −λj3ewj3 (t − h̄) + λ(j−1)3ew(j−1)3(t). (17b)

where,

Aj(t) =

[
0 ω(t − (n− j)h̄

−ω(t − (n− j)h̄) 0

]
3j =

[
−λj1 0
0 −λj2

]
.

The convergence of the injection errors (17) is proven
in two steps. First, the convergence of subsystem (17a) is
addressed, followed by the convergence of subsystem (17b).
Before providing the stability conditions of subsystem

(17a), we introduce the following auxiliary result.
Lemma 2: For subsystem (17a), given the positive real

numbers α and η, there exists a symmetric matrix Pj(t) such
that,

Ṗj(t) + ATj Pj(t) + Pj(t)Aj + 2αjPj(t) + ηjI = 0. (18)
Proof: Defining the symmetric matrix Pj(t) as,

Pj(t) =

[
pj1(t) pj2(t)
pj2(t) pj3(t)

]
equation (18) rewrites as,

ṗj1(t) = A∗
j (t)pj1(t) + η̄j (19)

where ω∗
j (t) = ω(t − (n− j)h̄) and,

pj1(t) =

 pj1(t)pj2(t)
pj3(t)

 η̄j = −

 ηj
0
ηj


A∗
j (t) =

 −2αj 2ω∗
j (t) 0

−ω∗
j (t) −2αj ω∗

j (t)
0 −2ω∗

j (t) −2αj

 .
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Using the transformation matrix

Tj =


1
2

0
1
2

1
2

0 −
1
2

0 1 0

 (20)

to get the real Jordan form J (t) = TjA∗
j (t)T

−1
j of A∗(t), the

change of coordinates

zj(t) = Tjpj1(t), (21)

leads to the system, żj1(t)żj2(t)
żj3(t)

 =

−2αj 0 0
0 −2αj 2ω∗

j (t)
0 −2ω∗

j (t) −2αj

 zj1(t)zj2(t)
zj3(t)


+

−ηj
0
0

 . (22)

with solution,

zj1(t) = zj1(0)e−2αjt −
ηj

2αj
(1 − e−2αjt )

zj2(t) = zj2(0)e−2αjt cos (2ω∗
j (t))

+ zj3(0)e−2αjt sin (2ω∗
j (t))

zj3(t) = −zj2(0)e−2αjt sin (2ω∗
j (t))

+ zj3(0)e−2αjt cos (2ω∗
j (t)).

The inverse transformation pj1(t) = T−1
j zj(t) is

Pj(t) =

[
zj1 + zj2 zj3
zj3 zj1 − zj2

]
.

■
It is important to note that the error dynamics in (17)

depend only on input ω∗
j (t). As a consequence, we present

the following theorem inspired by [47]:
Theorem 1: A system of the form,

˙̄ewj (t) = Aj(t)ēwj (t) + 3jēwj (t − h̄) (23a)

ėwj3 (t) = −λj3ewj3(t − h̄), t ≥ 0 (23b)

where h̄ > 0, λj3 > 0 and λj > 0, is globally asymptotically
stable if there exist positive real numbers α, β, ϵ, ηj, and a
symmetric matrix Pj(t) that satisfy the Lyapunov equation
(18) and if the following inequalities hold

h̄ < min

{
1
α
ln

(√
ϵ(ηj − ϵ)

λjp̄

)
,

π

2λj3

}
(24)

where, p̄ = supt>t0 ||P(t) + βI || and 2αβ > ηj > ϵ.

Proof:To prove the stability of subsystem (23a), the
following Lyapunov-Krasovskii functional candidate is pro-
posed,

V (t, ēwjt ) = V1(ēwj (t)) + V2(t, ēwjt ) (25)

with,

V1(ēwj (t)) = ēTwj (t)Pj(t)ēwj (t) + β ēTwj (t)ēwj (t) (26)

V2(t, ēwjt ) = ϵ

∫ t

t−h̄
e2α(s−t)ēTwj (s)ēwj (s)ds. (27)

Differentiating the functional (26) gives,

V̇1(ēwj (t)) = ēTwj (t)[A
T
j (t)Pβ (t) + Pβ (t)Aj(t) + Ṗj]ēwj (t)

+ 2ēTwj (t − h̄)3T
j Pβ (t)ēwj (t)

where

Pβ = [Pj(t) + βI ].

Note that if ηj < 2αβ then Pβ > 0.
Defining p̄ and λj as p̄ = supt>t0 ||Pβ (t)|| and λj =

λmax{λj1, λj2} = sup||3j||, the next inequality is obtained,

V̇1(ēwj (t)) ≤ ēTwj (t)[A
T
j (t)Pβ (t) + Pβ (t)Aj(t) + Ṗj]ēwj (t)

+ 2p̄λj||ēwj (t − h̄)|| ||ēwj (t)||.

The time derivative of (27), yields,

V̇2(t, ēwjt ) ≤ −2αV2 + ϵ||ēwj (t)||
2
− ϵe−2αh̄

||ēwj (t − h̄)||2.

Given that ATj (t)+Aj(t) = 02×2, the next inequality follows

V̇ (t, ēwjt ) ≤ −[ηj − ϵ −
p̄2λ2j e

2h̄α

ϵ
]||ēwj (t)||

2 (28)

Hence, if λj is such that,

λj <

√
ϵ(ηj − ϵ)

p̄eαh̄
. (29)

If ηj > ϵ then subsystem (23a) is asymptotically stable.
Similarly, subsystem (23b) is asymptotically stable if the
following delay condition holds [2],

h̄ <
π

2λj3
. (30)

Equations (29) and (30) indicate that system (23) is
asymptotically stable for every fixed time delay which
satisfies the following condition,

h̄ < min

{
1
α
ln

(√
ϵ(ηj − ϵ)

λjp̄

)
,

π

2λj3

}
.

Furthermore, because origin ewj = [0 0 0]T is the only
equilibrium point, system (23) is globally asymptotically
stable. ■
From Theorem 1, it is possible to provide a more

straightforward existence condition for the prediction scheme
which depends only on the predictor parameters.
Corollary 1: There always exists positive gains λi, i =

1, 2, 3, such that system (23) is globally asymptotically
stable if,

h̄ < min
{

1
λje

,
π

2λj3

}
. (31)

Proof: Directly from equation (29) and condition (30).
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Lemma 3: Assume that system (16)-(17) for j =

1, 2, . . . , n satisfies inequality (24). Subsequently, the
injection errors ewj (t) asymptotically converge to the origin.

Proof: To carry out the proof, note that the injection
error dynamic (17) for j = 1 corresponds to that considered
in Theorem 1 for the case 30 = 0 and λ03 = 0. Therefore,
system (17) for j = 1, satisfies condition (23) in Theorem 1.
Under these conditions, injection error ew1 (t) converges
asymptotically to the origin.
To show that ew2 (t) also converges to the origin, note first

that system (17) for j = 2 takes the form,

˙̄ew2 (t) = A2(t)ēw2 (t) + 32ēw2 (t − h̄) − 31ēw1 (t)

ėw23 (t) = −λ23ew23 (t − h̄) + λ13ew13 (t). (32)

Because ew1 (t) is a vanishing term for system (32), the
convergence of ew2 (t) is obtained by considering ew1 (t) = 0,
obtaining

˙̄ew2(t) =

[
0 ω(t − (n− 2)h̄

−ω(t − (n− 2)h̄) 0

] [
ew21(t)
ew22(t)

]
+

[
−λ21 0
0 −λ22

] [
ew21(t − h̄)
ew22(t − h̄)

]
ėw23(t) = −λ23ew23(t − h̄). (33)

Finally, Theorem 1 implies the convergence of ew2 (t). These
arguments can be repeated until j = n. ■
Remark 2: Note that the prediction-observer scheme is

based on the body-frame representation (5) of the kinematic
model (1) obtained by employing global transformation (4).
This transformation allows global convergence to the future
values of the states, independent of the displacements of the
mobile robot, in contrast to the results obtained in [25], [27],
and [28] where the convergence to the future value depends
on the linear velocity of the vehicle.
Remark 3: Note also, that the estimate of the future value

is obtained for h̄ under condition (31) of Corollary 1, which
only involves the design gains of sub-predictors λj. Therefore,
increasing the number of sub-predictors allows the handling
of a larger input time delay for the original system (1).
It should be noticed that due to the chain configuration of
the observer-predictor (10), or the injection errors (23), the
convergence to the future values at time t+h is obtained step
by step converging first to the future value at time t + h̄ and
then at time t + 2h̄ and so on until time t + nh̄ = t + h.
The convergence conditions (31) are obtained for each step
of the prediction chain on Corollary 1 which only involves the
design gains of each sub-predictor. Therefore, condition (31)
is relaxed by increasing the number n of sub-predictors, this
fact is directly related to the size of the original time delay h
that can be handled by the prediction strategy to produce the
desired future value.
Remark 4: Evenwhen theoretically the predictor-observer

can handle any time delay, this fact is not relevant for
a practical implementation since small time delays can
destabilize the response of a possible prediction-based

feedback, and therefore, for small delays a short chain of sub-
predictors will be necessary. The number of sub-predictors
required to get the future values depends on the conditions
given by Corollary 1 that state the minimal numbers of sub-
predictors that must be used. Notice also that, when the input
time delay h increases, it also increases the transient response
of the prediction error affecting the time to get the future
value of the state necessary to implement a feedback law for
tracking or regulation.

IV. TRAJECTORY TRACKING PROBLEM FOR THE
DIFFERENTIAL DRIVE MOBILE ROBOT
For the original delay-free system (1)) the trajectory tracking
problem can be solved by first defining the tracking error,

es(t) =

 es1(t)es2(t)
es3(t)

 =

 xrd (t) − xr (t)
yrd (t) − yr (t)
θrd (t) − θr (t)

 . (34)

The desired trajectory ξrd (t) = [xrd (t) yrd (t) θrd (t)]T that
the robot must follow is generated by a virtual mobile robot,

ẋrd (t) = vd (t) + ωd (t)yrd (t)

ẏrd (t) = −ωd (t)xrd (t)

θ̇rd (t) = ωd (t) (35)

that satisfies the equivalent non-holonomic restriction (2).

For the delay-free mobile robot (1), the feedback

v(t) = vd (t) cos (es3(t)) + k1es1(t)

ω(t) = ωd (t) + k2vd (t)
sin (es3(t))
es3(t)

es2(t) + k3es3(t) (36)

introduced in [48] solves the trajectory tracking problem
employing the correct real positive gains k1, k2, and k3.

To solve the trajectory tracking problem for the advanced
system (9), feedback (36) is expressed in terms of the
estimated future values of the state, obtained from the state
of the n-th sub-predictor, namely,

v(t) = vd (t) cos (ên3(t)) + k1ên1(t)

ω(t) = ωd (t) + k2vd (t)
sin (ên3(t))
ên3(t)

ên2(t) + k3ên3(t) (37)

where the desired trajectory originates from the virtual robot
(35). The trajectory tracking error is described as en1(t)en2(t)

en3(t)

 =

 es1(t + h)
es2(t + h)
es3(t + h)


=

 xrd (t + h) − xr (t + h)
yrd (t + h) − yr (t + h)
θrd (t + h) − θr (t + h)


=

 w1d (t) − wn1(t)
w2d (t) − wn2(t)
w3d (t) − wn3(t).


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Thus the estimated tracking error is described by ên1(t)ên2(t)
ên3(t)

 =

w1d (t) − ŵn1(t)
w2d (t) − ŵn2(t)
w3d (t) − ŵn3(t)

 =

 w̃n1(t) + en1(t)
w̃n2(t) + en2(t)
w̃n3(t) + en3(t)

 .

A. TRAJECTORY TRACKING ERROR DYNAMICS
After some computations, the closed-loop system (9)-(37)
takes the form

ėwj(t) = A1(t)ewj(t) + 3(j−1)ew(j−1)(t)

− 3jewj(t − h̄) (38a)

ėn(t) = f (en(t)) + 8(en(t), ewj(t)) (38b)

where,

f (en) =

 −k1 ωd (t) 0
−ωd (t) 0 0

0 0 −k3

 en1(t)en2(t)
en3(t)


+

 k2vd (t)γse2n2(t) + k3en3(t)en2(t)
−k2vd (t)γsen2(t)en1(t) − k3en3(t)en1(t)

0


8(en, ewj) =

−k1 0 0
0 0 0
0 0 −k3

 w̃n1(t)w̃n2(t)
w̃n3(t)

+

 γ1(t)
γ2(t)
γ3(t)


with

γs(t) =
sin (w̃n3(t) + en3(t))
w̃n3(t) + en3(t)

γ1(t) = vd (t)[1 − cos (w̃n3(t) + en3(t))]

− k2vd (t)γs(t)

×
[
w̃n2(t)(w2d (t) − en2(t)) + en2(t)w2d (t)

]
− k3

[
w̃n3(t)(w2d (t) − en2(t)) + en3(t)w2d (t)

]
γ2(t) = k2vd (t)γs(t)

[
w̃n2(t)(w1d (t) − en1(t)) + en2(t)w1d (t)

]
+ k3

[
w̃n3(t)(w1d (t) − en1(t)) + en3(t)w1d (t)

]
γ3(t) = −k2vd (t)γs(t)[w̃n2(t) + en2(t)].

For details on the computation of system (38), refer to
Appendix A.

B. STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM
To formally prove the convergence to the origin of the
tracking error (38b), recall that the prediction error ewj(t)
converges to zero independently of the dynamics of en(t). For
the tracking error, consider the case where 8(en, ewj) = 0 in
(38b) ėn1(t)ėn2(t)

ėn3(t)

 =

 −k1 ωd (t) 0
−ωd (t) 0 0

0 0 −k3

 en1(t)en2(t)
en3(t)


+

 k2vd (t)γse2n2 + k3en3en2
−k2vd (t)γsen2en1 − k3en3en1

0

 (39)

where it is clear that (en1, en2, en3) = (0, 0, 0) is an
equilibrium point of (39). Time derivative of the Lyapunov
candidate function,

V (t) =
1
2
e2n1 +

1
2
e2n2 +

1
2
e2n3 (40)

yields,

V̇ (t) = en1ėn1 + en2ėn2 + en3ėn3
= en1(−k1en1 + ωden2 + k2vdγse2n2 + k3en3en2)

+ en2(−ωden1 − k2vd (t)γsen2en1 − k3en3en1) − k3e2n3
= −k1e2n1 − k3e2n3.

Since V̇ (t) is negative semidefinite, the Barbalat lemma
allows proving the asymptotic stability of subsystem (39).
Term V̈ (t) is computed as follows,

V̈ (t) = −2k1en1ėn1 − 2k3en3ėn3
= −2k1en1(−k1en1 + ωden2 + k2vdγse2n2 + k3en3en2)

+ 2k23e
2
n3.

Thus, V̇ (t) is uniformly continuous and V̇ (t) → 0 as t →

∞, which in turn implies that e(t) → 0 as t → ∞.

C. LINEAR GROWTH OF THE INTERCONNECTION TERM
To complete the convergence proof of error (38b), it is
necessary to verify the linear growth of the interconnection
term8(en(t), ewj(t)). For that matter, the following definition
[49] is recalled.
Definition 1: Function 9(z, ζ ) has linear growth in z if

there exist two class-κ functions δ1(·) and δ2(·), differentiable
at ζ = 0, such that,

||9(z, ζ )|| ≤ δ1(||ζ ||) ||z|| + δ2(||ζ ||). (41)
Straightforward computations show that the function

8(en(t), ewj) is bounded as in (42), shown at the bottom of
the next page, where γ1, γ2 and γ3 are bounded as,

||γ1(t)|| ≤ δ21(||ewj(t)||) + δ11(||ewj(t)||)||e(t)||

||γ2(t)|| ≤ δ22(||ewj(t)||) + δ12(||ewj(t)||)||e(t)||

||γ3(t)|| ≤ δ23(||ewj(t)||) + δ13(||ewj(t)||)||e(t)|| (43)

with

δ11(||ewj(t)||) = ||vd (t)|| + ||k2vd (t)ewj2 (t)|| + ||k3ewj3 (t)||

δ21(||ewj(t)||) = ||vd (t)ewj3 (t)|| + ||k2vd (t)w2d (t)ewj2 (t)||

+ ||k3w2d (t)ewj3 (t)||

δ12(||ewj(t)||) = ||k2vd (t)ewj2 (t)|| + ||k3ewj3 (t)||

δ22(||ewj(t)||) = ||k2vd (t)w1d (t)ewj2 (t)||

+ ||k3w1d (t)ewj3 (t)||

δ13(||ewj(t)||) = ||k2vd (t)||

δ23(||ewj(t)||) = ||k2vd (t)w̃n2(t)||.

It is easy to see that there exist δ1(||ewj(t)||) and
δ2(||ewj(t)||) that satisfy the inequality (41) for the function
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FIGURE 3. Experimental platform diagram.

8(en(t), ewj(t)). Appendix (B) shows how to obtain ||γi(t)||
for i = 1, 2, 3..

The above developments allow us to conclude on the
stability of the closed-loop system (38).
Theorem 2: Consider system (9) and the prediction-based

feedback (37) and assume that Lemma 3 is satisfied. Then,
positive gains k1, k2, k3 exist such that the overall closed-loop
system (38) is asymptotically stable.

Proof: To demonstrate the theorem, notice first that the
convergence of the prediction errors is insured by Lemma 3.
The cascade structure of system (38), and the linear growth of
function 8(en(t), ewj(t)) given in (42) allows the application
of Proposition 4.1 in [49], which establishes the convergence
of the tracking errors en(t). ■

V. NUMERICAL AND EXPERIMENTAL EVALUATION
A 
MATLAB simulation and an experimental implemen-
tation are carried out to evaluate the proposed prediction
scheme and the trajectory tracking solution. The experimental
platform, depicted in Figure 3, is composed of an 
OptiTrack
motion capture camera system and a 
ROBOTIS differential
drive robot ‘‘Turtlebot3 Waffle Pi’’ with passive markers
as indicators for 3D position and orientation, as shown in
Figure 4, which are interconnected by the Robotic Operating
System (ROS).

We consider a lemniscate-type trajectory described as
follows,

x = A cos (pt)

y = B sin (2pt)

with A = 0.7,B = 0.4, p =
π
20 .

For the differential drive model (5), the input delay is
assumed to be h = 0.12 s. This delay time was artificially
introduced through programming in the system for the
numerical and experimental cases. For the prediction strategy
(10), a set of n = 3 sub-predictors provide, according to (31),
an appropriate delay h̄max = 0.092. The gain parameters

FIGURE 4. Passive markers in the differential drive robot and elements of
the experimental platform.

TABLE 1. Predictor and control parameters.

proposed for the predictor (10) and the feedback (37) are
given in Table 1.

The initial condition are set as x = 0.7m, y = −0.5m and
θ =

π
2 rad .

For the simulation results, the prediction and trajectory
tracking errors are shown in Figure 5 and 6, respectively,
where it is noticeable that both errors converge correctly
and smoothly to the origin. For illustrative purposes, the
injection errors are presented in Figure 7, showing that the
injection error ew1(t) tends to zero before ew2(t), which
in turn converges before ew3(t). This evolution is expected
from the sub-predictor scheme because the future values are
estimated step by step, a delay h̄ ahead. Observe that the
trajectory tracking errors es(t) converge after the prediction
errors because the control law (37) requires the future
state estimates. The evolution of control signals v(t), ω(t),
depicted in Figure 8, is smooth.

For the real-time experiments, the time evolution of
the prediction error w̃3(t) and the trajectory tracking error
evolution es(t) are shown in Figures 9 and 10, respectively.
The errors converged to the origin, following the convergence
pattern of the numerical results. Observe that the orientation
errors w̃33(t) and es3(t) were more sensitive to inaccurate
measurements. Figure 11 shows that the experimental control
signals v(t), ω(t) exhibited adequate behavior.

Finally, Figure 12 shows the desired trajectory generated
by a virtual robot on the X − Y plane, the path of the
real-time experimental trajectories of the differential drive

||8(en(t), ew(t))|| ≤

√
|| − k1w̃n1(t) + γ1(t)||2 + ||γ2(t)||2 + || − k3w̃n3(t) + γ3(t)||2. (42)

124272 VOLUME 11, 2023



J. A. Báez-Hernández et al.: Non-Linear Prediction-Based Trajectory Tracking

FIGURE 5. Numerical prediction errors.

FIGURE 6. Numerical trajectory tracking errors.

FIGURE 7. Numerical injection errors evolution.

robot, and the numerical results obtained from simulations
of the closed-loop scheme. As expected, the numerical
experiment converged better to the desired trajectory than
the real-time experiments due to measurement errors in the
latter case.

FIGURE 8. Numerical control signed evolution.

TABLE 2. Predictor parameters for comparison.

FIGURE 9. Real-time prediction errors.

A. PREDICTION SCHEME COMPARISON
To illustrate themain difference between the prediction-based
solution presented in this work and the one proposed in [25],
Figure 13 shows the robot evolution on the X − Y plane with
an input time delay of h = 1.7 s For the solution in [25] and
the one in equation (37), with n = 1 and n = 3, there were
considered the gains parameters given in Table 2.

It is clear from Figure 13, that the performance of the
solution in [25] (purple and dotted line) is comparable to the
case n = 1 (green and discontinuous line). Nevertheless,
in the present case, it is possible to improve the obtained
performance simply by increasing the value of n, as seen in
Figure 13 for n = 3 (blue and discontinuous line).
Remark 5: The proposed strategy is based on the

kinematic model of the non-holonomic mobile robot,
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FIGURE 10. Real-time trajectory tracking errors.

FIGURE 11. Experimental control inputs.

FIGURE 12. Desired trajectory (red and continuous), traveled path in the
simulation (blue and discontinuous), and traveled path in the experiment
(green and doted) with time delay h = 0.12 s.

therefore, there exists forces and inertia that are not
considered in the design that may interfere with the overall
performance.

FIGURE 13. Comparison of solutions proposed in [25] with the present
solution for n = 1 and n = 3.

Remark 6: Note that for implementation purposes, a pos-
sibly large amount of data processing due to complex envi-
ronments or a formation composed of many non-holonomic
mobile robots, it is necessary to increase the number of
sub-predictors to ensure the fulfillment of the obtained
stability condition. Also, as shown in the experimental
results, unmodelled time delay fluctuations can deteriorate
the overall performance.

VI. CONCLUSION
This contribution addresses the trajectory tracking problem of
a non-holonomic differentially driven mobile robot subject to
an input time delay h. A generalization of the non-linear case
of a linear sub-predictor strategy is introduced to estimate the
state of the system h units of time ahead. It was shown that it
is possible to predict the state of the system independently of
the trajectory that the mobile robot must track. Furthermore,
a Lyapunov-Krasovskii functional-based analysis proved that
the sub-predictor scheme can manage large time delays by
increasing the number of sub-predictors in the observer
chain. For appropriate gains in the prediction scheme, the
introduction of the estimated future states into the control
law was shown to achieve closed-loop system stability. Real-
time experiments and numerical simulations were conducted
to evaluate the effectiveness of the proposed prediction-
based strategy. It should be pointed out that the presented
prediction-based strategy is based on the knowledge of the
constant time delay affecting the input signal, and even when
theoretically it can be considered as large as desired, large
time delay induces a non-adequate transient state for the
prediction and tracking errors. The asymptotic rate of the
obtained convergence of the prediction and tracking errors
will depend on the stability margin obtained in Corollary 1.
Future work includes taking into account time-varying delays
arising in remote control due to wireless communication
protocols, testing feedback laws with better convergence
rates, and extending our work to the formation problem for
a set of mobile robots with time delays.
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APPENDIX A
TRAJECTORY TRACKING ERROR DYNAMICS
The evolution of the trajectory tracking errors can be obtained
as follows.

ė1(t)

= ẇ1d (t) − ẇn1(t)

= ẇ1d (t) − v(t) − ω(t)wn2(t)

= ẇ1d (t) − vd (t) cos (ê3(t)) − k1ê1(t)

−

[
ωd (t) + k2vd (t)

sin (ê3(t))
ê3(t)

ê2(t) + k3ê3(t)
]
wn2(t)

= ẇ1d (t) − vd (t) cos (w̃n3(t) + e3(t)) − k1[w̃n1(t) + e1(t)]

−

[
ωd (t) + k2vd (t)

sin (w̃n3(t) + e3(t))
w̃n3(t) + e3(t)

[w̃n2(t) + e2(t)]

+ k3[w̃n3(t) + e3(t)]
]
[w2d (t) − e2(t)].

Substituting the evolution of the desired trajectory ẇ1d (t),

ė1(t) = vd (t) + ωd (t)w2d (t) − vd (t) cos (w̃n3(t) + e3(t))

− k1[w̃n1(t) + e1(t)]

−

[
ωd (t) + k2vd (t)

sin (w̃n3(t) + e3(t))
w̃n3(t) + e3(t)

[w̃n2(t) + e2(t)]

+ k3[w̃n3(t) + e3(t)]
]
[w2d (t) − e2(t)]

= vd (t)[1 − cos (w̃n3(t) + e3(t))]

− k1[w̃n1(t) + e1(t)] + ωd (t)e2(t)

−

[
k2vd (t)

sin (w̃n3(t) + e3(t))
w̃n3(t) + e3(t)

[w̃n2(t) + e2(t)]

+ k3[w̃n3(t) + e3(t)]
]
[w2d (t) − e2(t)]

= −k1[w̃n1(t) + e1(t)] + ωd (t)e2(t) + k2vdγse22(t)

+ k3e3(t)e2(t) + γ1(t).

Repeating the procedure with e2(t) and e3(t),

ė2(t) = ẇ2d (t) − ẇn2(t)

= ẇ2d (t) + ω(t)wn1(t)

= ẇ2d (t)

+

[
ωd (t) + k2vd (t)

sin (ê3(t))
ê3(t)

ê2(t) + k3ê3(t)
]
wn1(t)

ė2(t) = −ωd (t)w1d (t) +

[
ωd (t) + k2vd (t)

sin (ê3(t))
ê3(t)

ê2(t)

+ k3ê3(t)
]
wn1(t)

= −ωd (t)w1d (t) +

[
ωd (t) + k2vd (t)

sin (ê3(t))
ê3(t)

ê2(t)

+ k3ê3(t)
]
[w1d (t) − e1(t)]

=

[
k2vd (t)

sin (ê3(t))
ê3(t)

ê2(t) + k3ê3(t)
]
[w1d (t) − e1(t)]

− ωd (t)e1(t)

=

[
k2vd (t)

sin (w̃n3(t) + e3(t))
w̃n3(t) + e3(t)

[w̃n2(t) + e2(t)]

+ k3[w̃n3(t) + e3(t)]
]
[w1d (t) − e1(t)] − ωd (t)e1(t)

= −ωd (t)e1(t) − k2vdγse2(t)e1(t) − k3e3(t)e1(t)

+ γ2(t)

ė3(t) = ẇ3d (t) − ẇn3(t)

= ẇ3d (t) − ω(t)

= ωd (t) − ωd (t) − k2vd (t)
sin (ê3(t))
ê3(t)

ê2(t) − k3ê3(t)

= −k2vd (t)
sin (w̃n3(t) + e3(t))
w̃n3(t) + e3(t)

[w̃n2(t) + e2(t)]

− k3[w̃n3(t) + e3(t)]

= −k3[w̃n3(t) + e3(t)] + γ3(t)

APPENDIX B
BOUNDS OF γ1, γ2 AND γ3
The bound of the γi terms for i = 1, 2, 3. can be done as
follows.

γ1(t) ≤ ||vd (t)[1 − cos (w̃n3(t) + e3(t))]||

+
∣∣∣∣k2vd (t)γs(t) [w̃n2(t)(w2d (t)

−e2(t)) + e2(t)w2d (t)]||

+
∣∣∣∣k3 [w̃n3(t)(w2d (t) − e2(t)) + e3(t)w2d (t)

]∣∣∣∣
≤ ||2vd (t) sin2

(
sin (ew3 (t) + e3(t)

2

)
||

+ ||k2vd (t)ew2 (t) + k3ew3 (t)|| ||w2d (t) − e2(t)||

≤ ||vd (t)(ew3 (t) + e3(t))||

+ ||k2vd (t)ew2 (t) + k3ew3 (t)|| ||w2d (t) − e2(t)||

≤ ||vd (t)ew3 (t)||

+ ||vd (t)e3(t)|| + ||k2vd (t)w2d (t)ew2 (t)||

+ ||k3w2d (t)ew3 (t)|| + ||k2vd (t)e2(t)ew2 (t)||

+ ||k3e2(t)ew3 (t)||

≤ α21(||ew||) + α11(||ew||)||e||

γ2(t) ≤

∣∣∣∣∣∣∣∣k2vd (t) sin (ew3 (t) + e3(t))
ew3 (t) + e3(t)

ew2 (t)

+k3ew3 (t)
∣∣∣∣ ||w1d (t) − e1(t)||

≤ ||k2vd (t)ew2 (t) + k3ew3 (t)|| ||w1d (t) − e1(t)||

≤ ||k2vd (t)w1d (t)ew2 (t)|| + ||k3w1d (t)ew3 (t)||

+ ||k2vd (t)e1(t)ew2 (t)|| + ||k3e1(t)ew3 (t)||

≤ α22(||ew||) + α12(||ew||)||e||

γ3(t) ≤

∣∣∣∣∣∣∣∣k2vd (t) sin (ew3 (t) + e3(t))
ew3 (t) + e3(t)

[w̃n2(t) + e2(t)]

∣∣∣∣∣∣∣∣
≤ ||k2vd (t)[w̃n2(t) + e2(t)]||

≤ ||k2vd (t)w̃n2(t)|| + ||k2vd (t)e2(t)||

≤ α23(||ew||) + α13(||ew||)||e||
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