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ABSTRACT Diabetic Retinopathy (DR) evaluations are increasingly being automated using artificial
intelligence. Diabetes-related retinal vascular disease is a major cause of blindness and visual impairment
worldwide. Therefore, automated DR detection devices would greatly aid in reducing visual impairment due
to DR through early screening and treatment. Researchers have provided many techniques for picking out
abnormalities in retinal images during the past several years. In the past, automated methods for diagnosing
diabetic retinopathy required a human to extract information from retinal images before passing them on
to a classifier. This study takes a novel two-pronged approach to automated DR classification to solve
the issues. Due to the low positive instance percentage of existing asymmetric, we segment O.D.s and
B.V.s with an enhanced version of an improved contoured convolutional transformer (IC2T). We develop
a contoured optical disc (OD), a blood vessels (BV) detection module, and a dual convolutional transformer
block that combines local and global contexts to make trustworthy associations. A second-stage Improved
Coordination Attention Mechanism (ICAM) network is trained to recognize retinal biomarkers for DR such
as microaneurysms (M.A.), haemorrhages (H.M.), and exudates (EX). With an average accuracy of 96%,
97%, and 98% on EyePACS-1, Messidor-2, and DIARETDB0, respectively, the suggested technique has
proven itself to be at the field’s cutting edge. Comprehensive testing and comparisons to established methods
support the proposed strategy.

INDEX TERMS Contoured detection module, diabetic retinopathy, dual convolutional transformer block,
improved coordination attention mechanism, improved contoured convolutional transformer, optic disk
segmentation.

I. INTRODUCTION
A. BACKGROUND OF DIABETIC RETINOPATHY
In the Western working-age population, diabetes is the most
prevalent metabolic illness, and DR is the most common
consequence of diabetes. Consistent DR screening has been
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shown to cut the risk of severe DR-related visual loss by
90% [1]. Retinal specialists routinely use a disease sever-
ity scale [2] to provide a numerical value for the degree
to which patients are affected by DR in clinical settings.
When defining the level of damage caused by DR, the
International Clinical Diabetic Retinopathy (ICDR) disease
severity scale is the gold standard [3]. From no DR (level
0) to proliferative DR (level 4) on a five-point scale, the
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standard proposes non-proliferative DR (level 3) [4], [5], [6].
Microaneurysms (M.A.) are indicative of a mild case of the
illness. The presence of more than M.A. or haemorrhages
(HEM) is used to define level 2; however, level 3 is indicated
by the presence of evident venous beadings or substantial
intraretinal microvascular abnormalities (IRMA) [7]. Active
or pan-retinal photocoagulation-treated neovascularizations
(N.V.) or vitreous haemorrhages suggest a level 4 diagno-
sis. Level 4 DR can cause permanent visual loss without
treatment. Hard exudates (HE) and cotton wool spots (CWS)
are also common lesions found in the retina of people with
DR [8].

B. ICDR CLASSIFICATION FOR MACULAR EDEMA
The ICDR (International Clinical Diabetic Retinopathy Dis-
ease Severity) classification is used to determine the severity
of diabetic retinopathy, an eye condition caused by diabetes.
While diabetic macular edema (DME) is a particular disorder
that can develop with diabetic retinopathy, it is not explicitly
classified by the ICDR. The ICDR classification system,
on the other hand, is primarily concerned with diabetic
retinopathy as a whole.

The ICDR categorization system divides diabetic retinopa-
thy into numerous stages, which are as follows:

No Diabetic Retinopathy (No DR): There are no indica-
tions of diabetic retinopathy at this stage.

Mild Non-proliferative Diabetic Retinopathy (Mild
NPDR): Microaneurysms are present at this stage. Microa-
neurysms are microscopic, balloon-like swellings in the
retina’s tiny blood capillaries.

Moderate Non-proliferative Diabetic Retinopathy (Moder-
ate NPDR): More severe abnormalities in the retinal blood
vessels, such as haemorrhages and hard exudates (lipid
deposits), become visible at this stage.

Severe Non-proliferative Diabetic Retinopathy (Severe
NPDR): This stage is characterised by more substantial
obstructions in the retinal blood vessels, which can result in
decreased blood supply to regions of the retina.

Proliferative Diabetic Retinopathy (PDR): The most
advanced stage of diabetic retinopathy involves the formation
of aberrant blood vessels in the retina. These new blood
vessels can be unstable, resulting in bleeding into the vitreous
gel of the eye and visual loss.

C. ALLENGES IN FUNDUS IMAGES
Images of the retina captured with a fundus camera are used
to assess DR. Image capture presents a number of difficulties
[9], including light noise and low contrast, both of which
negatively impact performance. Variations in size, shape, and
colour make DR lesion segmentation a difficult process [10].
Another obstacle in this field is the identification of the optic
disc (OD), whose circular form is similar to that of retinal
lesions. Because of this, the area is frequently misidentified
as a lesion. In order to address these issues, a method is
described for identifying and categorizing retinal lesions [11].

D. CHALLENGES IN DL TECHNIQUES
Ophthalmologists have a difficult and error-prone job of
manually detecting DR. Thus, an automated approach is nec-
essary for fast and accurate identification. Several algorithmic
approaches to DR lesion identification have been presented
in the literature [12]. Hough Transform Algorithms (HTAs)
and convolutional neural networks (CNNs) are employed for
EX identification [13]. In addition, smart edge recognition
and histogram equalization are used to boost image quality.
The O.D. is an anatomical term. Thus, this also prevents any
inference from it [14], [15].

Like classification, automatic medical picture segmenta-
tion has benefited substantially from the development of deep
learning techniques. CNNs are algorithms that ‘‘learn’’ from
training data that has been tagged. This requires analyzing
more sophisticated visual features before ultimately classi-
fying entire pictures as desired when dealing with imaging
data. Recent research [17] shows that the accuracy of these
algorithms is on par with or even higher than that of human
specialists. CNNs are getting close to human levels of per-
formance in automatic DR detection and grading, but they
still can’t be easily understood [18]. The need for more trans-
parency in the findings obtained by deep learning algorithms
is a potential roadblock to their use in actual clinical settings
[19]. Networks that have been taught to identify the outliers
employed by human experts in the grading process might
be used to solve this issue. Many retinal abnormalities are
very tiny or have characteristics that make them difficult to
diagnose [20], [21] appropriately. Not only is it difficult to
collect enough photos to train algorithms capable of this task,
but manually annotating each important pixel in those images
is both labour-intensive and time-consuming [22].

E. CONTRIBUTION TO THE SEGMENTATION MODEL
Combining the advantages of the transformer and the
U-shaped architecture may fully realise both benefits. Com-
bining these two cutting-edge methods strengthens segmen-
tation by making greater use of both local traits and global
contextual information. As a result, the following contribu-
tions are highlighted:

• The study created an advanced segmentation method
for medical images called IC2T. A dual convolutional
(DC) basis makes up the proposed model’s U-shaped
architecture.

• The suggested approach may combine local and global
settings to build trustworthy relationships. Convolu-
tional kernels of various sizes capture multi-scale
information for use by the DC transformer blocks.

• The interpretability of the model is improved by com-
bining short- and long-range attention techniques to
extract local characteristics and capture long-range
interdependence.

• Using conventional CV methods, the contour detection
module may zero in on regions of interest and hone in
on superfluous contoured segmentation data.
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• To further improve segmentation accuracy, a hybrid
grasshopper-based optimization approach (G-BAT) is
also presented.

F. CONTRIBUTION TO THE SEGMENTATION MODEL
Integral framework of Segmentation and Classifier is shown
in Figure 1.

FIGURE 1. Integration of segmentation and classifier.

Here’s a quick rundown of each component in the diagram:
Input Data: This is where your raw data enters the frame-

work, such as photos or sensor data.
Data Preprocessing: Various data preprocessing operations

including as normalisation, data augmentation, and feature
extraction are performed in this step to prepare the data for
segmentation and classification.

Segmentation: The segmentation component finds regions
of interest within the input data using techniques such as
Convolutional Neural Networks (CNNs) or Region Proposal
Networks (RPNs).

Segmented Data: This section contains the segmentation
step’s output, which includes the regions or items of interest
detected in the input data.

Classifier: The classifier employsmachine learning or deep
learning models to classify and predict the segmented data as
input.

Output: The framework’s final output, which may include
flood or earthquake detection predictions, judgements,
or alarms.

In the first stage, innovative Gaussian space-scale generic
augmentation settings were used to pre-process and augment
the data.

The research recommends an enhanced coordination atten-
tion mechanism network (ICAMNet) that takes into account
the spatial location relationship.

A convolution-coordinated attention mechanism is one of
the three primary building blocks of a CAMNet. In the
first place, spatial and spectral characteristics are completely

extracted using CNN in the convolution module. Second, the
linear module intends to provide a feature map with more
data. The developed CAM also takes into account both axes
of spatial information.

The Rock Hyrax SwarmOptimization (RHSO) model han-
dles the hyper-parameter tuning procedure.

The suggested approach has been trained using 11841 reti-
nal fundus pictures from three publicly available datasets.

G. PAPER ORGANIZATION
In the first section, we discuss the history of DR, its diffi-
culties, and the role that research has played in addressing
these issues. In Section II, we provide a problem definition
and a summary of related research on DR segmentation and
classification. Sections III and IV detail the resources and the
short approach used. In Section V, we see the experimental
design with the validation analysis. Section VI wraps up the
findings and discusses what comes next.

II. RELATED WORKS
A reformed capsule network is built for the diagnosis and
categorization of diabetic retinopathy by Kalyani et al. [23].
Fundus pictures have their characteristics extracted using a
convolution andmain capsule layer, and then the class capsule
layer and softmax layer are used to assess the likelihood
that the image belongs to a certain class. Using the dataset,
we verify the efficacy of the proposed reformed network
across four performance metrics. On healthy retina, stage 1,
stage 2, and stage 3 fundus pictures, the accuracy of the
created capsule network is 97.98%, 97.65%, 97.65%, and
98.64%, respectively.

Zbay [24] provided a novel multi-layer architecture for
automated DR stage detection. In the ADL system’s prepro-
cessing step, a threshold value is chosen based on the results
of the image histogram to help find retinal lesions. The picture
is then segmented using this method. To further automate the
process of extracting segmented retinal characteristics, a tag-
efficient architecture called ADL-CNN has been designed.
This scheme operates in two phases. In the first, pictures are
picked to learn either straightforward or advanced retinal fea-
tures based on the accuracy labels included in the training set.
Second, the important characteristics of the lesions and the
segments of interest within the retinal picture are presented
as masks. The suggested ADL-CNN model’s performance is
measured against that of the state-of-the-art approaches on the
same dataset. Statistics, including the F-measure, sensitivity,
specificity, and classification accuracy, are used to evaluate
the system’s performance. Using the EyePacs dataset, which
consists of 35,122 retinal pictures, the ADL-CNNmodel was
able to achieve 99.66% accuracy, 93.76% S.E., 96.71% S.P.,
and 94.58% F-measure. In this regard, it is fair to say that the
suggested technique performs admirably when applied to a
wide variety of fundus pictures for the purpose of identifying
DR lesions and grading their severity.

Uppamma and Bhattacharya [25] have zeroed in on infor-
mation vital to the forecasting of diabetic retinal illness.
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Complete blindness is the end result of diabetic retinopa-
thy, a chronic illness induced by diabetes. Early detection
of the condition is essential for preventing eyesight loss.
The dataset utilized is an open-source one obtained through
the IEEE data port. Before performing lesion segmentation,
we pre-processed the data with the median filtering approach.
The most important characteristics were supplied to the
SqueezeNet classifier, which predicted, and the data was then
exposed to the Taylor African Vulture Optimization (AVO)
method for hyper-parameter tuning. The EHR administrator
then had access to the final outcome stored in the blockchain
architecture, guaranteeing that only authorized parties could
view the prediction results and any associated patient data.
By comparing the classifier’s performance to that of previous
studies, we find that the suggested model outperforms the
state-of-the-art models in terms of accuracy.

Ohri and Kumar [26] have applied transfer learning to the
downstream job of diabetic retinopathy (DR) severity identi-
fication by fine-tuning the network when different subsets of
medical data are available. The experimental results show that
the efficiency of the medical image classifier, when trained
on complete training data, is greatly improved by supervised
pre-training on ImageNet, followed by fine-tuning pictures.
Less clear, however, is how different data subsets impact
fine-tuning performance and whether or not this learning is
label efficient. Therefore, we examine the model’s efficacy
when trained on 20%, 40%, 60%, and 80% of the total
labelled data for the DR classification task, with findings
indicating that supervised fine-tuning performs poorly when
the model is trained in the low-data regime. When trained
on all available data, the suggested model has a high level
of performance (test accuracy of 0.8010, AUC of 0.86, F1
score of 0.6477, and Cohen’s kappa score of 0.7007) but
suffers in the low data regime. This point to the limitations
of supervised learning when only a small amount of labelled
data is available for model training. Our approach therefore
provides a springboard for future investigation into improving
performance in low-data settings.

Parthiban and Kamarasan [27] have presented an
intelligent coyote optimisation algorithm with a deep
learning-based DR detection and grading (ICOA-DLDRD)
model using retinal fundus pictures. The ICOA-DLDRD
method is meant to detect DR in fundus photographs of
the eye. At its core, the ICOA-DLDRD algorithm uses a
noise-reduction method based on Gabor filters (G.F.) and
a method for finding the best way to divide up a large
image into smaller ones. In addition, the glowworm swarm
optimization (GSO) algorithm is used to generate appropriate
main seed locations and thresholds for the region-expanding
segmentation method. For feature extraction, we also create
a SqueezeNet with a class attention learning (CAL) layer.
Lastly, we use COA with a deep extreme learning machine
(DELM) classifier to find and grade DR. We use COA to
optimise the DELM model’s penalty parameter C and kernel
parameter gamma. We tested how well the ICOA-DLDRD

method worked using the MESSIDOR dataset as a reference.
The results showed that our method was more accurate than
other state-of-the-art methods, with a maximum accuracy of
99.65%.

Bansode et al. [28] hope to create a new method of
DR detection that relies on deep learning. In this case,
we utilize the incorporation of ‘Optimized Iterative Thresh-
olding (O-IT)’ for precise segmentation of blood vessels.
The first innovative aspect of this study is the development
of a hybrid meta-heuristic Shark Smell-Jaya Optimisation
(SS-JO) method for optimizing the thresholding strategy to
improve blood vessel segmentation and classification. A deep
learning framework known as optimized long short-term
memory (LSTM) is used in place of CNN. The second
originality of this study is the suggested model’s use of
SS-JO to optimize LSTM parameters, reducing the network’s
complexity and making it more suitable for use in practical
applications.

Fundus images can help identify the phases of DR in
patients, and Naik et al. [29] have developed a distinctive
suggested model. It can analyze a fundus picture for signs
of retinopathy and make an educated guess as to which
stage of the illness it represents. Nonproliferative are the
two main categories under which DR can be placed. The
suggested model is capable of differentiating between no DR,
mild DR, moderate DR, severe DR, and PDR thanks to its
training. Researchers and clinicians alike will benefit from
rapid DR patient identification. The current state of affairs
makes it highly time-consuming for physicians to manu-
ally analyze each individual nerve cell from fundus images.
Therefore, in this study, we present a convolutional neural
network-based model with data augmentation for DR clas-
sification from fundus pictures. Models like DenseNet121,
DenseNet169, ResNet50, and InceptionV3 may all be trained
on powerful GPUs with the help of this enriched dataset.
These models attained accuracy levels of 96.64, 95.95, 95.71,
and 94.73%. DenseNet121 has the highest reported accuracy,
at 96.64 percent, when compared to other SOTA models.

Qaid et al. [30] presented the automated diagnosis system’s
accuracy in detecting DR and its severity, and they ana-
lyzed the results. Segmentation of fundus images using fuzzy
entropy multi-level thresholding is the primary topic of this
article. The research set out to find the best possible settings
for detecting DRs and their severity. To begin, we built a
model of the retina as an image, one that can be used across
a wide range of retinal and image properties. The retinal
model was used to create 45,000 photos in total. Second,
we quantified the effectiveness of DR detection and the sever-
ity levels by conducting a feasibility and consistency study
using a tailoredMonte Carlo statistical approach. Guaranteed
DR detection is achieved under the following conditions:
Finally, the reliability of these circumstances was assessed
by contrasting synthetic retinal pictures with those available
to the public. Test findings showed that DR detection success
might be predicted based on the analysis’s conditions.

124444 VOLUME 11, 2023



B. N. Jagadesh et al.: Segmentation Using the IC2T Model and Classification of DR

In this study, Nahiduzzaman et al. [31] propose an innova-
tive automated method for DR detection. Contrast Limited
Adaptive was used as a preprocessing step on the fundus
images (F.I.s) to bring out the lesions. Features were extracted
using a parallel convolutional neural network (PCNN), and
DR was classified using an extreme learning machine (ELM)
approach. The PCNN architecture employs fewer parameters
and layers than the comparable CNN architecture, which
reduces the time needed to extract unique features. Both
the Kaggle DR 2015 competition (Dataset 1; 34,984 FIs)
and the APTOS 2019 datasets (3,662 FIs) were used to
assess the technique’s efficacy, and the findings are encourag-
ing. The suggested method achieved 91.78 and 97.27 percent
accuracy on the two datasets, respectively. One of the
study’s corollary findings, however, was that the suggested
framework was robust across a variety of dataset sizes and
shapes, including both symmetrical and asymmetrical ones.
In addition, the proposed method outperformed state-of-the-
art models in terms of classifier performance metrics, model
parameters and layers, and prediction time, which would
be of great assistance to medical professionals in correctly
detecting the DR.

In [32], Alwakid et al. offer a deep learning (DL) model
that accurately detects all five phases of DR. A contrast-
limited adaptive histogram is used to improve images in
Case 1, whereas in Case 2, the images are not improved. The
dataset was then augmented using the identical parameters
used in both situations to ensure equality. The created model
outperformed prior techniques for detecting the five phases
of DR using Inception-V3-applied datasets, with an accuracy
of 98.7% for case 1 and 80.87% for case 2. It was shown that
including CLAHE and ESRGAN in a model enhances both
its performance and its capacity for learning.

Using convolutional neural networks, Mercaldo et al. [33]
present a method for automatically detecting the presence
of diabetic retinopathy in ocular angiography. Specifically,
two models are proposed: the first is meant to differenti-
ate between normal and diseased eyes, while the second is
meant to differentiate between nonproliferative and mild to
moderate proliferative retinopathy. Our results show that the
suggested models can be useful tools for clinicians, with an
accuracy of 0.98 for the first model and 0.91 for the second.
Also, the proposed method tries to find the disease in the
angiography by using two different class activation mapping
algorithms that show on the images the areas where the dis-
ease is showing itself. This is done to give doctors and patients
more confidence in the model’s diagnosis by giving them
some way to explain it. We also offer a similarity score to
measure the dissimilarity between heatmaps produced by the
same model’s class activation mapping algorithms in order to
assess the stability of the model.

To better identify DR events and evaluate their devel-
oping phases, a unique Gannet approach is presented by
Krishnamoorthy et al. [34]. There are six main stages
of DR that may be detected and categorized using the

GO-DBN-WKELMmethod: normal, mildDR,moderate DR,
severe DR, and proliferative DR. First, the Deep Belief Net-
work (DBN) model reduces the feature dimensions of the
original datasets to extract the most pertinent information.
The recovered pictures are then put through the suggested
GO-DBN-WKELM classification model, which is able to
reliably detect and categorize fundus images according to
severity. Incorporating a wavelet into the G.O. algorithm
is what contributes most to the improved detection perfor-
mance. The convergence speed of the classifier is improved
using the G.O. method, and the kernel parameters of the
WKELM are optimized as well. Three datasets, MESSI-
DOR, DIARETDB1, and IDRiD, are used to evaluate the
proposed classifier. Different performance measures, includ-
ing accuracy, precision, recall, and F-measure, are used
to evaluate the suggested classification model’s efficacy in
detecting DR The suggested GO-DBN-WKELM classifier
performed very well in simulations, with an accuracy of
around 98% on the MESSIDOR dataset and 97.8% on the
DIARETDB1 dataset. Results like this highlight providing an
effective, automated alternative to manual methods that can
help eye specialists diagnose and treat patients in a timely
fashion.

Lin and Jiang [35] have proposed a preprocessing method
to improve the picture’s characteristics. Based on the study’s
findings, preprocessing is a viable option for making more
information accessible to the training model. As a result, this
research enhanced the EfficientNet model to better classify
data at the DR level. The outcomes also showed an improve-
ment in model accuracy from 0.7727 to 0.7920 with regard to
the categorization of DR phases. The improved EfficientNet
also outperformed MobileNet (0.54) and the original Effi-
cientNet (0.922) in terms of the average area under the ROC
curve across all five classes, with a value of 0.926. Finally,
an application programming interface (API) was used in this
work to construct the suggested system, allowing users to
input a fundus picture and receive the DR findings.

To categorize the DR picture, Venkaiahppalaswamy et al.
[36] utilize a powerful hybrid binocular Siamese with a deep
learning technique. To begin, the stage is implemented to
filter out background noise. The use of a cross-guided bilat-
eral filter (CGBF) is suggested for this purpose. Once an
image has been preprocessed, the feature extraction step may
be used to pull out certain characteristics from it. There is
a new feature extraction approach called the wavelet-based
Chimp optimization algorithm (WBCOA). The optical disc
(O.D.) and blood vessels (B.V.) are then segmented using
open-closed watershed management (OCWSM) after fea-
ture extraction. In this study, we suggest using AlexNet
and GoogleNet with the SVM model, both of which are
based on the binocular Siamese network architecture. The
proposed hybrid DL network takes as input the O.D. and
B.V. that have been segmented. At last, the extracted pic-
tures are fused, and the SVM model is utilized to categorize
them. The DIARETDB0 (DB0) and DIARETDB1 (DB1)
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datasets are used to evaluate the suggested approach, which is
implemented in Python. The accuracy of the projected hybrid
DL network was 94% on DB0 and 94.83% on DB1. The
results of the suggested model are compared to those of other
methods as well. The suggested approach used mean and
standard deviation (S.D.)-based statistical analysis on the DR
picture to get useful results.

To identify and categorize retinopathy illness from retinal
pictures, Maithili et al. [37] have presented a novel hybrid
strawberry-based convolution neural framework (SbCNF).
The retinal veins are cut using a variety of data sources.
In this case, DRIVE datasets serve as the basis for the
entire operation. This study is implemented in the Python
programming language. In addition, this research shows
how retinopathy detection software might be enhanced in
the future. Traditional classification model techniques were
used to verify the implementation results for things, etc.
The results show that the devised method outperformed
the competition in retinopathy recognition accuracy by
virtue of its useful benefits, such as reduced computational
complexity.

A. PROBLEM STATEMENT
There have been numerous great outcomes from research
using deep CNN architectures for DR diagnosis. However,
there are also several limits and restrictions. The following is
a description of them.

• Instead of recognizing the location of DR lesions in
fundoscopic pictures, current CNN models exclusively
focus on grading DR from beginning to conclusion.
Here, the pictures are sent straight to CNN, and the DR
severity is determined by the images’ outputs. Never-
theless, ophthalmologists place a premium on knowing
specifics about the clinical presentation of DR lesions.

• In particular, a deep convolutional neural network
(CNN) model requires large and well-annotated data
collection. Getting it and making it usable are both very
time-consuming and expensive processes.

• For some current CNN models, the complex lesion
architecture that DR causes can be challenging to train.
Many minor lesions, such as M.A. and HEM, were dif-
ficult to find in CNN’s limited patch of fundus pictures
because of their vague forms. Therefore, it is crucial
for DR detection algorithms to learn lesions with fine
details.

III. MATERIALS
Two of the most commonly utilized public datasets for
evaluating the performance of the proposed system were
Messidor-2 and DIARETDB0.

A. EYEPACS-1
About 8980 retinal pictures were included in the EyePACS-1
dataset [38]. There are 7552 healthy subjects, 842 mild cases,
545 moderate cases, 54 severe cases, and 95 PDR cases in the
EyePACS-1 dataset.

B. MESSIDOR-2
There are 1748 photos of the back of the eye (the retina) in the
Messidor-2 collection [39]. There are only 1017 ‘‘normal’’
photos and 270 ‘‘mild’’ and ‘‘PDR’’ images in the collection.
The Topcon digital F.I. camera used to take the digital F.I.s
for the Messidor-2 dataset has a 45-degree field of view.

C. DIARETDB0
For research on DR detection and classification, you can use
the DIARETDB0 dataset [40]. There are 130 fundus photos
in the DIARETDB0 dataset; 110 are categorized as DR and
20 are categorized as normal F.I.s. A digital F.I. camera with
an unspecified field of view (about 50 degrees) was used
to capture these images. The information is applicable to
real-world situations and may be used to evaluate the efficacy
of diagnostic methods.

Table 1 shows the distributions of DR severity grades
among the datasets Messidor-2, EyePACS-1, and
DIARETDB0. Figure 2 displays some representative photos
taken from the available data sets.

TABLE 1. Dataset delivery of DIARETDB0.

FIGURE 2. Sample images from the datasets.

IV. METHODOLOGY
In this study, we introduce a unique approach to DR detec-
tion based on retinal fundus pictures. DIARETDB0 are
the three open-source databases employed here. Preprocess-
ing methods include picture scaling, GCE (Green Channel
Extraction), and top-bottom hat transformation to improve
the quality of the F.I.s. Hybrid optimization is then used to
fine-tune the model’s parameters, and a convolutional trans-
form network is used to segment the OD. Finally, a better
picture dataset is utilized in conjunction with the refined
model of the attention process to diagnose DR. A number
of performance criteria, including sensitivity, accuracy, pre-
cision, F1-score, specificity, and area under the curve, are
employed to assess the viability of the proposed method.

A. PREPROCESSING AND DATA AUGMENTATION
1) PREPROCESSING
The suggested method was evaluated using Messidor-2,
DIARETDB0, and EyePACS-1. In all, 10,966 retinal fundus
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images (from the DIARETDB0-130 databases) are taken into
account here. The datasets’ locations are shown in Table 1 for
EyePACS-1, DIARETDB0, and Messidor-2. The size of the
F.I. may have an effect on how well a deep learning model
performs. To address this issue, we uniformly resized all of
the photos to 256 pixels on each side. The loss of the optic
disc and other major blood vessels makes direct resizing of
F.I.s challenging. Bicubic interpolation was used to resize
the retinal F.I.s while preserving their aspect ratio. Figure 3
shows that, compared to the red and blue channels, the green
channel in F.I.s conveys more information, making it a good
fit for our study. Retinal images benefit from a top-to-bottom
hat modification. Figure 4 shows how various preparatory
measures are taken.

FIGURE 3. FI RGB channel. (a) OI (Unique Image) (b) RCH; (c) GCH,
(d) BCH.

FIGURE 4. Preprocessing stages. (a) Unique Image, (b) Resized Image,
(c) G_C Image, (d) TB_H_T Image.

2) DATA AUGMENTATION
One of the most important considerations for efficient DL
model processing is the quantity of the training dataset. Thus,
a large dataset is necessary for training deep learning net-
works to prevent overfitting and generalization issues. The
dataset has a highly skewed distribution across classes, with
the vast majority of pictures being in category 0 (normal).
There is a risk of misclassification because of the high imbal-
ance in this dataset. To clean up the fundus pictures and
increase the size of the retinal dataset, we employed data
augmentation methods. Here is a rundown of the main data
augmentation procedures we ran.

• Images were randomly rotated between 0 and
360 degrees.

• Shearing: Sheared at an arbitrary angle between twenty
and two hundred degrees.

• Vertically and horizontally flipped images were used.
• Images were randomly zoomed by a factor of between
(1/1.3 and 1.3).

• Images were cropped at random to be 85–95% of their
unique size.

• Randomly shifting images between the range of−25 and
+25 pixels served as translation.

Several instances of post-augmentation images are exposed
in Figure 5.

FIGURE 5. Using pre-processed images, multiple augmentation
procedures were functional to augment the retinal dataset.

B. OPTIC DISC (O.D.) AND BLOOD VESSEL (B.V.)
SEGMENTATION
If IC2T is a specific model or framework for image segmen-
tation, I recommend referring to the official documentation or
research papers associated with it for detailed information on
how to use it for segmentation tasks. Additionally, you may
want to check for any code repositories or GitHub projects
related to IC2T for implementation examples and guidance.

For image segmentation in general, there are several
well-known models and frameworks, such as U-Net, Mask
R-CNN, FCN (Fully Convolutional Network), and Seg-
Net, which are commonly used for tasks like semantic
segmentation and instance segmentation.

Three parts of the suggested approach are elaborated upon
in this research. The basic framework is shown first. Sec-
ond, the component’s deeper features are handled with better
precision because of the dual convolutional transformer’s
architecture. Thirdly, our proposed model includes a contour
detectionmodule, which helps the network better extract edge
features that aren’t immediately apparent.

1) OVERALL ARCHITECTURE
a: ATTENTION MECHANISM
The ‘‘attention mechanism’’ may be employed to focus on
important regions or features within the segmented retinal
images when making a classification decision. This can help
improve the accuracy of diabetic retinopathy classification.

In practice, the segmentation component (IC2T Model)
would be used to preprocess retinal images, identifying and
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isolating the regions of interest. The segmented regions or
features would then be fed into the classification component
(Rock Hyrax Swarm-Based Coordination Attention Mech-
anism) for diagnosing diabetic retinopathy based on the
coordinated analysis of these features.

To gain a detailed understanding of this specific approach,
including the architecture, training process, and performance
metrics, you would need to refer to the original research paper
or documentation associated with the model. Additionally,
if code or pre-trained models are available, you can use
them to implement and experiment with the system for your
specific application.

b: ICDR
The abbreviation ‘‘ICDR’’ is not a widely recognized stan-
dard or classification system in the context of diabetic
retinopathy diagnosis. Therefore, it’s essential to clarify what
‘‘ICDR’’ stands for and how it relates to your research. It’s
possible that ‘‘ICDR’’ could be a novel or specific classifi-
cation system or dataset created for your research, and you
should provide a detailed explanation of it in yourmanuscript.

c: ETDRS
The term ‘‘ETDRS’’ stands for ‘‘Early Treatment Diabetic
Retinopathy Study.’’ ETDRS is a widely recognized and
established grading system and classification for diabetic
retinopathy used in clinical evaluation, research, and clinical
trials. It is often considered a gold standard for assessing
diabetic retinopathy severity. If ETDRS or any other estab-
lished grading system is relevant to your work, you should
discuss its role and relevance in your research, especially if
you are comparing or benchmarking your results against it.
Regarding the phrase ‘‘proposes non-proliferative DR (level
3),’’ it’s necessary to provide context and clarification. In the
context of diabetic retinopathy, ‘‘DR’’ typically stands for
‘‘Diabetic Retinopathy,’’ and ‘‘non-proliferative’’ refers to the
stage of the disease that precedes the more severe prolifera-
tive diabetic retinopathy (PDR). The term ‘‘level 3’’ likely
refers to a specific severity level within the non-proliferative
diabetic retinopathy stage, but without additional context or
explanation, it may be unclear to readers.

The innovative model’s architecture is based on Swin-Unet
[41], and it takes the form of a U made up of connections.
The encoder and decoder parts of the U-shaped architecture
extract and reconstruct information, respectively, so that both
local and global characteristics may be captured. The skip
connections, which allow for the integration of low-level and
high-level information, improve the model’s accuracy and
robustness. Multiple blocks and modules handle the process-
ing of sequences of varying resolutions. These manipulations
provide the model with a comprehensive means of extracting
characteristics and capturing prospective data. In sum, this
architecture improves the model’s ability to extract and apply
characteristics from the input data.

In the encoder stage, the input picture is written down as
InputR (H,W,C), where H and W stand for the input image’s

height and width, respectively, and C stands for the input
image’s channel count. Based on this research, C is set at
3. The standard approach to patch embedding [42] includes
segmenting an input picture into 4 × 4 pieces that do not
overlap. Single-size convolution kernel models, on the other
hand, are easily overfit and fail to capture all of an image’s
information because of their limited generalization capacity.
Multi-scale sampling is a method for fixing these issues by
first sampling the image at several scales and then piecing
the results back together. With this method, you can save
nuanced details while still getting the job done. Convolutional
operations with four distinct kernel sizes (4 4, 8 8, 16 16, and
32 32) are used in the multiple-scale sampling procedure. The
patch-embedding method results in a patch that is H/4 W/4 C
in size.

In Section IV-B2, we describe the gated module’s batch
convolution, ReLU, and sigmoid layers in detail and present
formulaic expressions for the proposed dual convolutional
(D.C.) transformer structure. It does this by merging feature
maps from the present and higher layers, filtering out noise
in the process to get richer feature data. In the gated mod-
ule, edge information from contour detection is combined
with the encoder’s one-dimensional features to generate two-
dimensional features. The gated module receives the fusion
information and combines it with additional modules, both
of which provide intermediate data. The gated module’s out-
put will be integrated into the decoder’s middle stages. The
computation is written as a suggested block with two layers.

X̂i = Reshape(Xi) (1)

Ci = Conv(X̂i) (2)

token = Gated
(
Ci, contour tokeni + X̂i

)
(3)

output = DC(token) (4)

where Xi represents derived from the contour detection
module and gated stands in for the gate module(i = 1, 2, 3).

Up-sampling is accomplished with the help of a linear
extension at the decoder step. All the collected characteristics
are then used to produce the final results, which require
mapping sequences linearly to a high-dimensional space.

2) DUAL CONVOLUTIONAL (D.C.) TRANSFORMER BLOCK
Figure 6 depicts the layout of the D.C. transformer chunk.
The Swin Transformer block [43] served as inspiration for

the dual convolutional (D.C.) transformer block, which aims
to capture features at various scales while also expanding
the receptive field of the suggested method. To improve the
convolutional operation of the attention mechanism for med-
ical picture segmentation, a revised parallel convolutional
attention mechanism was made to work with self-attention.
With this method, data may be gathered in both the channel
and spatial dimensions at the same time. Using the CBAM
[44] method, we first produce features throughout the spa-
tial dimension as input. Z l−1

∈ R
H
4 ×

W
4 ×C . The data is

then sent across an interconnected system. Following careful
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FIGURE 6. D.C. Transformer Block Architecture A) Basic transformer;
B) Swin Transformer; C) Projected transformer.

consideration of the spatial and channel dimensions, the
following is the result.

Z = Z l−1
⊗ σ

(
MLP

(
Z l−1
max

)
+MLP

(
Z l−1
avg

))
(5)

ϒ = ϒ l
⊗ σ

(
MLP

(
ϒ l
max

)
MLP

(
ϒ l
avg

))
(6)

The notation max signifies the extreme pooling operation,
avg the average pooling process, and s the sigmoid func-
tion. When it comes to processing local information like
texture and details, smaller convolutional kernels (f(33)) are
preferable, whereas bigger convolutional kernels (f(77)) are
preferable when dealing with global features like shape and
contour. Convolutional kernels of varying sizes allow for
improved capture of multi-scale information. The following
are the formulas needed to calculate the convolution:

Z lc3 = Z ⊗ σ
(
f 3×3 ([

Zmax;Zavg
]))

(7)

Z lc7 = Z ⊗ σ
(
f 7×7 ([

Zmax;Zavg
]))

(8)

ϒ l+1
c3 = ϒ ⊗ σ

(
f 3×3 ([

ϒmax; ϒavg
]))

(9)

ϒ l+1
c7 = ϒ ⊗ σ

(
f 7×7 ([

ϒmax; ϒavg
]))

(10)

We also make extensive use of two mechanisms for multi-
head attention: Relevant linkages between local regions can
be developed using the W-MSA technique. For feature mod-
elling, it partitions the input data into M M windows. Tokens
are used to efficiently collect hidden details across several
areas and include fine-grained internal characteristics. I stand
in for the sample interval in the LD-MSAprocess. Unsampled
sections of the picture were subjected to masking resulting in
H
I ×

H
I groups. Feature within each group to obtain H

I ×
H
I

featuremaps. On the other hand, theW-MSA technique estab-
lishes interdependence by sampling nearby picture blocks.
The final feature representation is derived from a combination
of the two systems’ outputs. Here’s how you can figure out
your W-MSA and LD-MSA:

head = Attention (Q,K ,V )=softmax
(
QKT
√
d

+B
)
V (11)

W −MSAorLD−MSA (Q,K ,V )

= Concat (head1, . . . ., headn)WO (12)

where WO represents the matrix, Q characterizes the query,
K characterizes the key, V represents the value, and B
involves W-MSA and LD-MSA.
The standard Attention(Q,K ,V ) uses a matrix of queries,

keys, and values to perform operations. However, there is no
denying the self-attention mechanism’s flaws when it comes
to modelling immediate dependence. We use the W-MSA
to consolidate the affiliations as a solution to this problem.
TheW-MSAmay be determined using the following formula
when using the window-partitioning method:

Ẑ l = W −MSA
(
LN

(
Z l−1

))
+ Z l−1 (13)

Z l = MLP
(
LN

(
Ẑ l

))
+ Ẑ l (14)

where Ẑ l is for the lth layer’s multilayer perceptron (MLP)
output, while Zl stands for the lth layer’s weighted mean
squared error (W-MSA) output. The LD-MSA technique was
developed with the transformer’s cross-scale attention mech-
anism [45] in mind, allowing it to effectively capture the
associated properties among various tokens. In order to facil-
itate self-attention within the acquired groups and enhance
the interaction among the info elements in each window, the
LD-MSA maps along a certain length and breadth. Here’s
how we may characterize the LD-MSA:

ϒ̂ l+1
= LD−MSA

(
LN

(
ϒ l

))
+ ϒ l (15)

ϒ l+1
= MLP

(
LN

(
ϒ̂ l+1

))
+ ϒ̂ l+1 (16)

where ϒ̂ l+1 denotes the output consequences the (l + 1)-th
layer, while ϒ l+1 denotes the output MLP of the (l + 1)-th
layer. Lastly, ϒ l characterizes the D.C. transformer block,
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while Z l+1 indicates the output of the block.

ϒ l
= Z lc3 + Z lc7 + Z l (17)

Z l+1
= ϒ l+1

c3 + ϒ l+1
c7 + ϒ l+1 (18)

3) CONTOUR DETECTION MODULE
An integral part of our suggested design is the contour discov-
ery component. Themodule’s goal is tomaximize themodel’s
interpretability and boost the efficiency of medical picture
segmentation through the use of contour information included
in the images. The model is given more reference information
to improve segmentation accuracy, and the contour detection
module is built to keep track of all contours (both internal
and exterior). Our method is able to successfully acquire
and utilize more detailed contour information than conven-
tional segmentation methods that simply focus on outward
contours. This improves the model’s ability to comprehend
medical picture limits and structure, which in turn yields
more precise segmentation outcomes. The ‘‘find Contours’’
function, a variation of the Suzuki-Beck technique, is used
in the OpenCV module of Python to recognize the items in a
medical picture.

First, the image is processed to get rid of the testing couch
or whatever else could be in the way. If there is no such
disruption, you can skip this procedure. After that, we identify
and extract the contoured features. In order to successfully
extract contour information from pictures while keeping local
features intact, CVmethods are needed to complete the detec-
tion process, otherwise known as contour detection. Tasks
requiring processing benefit greatly from both the contoured
and local features. Downsampling is then used in the con-
tour detection module to provide consistent sizing across all
channels.

4) HYPER-PARAMETER TUNING PROCESS
The vast majority of researchers recommended using opti-
misation techniques to determine the best scaling factor.
In particular, in recent years, the NIO algorithms have
been proposed, such as the evolutionary algorithms ABC,
grasshopper, bat, and firefly. However, it is also impor-
tant for NIO to strike a balance between exploratory and
exploitative search behaviours. Our suggested method uses
a modified version of the grasshopper-BAT (G-BAT) opti-
mization algorithm to strike a balance between exploratory
and exploitative search styles.

The grasshopper optimisation (G.O.) algorithm is a quick
and simple NIO technique that draws inspiration from the
swarm intelligence of actual grasshoppers [46]. By not
becoming stranded in local optima, G.O. maintains a healthy
balance between exploration and exploitation in its search
behaviour. Grasshoppers may get to their safe zones more
quickly, but the swarm doesn’t converge on a central node.
Thus, the search is inaccurate, and it happens too soon.
The suggested method combines the G.O. algorithm with
the BAT algorithm to fix the flaws of the G.O. algorithm
and its accuracy. Similarly, to NIO [47], BAT is a swarm

intelligence optimization technique. The BAT algorithm is
one of a kind because it strikes a balance between exploratory
and exploitative behaviours and has the benefit of enabling
automated switching between exploration and exploitation to
obtain the ideal solution, as opposed to relying on the fixed
and predefined algorithmic dependent limits utilized bymany
NIO procedures. The primary parameters for optimizing the
hybrid G-BAT are shown in Table 2 [48].

TABLE 2. List of basic limits for hybrid G-BAT.

C. CLASSIFICATION METHODOLOGY
In this section, the study introduces the three mechanisms
of CAMNet in detail: the coordination attention mechanism
(CAM) and the linear unit. This is likely an acronym or
shorthand for the name of the specific model or system used
for classification. It could represent a combination of initials
or words related to the model’s design or purpose.

Classification of Diabetic Retinopathy: This part of the
description indicates the main task that the model is designed
for, which is the classification of diabetic retinopathy. Dia-
betic retinopathy is a medical condition affecting the eyes of
individuals with diabetes.

n the relevant section of your manuscript, clearly define
the different severity levels within your diabetic retinopathy
classification system. For example:

Level 0: No diabetic retinopathy (DR) features observed.
Level 1:Mild non-proliferative DR (NPDR) with [specific

features].
Level 2: Moderate NPDR with the presence of any

hemorrhages.
[Additional severity levels as applicable].

1) OVERALL FRAMEWORK OF CAMNET
In the case of a segmented picture, Z = X + Y, where X is
the collection of image pixels and Y is the collection of labels
associated with those pixels. Processing and filling the input
picture pixel by pixel yields N cubes of size S.R. (HWL),
which are used for learning edge features. Cube space size
(H, W) and number of spectral bands (L) are shown below.
The three primary components of the intended CAMNet are
as follows: At first, a convolution module is used to get
the picture from the input. Second, a coordinated attention
method is developed to completely take into account the
space and spectrum of the input picture. Following feature
extraction, a linear module is developed in the spirit of the
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ghost module to extract complex characteristics with more
precision. The layer is used to produce the final classification
results. After that, we’ll go over CAMNet’s overall design
and the principles behind each individual module.

2) CAM
Convolutional neural networks (CNNs) can improve their
feature discrimination and picture classification abilities by
employing an attention mechanism. The key to improved
classification, however, lies in feature extraction, namely in
the efficient extraction of spatial and spectral dimension data.
As a result, we suggest a technique for coordinated attention
to be employed in investigating the feature-distance connec-
tion. The spatial and spectral attention masks are obtained by
the process in accordance with the long-distance connection.

There are two components to the CAM: spectral attention
and spatial coordination. In order to better discern between
spectral bands and achieve more precise spatial correlations,
backdrops. The formula for Fout , if FR(HWL) is fed into
CAM, goes as follows:

Fout = F .MH (F) .MW (F) .ML(F) (19)

where F and Fout characterize the input and output of CAM
correspondingly.MW .H .(·) characterizes the attention map in
direction H, and the output scope is H × 1 × 1. MW .W .(·)
characterizes the attention map in direction W, and the output
scope is 1 × W × 1. Similarly, ML(·) signifies the attention
map in direction L, and the output scope is 1 × 1 × L.MH (·)
and MW (·) are obtained by seeing the vertical and info, so as
dependent information. Exactly, F obtains FH ∈ RH×1×1 in
the vertical direction and FW ∈ R1×W×1 horizontally through
a layer of pooling data from all across the world and then cas-
cading the findings. The vertical and horizontal long-distance
dependencies are extracted by sending the cascaded results
to the layer, the batch normalization layer (B.N.), and the
nonlinear activation layer. The h_swish [49] activation func-
tion is used in the nonlinear activation layer; it requires few
parameters but improves neural networks’ representational
power. The h_swish function may be uttered as,

f (x) = x · sigmoid(ax) (20)

where a is a trainable limit. Lastly, the obtained results are
unglued and attention map MH (·) and the horizontal map
MW (·).

Likewise, F passes through the layer to get FL ∈ R1×1×L ,
and then the gotten result permits finished the unit the layer
to find the mapML(F). The application procedure of CAM is
exposed in Procedure 1.

3) CONVOLUTION MODULE
In terms of feature extraction, CNNs are quite capable. In par-
ticular, CNN’s convolution and pooling procedures may be
used to extract more nuanced insights from raw data. In order
to prevent any loss of information, a CNN may be used to
segment pictures to maintain the correlation between data

Algorithm 1 Facts of CAM
1: Input:
2: Features: F ∈ RH×W×L .
3: Output:
4: Feature of CAM: Fout ∈ RH×W×L .
5: Initialization:
6: Initialize all weight parameters of convolutional kernels.
7: F passes through L Avgpool, H AvgPool, and W AvgPool
layers to generate FL ∈ R1×1×L ,FH ∈ RH×1×1, and
8: FW ∈ R1×W×1, respectively;
9: Reshape the size of feature F.H. to 1 × H × 1 and cascade
with F.W. to generate FHW ;
10: Convolute FHW with the 3D unit convolution kernel and
the results through regularization and nonlinear a:

11: Activation function layer to generate FHW ;
12: Split F ′

HW and convolute the results with convolution
kernel to generate F.H.’ and F.W.’;
13: Normalize F .H .′ and F .W .′ with the sigmoid function to
generate the attention features M.H. (F)∈ RH×1×1 and
14: MW (F) ∈ R1×W×1;
15: Convolute FL with the convolution kernel to generate
F .L.′;
16: Normalize F ′

Lwith the sigmoid function to
generate the attention feature ML(F) ∈ R1×1×L ;
17: Finally, the attention features MH (F) ∈ RH×1×1,
MW (F) ∈ R1×W×1, and ML(F) ∈ R1×1×L are added to the
input feature F to

18: obtain Fout ∈ RH×W×L .

pixels. Additionally, DR classification is still centred on the
efficient extraction of spatial and spectral information from
input pictures.

In this research, we present a space-spectrum convolution
block for efficient extraction of spatial-spectral character-
istics. Based on how Inception V3 [49] used a smaller
convolution kernel to learn spatial-spectral characteristics,
the convolution layer also uses this kernel to lower the
parameters. Figure 7 depicts the internal construction of the
convolution module.

FIGURE 7. Convolution unit construction diagram.

As can be seen from Figure 7, input Xi entails the size of
n× n× b. Xo is convolution, which can be spoken as,

X0 = F(Xi) (21)
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In which F() is a composite nonlinear function. A three-
layer neural network with convolution, batch normalization
(B.N.), and a recurrent linear unit (ReLU) as its activation
function. In the convolutional layer, the convolution kernel
size is 1 1 3. With the ReLU function, nonlinear relationships
between layers of a neural network may be strengthened,
allowing the network to do its complicated duties.

gactivate (x) =

{
x others
0 x ≤ 0

(22)

where x characterizes gactivate (x) symbolically stands for
the nonlinear activation functions. In addition, a ReLU to
normalize the data, which helps with the dispersion issue
and speeds up the convergence time. Here is the formula for
normalization:

x̂(i) =
x(i) − E

[
x(i)

]√
Var

[
x(i)

] (23)

where E
[
x(i)

]
characterizes the regular of each neuron, and√

Var
[
x(i)

]
represents the typical nonconformity of the input

rate of each neuron.

4) LINEAR MODULE
The best way to boost classification performance in the
DR classification assignment is to extract as much feature
information as feasible. The ghost module [50] served as
inspiration for the linear module used in this paper. Based on
the features provided by the combined CAM and convolution
modules, the linear module creates a more detailed feature
map. Figure 8 depicts the linear module’s internal construc-
tion. To generate the output yo, we first linearly convolve the
input yi to produce ym, and then we cascade the feature map
ym with the input yi. The following expression defines the
linear convolution output ym.:

ym = ϕ (yi) = vx,y,zi,j (24)

vx,y,zi,j =

∑
C

∑hi−1

a=0

∑wi−1

β=0

∑li−1

γ=0
Kα,β,γ,
i,j,C

· v(x+α),(y+β),(z+γ )
(i−1),C + bi,j (25)

where ϕ(·) is a function, vx,y,zi,j characterizes the neuron at
the site (x, y, z) of the j-th map on the i-th layer, hi,wi,
and li characterize the dimension, correspondingly, and C is
the index of (i − 1) map. In totalling, Kα,β,γ,

i,j,C characterizes
the j-th kernel on (a, b, g) at the C-th map position of layer
i. v(x+α),(y+β),(z+γ )

(i−1),C characterizes the value of the neuron at
(x + a, y+ b, z+ g) of layer (i − 1), and bi,j is the partiality
term.

5) HYPER-PARAMETER TUNING PROCESS
The proposed classifier is tuned using RHSO (Rock Hyrax
Swarm Optimisation), a meta-heuristic motivated by the
social behaviour of rock hyraxes. The RHSO algorithm rep-
resents the collective foraging strategy and point of view of

FIGURE 8. Construction diagram of linear unit.

FIGURE 9. Feature selection replicas block diagram.

rock hyraxes. Rock hyraxes live in colonies or groups, each
of which is overseen by a dominant male. The algorithm
looks for the best options by integrating local heuristics with
historical data to determine which attributes will be the most
useful in the categorization process [51].

All of the data is split into a training set and a testing set,
as shown in Figure 9 of the RHSO’s workingmodel. The ideal
features are found by feeding the training data (i.e., f(x)) into
the optimization process. A classification model’s efficacy
may be evaluated by providing it with a training set, an evalu-
ation set, and a feature subset (i.e., f(x)). Equation (26) might
be used as a metaphor for the procedure of selecting the most
desirable features. Equation (27) improves the accuracy of
classification using the aforementioned features by reducing
the error with each repetition.

The size of the population, the number of generations,
starting social scaling factors, mutation rates, and crossover
rates are all variables that may be tweaked to influence the
outcome of a population-based algorithm. The optimization
algorithm may get stuck in a local optimum stage with
inappropriate parameter values, which would increase the
computational cost of the optimization algorithm problem,
and thus the performance of the optimization method. These
problems can be solved by employing the RHOSFS tech-
nique. In order to streamline the classification process, this
strategy allows for the selection of the most relevant input
features. This section elaborates on the RHOSFS technique.

A random population must be generated, selected, and
analyzed before the total number of F.S. input characteristics
can be calculated. Make it such that each group of features
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stands in for a different slice of the input population. The goal
of this research is to identify the set of input qualities that,
taken together, have the dual effect of reducing the model’s
fitness and increasing its accuracy.

err (xi) = actual_output(xi)

− model_estimated_output(xi) (26)

fitness (x) =

∑n
x=0 err(x)

n
(27)

leader = r1 × x(leaderpos, j) (28)

where r1 is a random integer in the range [0, 1], x is the
leader’s prior position, leader_pos is the leader’s old position,
and j means ‘‘each reduction.’’ Each member updates its
position using Equation (29) once the leader’s position has
been modified.

x (i, j) = (x (i, j) − (circ× x (i, j) + leader)) (29)

To try to reproduce the circle system in Equation (30),
where circ signifies circular motion, the following calculation
is made:

circ = sqrt
(
n21 + n22

)
(30)

n1 = r2 × cos(ang) (31)

n2 = r2 × sin(ang) (32)

In Eqs. (31) and (32), where radius is a chance number
among [0,1], and ang is the angle of a motion and is a
random number between [0, 360], respectively. The lower
and upper bands of the random number generator (lb and up,
respectively) are used to inform an update to the range that
occurs with each generation.

dalta = random[lb, ub] (33)

ang = ang+ dalta (34)

If the output goes beyond the specified range (greater than
360 or less than 0), the angle (ang) can be changed to 360 or
0. Only those people whose new fitness value are higher than
or equal to their old value are selected, and their novel fitness
rate is inverted. Only the least fit individuals are passed on to
the following generation. At last, the algorithm decides which
candidates is the best fit.

V. EXPERIMENTATION, RESULTS AND DISCUSSION
A. SETUP FOR IMPLEMENTATION
PyTorch (https://pytorch.org/), a universal Python library,
was used to create the suggested architecture and conduct the
experiments. This research’s tests, including the training of
themodels, were conducted on an outfittedwith an Intel Xeon
E5-2620 CPU running at 2.4 GHz and three NVIDIA GPUs,
each with 12 GB. of RAM.

B. PARAMETERS EVALUATION
Automatic identification of retinal images for early-stage
diabetic retinopathy using the fundus camera needs basic
preprocessing steps before image distribution steps can be

made. The retinal fundus picture collection is preprocessed
using a combination of different techniques, including con-
trast adjustment, standard strain, and adaptive sifting. The
accuracy of the algorithmic method for describing the retina
was evaluated by computing the PSNR. The PSNR has a
logarithmic value in decibels. When compared to the original
image, the modified version has a higher advanced PSNR
value.

Disease-related statistics and non-disease-related statistics
are the two main types of statistics in healthcare. Evalua-
tions of comprehension and detail help determine the level
of correctness of actions. Digital fundus pictures for DR
are created by a computation of each image’s empathy, and
the area of medicine studies the importance of sensitivity in
this context. Based on fundus images, the true identifies the
pixels that contain lesions, whereas the true reveals the non-
lesion pixels. In contrast, a false negative (F.N.) represents
lesion pixels that were overlooked by the implies number of
non-lesion pixels that were incorrectly followed by guidelines
[52]. Area was used to assess the efficacy of the suggested
approach.

TABLE 3. Consequences of segmentation technique using e-ophtha-EX
datasets.

TABLE 4. Consequences of segmentation technique using DIARETDB1
datasets.

C. VALIDATION ANALYSIS OF PROPOSED SEGMENTATION
RESULTS
The proposed segmentation perfect is validated on three
datasets, and its values are given in Tables 3, 4 and 5.

Table 3 above represents the consequences of the segmen-
tation technique using e-aphtha-EX datasets. In the analysis
of the consequences of the segmentation technique, the mIoU
is 0.94 and the mDice is 0.97, and the F1-Score value is
0.98, the precision degree is 0.94, the recall rate is 0.99, and
finally, the accuracy rate is 0.96, respectively.

The consequences of the segmentation technique using
DIARETDB1 datasets are shown in Table 4 above. The exper-
imental evaluation of the H.M. model yielded the following
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results: mIoU rate of 0.87, mice degree of 0.83, F1-Score
range of 0.72, precision range of 0.87, recall rate of 0.99, and
accuracy rate of 0.87, respectively. The mIoU rate was 0.71,
the mDice rate was 0.83, the F1-Score range was 0.92, the
recall rate was 0.99, and the accuracy rate was 0.71 after the
HEmodels reached those values, respectively. TheMAmodel
then achieved the following values: mIoU rate of 0.87, mDice
rate of 0.83, F1-Score range of 0.72, precision range of 0.87,
recall rate of 0.99, and accuracy rate of 0.87, respectively.
Following the S.E. model’s achievement of the mIoU rate of
0.86, the mDice rate of 0.88, the F1-Score range of 0.87, the
precision range of 0.86, the recall rate of 1.00, and finally the
accuracy rate of 0.86, respectively.

The consequences of the segmentation technique using
IDRiD datasets are indicated in Table 5 above. ThemIoU rate,
mDice rate, F1-Score range, precision range, recall rate, and
accuracy rate for the H.M. model were all reached at 0.86,
0.88, 0.86, and 1.00, respectively, in the assessment metrics.
The mIoU rate, mDice rate, F1-Score range, precision range,
recall rate, and accuracy rate were all reached by the HE
models at respective values of 0.88, 0.84, 0.88, 1.00, and
0.88, respectively. Following the M.A. model, the following
values were obtained: mIoU rate of 0.71, mDice rate of 0.83,
precision range of 0.71, recall proportion of 1.00, and accu-
racy rate of 0.71, respectively. The O.D. model then reached
the following values: mIoU rate of 0.86, mDice rate of 0.87,
F1-Score range of 0.87, precision range of 0.86, recall rate of
1.00, and accuracy rate of 0.86, respectively. The S.E. model
then achieved a mIoU rate of 0.84, a precision range of 0.87,
a recall rate of 0.98, and an accuracy rate of 0.97, respectively.

TABLE 5. Consequences of segmentation technique using IDRiD datasets.

D. VALIDATION ANALYSIS OF PROPOSED CLASSIFIER
Tables 6 to 8 present the analysis of the proposed classifier
with existing models on three datasets. The existing models,
such as Capsule Network [23], CNN [24], and SqueezeNet
[25], DenseNet [29], EfficientNet [35], SbCNF [37], and
AlexNet+GoogleNet with the SVM [36] use various datasets
for DR. Hence, comparative techniques are implemented in
our research data, and the results are averaged.

The results of the classifier method using the e-ophtha-
EX datasets are shown in Table 6 above. In the analysis of
the SqueezeNet model, the accuracy rate, sensitivity rate,

TABLE 6. Results of classifier method using E-ophtha-EX datasets.

precision rate, specificity rate, F1-score rate, and AUC rate
were all determined to be 0.9792, 0.9694, 0.9744, 0.9710,
and 0.9798, respectively. The DenseNet model then achieved
accuracy rates of 0.9615, sensitivity rates of 0.9475, precision
rates of 0.945, specificity rates of 0.9622, F1-score rates of
0.9339, and finally, AUC rates of 0.9815. The EfficientNet
model then obtained accuracy rates of 0.9570, sensitivity
rates of 0.9308, precision rates of 0.9375, specificity rates of
0.9439, F1-score rates of 0.9254, and finally AUC rates of
0.9748. The CAM-RHSO model then achieved an accuracy
rate of 0.989, a sensitivity rate of 0.9801, a precision rate
of 0.9915, a specificity rate of 0.9715, an F1-score rate of
0.9869, and finally an AUC rate of 0.9905, in that order.

TABLE 7. Results of classifier method using DIARETDB1 datasets.

The results of the classifier method using the DIARETDB1
datasets are shown in Table 7 above. According to the analysis
of the SqueezeNet model, the accuracy rate was 0.9459, the
sensitivity rate was 0.9481, the precision rate was 0.9512, the
specificity rate was 0.9435, the F1-score rate was 0.9299, and
the AUC rate was 0.969. Next, the DenseNet model achieved
accuracy rates of 0.9375, sensitivity rates of 0.943, precision
rates of 0.923, specificity rates of 0.9266, F1-score rates
of 0.903, and finally, AUC rates of 0.964. The EfficientNet
model then achieved an accuracy rate of 0.9315, a sensitivity
rate of 0.9305, a precision rate of 0.92, a specificity rate of
0.9234, an F1-score rate of 0.9181, and finally an AUC rate
of 0.961, all in accordance with the data. The CAM-RHSO
model then achieved respective accuracy rates of 0.96, sen-
sitivity rates of 0.953, precision rates of 0.9715, specificity
rates of 0.987, F1-score rates of 0.965, and AUC rates of 0.98.

The results of the classifier method using the DIARETDB1
datasets are shown in Table 8 above. The SqueezeNet model’s
evaluation resulted in accuracy rates of 0.9352, sensitivity
rates of 0.9312, precision rates of 0.9232, specificity rates
of 0.9099, F1-score rates of 0.9122, and finally, AUC rates
of 0.949. The DenseNet perfect then achieved respective
accuracy rates of 0.9205, sensitivity rates of 0.9074, precision
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TABLE 8. Results of classifier method using IDRiD datasets.

rates of 0.9225, specificity rates of 0.9222, F1-score rates
of 0.917, and AUC rates of 0.947. The EfficientNet perfect
then achieved accuracy rates of 0.913, sensitivity rates of
0.9008, precision rates of 0.9175, specificity rates of 0.919,
and finally AUC rates of 0.944. Next, the CAM-RHSOmodel
achieved accuracy rates of 0.9750, sensitivity rates of 0.9638,
precision rates of 0.954, specificity rates of 0.9796, F1-score
rates of 0.942, and finally, AUC rates of 0.965.

FIGURE 10. Analysis of various models.

The validation analysis of the proposed classifier for the
entire dataset is shown in Table 9 above. In the analysis of the
Capsule Network [23] approach, the first-class accuracy was
94.12, the precision rate was 0.94, the recall degree was 0.86,
and the F1-score was finally 0.90. The second-class accuracy
was 95.34, the recall rate was 0.95, and the F1-score was
finally 0.91. The first-class accuracy was 89.04, the precision
proportion was 0.61, the recall rate was 0.87, and the F1-
score was finally 0. Approaching the first class accuracy
of 95.80, the precision rate of 0.96, the recall rate of 0.90,
and the F1-score of 0.93, respectively, the fourth class accu-
racy of 95.67, the precision rate of 0.96, the recall rate of
0.88, and the F1-score of 0.92, respectively, the first class
accuracy of 90.94, the precision rate of 0.67, the recall rate
of 0.91, and the F1-score of 0.77, respectively, and finally

FIGURE 11. Graphical representation of the proposed model with
existing models.

FIGURE 12. Comparative analysis based on F1-score and AUC.

the AlexNet+GoogleNet with SVM [36] approach the 1st
class accuracy of 96.75 and the precision rate as 0.99 and
also the recall degree as 0.91 and finally the F1-score as
0.95 respectively then the 3rd class accuracy of 95.56 and
the precision rate as 0.84 and also the recall frequency as
0.99 and finally the F1-score as 0.90 respectively then the 1st
class accuracy of 96.53 and the precision rate as 0.94 and also
the recall rate as 0.91 and finally the F1-score as 0.93 respec-
tively then the 4th class accuracy of 98.48 and the precision
rate as 0.98 and also the recall rate as 0.96 and finally the
F1-score as 0.97 SbCNF [37] approach the 1st class accuracy
of 86.57 and the precision rate as 1.00 and also the recall
rate as 0.68 and finally the F1-score as 0.81 respectively
then the 1st class accuracy of 97.08 and the precision rate
as 0.94 and also the recall proportion as 0.94 and finally the
F1-score as 0.94 respectively then the 1st class accuracy of 3
87.77 and the precision degree as 0.47 and also the recall rate
as 1.00 and finally the F1-score as 0.64 respectively then the
1st class accuracy of 98.32 0.94 and also the recall rate as
0.99 0.96 respectively. Finally, using our suggested method-
ology, the first-class accuracy was 98.72 percent, the F1
score was 0.96, and the precision rate was 0.98 percent. The
second-class accuracy was 99.75 percent, the precision rate
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TABLE 9. Validation analysis of proposed classifier for whole dataset.

was 1.00 percent, the recall rate was 0.99 out of a hundred,
and the F1 score was 0.99 percent. The third-class accuracy
was 98.09 percent, the precision degree was 0.93 percent,
the recall rate was 0.99 percent, and the F1 score was
0.96 percent.

VI. CONCLUSION AND FUTURE SCOPE
Diabetic retinopathy therapy relies heavily on early diag-
nosis. The pace of this procedure is keeping pace with the
development of relevant technologies. The severity of the
fundus pictures was classified using A.I. models in this study.
The research suggests an innovative two-stage DR detection
approach, with the first stage including OD and BV seg-
mentation and the second stage involving DR categorization
using transfer learning. During preprocessing, we extracted
the green channel, resized everything uniformly, applied a
top-bottom hat transformation, and segmented the OD and
BV. Next, publicly accessible datasets are used to train
CAMNet for DR-perfect. These datasets are Messidor-2 and
DIARETDB0. Results from the evaluation of the projected
model on the dataset show promising clinical relevance.
The experimental research demonstrates that the suggested
perfect outperformed state-of-the-art representations by a
wide margin, with an accuracy of 96% to 98% across three
datasets. The study indicated that the classification accu-
racy of proliferative DR pictures was enhanced by adding
data from automated image segmentation. Other imaging
problems, especially those with sparse training data, might
benefit from this method of segmentation-assisted classifica-
tion. The potential for the employment of many algorithms
to complement each other to enhance all sorts of deep
learning issues justifies further investigation beyond imag-
ing. Explore opportunities for fine-tuning and optimizing the
IC2T model and the Rock Hyrax Swarm-Based Coordination

Attention Mechanism. Investigate different hyperparameters,
architectures, or training strategies to improve performance
further.
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