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ABSTRACT The paper studies the control of wheeled land mobile robots (MRs) using nonlinear equations
and non-holonomic dynamic constraints. Due to the complex and unpredictable nature of the environments
in which these robots operate, designing a controller for them is a challenging task. Uncertainties in the
system further compound the problem. To tackle these challenges, this paper proposes a novel approach
based on type-3 (T3) fuzzy logic systems (FLSs) for system identification and parameter estimation. The
T3-FLSs are used to create an onlinemodel of theMRs dynamics, which is then used to design amodel-based
control system. To account for the approximation error of T3-FLSs and the effect of un-modeled dynamics
and constraints, an optimal supervisor is designed. The supervisor compensates for any error in the model
and ensures that the control system remains stable under symmetrical constraints. A Lyapunov analysis is
conducted to verify the stability of the system. The simulations demonstrate that the proposed controller
yields excellent results even in the presence of non-holonomic constraints and fully unknown dynamics.
The findings of this study offer significant insights into the challenges associated with controlling MRs and
provide a promising solution to address these issues.

INDEX TERMS Adaptive control, fuzzy control, non-holonomic, optimal control, robotic systems,
symmetrical constraints, type-3 fuzzy logic.

I. INTRODUCTION
Mobile robots (MRs) are the most useful and popular robots
due to their efficiency and simple structure. As a result,
research on this category of robots has received a lot of
attention. This type of robot is a good replacement for humans
in dangerous places. Today, with the expansion of control
knowledge, wheeled landmobile robots are being considered.
The format of working in different spaces, the lack of
working space limitations, scientific adaptability, mechanical
simplicity, etc., are among the important capabilities of
this category of robots. These robots have three degrees
of freedom in the plane, including spatial coordinates and
orientation. Meanwhile, non-holonomic robots control the
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spatial coordinates and orientation of the robot by adjusting
the torque of two motors on the wheels. The main problem of
these robots is the non-linearity of the governing kinematic
equations, due to which the non-linear controllers play an
important role in regulating the robots’ behavior [1], [2].

The nonlinearity of the equations along with the
non-holonomic dynamic constraints and the multi-input-
multiple-output nature of these systems have complicated
the design of the controller for these robots. Also, due
to the operation of these robots in complex environments
and the presence of factors such as friction and uncertainties
in the system, the controller design process is usually
associated with trial and error. The main disadvantage of
the trial and error method is not finding optimal control
parameters and the dependence of the designed controller on
the selected platform. One of the proposed approaches to find
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a solution for the above-mentioned problems is to use system
identification methods to find the system model and estimate
its parameters [3].

Commonmobile robots, such as robots with quasi-machine
structures or differential thrust, face limitations in movement.
The quasi-machine moving robot cannot move sideways and
rotate in place. A differential moving robot can rotate in place,
but it is still not possible to move sideways for this robot
either. In omnidirectional moving robots, there are movement
limitations. The above limitations do not exist and the robot
has the possibility to move in any direction. Non-holonomic
omnidirectional robots have a limitation in tracking a path
whose curvature curve is not continuous, and they have to
stop and adjust the direction of the wheels before continuing
the path. In fact, it is possible before giving the velocity vector
for a non-holonomic omnidirectional robot, it is necessary for
the robot to come to a complete stop to adjust the position of
the wheels according to the new velocity vector.

Holonomic omnidirectional robots can follow any velocity
vector without any initial adjustment, regardless of their
state. Holonomic robots are classified into two classes.
The first category is robots whose wheels have a special
mechanism. However, the second category of holonomic
robots uses simple non-holonomic wheels. Universal wheels
are equipped with rollers on the wheel circumference that
allow passive free rotation around tangential rotational axes.
In this case, the wheel will not show resistance against the
movements perpendicular to the wheel surface. The use of a
sphere, whose axis of rotation can be changed at any moment,
forms the basic idea of another group of holonomic wheels,
a number of rollers that rotate the sphere in one direction
and in another direction. They have no resistance against its
movement, they are installed on a spherical wheel to provide
its thrust [4].

In last decades, extensive research has been carried out
in the field of control systems of dynamic robots and many
articles have been published in this direction. It can be said
that the main part of this investigation is the problem of
rejecting the path by the robot in the presence of uncertainty.
There are many difficulties in implementing model-based
controllers. One of the most important of these problems is
the inability to accurately model. In addition, the presented
models will be too complex to make the design difficult for
the controller. Inaccuracy in modeling, uncertainty in model
parameters, and unmodeled dynamics are other challenging
issues in control model-based robots [5].

A. REVIEW
As mentioned, MR is a non-linear system with limited move-
ment, which, with its simple structure and high efficiency,
is used in medicine as a smart wheelchair, in rescue for
detection and rescue, in military industries for mine detection
and in industry. It has many uses as a warehouse and cargo
carrying robot. In this sense, the control of the MR is very
important. In the structure of this robot, the wheels play an

important role. To move these wheeled robots, they use a
small number of connections between the robot body and
the wheels; Therefore, the connection of the wheels to the
body, correspondingly, the connection of the actuators to the
wheels and factors such as the way of connection, the type
of wheels, disturbances, dynamic and static frictions in each
wheel and connection, access to the dynamic equations of
the robot, or in other words, precise modeling of the robot
It causes problems for the mobile. On the other hand, in case
of access to these factors, modeling is difficult, even in the
case of correct modeling, the design of the controller will be
very complicated and this will increase the construction costs.
The presented solutions can be divided into two parts:

• Control of MRs based on kinematics.
• Control of MRs based on kinematics and dynamics.
In the control of the MRs based on the kinematics, the

traditional closed-loop stable kinematic control technique is
used [6]. In this method, the controller is constructed based
on the kinematic equations without considering the dynamic
equations of the robot; Therefore, this control method cannot
ensure the stability in the presence of structural and non-
structural uncertainties. For this reason, to overcome these
problems, the researchers presented the control methods
using both kinematics and dynamics. In this approach,
researchers use techniques such as feedback linearization [7],
neural-fuzzy control [3], [8], adaptive control [9], adaptive
neural-fuzzy control [10], [11], and FLS-based optimal
control [12], [13].

Over the past few decades, researchers have focused more
on studying the kinematic control of MRs while relatively
less attention has been given to their dynamic control.
However, in engineering, dynamic control is more practical
and beneficial as they involve torque input. As a result,
it is advisable to prioritize the study of dynamic control in
wheeled mobile robots. In the field of dynamic controlling
of these systems using the base model control method,
many valuable works have been done. In [14], the adaptive
control method has been used to control a mobile robot
with a non-holonomic constraint that has unknown dynamic
parameters. In [15], an adaptive controller is proposed for
tracking the time reference path by a wheeled mobile robot.
In [10], an adaptive neural SMC has been designed to
follow the reference path by a wheeled mobile robot. In
[16], by combining the SMC control method and the inverse
dynamic method, tracking of the time reference path has
been done by a wheeled mobile robot that has uncertainty
in the model and external disturbances. In [17], a robust
feedback linearized controller using upper bound estimation
of uncertainties is presented for robot control.

Model-based control systems need an accurate model of
the system, which may be extremely hard or even impossible
to obtain. Anyway, among the different control algorithms,
those methods that have less dependence on the dynamic
model and also have less computational load are prioritized.
Therefore, the design of a non-model-based control method
is more appropriate than the model-based control algorithm.
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Several types of research have been conducted on the
non-model-based dynamic control method for controlling
wheeled mobile robots. In [18], a FLS-based controller
is designed to follow the desired path by a two-wheel
differential robot. In [19], using a neural network, position
control and tracking of the time reference path has been done
by a wheeled mobile robot. In [20], tracking of the time
reference path has been studied using the non-model-based
method of Jacobian matrix. In this method, control signals
are produced based on filtered errors.

Although the closed loop system with above mentioned
controllers has a good efficiency, the problems of these
control methods are as follows:

• The input of these controllers is in the torque space, and
in their design, the dynamic equations of wheeled robot
drives are not considered.

• In order to guarantee the stability, the input coefficients
of the controllers have been adjusted with large values;
Therefore, the input of these controllers is not acceptable
and their practical implementation is facing problems.

• Due to the use of multiple adaptive rules in the
input of these controllers, the volume of control input
calculations has increased and in case of a delay in the
control input calculation, it is not possible to ensure the
stability.

The valuable ability of fuzzy and neural systems in
approximating functions has made it possible to design the
control system independently of the MR model. FLSs have
been used successfully in various control and fault detection
problems [21], [22], [23]. When the system is complex
and it is not possible to find the optimal solution with
analytical methods, intelligent optimization algorithms come
into play and make it possible to reach the optimal solution.
Recently some FLS based controllers have been designed.
For instance, in [24] hybrid approach is presented using
T3-FLSs and Bee-Colony algorithm for trajectory tracking
in an Autonomous MRs. The performance of different types
of FLSs is compared, and the T3-FLS is found to be
the best in adapting to uncertainty and achieving better
control performance than other systems. In [25], a predictive
controller is developed forMRs, and deep learning techniques
are employed to improve the tracking accuracy.

In [26], an observer is suggested to identify the modeling
error of T3-FLSs, and then fault-tolerant controller is
designed. In [27] a methodology is suggested for improving
the accuracy of the differential evolution approach in
designing an optimal T3-FLS for controlling a MR. The
methodology is tested on a type-3 Sugeno controller with
different noise levels, and the efficacy is compared to other
studies in the literature. A observer-based bounded controller
is introduced in [28] for robotic systems with uncertainties,
using T3-FLSs to model system uncertainties. A backstep-
ping approach with projection-type laws is utilized, and
saturation functions are implemented to prevent actuator
constraints from being exceeded. In [29] a fuzzy PID control
method is suggested for MRs. The method uses geometric

modeling to determine parameters that affect movement
accuracy and stability, and combines the superiorities of both
PID and FLS-based control. A FLS-based recursive SMC
strategy is developed in [30] for an omnidirectional MR used
in agriculture. The method uses a kinematic-and-dynamic
model to ensure accuracy and stability.

The stability is mathematically studied, and experiments
are provided to compare the controller to conventional SMCs.
A new controller designed in [31] for an nonholonomic
MR that can avoid static and dynamic obstacles while
following a desired path. The controller combines a feedback
linearization concept and a FLS for path following and
obstacle avoidance, respectively. The hybrid controller is
proven to converge the robot to the reference path and
ensure stability. A finite-time adaptive controller using type-2
FLSs is suggested in [32] for a four-wheels MR using
a backstepping technique. The controller uses an T2-FLS
based approximator to estimate the complex dynamics and
relies only on available parameters. The stability is ensured
through finite-time stability theorem, and simulations show
its effectiveness compared to an type-1 FLS-based controller
and a PID. In [33] the control of a multi-robot systems is
discussed. The A T2-FLS based controller using particle
swarm optimization is compared with two other algorithms.
It is shown that T2-FLSs has better performance in terms of
iteration, time, resource usage, and robot movement. In [34]
the effectiveness of T2-FLSs in a IoT system is verified by
testing in different cars on various roads. In [35] FLSs are
used to improve the efficiency in a 6G network.

B. PROBLEM STATEMENTS AND CONTRIBUTIONS
Previous designs of mobile robot control, are based on the
torque control approach. In this strategy, the torque of the
robot’s joints is the control command or system input. But
in practice, the torque command cannot be applied directly
to the input of the robot, and it requires the presence of
drivers. This strategy ignores the dynamics of engines in the
law of control and command execution. This defect questions
the efficiency of the robot to perform fast and precise tasks.
Furthermore, the torque controller is complicated due to the
robot’s dynamics. Themost problems of the above controllers
are summarized as follows:

• Adaptive control is one of the useful methods in control-
ling nonlinear systems with uncertainty, but this method
is only useful in overcoming parameter uncertainties,
and in case of non-structural disturbances like friction
and un-modeled dynamics, it cannot guarantee the
stability.

• In the proposed way of controlling the position of MR
and overcoming the existing parameter uncertainties,
several adaptive rules have been used in the control
input; Therefore, the designed control has a high amount
of calculations, and high speed processors should be
used in its practical implementation. However, if there
is a delay in calculating the control input, the stability of
will be violated.
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• Traditional FLSs have not enough ability in uncertainty
environment. Further researches are required to develop
the high-order FLS-based controllers.

• In most of FLS-based controllers, the optimality is not
considered.

• Multi-input-multi-output fuzzy rules are been used
in the most FLS-based controllers to overcome all
uncertainties. Therefore, the number of rules is increased
a lot, and the volume of calculations of this controller is
also very high.

• In most of methods, many assumptions are considered to
derive the stability; Therefore, if one of the assumptions
such as the uncertainty limit is not correctly predicted,
the guarantee of the stability will be lost.

Regarding the discussion above, the suggested scheme is
able to overcome the uncertainties, and intuitive optimization
algorithm is used to determine the control input. In this
article, an adaptive T3-FLS based control is proposed to
ensure the asymptotically stable in the presence of driver
dynamics and structural and non-structural uncertainties
in the dynamic equations. The main difference between
T3-FLSs and conventional FLSs is that T3-FLSs allow for
more uncertainty and variability in the data. This is because
T3-FLSs use a higher order of membership functions,
which can handle more complex and uncertain data. In the
proposed control, efforts are made to realize the following
advantages:

• The introduced control scheme uses the concept of
type-3 FLSs, which proposes a powerful tool to cope
with uncertainties. The concept of type-3 FLSs is based
on the idea that there are many different levels of
uncertainty in under control system. One of the key
benefits of using type-3 FLSs in suggested control
scheme is that it allows for a much more robust
and adaptable approach to managing complex systems.
Because the model is designed to handle uncertainty,
it is able to cope with a wide range of scenarios and
situations. This means that the control scheme is much
more effective at dealing with unexpected changes in the
MR dynamics.

• The suggested controller uses optimal compensator to
ensure the stability and optimal energy usage.

• The controller benefits a stable adaptation rule that
guarantees the robot adaptation with unpredicted
situations.

II. PROBLEM FORMULATION
The non-holomonic MRs are considered as [36]:

ż1 = u1
ż2 = u2
ż3 = F(z) + z2u1 + d (1)

where z = [z1, z2, z3]T , and u1, u2 ∈ R are control signals.
F(z) is a unknown function and d ∈ R is disturbance. F(z)+d
is estimated using the suggested T3-FLS. So, the estimated

system is given as:

ż1 = u1
ż2 = u2
ż3 = T3-FLS(z) + z2u1 + d (2)

The reference system is defined as:

ż1d = u1d
ż2d = u2d
ż3d = F(zd ) + z2du1d (3)

where zd = [z1d , z2d , z3d ]T denotes the vector of desired
states. By defining the error as ze = z− zd , we have:

ż1e = u1 − u1d
ż2e = u2 − u2d
ż3e = z2eu1d + (z2e + z2d )(u1 − u1d )

+ F(z) − F(zd ) + d (4)

The control signal consists of two parts. The primary
controller is the fuzzy SMC and the second part is the optimal
compensator. The general diagram of the schemed approach
is shown in Fig. 1. The dynamics are fully unknown and are
approximated by T3-FLSs. Also, an optimal compensator is
used deal with approximation errors and perturbations.

FIGURE 1. Control diagram.

So u1 is written as:

u1 = uop + u2 (5)

uop is the optimal controller and u2 is SMC. The following
lemmas and definitions are utilized in stability study.
Consider the system (6)

ż = F(z) (6)

if T > 0 such that

lim
t→T

∥z(t)∥ = 0 (7)

for t ≥ T we can write ∥z(t)∥ = 0. Since T > 0 can bed
depended on initial condition z (0), the stability is finite-time.
Lemma 1: Suppose that X is subset of Rn, we define a

dynamic system as F : X → X . It is assumed that
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ze = 0 denotes an equilibrium point, and υ : Rn → R is
derivable continuous function such that [37]:

• If υ̇ : Rn → R is semi-negative definite, then ze is
global stable.

• If υ̇ is negative definite, then ze is asymptotic stable.

Lemma 2: Consider the system (8) [38],

ż = F(z) + G(z) u (8)

such that z(t) ∈ Rn, u(t) ∈ R, F and G are nonlinear vector
functions, and F(0) = 0. Then, (8) is asymptotic stable, if we
have a radial positive definite υ : Rn → R such that

inf
u∈R

{
∂υ

∂z
F(z) +

∂υ

∂z
G(z) u

}
< 0 ∀ z ̸= 0 (9)

Lemma 3: Consider system ż = F(z), such that F is
derivable on D = { ∥z∥ < r}. Suppose that k , λ and r0 are
positive constants and r0 < r/k , then we can write [38]:

∥ z(t) ∥ ≤ ∥ z (0)∥ ke−λt , ∀ t ≥ 0

∀ z (0) ∈ D0 (10)

such that D0 = {∥z∥ < r0}. Then there exist a derivable υ

such that

c1 ∥z∥ 2
≤ υ(z)

≤ c2 ∥z∥2

∂υ

∂z
F(z) ≤ −c3 ∥z∥2∥∥∥∥∂υ

∂z

∥∥∥∥ ≤ c4 ∥z∥ (11)

where z ∈ D0 and ci, i = 1, .., 4 are positive constants. If we
consider state feedback controller as u = 9(z) for (8), then
we have:

ż = F(z) + G(z)9(z) (12)

and we can derive the stability and write:

∂υ

∂z
[F(z) + G(z)9(z)] < 0, ∀ z ∈ D, z ̸= 0 (13)

Lemma 4: The system (12) with Lyapunov function υ is
stable if 9(z) is:

9(z) =


−

∂υ
∂z F +

√(
∂υ
∂z F

)2
+

(
∂υ
∂z G

)4
(

∂υ
∂z G

) if
∂υ

∂z
G ̸= 0

0, otherwise.

(14)

where 9(z) is a continues function.

III. TYPE-3 FUZZY LOGIC
The T3-FLS is used as a estimator to enhance the accuracy.
The computations are illustrated in below (see Fig. 2).
1) The inputs are error and it derivative µ1 = e and

µ2 = ė.

FIGURE 2. Type-3 FLS.

FIGURE 3. Type-3 MF.

FIGURE 4. MFs for error.

2) The memberships M̄
9̃
j
i |m̄k

, M̄
9̃
j
i |

¯
mk

,
¯
M

9̃
j
i |m̄k

, and
¯
M

9̃
j
i |

¯
mk

for 9̃
j
i (j-th membership function (MF) for µi, i = 1, 2) are

computed as (see Fig. 3):
M̄

9̃
j
i |m̄k

=

1 −


∣∣∣µi − c

9̃
j
i

∣∣∣
¯
ϑ

9̃
j
i


m̄k

if c
9̃
j
i
−

¯
ϑ

9̃
j
i
< µi ≤ c

9̃
j
i

1 −


∣∣∣µi − c

9̃
j
i

∣∣∣
ϑ̄

9̃
j
i


m̄k

if c
9̃
j
i
< µi ≤ c

9̃
j
i
+ ϑ̄

9̃
j
i

0 ifµi > c
9̃
j
i
+ ϑ̄

9̃
j
i
orµi ≤ c

9̃
j
i
−

¯
ϑ

9̃
j
i

(15)
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M̄
9̃
j
i |

¯
mk

=

1 −


∣∣∣µi − c

9̃
j
i

∣∣∣
¯
ϑ

9̃
j
i

 ¯
mk

if c
9̃
j
i
−

¯
ϑ

9̃
j
i
< µi ≤ c

9̃
j
i

1 −


∣∣∣µi − c

9̃
j
i

∣∣∣
ϑ̄

9̃
j
i

 ¯
mk

if c
9̃
j
i
< µi ≤ c

9̃
j
i
+ ϑ̄

9̃
j
i

0 ifµi > c
9̃
j
i
+ ϑ̄

9̃
j
i
or µi ≤ c

9̃
j
i
−

¯
ϑ

9̃
j
i

(16)

¯
M

9̃
j
i |m̄k

=

1 −


∣∣∣µi − c

9̃
j
i

∣∣∣
¯
ϑ

9̃
j
i


1
m̄k

if c
9̃
j
i
−

¯
ϑ

9̃
j
i
< µi ≤ c

9̃
j
i

1 −


∣∣∣µi − c

9̃
j
i

∣∣∣
ϑ̄

9̃
j
i


1
m̄k

if c
9̃
j
i
< µi ≤ c

9̃
j
i
+ ϑ̄

9̃
j
i

0 ifµi > c
9̃
j
i
+ ϑ̄

9̃
j
i
or µi ≤ c

9̃
j
i
−

¯
ϑ

9̃
j
i

(17)

¯
M

9̃
j
i |

¯
mk

=

1 −


∣∣∣µi − c

9̃
j
i

∣∣∣
¯
ϑ

9̃
j
i


1

¯
mk

if c
9̃
j
i
−

¯
ϑ

9̃
j
i
< µi ≤ c

9̃
j
i

1 −


∣∣∣µi − c

9̃
j
i

∣∣∣
ϑ̄

9̃
j
i


1

¯
mk

if c
9̃
j
i
< µi ≤ c

9̃
j
i
+ ϑ̄

9̃
j
i

0 ifµi > c
9̃
j
i
+ ϑ̄

9̃
j
i
or µi ≤ c

9̃
j
i
−

¯
ϑ

9̃
j
i

(18)

where m̄k /
¯
mk denotes the upper/lower horizontal slice.

3) The l-th rule firings �̄l
m̄k
, �̄l

¯
mk
,
¯
�l
m̄k
, and

¯
�l

¯
mk

are written
as

�̄l
m̄k = M̄

9̃
q1
1 | m̄k

· M̄
9̃
q2
1 | m̄k

· · · M̄ 9̃
qn
1 | m̄k

(19)

�̄l

¯
mk

= M̄
9̃
q1
1 |

¯
mk

· M̄
9̃
q2
1 |

¯
mk

· · · M̄ 9̃
qn
1 |

¯
mk

(20)

¯
�l
m̄k =

¯
M

9̃
q1
1 | m̄k

·
¯
M

9̃
q2
1 | m̄k

· · ·
¯
M9̃

qn
1 | m̄k

(21)

¯
�l

¯
mk

=
¯
M

9̃
q1
1 |

¯
mk

·
¯
M

9̃
q2
1 |

¯
mk

· · ·
¯
M9̃

qn
1 |

¯
mk

(22)

4) The output of T3-FLS is given as:

T3-FLS =

K∑
k=1

(
¯
mk

¯
Fk + m̄k F̄k

)/ K∑
k=1

(
¯
mk + m̄k

)
(23)

where,

F̄k =

M∑
l=1

(
�̄l
m̄k
w̄l +

¯
�l
m̄k ¯
wl

)
M∑
l=1

(
�̄l
m̄k

+
¯
�l
m̄k

) (24)

¯
Fk =

M∑
l=1

(
�̄l

¯
mk
w̄l +

¯
�l

¯
mk ¯
wl

)
M∑
l=1

(
�̄l

¯
mk

+
¯
�l

¯
mk

) (25)

The MFs of error and derivative of error are illustrated in
Figs. 4 and 5, respectively. The rules patenters are adjusted as
follows:

w̄l (t + 1) = w̄l (t) +
1

K∑
k=1

(
¯
mk + m̄k

)
K∑
k=1

m̄k�̄l
m̄k

M∑
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(
�̄l
m̄k

+
¯
�l
m̄k

)
+

1
K∑
k=1

(
¯
mk + m̄k

)
K∑
k=1

¯
mk�̄

l

¯
mk

M∑
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�̄l

¯
mk

+
¯
�l

¯
mk

)

¯
wl (t + 1) =

¯
wl (t) +

1
K∑
k=1

(
¯
mk + m̄k

)
K∑
k=1

m̄k
¯
�l
m̄k

M∑
l=1

(
�̄l
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+
¯
�l
m̄k

)

+
1

K∑
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(
¯
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)
K∑
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¯
mk

¯
�l

¯
mk

M∑
l=1

(
�̄l

¯
mk

+
¯
�l
mk

)

FIGURE 5. MFs for derivative of error.

IV. CONTROL DESIGN
The optimal controller is designed such that (26) is
minimized:

V =

∫
∞

0
(q (z) + uop2) dt (26)

where q(z) is a semi-definite constant, and we have

ż3 = T3-FLS(z) + z2 uop (27)

where z ∈ R3 represent the vector of states, T3-FLS(z) is
the estimation of nonlinear function. A Lyapunov function is
considered as υ1. Then we can write:

υ̇1 =
∂υ1

∂z
ż = LFυ1 + Lz2υ1 uop (28)

VOLUME 11, 2023 124435



L. Wu et al.: Optimal Control of Non-Holonomic Robotic Systems Based on Type-3 Fuzzy Model

where LFυ1 =
∂υ1
∂z F , and Lz2υ1 =

∂υ1
∂z z2. L denotes the Lie

derivative operator. By the use of Lemma 4 it is concluded
that if (27) is stabilizable, then there is a candidate Lyapunov
function. The controller is considered as
uop =

−

a (z) +

√
a (z) 2 + q (z) b (z)T b(z)

b (z)T b(z)

b (z)T , b(z) ̸= 0

0, b(z) = 0

(29)

where

a (z) = LF υ1, (30)

b (z) = Lz2υ1 (31)

To find the controller we need to solve the Hamilton-Jacobi-
Bellman relation:

LFυ1
∗

−
1
4
(Lz2υ1

∗)T Lz2 υ1
∗

+ q (z) = 0 (32)

where υ1
∗ is the optimal solution and is defined as:

υ1
∗

= inf
uop

∫
∞

t
(q (z) + uop2) dτ (33)

Then u∗ is considered as:

u∗
= −

1
2
Lz2 υ1

∗ (34)

Consider a scalar as λ such that υ1∗
= λυ1, then u∗ is written

as:

u∗
= −

1
2
( λLz2υ1)

T (35)

By replacing υ1
∗

= λυ1 in (32), we have:

λLFυ1 −
1
4

λ2(Lz2υ1)
TLz2υ1 + q (z) = 0 (36)

By solving (36) and using (30) and (31), λ is obtained as:

λ = 2

a (z) +

√
a (z) 2 + q (z) b (z)T b(z)

b (z)T b(z)

 (37)

Replacing λ in (35) yields:

u∗
= −

a (z) +

√
a (z) 2 + q (z) b (z)T b(z)

b (z)T b(z)

 b (z)T

(38)

Considering (28) and (29) and the fact that LFυ1 < 0 for
Lz2υ1 = 0, we can obtain υ̇1 < 0 for uop = 0. On the other
hand, for uop ̸= 0, we can write:

υ̇1 = −

√
b (z)2q (z) + a (z)2 < 0 (39)

Then, it is proved that the controller (29) minimizes (26), and
so the system is stable.

V. COMPENSATOR
To eliminate the effect of estimation errors, a compensator
is added to the designed optimal controller. Consider the
following sliding surfaces:

σ1 = z2e + z3e = 0

σ2 = σ̇ 1 + ρ1σ1
q1/p1 = 0

σ3 = σ̇ 2 + ρ2 σ2
q2/p2 = 0 (40)

where qi and pi are positive and qi < pi. For sliding surface
σi, we can write:

σ̇ 1 = ż2e + ż3e

= u2 − u2d + z2e u1d + T3-FLS (z) − F(zd )

σ̇ 2 = σ̈ 1 + ρ1
d
dt

(
σ1

q1/p1
)

σ̇ 3 = σ̈ 2 + ρ2
d
dt

(
σ2

q2/p2
)

(41)

The switching criteria is defined as:

σ̇1 < −ρ sgn (σ1) (42)

where ρ > 0 and sgn(σ1) is:

sgn ( σ1) =


1 , σ1 > 0
0, σ1 = 0
−1, σ1 < 0

(43)

Then from (41) and 42, we will have:

u2 < u2d − z2eu1d − T3-FLS (z) + F(zd ) − ρ sgn(σ1)

(44)

To remove the chattering of control signal, we modify the
sliding surface σ1 as:

κ = σ1 + δ σ̇1
s/m (45)

where 1 < s
m < 2, δ is the switching gain. Then, (41) is

rewritten as:

σ̇1 = u2 − u2d + z2eu1d + T3-FLS (z) − F(zd )

= u2 + ζ. (46)

From (45), we have:

κ̇ = −η1 sgn (κ) − ε1κ (47)

where ε1 > 0 η1 > 0, and we can write:

κ̇ = σ̇ 1 + δ
s
m

σ̇ 1
s /m−1 σ̈ 1

= δ
s
m

σ̇ 1
s /m−1

(m
δs

σ̇ 1
2−s /m + σ̈ 1

)
(48)

For s and m, we can write:

σ̇ 1
s/m−1 > 0, σ̇ 1 ̸= 0

σ̇ 1
s/m−1

= 0, σ̇ 1 = 0 (49)
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Considering δ (s/m)σ̇ 1
s/m−1 in (48), and considering

η2 > 0 for σ̇1 ̸= 0, we have:

κ̇ = η2 (
m
δs

σ̇1
2−s /m + σ̈1 ) (50)

From (47) and (50), we can write:
m
δs

σ̇1
2−s/m

+ σ̈1 = −η sgn (κ) − εκ (51)

where η = η1/η2 > 0 and ε = ε /η2 > 0. From (51) we can
write:

σ̈1 = −η sgn (κ) − εκ −
m
δs

σ̇1
2−s/m (52)

By time derivative of (46), we have:

σ̈1 = u̇2 + ζ̇ (53)

Then, from (52) and (53), the compensator is give as:

u2 = −

∫ t

0

[
η sgn (κ) + εκ +

m
δs

σ̇ 1
2−s/m

+ ζ̇
]
dτ (54)

Theorem 1: Considering the sliding surface as (45), the
compensator as (54), and the controller as (55), the
asymptotically stability is ensured.

u 1 = uop + u2 (55)

Proof. Consider the Lyapunov function as:

υ2 =
1
2
κ2 (56)

By taking the time derivative we have:

υ̇2 = κ κ̇ (57)

By the use of (48), (53), and (57), we have:

υ̇2 = κ

[
σ̇ 1 +

sδ
m

σ̇ 1
s/m−1σ̈ 1

]
= κ

[
σ̇ 1 +

sδ
m

σ̇ 1
s /s/m−1 (u̇2 + ζ̇ )

]
(58)

From (54), we can rewrite (58) as:

υ̇2 = κσ̇ 1 + κ
sδ
m

σ̇ 1
s/m−1

×

(
−η sgn (κ) − ε κ −

m
δs

σ̇
2−s/m
1 − ζ̇ + ζ̇

)
= κ

[
sδ
m

σ̇ 1
s/m−1 (−η sgn (κ) − ε κ)

]
=

sδ
m

σ̇ 1
s/m−1

[
− η |κ| − ε κ2

]
. (59)

If δ > 0 and 1 < s/m < 2, it is concluded that for σ̇ 1 ̸=

0 and σ̇ 1
s/m−1

= 0, we have σ̇ 1
s/m−1 > 0. Then form (59),

we can write:

υ̇2(κ) ≤ −

[
η |κ| + |κ|

2ε
]
η2

= −υ(κ)η̄m̄− υ(κ)s̄ ≤ 0 (60)

where η̄ = 1/2, s̄ = 2η2ε and m̄ =
√
2η2η. Then the sliding

surface κ is converged to zero.

VI. SIMULATION
The following case-study system is considered:

ż1 = u1
ż2 = u2 (61)

ż3 = z1 + z22 + z3 + z2u1 + sin(0.1π t)

where F(z) = z1+z22+z3 and d = sin(0.1π t). The dynamics
of z1d , z2d , and z3d are considered as follows:

ż1d = u1d
ż2d = u2d (62)

ż3d = F (zd ) + z2du1 d

where F(zd ) = z1d + z22d + z3d , zie = zi − zid (i =

1, 2, 3 ). The simulation condition is given in Table 1. The
error dynamics are given as:

ż1e = u1 − u1d
ż2e = u2 − u2d
ż3e = z2eu1d + (z2)(u1 − u1d ) + F(z) − F(zd ) + d (63)

The optimal controller is written as:

uop =

 −z1 − z2z3 −
z1 + z2 + z3 +

√
φ

0 − 2
, 0 ̸= 0

0, 0 = 0

(64)

where φ = z2 + z3 and 0 = 5z1 + 2(z2 + z3).

TABLE 1. Simulation parameters.

The provided figures offer a comprehensive overview of
the performance. Figure 6 depicts the error trajectories of
z1e, z2e, and z3e, crucial in evaluating the effectiveness
of the control approach. It is observed that these error
trajectories reach zero level in a short amount of time,
indicating a robust and excellent control performance. The
control trajectories, illustrated in Fig. 7(a)–(b), showcase
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the implementable signals with no chattering phenomenon,
a desirable characteristic of a stable control process. The
smooth and stable control process is further emphasized by
the optimal control trajectory depicted in Fig. 7(c), where soft
control inputs are utilized to overcome the nonlinearities and
disturbances present in the system.

FIGURE 6. Trajectories of (a) z1e, (b) z1e, and (c) z3e.

Furthermore, the trajectories of σ1, σ2 and σ3 are shown
in Fig. 8, which provides insight into the convergence of
the sliding surfaces to zero level. Convergence of these
sliding surfaces to zero highlights the effectiveness of the
control approach in achieving the desired system response.
Overall, the provided figures demonstrate the successful
implementation of the control strategy, resulting in a stable
and accurate system response. The absence of chattering
phenomenon and fast convergence to zero error indicate that
the control approach is robust and effective, making it suitable
for practical applications.

In addition to the aforementioned figures, the performance
of the control approach can also be evaluated by analyzing the
control effort required to achieve the desired system response.
Figure 8 illustrates the control effort required for each input
signal to achieve the desired trajectory. It is observed that
the control effort is minimal and remains within a reasonable
range, indicating that the control approach is energy-efficient
and practical.

Moreover, the robustness of the control approach can be
evaluated by analyzing the response of the system to external
disturbances. It is observed that the control approach quickly
compensates for the disturbance and restores the system to
its desired trajectory. This highlights the robustness of the

FIGURE 7. Trajectories of (a) u1, (b) u2, and (c) uop.

FIGURE 8. Trajectories of (a) σ1, (b) σ2, and (c) σ3.

control approach in dealing with external disturbances, which
is a desirable characteristic for practical applications.

To better show the capabilities of T3-FLSs, a comparison
is conducted with other types of FLSs. The aim of this
comparison is to determine whether T3-FLSs are superior
in dealing with uncertainty in real-world applications. We
add a noise to the dynamics to better evaluate the efficacy.
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The results of comparison are presented in Table 2, which
clearly shows that the use of T3-FLSs improves accuracy in
the presence of noise. This is particularly evident in highly
noisy conditions, where type-3 fuzzy systems outperform
other types of fuzzy systems.

TABLE 2. Comparison of RMSE.

VII. CONCLUSION
In this study, the control of third-order non-holonomic MRs
was investigated. A new approach based on T3-FLSs was
introduced to deal with the uncertain dynamics of MR
and unpredictable perturbations. In order to eliminate the
external disturbances affecting the system, an integral optimal
controller was designed. By designing the optimal control
law and solving the HJB equations, it was shown that the
performance index is minimized. By Lyapunov analysis,
it was proved that the sliding surfaces were converged to
zero in a limited time and to keep the system on the sliding
surface. The provided simulation results show a compre-
hensive evaluation of performance. The fast convergence
to zero error, absence of chattering phenomenon, minimal
control effort, and robustness to external disturbances verify
the effectiveness and practicality of the control approach.
These results are promising for practical applications in
various fields, including aerospace, robotics, and industrial
automation.
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