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ABSTRACT Correct classification remains a challenge for researchers and practitioners developing
algorithms. Even a minor enhancement in classification quality, for instance, can significantly boost the
effectiveness of detecting conditions or anomalies in safety data. One solution to this challenge involves
aggregating classification results. This process can be executed effectively as long as the aggregation function
is appropriately chosen. One of the most efficient aggregation operators is the Choquet integral. Furthermore,
there exist numerous generalizations and extensions of the Choquet integral in the existing literature. In this
study, we conduct a comprehensive analysis and evaluation of a novel approach for deriving an aggregate
classification. The aggregation process applied to various classifiers is based on enhancements to the Choquet
integral. These novel expressions draw inspiration from Newton-Cotes quadratures and other well-known
formulae from numerical analysis. In contrast to previous approaches that exploit the generalization of the
Choquet integral, our approach requires the utilization of two or three adjacent values associated with the
membership of a specific element in different classes. This enables the use of more efficient enhancements
in terms of accuracy measurement. Specifically, the t-norm following the integral symbol can be effectively
replaced by mathematical expressions used in executing numerical integration formulae. This leads to
more precise results and aligns with the concept of numerical integration. Furthermore, in a series of
experiments, we thoroughly assess the performance of the proposed approach in terms of classification
accuracy. We analyze the strengths and weaknesses of the new approach and establish the experimental
settings that can be applied to similar tasks. In the series of experiments, we have demonstrated that
the proposed Quadrature-Inspired Generalized Choquet Integral (QIGCI) can either outperform previous
enhancements of the Choquet integral or at least achieve a similar level of accuracy measurement. However,
we also highlight scenarios where previous approaches can still be a suitable choice. The number of
QIGCI-based aggregation models that outperform others is convincing, indicating that this approach is
worthy of consideration.

INDEX TERMS Aggregation, anomaly detection, Choquet integral, generalized Choquet integral, numerical
quadratures, many classifiers, pre-aggregation functions.
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I. INTRODUCTION
The The problem of classification has recently become one
of the most significant challenges in theoretical and applied
computer science. It arises in various contexts such as image
analysis, anomaly detection, and tabular data recognition.
Especially in the past decade, this task has seen increasingly
effective solutions thanks to machine learning algorithms
based on deep learning. Classical methods like decision
trees are also frequently employed and have been success-
fully enhanced. The field is multifaceted, with ongoing
advancements including the development of more efficient
processors and graphics cards, algorithm refinements, and
code optimization. However, we still lack ideal methods.
One potential candidate for a universal solution is the
aggregation of classification results from various classifiers.
Proper utilization of aggregation operators has the potential
to greatly enhancemethod efficiency. These operators depend
on several factors, with the most critical ones being the
weights assigned to individual classifiers (which can be
determined through expert assessment, pre-tests, or results
from similar problems) and the measurement of the degree of
an element’s membership in a class. This measurement can
be implemented as a function of probability, distance, fuzzy
membership, ranking, voting, and other criteria.

There is a wide range of aggregation methods available.
Common operators encompass various types of averages, the
median, voting, maximum, and minimum. However, numer-
ous other, more sophisticated methods are comprehensively
detailed in monographs [1], [2], [3], [4], [5], [6], articles
[7], [8], [9], [10], or reviews, e.g. [11]. Special classes
of aggregation functions are distinguished in the literature.
These include t-norms [12], [13], OWA operators [14],
[15], fuzzy measures [16], polynomial function [17], order-2
fuzzy sets [18], or fuzzy generalized unified aggregation
operator [19]. There are also granular models, see [20]
and [21]. Finally, Choquet integral (CI) [22], [23] and so-
called pre-aggregation operators have been recently widely
discussed [24], [25], [26], [27], [28], [29], [30] including
their interval-valued versions [31]. Obviously, there are
also proposed various other similarly built operators, e.g.
Choquet-like copula [32], recent generalizations of Choquet
integral mixed with overlap functions [33], or neutrosophic
Choquet integral [34], Fermatean hesitant fuzzy Choquet
operator [35], or Shapley-based generalizations of CI [37],
bidirectional CI [38], or CI with a spherical fuzzy set [39].
Generally speaking, the whole pre-aggregation function class
are functions based on replacing the multiplication operator
by the t-norm under the integral symbol. An in-depth
experimental comparison of the first results obtained for
this class of functions was presented, among others, in [36]
and [40]. In general, the problem of selection of optimal
aggregation function has been also considered recently
in [41], [42], [43], and [44].

Typically, generalizations and extensions of the Choquet
integral, which are utilized as aggregation functions, yield

better results than the Choquet integral itself, often regarded
as one of the finest aggregators. A comprehensive overview
of this topic can be found in [28] and other references.
On one hand, it is important to note that the results may be
slightly affected by factors like data distribution, classifier
selection, or their respective weights. However, it can be
argued that replacing the algebraic product with one of the
frequently used t-norms, such as the Łukasiewicz norm,
Hamacher norm, minimum, maximum, and others, should
enhance the quality of classification when relying onmultiple
classifiers.

Hence, this study main purpose is to propose a novel
approach to the problem of classification realized by the
Choquet integral on a basis of the quadrature formulae
well-known from the numerical analysis theory. Using such
kind of formulae, one can obtain the Choquet-like integral
more precisely or accurately. The next goal is to propose
the best set of operator combinations appearing in anomaly
detection or multi-class problems. Such a combination may
depend on a choice of t-norms, integration rule, or t-norm
parameter value. It is worth stressing that this study is
a significantly extended version of the conference paper
[45] which was presented in FUZZ-IEEE Conference.
In the conference paper, mainly the databases used to
detect anomalies were discussed. Here, the study is aug-
mented in several ways. First, we provide the mathematical
properties of the Quadrature-Inspired Generalizations of
Choquet Integral (QIGCI). Next, the experimental results
comprehensively show the performance of the aggregation
operators in dependence on various families of t-norms and
their parameters put under the integral symbol. Particular
attention is paid to popular and often discussed t-norms
such as algebraic or drastic product, Łukasiewicz, Hamacher,
minimum, and nilpotent minimum functions. Finally, we also
consider 27 additional databases used to verify multi-class
classification algorithms to fully examine and describe the
potential of the proposed approach since in the previous
publication only two-class task was realized. Moreover,
we report the results experiments carried multiple number
of times to find the standard deviations and demonstrate the
proposed aggregation formulae stability.

In summary, the main new points presented in this paper
include an introduction of Quadrature-Inspired Generaliza-
tion of Choquet Integral as well as its application to the
problem of multi-class classification. Moreover, we prove in
a series of experiments that the new approach is better than
the previous ones enhancements of Choquet integral in terms
of accuracy measure.

The structure of the study is as follows. In Section II, the
CI theory and its remarkable generalizations are recalled. The
new enhancements of the Choquet integral are discussed in
Section III. Section IV is devoted to experimental results.
Conclusions and possible directions of future work are
detailed in Section V. Finally, we include detailed formulae
(Appendix).
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II. CHOQUET INTEGRAL AND ITS ENHANCEMENTS
Let us recall the main properties of the CI. Here, X is a
set. Then Q (X) = 2X is a family of all X subsets. Let
m : Q (X) → R be a function. Under the following conditions
the function m is called a fuzzy measure.

m (∅) = 0 (1)
m (X) = 1 (2)
m (A) ≤ m (B) , A ⊂ B, A,B ∈ Q (X)

(3)

[−2pt] lim
n→∞

m (An) = m
(
lim
n→∞

An
)

(4)

where {An} , n = 1, 2, . . . is an increasing set sequencewhich
means that A1 ⊂ A2 ⊂ . . .. However, the property (4) is not
required for a finite number of classifiers as in this text.

Next, the Sugeno fuzzy measure, also called λ-fuzzy
measure, satisfies the equations

m (A ∪ B) = m (A) + m (B) + λm (A)m (B) (5)

where λ > −1. Note that A and B do not non-overlap.
Furthermore,

m (Ai+1) = m (Ai) + mi+1 + λm (Ai)mi+1 (6)

and Ai = {t1, . . . , ti}, Ai+1 = {t1, . . . , ti+1}. Note that
hereafter we use the common simplified form of this notation,
namely

mi = m ({ti}) , i = 1, . . . , n (7)

It is worth noting that a subset can be identified with a
classifier and the measure defined for this subset is a measure
of the significance of a given classifier. All classifiers,
combined in some way, should intuitively have the highest
measure of importance if λ > 0. The considerations of this
problem were given in [46].

Assume that h (t) : Q (X) → [0, 1] is a function which
is non-increasing. Namely, h (ti+1) ≥ h (ti) , i = 1, . . . , n.
Also, one has to assume h (tn+1) = 0. Then the CI in its
generic for is given by

Ch =

n∑
i=1

((h (ti) − h (ti+1))m (Ai)) (8)

Along with (8) we encounter a number of extensions. Let us
recall a few of them.

In a series of works [24], [25], [47], [48], and [49]
introduced were various generalization kinds of (8). All of
them are often called pre-aggregation functions. The main
formulae are expressed as

ChT =

n∑
i=1

(T (h (ti) − h (ti+1)) ,m (Ai)) (9)

ChF = min

(
n∑
i=1

T (h (ti) − h (ti+1) ,m (Ai)) , 1

)
(10)

In [48] a Choquet-like operator

ChTC =

n∑
i=1

(T (h (ti) ,m (Ai)) − T (h (ti+1) ,m (Ai)))

(11)

was proposed. In [50] a t-norm T was substituted bymin oper-
ator. Here, we denote it Cmin. In [51] an overlapping operator
Ov was put in the place of T . Ov is commutative, increasing,
and continuous. It fulfills the conditions Ov (t, s) = 0 for
ts = 0 and Ov (t, s) = 1 for ts = 1. In [52] and
in the monograph [40] the following generalizations were
proposed:

ChTTC =

n∑
i=1

(T (h (ti) ,m (Ai)) − T (h (ti+1) ,m (Ai))

+T (h (ti) − h (ti+1) ,m (Ai))) (12)

ChTmin =

n∑
i=1

T (min (h (ti) ,m (Ai))

−min (h (ti+1) ,m (Ai)) ,m (Ai)) (13)

ChminT =

n∑
i=1

min (T ((h (ti) ,m (Ai))) ,

T (h (ti+1) ,m (Ai))) (14)

ChDiff1 =

n∑
i=1

T (h (ti−1) − h (ti+1) ,m (Ai)) (15)

ChDiff2 =

n∑
i=1

T (h (ti−1) + h (ti+1) − h (ti) ,m (Ai)) (16)

and

ChDiff3 =

n∑
i=1

T ((h (ti−1) − h (ti+1)) /h (ti) ,m (Ai)) (17)

III. CHOQUET INTEGRALS INSPIRED BY QUADRATURES
The concept of Choquet integral is relatively easy to gener-
alize and extend. Moreover, to carry out the generalization
operations, the computer program does not need new data,
but only minor modifications to the formulae themselves.
Let us take a closer look at this concept. Particularly, one
can observe that in formula (8), the successive differences in
the h (·) function values are most important. They are sorted
in a non-increasing way in the arguments ti. This form of
the formula encourages actions where one can attempt to
specify changes between the adjacent function h (·) values.
In addition, it would be interesting to utilize all values of
h (·) to build the parameter of T (·). This conclusion as well
as possible changes of the ChDiffi , i ∈ {1, 2, 3} , form may
lead to the statement that one can apply much wider range of
the function h (ti) values as this parameter. In a more plastic
way, it can be said that using more points to evaluate this
expression can lead to its more precise value, as well as reflect
the idea of numerical calculations for various integral forms.
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TABLE 1. Details of the multi-class problems databases.

A helpful function class can be here quadratures [53] or
formulae coming from various disciplines such as Program
Analysis Review Technique (PERT) Formula of project time
or cost estimation. We focus here on a class of functions
called Newton-Cotes (N-C) quadratures. Mathematicians use
them to determine the value of the definite integral defined on
an interval. The calculation is realized using equal segments
of the interval. The quadrature formulae are mainly divided
into two classes of operators, namely closed formulae when
the boundary values of an interval are utilized or open in an
opposite case.

Now,we take amore closer look at the solutionwe propose.
Consider a function

ChQ =

n∑
i=1

(T (Q (hi) ,m (Ai))) (18)

The equation (18) can be used as a general framework to build
Choquet integral enhancements. To be precise, an expression
Q (hi) can be understood as follows. If Q is related to a
Simpson rule or the above-mentioned PERT equation then

QS (hi) =
1
6

(hi−1 + 4hi + hi+1) (19)

Here, hi = h (ti). Hence, the generalized CI (18) is

ChQS (t)

=

n∑
i=1

(
T
(
1
6

(hi−1 (t) + 4hi (t) + hi+1 (t)) ,m (Ai)
))
(20)

The Simpson rule is obviously slightly modified here. The
weights are normalized so that their sum is 1. The list of other

TABLE 2. Top 5 best average percentage values over datasets wrt. kind of
task.

rules is presented in the Appendix. Moreover, to retain the
monotonicity property of the function h (·) we assume that
the values hi for i < 0 are equal to h0. Similarly, hi = 0 for
i ≥ n+ 1.
It is worth noting that despite many comparisons of

various quadratures [54], [55] for numerical integration
problem and their known error estimates, they are analyzed
experimentally, in terms of applications to slightly different
kind of problem. We do not choose only a few of them which
could be suspected to be more effective than others. Finally,
it is also worth stressing that the CI enhancements can be
understood as some expansions of the integral of the Sugeno
form since after the integral symbol there is only a single
quadrature and no difference of quadratures appears.

IV. MATHEMATICAL PROPERTIES OF NEW CI
GENERALIZATIONS
We investigate properties of the function ChQ given by (18).
In particular, refer to Theorem 1, we prove that ChQ is
an r⃗-non-decreasing function under mild conditions on T
and Q. Here, given a vector r⃗ ∈ [0, 1]n, by an r⃗-non-
decreasing function, as defined in [24], we consider a
function F : [0, 1]n → [0, 1] acting on the n-th dimensional
cube [0, 1]n with values in the unit interval [0, 1] such that
F(t⃗) ≤ F(t⃗ + cr⃗) for all t⃗ ∈ [0, 1]n and all c > 0 satisfying
t⃗ + cr⃗ ∈ [0, 1]n.
First we establish a technical lemma. We consider [0, 1]n

as a space equipped with the coordinatewise order, that is for
t⃗ = (t1, . . . , tn) ∈ [0, 1]n and s⃗ = (s1, . . . , sn) we say that
t⃗ ≤ s⃗ if and only if ti ≤ si for all i ∈ {1, . . . , n}. In particular,
the fact that a function F : [0, 1]n → [0, 1] is non-decreasing
means that F(t⃗) ≤ F(s⃗) for t⃗ and s⃗ as above.
Lemma 1: Let T : [0, 1] → [0, 1] be a non-decreasing

function with respect to the first coordinate: for all t, t ′ ∈

[0, 1] such that t ≤ t ′ it follows that T (t, s) ≤ T (t ′, s)
for all s ∈ [0, 1]. Moreover, for every i ∈ {1, . . . , n} let
Qi : [0, 1]n → [0, 1] be a non-decreasing function. Then for
every s ∈ [0, 1] the function F : [0, 1]n → [0, 1] defined by

F(t⃗) =

n∑
i=1

T (Qi(t⃗), s)

is non-decreasing.

VOLUME 11, 2023 124679
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FIGURE 1. ROC curves and AUC measures obtained with the best aggregation operators.

FIGURE 2. Selected t-norms and their average accuracy performance in the multi-class
problems when the Open N-C 2-point quadrature is used.

Proof: The conclusion follows by the fact that F is a sum
of compositions of non-decreasing functions.

As a simple consequence of Lemma 1 we obtain the
following corollary.
Corollary 1: Let T be as in Lemma 1 and suppose that

Q is an integral quadrature appearing in (18) with positive
coefficients. Then ChQ given by (18) is an r⃗-non-decreasing
function for all r⃗ ∈ [0, 1]n. Moreover, ChQ = 0 for h⃗ = 0⃗,
provided that T (0, s) = 0 for all s ∈ [0, 1].
Proof: Because Q has positive coefficients, the function

h⃗ 7→ Q(hi) is non-decreasing for all i ∈ {1, . . . , n}. Moreover,
for h⃗ = 0⃗ we have ChQ =

∑n
i=1 T (0,m(Ai)) = 0.

By applying Corollary 1 we prove that ChQ is an
r⃗-non-decreasing function for a big function class T , namely
t-norms. Here, by a t-norm, as in [1], we consider a function
T : [0, 1]2 → [0, 1] satisfying the conditions:

1) T (t, s) = T (s, t) for all t, s ∈ [0, 1],
2) T (T (t, s), z) = T (t,T (s, q)) for all t, s, q ∈ [0, 1],
3) T (t, s) ≤ T (t ′, s′) for all t, t ′, s, s′ ∈ [0, 1] satisfying

t ≤ t ′ and s ≤ s′,
4) T (t, 1) = t for all t ∈ [0, 1].

Commonly encountered examples of T -norms include
(here, naturally, t, s ∈ [0, 1], see [24]):

124680 VOLUME 11, 2023
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TABLE 3. The best average percentage accuracy values wrt. each dataset. Anomaly detection task.

1) Minimum

TM (t, s) = min{t, s} (21)

2) Algebraic product

TP(t, s) = ts (22)

3) Łukasiewicz t-norm

TL(t, s) = max{t + s− 1, 0} (23)

4) Drastic product

TDP(t, s) =


t for s = 1
s t = 1
0 otherwise

(24)

5) Nilpotent minimum

TNM (t, s) =

{
min{t, s} for t + s > 1
0, otherwise

(25)

6) Hamacher product

THP(t, s) =

 0, for t = s = 1
ts

t + s− ts
otherwise

(26)

and all t-norms Ti for i ∈ {1, . . . , 25} defined in
Section 2.6 in [1].

Finally, we state the concluding result, which is a
consequence of Corollary 1 and the definition of a t-norm.
Theorem 1: Let T be a t-norm and suppose that Q is

an integral quadrature appearing in (18) with positive
coefficients. Then ChQ is r⃗-non-decreasing for all r⃗ ∈ [0, 1]n,
and moreover, ChQ = 0 for h⃗ = 0⃗.
It is worth noting that from Corollary 1 it follows that the

class of overlap functions [56], apart from t-norms, can also
be considered here, see previous section for the details of this
class.

V. NUMERICAL EXPERIMENTS
Let us consider the results of experiments carried with
different enhancements of Choquet integral. We are inter-
ested in finding the best aggregation operators built using
Quadrature-Inspired Generalizations of Choquet Integral, the
t-norms with which they are composed, as well as the
parameters of those t-norms for which the best average results
were obtained. We are also interested in the best results for
individual bases related to anomaly detection and multi-class
problems. Finally, we analyze in detail the results for the
t-norms of the form (21)-(26) commonly described in the
literature.

A. DATASETS USED IN THE EXPERIMENTS
Here, we briefly recall the datasets utilized in our experi-
mental series. ODDS is one of the most often used set of
data tables applied to analyze anomaly detection algorithms.

VOLUME 11, 2023 124681
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TABLE 4. The best average percentage accuracy values wrt. each dataset. Multi-class problem.

Therefore, we have used the followng datasets in the
two-class problem: Mammography, Annthyroid, Pendigits,
Satellite, Satimage-2, Optidigits, Thyroid, Musk, Cardio,
Letter Recognition, Vowels, Pima, Arrhythmia, Ionosphere,
Wbc, Vertebral, Glass, Lympho, andWine (sorted descending
by number of records) [57], [58], [59], [60], [61], [62], [63],
[64], [65], [66], [67]. Their detailed properties are presented
in paper [45]. We do not present them here due to lack of
space.

Additionally, we have utilized Abalone, Breast Cancer
Wisconsin, Electrical Grid Stability Simulated Data, Gas
Sensor Array Drift Dataset at Different Concentrations, Dry
Bean, EEG Eye State, Ozone Level Detection (eight and one

hour peak), German Credit Data, Glass Identification, Iono-
sphere, Iris, Isolet, Letter Recognition, Online News Popular-
ity, Page Blocks Classification, Students Dropout and Aca-
demic Success, Landsat Satellite, Image Segmentation, Shut-
tle, Skin Segmentation, Spambase, Wine, Wine Quality, Zoo,
and Lung Cancer [69], [70], [71], [72], [73], [74], [75] in the
multi-class classification problem. The details of the datasets
used for verifying multi-class problems are shown in Table 1.

B. INDIVIDUAL CLASSIFICATION METHODS
Here, we recall the classifiers used in the experiments.
When analyzing the anomaly detection-related behavior of
aggregation formulae two experimental sets have been

124682 VOLUME 11, 2023



P. Karczmarek et al.: QIGCI in an Application to Classification Problems

TABLE 5. Average results of the best accuracy values obtained within the
particular aggregation operators.

realized. During the first run the default settings of PyCaret
library [76] were applied for the following methods: Cluster-
ing, COF, IF, Histogram, k-NN, LOF, SVM, and PCA.
In the case of multi-class problem Naive Bayes, K -NN,

Extreme Gradient Boosting (GB), Light GB, Random Forest,
Extra Trees, CatBoost, GB, Ada Boost, Decision Trees,
Ridge, and SVM were used. In this manner, we have
conducted 19 experiments with the classifiers applied to
two-class anomaly detection problem and 27 experiments
with 12 classifiers in the problems with many classes. Each
experiment was repeated 10 times to obtain stable results.

Here, it is worth to emphasis that any classifier returns
an element membership probability to a specific class or
anomaly score in the case of anomaly detection. All the
resulted values can be normalized to the range [0, 1]. In this
way, the probabilities of belonging to a group of outliers or
anomalies as well as a group of typical or normal points can
be determined. Therefore, all the aggregation models give
the resulting values from [0, 1]. As the densities (weights) of
the models we have proposed the average F1 score measures
found on a basis of a few randomly chosen ODDS datasets.
Similarly, the weights assigned to individual classifiers in
the aggregation processes of multi-class problem were the
normalized values of accuracies determined in the initial
series of pretests. To be more precise, we have performed
tests on a few randomly selected databases using each of the
classifiers. The resulting accuracy measures serve as weights.
The sum of the weights gives the value 1.

TABLE 6. Average accuracies [%] for all the CI generalizations and
classical t-norms for two-class problems.

C. AGGREGATION OF INDIVIDUAL CLASSIFICATION
RESULTS
Here, we thoroughly discuss the aggregation of classifiers-
based results. We use the general model described by (18)
as well as other formuale described in the previous sections
and in the Appendix. To be more precise, we replace the t-
norm T (·, ·) appearing in (18) by 25 various triangular norm
groups detailed in the book [1]. All the t-norms are used with
different parameters belonging to the interval [−10, 10]. The
step is 0.1. In the cases where, pursuant to the definition of
the t-norm, the range of the parameter is limited, we have
narrowed down the range of the loop accordingly. Typical
situations of this kind were if the parameter was positive or
non-zero.

An important aspect of the results presented here should
be emphasized. Namely, in many papers on the Choquet
integral and its generalizations its superiority over other
classical methods of aggregation was proved. Hence, we omit
such considerations in this study, referring only to classes of
aggregators closely related to the Choquet integral. However,
this is not a narrowing down of the problem, but an attempt
to focus it on this broad class of functions.

In the case of anomaly detection, the best average accuracy
measure result calculated over all the considered databases,
namely 95.53%, was obtained with 11-point Newton-Cotes
formula being placed under the integral sign and t-norm

T7 (t, s) = max (α (t + s− 1) + (1 − α) ts, 0) (27)
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TABLE 7. Average accuracies [%] for all the CI generalizations and
classical t-norms for multi-class problems.

with α = 3.5, see Table 2. Also other quadrature-inspired
Choquet integral generalizations are good choices here,
in particular

T11 (t, s) =
(
max

(
tαsα − 2

(
1 − tα

) (
1 − sα

)
, 0
)) 1

α , α > 0

(28)

T14 (t, s) =

(
max

(
tαsα − 2 (1 − tα) (1 − sα)

1 − (1 − tα) (1 − sα)
, 0
)) 1

α

(29)

where α ̸= 0, and

T25 (t, s) =



(
1 −

(
1 − tα

)√
1 − (1 − sα)2

−
(
1 − sα

)√
1 − (1 − tα)2

) 1
α

if
(
1 − tα

)1
+
(
1 − sα

)1
≤ 1

0 otherwise

, α > 0

(30)

Fig. 1 depicts the ROC curves with AUC values for the best
generalizations of the Choquet integral which are specified
in Table 2 for anomaly detection task. The graphs were
obtained using the Annthyroid database, for the parameters
as in the table. We supplemented them with plots of the CDiff2
function, which yielded the best average measure of accuracy
for this dataset and the classical Choquet integral. Indeed,
CDiff1 and CDiff2 have the highest AUC measures. Moreover,

a good result was obtained for the Newton-Cotes 11-point
quadrature. This shows that it is worth using proposed kinds
of generalizations, especially because the classical Choquet
integral performs average in this comparison.

In Tables 3, 4, and 5 listed are the best results obtained
for each dataset. Considering the two-class anomaly detection
problem it is interesting to observe that the t-norm no. 23 is
dominating, i.e. it wins in the most cases. It reads as follows

T23 (t, s) =

(
log

(
et

−α

+ es
−α

−e
))−

1
α

, α > 0 (31)

There is also one more interesting observation here. Namely,
if we divide the Choquet integral generalizations onto two
groups, namely quadrature-inspired extensions and the ones
presented in the literature of the topic, the representatives of
the first class of functions give better results here in terms
of number of datasets, where such kind of integral result
in the best accuracy. There are many various winners in
this group, for instance, Newton-Cotes (N-C), extrapolative
N-C, or open N-C formulae. Hence, each dataset is worth
examining separately to design the best parameters. However,
the above T23 norm is worth considering at the beginning
in each case. Note that the asterisk symbol * means various
parameters. We do not report the details since many t-norms
and their parameters that differ dependent on the case.
Moreover, in the case of Lung Cancer dataset (denoted by
**), too many various classifiers have won and there is no
sense to point them out here.

Now, let us consider the multi-class problems, i.e. the
problems solved by typical machine learning classifiers, see
Table 4. Here, there are a few problems for which many
various functions return the same top average result. Also
classic extensions of Choquet integral give a few top results
more than the extensions inspired by quadratures. However,
the latter are worth considering in amore comprehensive way.
Beside the t-norms no. 7, 11, 14, and 25, two another t-norms
are worthmergingwith the Choquet-based integrals. They are

T1 (t, s) =
(
max

(
t−α

+ s−α
)
, 0
)− 1

α , α ̸= 0 (32)

and

T8 (t, s) =

(
α2ts− (1 − t) (1 − s) , 0

)
α2 − (α − 1)2 (1 − t) (1 − s)

, α ≥ 0 (33)

Typical generalization of the CI with a t-norm replacing the
product and simple modifications of it give good results
here. However, very promising results are returned by
open Newton-Cotes 2-point formula-based Choquet integral
as well as extrapolative N-C 4-point formula-based CI.
There is one dataset (Lung Cancer) for which almost
all the aggregation functions returned 100% recognition
rate. Therefore, the results are omitted in the table (it is
denoted **).

Fig. 2 depicts the average accuracies obtained for various
classifiers with the functions T1,T8,T11,T14, and T25
substituting the T in the case of open Newton-Cotes 2-point
quadrature given by (36), see Appendix. The first three of
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the t-norms are performing well for a positive range of α

parameter values while the last two of them return good
results for α values being close to 0. However, the plot
confirms the assumption that it is relatively difficult to choose
the right value of the α parameter, but it can be estimated on
the basis of experience or general statistics presented in this
study. On the other hand, if we consider T1 and T8 t-norms
we see that the parameter λ with relatively large values is
an optimal choice. Other t-norms depicted in Fig. 2 perform
well when λ tends to zero point. It may be related with the
formulae (28), (29), (30), (32), and (33).

Now, let us discuss the average values list of the best
results produced within each type of aggregation functions
over all the cases analyzed in the tests with respect to
anomaly detection and classification task. Table 5 presents
the standing. Note that here any divisions into t-norms and
their parameters are not considered. We take into account
only the best result obtained by each extension of Choquet
integral for specific datasets. Therefore, it is hard to say
how much it is helpful. However, it shows that some of the
CI extensions are quite stable in the sense of accuracies.
In the case of anomaly detection problem all the functions
give similar results except the worse results obtained by
CDiff3 , CMin, 9-point N-C, 7 point open N-C, or 9-point
open N-C quadrature-inspired formulae. On the other hand,
in the case of multi-class problem a few generalizations are
leading, namely CDiff1 , CDiff2 , CT , CF , CMinT , CTMin, or pre-
aggregation function with overlapping formula under the
integral sign. This overlapping function is

t (t, s) =



ts
(p+ (1 − p) (t + s− ts))

for
ts

(p+ (1 − p) (t + s− ts))
< α(∗)

α

if not (*) and
ts

(p+ (1 − p) (t + s− ts))
< β

α +
ts

(p+ (1 − p) (t + s− ts)) (1 − β)

otherwise
(34)

Now, we analyze the CI extensions performance when only
the typical kinds of t-norms are considered, see e.g. [25]. They
are minimum, algebraic product (note that CF and CT are
simple Choquet integral here), Łukasiewicz t-norm, drastic
product (DP), nilpotent minimum (NM), and Hamacher
t-norm given by (21)-(26), respectively. Tables 6 and 7 reveal
an interesting fact. It is quite inverse situation than in the
previous case. Namely, in the two-class problemwhen typical
t-norms cooperate well with classic extensions of the Choquet
integral (CF , CT , CTC , CTT ) while in the multi-class task the
numerical methods-inspired CI generalizations are slightly
better (CDiff 2, extrapolative N-C 2-point, or 3/8 rule).
Finally, one can observe that the typical CI gives a

relatively good results, but not the best, i.e. average accuracies
at the level of 95.02% and 91.47% for multi-class and two-
class problems, respectively.

Several observations can be drawn from the above series
of experiments and their results. Namely, it is impossible
to indicate one universal aggregation method (in the sense
of the final set of its parameters) for all possible cases.
However, it is worth stressing that in the case of big data
sets, and when a relatively large classifier count is used,
searching for such a method based on tests for all possible
cases (e.g. 25 families of t-norms, ranges of several hundred
values of their parameters, various variants of quadrature
and different forms CI generalizations) can cause a waste
of time and hardware resources that practitioners cannot
afford. Therefore, this study is a kind of guide and an
indication among which sets of parameters are certainly
worth looking for, and which can certainly be omitted.
Such parameter combinations have been presented in this
experimental section.

Moreover, these experiments prove that it is very easy to
make a mistake. It is very difficult to raise the best result,
but it is easy to choose parameters for which the quality of
classification/anomaly detection drops drastically.

VI. CONCLUSION AND FUTURE WORK
In this study, we have thoroughly discussed a novel approach
to determine the Choquet integral’s application in crucial
decision-making problems, specifically in aggregating classi-
fier results. This approach involves substituting the triangular
norm, typically found in the Choquet integral, with a formula
based on a foundation of numerical quadratures. We’ve com-
bined 25 families of triangular norms, each encompassing
a wide range of parameters, with over 30 enhancements of
CI, some derived from existing literature and others being
new proposals. These newly introduced approaches have
demonstrated their efficiency and value across 27 multi-class
and 19 two-class problems.

We have introduced an extensive analysis of diverse
integrand variations found in CI generalizations, focusing on
their efficiency as aggregation functions. We have presented
parameter configurations that maximize the probability of
achieving the best classification results. These optimal
configurations apply to various databases and problem
classes. Additionally, we’ve identified which Choquet inte-
gral generalizations, based on quadrature methods, are
effective and compatible with specific t-norms. The results
obtained through a series of numerical experiments have
demonstrated that our approach can outperform previous
CI-based aggregation methods or, at the very least, achieve
a similar level of efficiency in terms of accuracy.

In the future, it is worth to build another CI generalizations
using the differences between the quadratures appearing after
the integral symbol, namely

ChQQ =

n∑
i=1

(T (Q (hi) − Q (hi+1) ,m (Ai))) (35)

Also, it is worth to apply the models proposed in this
study to specific domains of applications such as datasets
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coming from medical diagnosis, questionnaires, industrial
measurements, etc. Moreover, not only the accuracy mea-
sures can be aggregated. For instance, one can examine
such kind of operators in a process of aggregation of larger
number of classifiers, for instance the results obtained by
each of 100 trees in the Isolation Forest anomaly detection
technique [58]. Despite the general properties are quite
known, a deeper examining of a choice of various t-norms
and their parameters is still valuable task. Finally, it is
worth stressing that similar techniques can be applied to
Ordered Weighted Averaging Operators (OWA) and their
generalizations.

APPENDIX
QUADRATURE FORMULAE
Here, we recall chosen expressions inspired by quadrature
rules. For the symbol notions, see Section III. The formulae
are (see [53]) trapezoidal (open Newton-Cotes 2-point) rule

QT (hi) =
1
2

(hi + hi+1) (36)

3/8 rule (called Simpson formula)

Q3/8 (hi) =
1
8

(hi−1 + 3hi + 3hi+1 + hi+2) (37)

3/8 rule (Bool’s)

QB (hi) =
1
90

(7hi−2 + 32hi−1 + 12hi + 32hi+1 + 7hi+2)

(38)

Hardy’s rule

QH (hi)

=
1

600
(28hi−3 + 162hi−2 + 12hi + 162hi+2 + 28hi+3)

(39)

Durand’s rule

QD (hi) =
1
40

(4hi−2 + 11hi−1 + 10hi + 11hi+1 + 4hi+2)

(40)

a version of Shovelton’s rule

QSh (hi) =
1
252

(8hi−5 + 35hi−4 + 15hi−3 + 35hi−2

+15hi−1 + 36hi + 15hi+1 + 35hi+2 + 15hi+3

+35hi+4 + 8hi+5) (41)

Weddle’s rule form

QWe (hi) =
1
20

(hi−3 + 5hi−2 + hi−1 + 6hi + hi+1

+ 5hi+2 + hi+3) (42)

Woolhouse’s rule

QWo (hi)

=
1
2

(
223
3969

hi−5 +
5875
18144

hi−4 +
4625
10584

hi−2

+
41
112

hi +
4625
10584

hi+2 +
5875
18144

hi+4 +
223
3969

hi+5

)
(43)

Newton-Cotes (N-C) 6-point rule

QNC6 (hi) =
1
288

(19hi−2 + 75hi−1 + 50hi + 50hi+1

+ 75hi+2 + 19hi+3) (44)

N-C 7-point rule

QNC7 (hi) =
1
840

(41hi−3 + 216hi−2 + 27hi−1

+ 272hi + 27hi+1 + 216hi+2 + 41hi+3) (45)

N-C 8-point rule

QNC8 (hi) =
1

17280
(751hi−3 + 3577hi−2 + 1323hi−1

+ 2989hi + 2989hi+1 + 1323hi+2

+ 3577hi+3 + 751hi+4) (46)

N-C 9-point rule

QNC9 (hi) =
1

28350
(989hi−4 + 5888hi−3 − 928hi−2

+10496hi−1 − 4540hi + 10496hi+1

−928hi+2 + 5888hi+3 + 989hi+4) (47)

N-C 10-point rule

QNC10 (hi) =
1

89060
(2857hi−4 + 15741hi−3 + 1080hi−2

+19344hi−1 + 5778hi + 5778hi+1 + 19344hi+2

+1080hi+3 + 15741hi+4 + 2857hi+5) (48)

Newton-Cotes 11-point rule.

QNC11 (hi) =
1

598752
(16067hi−5 + 106300hi−4

−48525hi−3 + 272400hi−2 − 260550hi−1

+427368hi − 260550hi+1 + 272400hi+2

−48525hi+3 + 106300hi+4 + 16067hi+5)

(49)

These formulae are called closed rules. There are also
so-called open formulae. They are Newton-Cotes 3-point
rule

QONC3 (hi) =
1
3

(2hi−1 − hi + 2hi+1) (50)

open N-C 4-point rule

QONC4 (hi) =
1
24

(11hi−1 + hi + hi+1 + 11hi+2) (51)

open N-C 5-point rule

QONC5 (hi)

=
1
24

(11hi−2 − 14hi−1 + 26hi − 14hi+1 + 11hi+2) (52)
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open N-C 6-point rule

QONC6 (hi)

=
1

1440
(611hi−2 − 453hi−1 + 562hi

+ 562hi+1 − 453hi+2 + 611hi+3) (53)

open N-C 7-point rule

QONC7 (hi)

=
1
945

(460hi−3 − 954hi−2 + 2196hi−1

− 2459hi + 2196hi+1 − 954hi+2 + 460hi+3) (54)

The last group of formulae are the extrapolative Newton-
Cotes quadratures. In numerical analysis theory they are used
to calculate an integral in an interval using the points laying
around it. They are extrapolative N-C 2-point rule

QENC2 (hi) =
1
3

(3hi − hi+1) (55)

extrapolative N-C 3-point rule

QENC3 (hi) =
1
12

(23hi−1 − 16hi + 5hi+1) (56)

and, finally, extrapolative N-C 4-point rule

QENC4 (hi) =
1
32

(55hi−1 − 59hi + 37hi+1 − 9hi+2) (57)

REFERENCES
[1] C. Alsina, M. J. Frank, and B. Schweizer, Associative Functions.

Triangular Norms and Copulas. Singapore: World Scientific, 2006.
[2] M. Baczyński, H. Bustince, and R. Mesiar, ‘‘Aggregation functions:

Theory and applications,’’ Fuzzy Set. Syst., vol. 324, p. 325, May 2017.
[3] G. Beliakov, A. Pradera, and T. Calvo, Aggregation Functions: A Guide for

Practitioners. Berlin, Germany: Springer–Verlag, 2007.
[4] T. Calvo, G. Mayor, and R. Mesiar, Aggregation Operators. New Trends

and Applications. Heidelberg, Germany: Physica-Verlag, 2014.
[5] M.Gagolewski,Data Fusion: Theory,Methods, and Applications (Institute

of Computer Science). Warsaw, Poland: Polish Academy of Sciences,
2015.

[6] M. Grabisch, J. Marichal, R. Mesiar, and E. Pap, Aggregation Functions
(Encyclopedia of Mathematics and Its Applications). Cambridge, U.K.:
Cambridge Univ. Press, 2009.

[7] R. Mesiar, A. Kolesárová, T. Calvo, and M. Komorníková, ‘‘A review of
aggregation functions,’’ in Fuzzy Sets and Their Extensions: Represen-
tation, Aggregation and Models, vol. 220, H. Bustince, F. Herrera, and
J. Montero, Eds. Springer, 2008, pp. 121–144.

[8] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap, ‘‘Aggregation
functions: Means,’’ Inf. Sci., vol. 181, no. 1, pp. 1–22, Jan. 2011.

[9] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap, ‘‘Aggregation
functions: Construction methods, conjunctive, disjunctive and mixed
classes,’’ Inf. Sci., vol. 181, no. 1, pp. 23–43, Jan. 2011.

[10] R. Pérez-Fernández and B. De Baets, ‘‘Aggregation theory revisited,’’
IEEE Trans. Fuzzy Syst., vol. 29, no. 4, pp. 797–804, Apr. 2021.

[11] F. Blanco-Mesa, E. León-Castro, and J. M. Merigó, ‘‘A bibliometric
analysis of aggregation operators,’’ Appl. Soft Comput., vol. 81, Aug. 2019,
Art. no. 105488.

[12] E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms. Dordrecht,
The Netherlands: Springer, 2000.

[13] E. P. Klement andR.Mesiar, Logica, Algebraic, Analytic, and Probabilistic
Aspects of Triangular Norms. Amsterdam, The Netherlands: Elsevier,
2005.

[14] R. R. Yager and J. Kacprzyk, The Ordered Weighted Averaging Operators:
Theory and Applications. New York, NY, USA: Springer, 2012.

[15] L. Jin, R. Mesiar, and R. Yager, ‘‘Ordered weighted averaging aggregation
on convex poset,’’ IEEE Trans. Fuzzy Syst., vol. 27, no. 3, pp. 612–617,
Mar. 2019.

[16] G. Beliakov, T. Cao, and V. Mak-Hau, ‘‘Aggregation of interacting criteria
in land combat vehicle selection by using fuzzy measures,’’ IEEE Trans.
Fuzzy Syst., vol. 30, no. 9, pp. 3979–3989, Sep. 2022.

[17] P. R. Hemantkumar, T. Gupta, A. Vashisth, P. Chintha, A. V. Wargiya,
M. G. George, M. A. Alexander, and S. J. Narayanan, ‘‘GCN embedded
with polynomial aggregation function for group activity recognition,’’ in
Proc. IEEE 4th Conf. Inf. Commun. Technol. (CICT), Dec. 2020, pp. 1–6.

[18] W. Pedrycz, A. Gacek, and X. Wang, ‘‘Aggregation of order-2 fuzzy sets,’’
IEEE Trans. Fuzzy Syst., vol. 29, no. 11, pp. 3570–3575, Nov. 2021.

[19] J. M. Merigó, A. M. Gil-Lafuente, D. Yu, and C. Llopis-Albert, ‘‘Fuzzy
decision making in complex frameworks with generalized aggregation
operators,’’ Appl. Soft Comput., vol. 68, pp. 314–321, Jul. 2018.

[20] B. Zhang, W. Pedrycz, A. R. Fayek, A. Gacek, and Y. Dong, ‘‘Granular
aggregation of fuzzy rule-based models in distributed data environment,’’
IEEE Trans. Fuzzy Syst., vol. 29, no. 5, pp. 1297–1310, May 2021.

[21] D. Rutkowska, D. Kurach, and E. Rakus-Andersson, ‘‘Fuzzy granulation
approach to face recognition,’’ in Artificial Intelligence and Soft Com-
puting (Lecture Notes in Computer Science), vol. 12855, L. Rutkowski,
R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, J. M. Zurada,
Eds. Cham, Switzerland: Springer, 2021, pp. 495–510.

[22] G. Choquet, ‘‘Theory of capacities,’’ in Proc. Annales de l’Institut Fourier,
vol. 5, 1953, pp. 131–295.

[23] M. Grabisch, ‘‘The application of fuzzy integrals in multicriteria decision
making,’’ Eur. J. Oper. Res., vol. 89, no. 3, pp. 445–456, Mar. 1996.

[24] H. Bustince, J. A. Sanz, G. Lucca, G. P. Dimuro, B. Bedregal, R. Mesiar,
A. Kolesárová, and G. Ochoa, ‘‘Pre-aggregation functions: Definition,
properties and construction methods,’’ in Proc. IEEE Int. Conf. Fuzzy Syst.
(FUZZ-IEEE), Jul. 2016, pp. 294–300.

[25] G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, R. Mesiar, A. Kolesárová,
and H. Bustince, ‘‘The notion of pre-aggregation function,’’ in Proc. MDAI
LNAI, V. Torra and Y. Narakawa, Eds. 2015, pp. 33–41.

[26] H. Bustince, R. Mesiar, J. Fernandez, M. Galar, D. Paternain, A. Altalhi,
G. P. Dimuro, B. Bedregal, and Z. Takác, ‘‘d-Choquet integrals: Choquet
integrals based on dissimilarities,’’ Fuzzy Sets Syst., vol. 414, pp. 1–27,
Jul. 2021.

[27] P. Karczmarek, A. Kiersztyn, and W. Pedrycz, ‘‘Generalized Choquet
integral for face recognition,’’ Int. J. Fuzzy Syst., vol. 20, no. 3,
pp. 1047–1055, Mar. 2018.

[28] G. P. Dimuro, J. Fernández, B. Bedregal, R. Mesiar, J. A. Sanz, G. Lucca,
and H. Bustince, ‘‘The state-of-art of the generalizations of the Choquet
integral: From aggregation and pre-aggregation to ordered directionally
monotone functions,’’ Inf. Fusion, vol. 57, pp. 27–43, May 2020.

[29] G. Beliakov, S. James, A. Kolesárová, and R.Mesiar, ‘‘Cardinality-limiting
extended pre-aggregation functions,’’ Inf. Fusion, vol. 76, pp. 66–74,
Dec. 2021.

[30] P. Karczmarek, L. Galka, A. Kiersztyn, M. Dolecki, K. Kiersztyn, and
W. Pedrycz, ‘‘Choquet integral-based aggregation for the analysis of
anomalies occurrence in sustainable transportation systems,’’ IEEE Trans.
Fuzzy Syst., vol. 31, no. 2, pp. 536–546, Feb. 2023.

[31] P. Drygas, B. Pekala, K. Balicki, and D. Kosior, ‘‘Influence of new interval-
valued pre-aggregation function on medical decision making,’’ in Proc.
IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), Jul. 2020, pp. 1–8.

[32] E. Hinojosa-Cardenas, E. Sarmiento-Calisaya, H. A. Camargo, and
J. A. Sanz, ‘‘Improving Michigan-style fuzzy-rule base classification
generation using a Choquet-like Copula-based aggregation function,’’ in
Proc. WILF 13th Int. Workshop Fuzzy Log. Appl., 2021, pp. 1–9.

[33] T. Batista, B. Bedregal, and R. Moraes, ‘‘Constructing multi-layer
classifier ensembles using the choquet integral based on overlap and quasi-
overlap functions,’’ Neurocomputing, vol. 500, pp. 413–421, Aug. 2022.

[34] M. R. Hashmi and M. Riaz, ‘‘Diagnosis of lumbar degenerative disc
disease by using Lp-spaces related to generalized interval-valued m-polar
neutrosophic Choquet integral operator,’’ Int. J. Biomathematics, vol. 14,
no. 8, Nov. 2021, Art. no. 2150063.

[35] L. Sha and Y. Shao, ‘‘Fermatean hesitant fuzzy Choquet integral
aggregation operators,’’ IEEE Access, vol. 11, pp. 38548–38562,
2023.

[36] P. Karczmarek, W. Pedrycz, A. Kiersztyn, and M. Dolecki, ‘‘A compre-
hensive experimental comparison of the aggregation techniques for face
recognition,’’ Iran. J. Fuzzy Syst., vol. 16, no. 4, pp. 1–19, 2019.

VOLUME 11, 2023 124687



P. Karczmarek et al.: QIGCI in an Application to Classification Problems

[37] S.-P. Wan, J. Yan, W.-C. Zou, and J.-Y. Dong, ‘‘Generalized Shapley
Choquet integral operator based method for interactive interval-valued
hesitant fuzzy uncertain linguistic multi-criteria group decision making,’’
IEEE Access, vol. 8, pp. 202194–202215, 2020.

[38] H. Song, Z. Gong, G. Wei, W. Guo, X. Ma, and E. Herrera-Viedma, ‘‘Non-
additive robust ordinal regression: A multicriteria decision model based
on hierarchical-level-bidirectional choquet integral,’’ Appl. Soft Comput.,
vol. 146, Oct. 2023, Art. no. 110643.

[39] S. Rahnamay Bonab, S. Jafarzadeh Ghoushchi, M. Deveci, and G. Haseli,
‘‘Logistic autonomous vehicles assessment using decision support model
under spherical fuzzy set integrated Choquet integral approach,’’ Exp. Syst.
Appl., vol. 214, Mar. 2023, Art. no. 119205.

[40] P. Karczmarek, Selected Problems of Face Recognition and Decision-
Making Theory. Lublin, Poland: Lublin University of Technology Press,
2018.

[41] T. S. Bisht, D. Kumar, and B. J. Alappat, ‘‘Selection of optimal aggregation
function for the revised leachate pollution index (r-LPI),’’ Environ.
Monitor. Assessment, vol. 194, no. 3, p. 187, Mar. 2022.

[42] C. Labreuche, ‘‘A formal justification of a simple aggregation function
based on criteria and rank weights,’’ in Proc. FromMultiple Criteria Decis.
Aid Preference Learn. (DA2PL), 2018, pp. 1–8.

[43] J. Lin, Q. Zhang, and F. Meng, ‘‘An approach for facility location selection
based on optimal aggregation operator,’’ Knowl.-Based Syst., vol. 85,
pp. 143–158, Sep. 2015.

[44] J. Lin, Q. Zhang, and F. Meng, ‘‘A novel algorithm for group decision
making based on continuous optimal aggregation operator and Shapley
value,’’ Int. J. Uncertainty, Fuzziness Knowl.-Based Syst., vol. 27, no. 6,
pp. 969–1002, Dec. 2019.

[45] P. Karczmarek, M. Dolecki, P. Powroznik, L. Galka, W. Pedrycz, and
D. Czerwinski, ‘‘Quadrature-inspired generalized Choquet integral,’’ in
Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), Jul. 2022, pp. 1–7.

[46] P. Karczmarek, W. Pedrycz, M. Reformat, and E. Akhoundi, ‘‘A study in
facial regions saliency: A fuzzy measure approach,’’ Soft Comput., vol. 18,
no. 2, pp. 379–391, Feb. 2014.

[47] G. Lucca, R. R. de Vargas, G. P. Dimuro, J. A. Sanz, H. Bustince, and
B. R. C. Bedregal, ‘‘Analysing some T-norm-based generalizations of the
Choquet integral for different fuzzy measures with an application to fuzzy
rule-based classification systems,’’ in Proc. ENIAC Encontro Nac. Intelig.
Artif. Computacional. São Carlos: SBC, 2014, pp. 508–513.

[48] G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, M. J. Asiain, M. Elkano,
and H. Bustince, ‘‘CC-integrals: Choquet-like copula-based aggregation
functions and its application in fuzzy rule-based classification systems,’’
Knowl.-Based Syst., vol. 119, pp. 32–43, Mar. 2017.

[49] G. Lucca, J. Antonio Sanz, G. P. Dimuro, B. Bedregal, H. Bustince, and
R. Mesiar, ‘‘CF -integrals: A new family of pre-aggregation functions with
application to fuzzy rule-based classification systems,’’ Inf. Sci., vol. 435,
pp. 94–110, Apr. 2018.

[50] G. P. Dimuro, G. Lucca, J. A. Sanz, H. Bustince, and B. Bedregal, ‘‘CMin-
integral: A Choquet-like aggregation function based on the minimum
t-norm for applications to fuzzy rule-based classification systems,’’ in
Aggregation Functions in Theory and in Practice (Advances in Intelligent
Systems and Computing), vol. 581, V. Torra Ed. Springer, 2018, pp. 83–95.

[51] G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, and H. Bustince, ‘‘Pre-
aggregation functions constructed by CO-integrals applied in classification
problems,’’ in Proc. IV CBSF, 2016, pp. 1–11.

[52] P. Karczmarek, A. Kiersztyn, and W. Pedrycz, ‘‘Generalizations of
aggregation functions for face recognition,’’ in Proc. ICAISC LNAI,
L. Rutkowski Eds. 2019, pp. 182–192.

[53] E. W. Weisstein, Newton-Cotes Formulas (MathWorld-A Wolfram Web
Resource). Wolfram. Accessed: Feb. 14, 2022.

[54] M. Dravinski and T. K. Mossessian, ‘‘On evaluation of the green functions
for harmonic line loads in a viscoelastic half space,’’ Int. J. Numer. Methods
Eng., vol. 26, no. 4, pp. 823–841, Apr. 1988.

[55] B. Shizgal, ‘‘Numerical evaluation of integrals and derivatives,’’ in Spectral
Methods in Chemistry and Physics (Scientific Computation). Dordrecht,
The Netherlands: Springer, 2015, pp. 109–186.

[56] H. Bustince, J. Fernandez, R.Mesiar, J. Montero, and R. Orduna, ‘‘Overlap
functions,’’ Nonlinear Anal. Theory Methods Appl., vol. 72, nos. 3–4,
pp. 1488–1499, 2010.

[57] N. Abe, B. Zadrozny, and J. Langford, ‘‘Outlier detection by active
learning,’’ in Proc. KDD 12th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2006, pp. 504–509.

[58] F. T. Liu, K.M. Ting, and Z.-H. Zhou, ‘‘Isolation forest,’’ in Proc. 8th IEEE
Int. Conf. Data Mining, Dec. 2008, pp. 413–422.

[59] K. M. Ting, J. T. S. Chuan, and F. T. Liu, ‘‘MASS: A new ranking measure
for anomaly detection,’’ Gippsland School of Information Technology,
Morwell, VIC, Australia, Tech. Rep. 2009/1, 2009.

[60] F. Keller, E. Muller, and K. Bohm, ‘‘HiCS: High contrast subspaces for
density-based outlier ranking,’’ in Proc. IEEE 28th Int. Conf. Data Eng.,
Washington, DC, USA, Apr. 2012, pp. 1037–1048.

[61] C. C. Aggarwal and S. Sathe, ‘‘Theoretical foundations and algorithms for
outlier ensembles,’’ ACM SIGKDD Explorations Newslett., vol. 17, no. 1,
pp. 24–47, Sep. 2015.

[62] S. Sathe and C. Aggarwal, ‘‘LODES: Local density meets spectral outlier
detection,’’ in Proc. SIAM Int. Conf. Data Mining, Jun. 2016, pp. 171–179.

[63] B. Micenkova, B. McWilliams, and I. Assent, ‘‘Learning outlier ensem-
bles: The best of both worlds—Supervised and unsupervised,’’ in Proc.
ACM SIGKDD Workshop ODD2: Outlier Detection Description Under
Data Diversity, 2014, pp. 1–4.

[64] S. Rayana, ‘‘ODDS library,’’ Dept. Comput. Sci., Stony Brook
Univ., Stony Brook, NY, Tech. Rep., 2016. [Online]. Available:
http://odds.cs.stonybrook.edu

[65] S. Rayana and L. Akoglu, ‘‘Less is more: Building selective anomaly
ensembles with application to event detection in temporal graphs,’’ inProc.
SIAM Int. Conf. Data Mining, Jun. 2015, pp. 622–630.

[66] A. Lazarevic and V. Kumar, ‘‘Feature bagging for outlier detection,’’ in
Proc. 11th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2005, pp. 157–166.

[67] A. Zimek, M. Gaudet, R. J. Campello, and J. Sander, ‘‘Subsampling for
efficient and effective unsupervised outlier detection ensembles,’’ in Proc.
KDD 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2013,
pp. 428–436.

[68] D. Dua and C. Graff, ‘‘UCI machine learning repository,’’ School Inf.
Comput. Sci., Univ. California, Irvine, CA, USA, Tech. Rep., 2019.
[Online]. Available: http://archive.ics.uci.edu/ml

[69] A. Vergara, S. Vembu, T. Ayhan, M. Ryan, M. Homer, and R. Huerta,
‘‘Chemical gas sensor drift compensation using classifier ensembles,’’
Sens. Actuators B, Chem., vol. 166, pp. 320–329, May 2012.

[70] I. Rodriguez-Lujan, J. Fonollosa, A. Vergara, M. Homer, and R. Huerta,
‘‘On the calibration of sensor arrays for pattern recognition using the
minimal number of experiments,’’Chemometric Intell. Lab. Syst., vol. 130,
pp. 123–134, Jan. 2014.

[71] M. Koklu and I. A. Ozkan, ‘‘Multiclass classification of dry beans using
computer vision and machine learning techniques,’’ Comput. Electron.
Agricult., vol. 174, Jul. 2020, Art. no. 105507.

[72] K. Fernandes, P. Vinagre, and P. Cortez, ‘‘Support system for predicting
the popularity of online news,’’ in Proc. 17th EPIA Portuguese Conf. Artif.
Intell., 2015, pp. 535–546.

[73] M. V. Martins, D. Tolledo, J. Machado, L. M. T. Baptista, and V. Realinho,
‘‘Early prediction of student’s performance in higher education: A case
study,’’ in Proc. Trends Appl. Inf. Syst. Technol., vol. 1, 2021, pp. 166–175.

[74] R. B. Bhatt, G. Sharma, A. Dhall, and S. Chaudhury, ‘‘Efficient skin region
segmentation using low complexity fuzzy decision tree model,’’ in Proc.
Annu. IEEE India Conf., 2009, pp. 1–4.

[75] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, ‘‘Modeling
wine preferences by data mining from physicochemical properties,’’Decis.
Support Syst., vol. 47, no. 4, pp. 547–553, Nov. 2009.

[76] A. Moez. (2020). PyCaret: An open source, low-code machine
learning library in Python. [Online]. Available: https://pycaret.
org/about.PyCaretversion1.0.0

PAWEŁ KARCZMAREK received the Ph.D.
degree in mathematics from the University of
Gdałsk, Poland, in 2010, and the Habilitation
(D.Sc.) degree in computer science from the
Systems Research Institute, Polish Academy of
Sciences, in 2019. He is currently a Professor
with the Lublin University of Technology, Poland,
and the Head of the Department of Computational
Intelligence. He is the author of more than
80 research articles and one monograph. His

current research interests include computational intelligence, anomaly and
deep fake detection, multi-criteria decision-making theory, and pattern
recognition.

124688 VOLUME 11, 2023



P. Karczmarek et al.: QIGCI in an Application to Classification Problems

MICHAŁ DOLECKI graduated in computer sci-
ence and mathematics from The John Paul II
Catholic University of Lublin. He received the
Ph.D. degree in computer science from the Faculty
of Automatic Control, Electronics and Computer
Science, Silesian University of Technology, Gli-
wice. He is currently an Assistant Professor with
the Department of Computer Science, Lublin
University of Technology. His current research
interests include the various uses of biologically

inspired artificial intelligence methods like neural networks and genetic
algorithms. In particular, he applies them to improve the software testing
process, general pattern recognition, anomaly detection, and cryptography.

PAWEŁ POWROZNIK (Member, IEEE) received
the B.S. and M.S. degrees in computer sci-
ence from Maria Curie-Sklodowska University
(UMCS), Lublin, Poland, in 2009 and 2011,
respectively, and the Ph.D. degree in electrical
engineering from the Lublin University of Tech-
nology (LUT), Lublin, in 2018. He joined the
Department of Computer Science, LUT, in 2016,
where he is currently an Assistant Professor. Since
2011, he has been working as an iOS Mobile

Application Developer. He is the author and the coauthor of scientific
articles, published in journals, books, and monographs, and presented at
national and international conferences. His current research interests include
graph neural networks, classification, and prediction issues as well as signal
processing or motion analysis topics.

ZBIGNIEW A. ŁAGODOWSKI received the
degree in applied mathematics from the Faculty of
Fundamental Technological Problems, AGH Uni-
versity of Science and Technology, Krakow, the
Ph.D. degree in mathematical sciences from the
University of Maria Curie-Sklodowska, Lublin,
and the Habilitation degree from the University of
Wroclaw. During the master’s thesis, he focused
on the stability of stochastic dynamical systems.
After the M.S. degree, he continued his research

in probability theory. In 2019, he completed a monograph on the limiting
properties of random fields. He is currently a Professor with the Lublin
University of Technology and the Head of the Mathematics Department.
He is the author of about 40 scientific publications and the author and
the editor of two monographs. His current research interests include the
problems of mathematical modeling in agrophysics and computational
intelligence.

ADAM GREGOSIEWICZ received the Ph.D.
degree in mathematics from the University of
Gdałsk, Poland. He is currently an Assistant
Professor with the Department of Mathematics,
Lublin University of Technology, Poland. His cur-
rent research interests include functional analysis
(operator theory, strongly continuous semigroups,
and cosine functions), mathematical modeling in
biology and physics, and recently also includes
combinatorics and its connections to computer
science.

ŁUKASZ GAŁKA received the M.Sc. (Eng.)
degree in computer science from the Faculty
of Electrical Engineering and Computer Science,
Lublin University of Technology, Poland, in 2021.
Currently, he is an Assistant Researcher with
the Department of Computer Science, Lublin
University of Technology. His current research
interests include anomaly detection, data mining,
and artificial intelligence in computer games.

WITOLD PEDRYCZ (Life Fellow, IEEE) is cur-
rently a Professor and the Canada Research Chair
(CRC) of computational intelligence with the
Department of Electrical and Computer Engineer-
ing, University of Alberta, Edmonton, Canada.
He is also with the Systems Research Institute,
Polish Academy of Sciences, Warsaw, Poland. His
current research interests include computational
intelligence, fuzzy modeling and granular comput-
ing, knowledge discovery and data science, pattern

recognition, data science, knowledge-based neural networks, and control
engineering. He has published several in these areas; the current H-index
is 109 (Google Scholar) and 82 on the list top-h scientists for computer
science and electronics http://www.guide2research.com/scientists/. He is
also the author of 18 research monographs and edited volumes covering
various aspects of computational intelligence, data mining, and software
engineering.

In 2009, he was elected a Foreign Member of the Polish Academy
of Sciences. In 2012, he was elected a fellow of the Royal Society of
Canada. In 2007, he received the Prestigious Norbert Wiener Award from
the IEEE Systems, Man, and Cybernetics Society. He is a member of several
editorial boards of international journals. He is a recipient of the IEEE
Canada Computer EngineeringMedal, the Cajastur Prize for Soft Computing
from the European Centre for Soft Computing, the Killam Prize, and the
Fuzzy Pioneer Award from the IEEE Computational Intelligence Society.
He is vigorously involved in editorial activities. He is the Editor-in-Chief of
Information Sciences and WIREs Data Mining and Knowledge Discovery
(Wiley) and the Co-Editor-in-Chief of International Journal of Granular
Computing (Springer) and Journal of Data Information and Management
(Springer). He serves on an advisory board of IEEE TRANSACTIONS ON FUZZY

SYSTEMS.

DARIUSZ CZERWINSKI (Member, IEEE)
received the Ph.D. and D.Sc. (Habilitation)
degrees from the Lublin University of Technology,
in 2001 and 2014, respectively.

He was a Student with Kanazawa University,
Japan. He is currently the Head of the Department
of Computer Science, Faculty of Electrical Engi-
neering and Computer Science, Lublin University
of Technology. He is the author of more than
100 articles and the author/coauthor/editor of

two books. His current research interests include fuzzy cognitive maps,
artificial neural networks, the Internet of Things, cloud computing, and
numerical analysis of physical phenomena. Some of his work has been on
improving the understanding of big data analytics systems mainly through
the application of data mining. He is a member of the Program Committee
of international conferences, such as the Computer Networks Conference,
the Conference on Computational Methods in Engineering Science, and the
Conference on Computational Intelligence, Information Technology, and
Systems Research.

KAMIL JONAK received the degree from the
Faculty of Mechanical Engineering, Lublin Uni-
versity of Technology (LUT), and the Ph.D. and
the D.Sc. (Habilitation) degrees in medicine from
Medical University, Lublin, in 2019 and 2021,
respectively. He works at the Department of
Clinical Neuropsychiatry, Medical University of
Lublin. He is currently the Head of the Depart-
ment of Technical Computer Science, Faculty of
Mathematics and Information Technology, LUT.

His current research interests include biological neural networks, artificial
neural networks, medical signals, image analysis, and the application of IT
methods in healthcare.

VOLUME 11, 2023 124689


