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ABSTRACT Recent developments in the field of robotics have led to discussions surrounding the human-
robot coexistence environments including homes and modern factories. Focusing on the application of
mobile robots, the focus of this research is to enhance their performance in dynamic scenarios. To effectively
plan the robot’s path to avoid pedestrians, a machine learning algorithm is employed to predict the future
trajectory of pedestrians, thus improving the accuracy of forecasting their multi-modal motion. The existing
prediction methods primarily rely on pedestrian history and current movement attributes to predict future
movement, they often overlook the impact of static obstacles on pedestrian movement decision. Therefore,
in this study, a static obstacles probability description generative adversarial network (SOPD-GAN) is
proposed. The static obstacles probability description (SOPD) represents the future movement space of
pedestrians and assesses the likelihood of entry. Additionally, we incorporate pedestrian historical trajectory
information using LSTM, and combine it with SOPD to form the generator model. The training of this
model is carried out using a generative adversarial network (GAN), which is referred to as SOPD-GAN.
In addition, we also introduce an improved dynamic window approach (IDWA) for robot path planning in
dynamic scenarios based on pedestrian trajectory prediction. In order to validate the efficacy of our approach,
we conduct experiments in real scenarios and compare the model with existing baselines. The results show
that this method can construct a suitable prediction model with high accuracy. Specifically, our method
achieved an accuracy of 0.0881 and 0.0691 in FDE and AEE of predicting pedestrian trajectory, surpassing
the baseline method by 20% and 14%.

INDEX TERMS Human–robot coexistence environments, mobile robot, pedestrian trajectory prediction,
LSTM, GAN, Von-Mises-distributed.

I. INTRODUCTION
In recent years, the development of mobile robots has
sparked discussions regarding their applications in environ-
ments where humans and machines coexist, such as homes,
offices, exhibitions, and modern factories. In these scenar-
ios, mobile robots can assist humans in performing various
tasks, including carrying and inspection. For instance, in a
factory setting, a handling robot may need to transport goods
from one designated location to another. To achieve this, the
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robot must autonomously plan its path based on environmen-
tal information. Typically, the robot distinguishes between
obstacles and open areas by utilizing a static map. However,
during actual operation, the robot will inevitably encounter
temporary dynamic obstacles that are not accounted for in the
map, such as pedestrians or other working robots. Therefore,
planning and controlling the trajectory of the robot in a poten-
tially dynamic environment is a challenging and practical
task.

To address this problem, it is crucial to implement recog-
nition and tracking of moving objects, as well as future
trajectory prediction, and apply these capabilities to the
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motion control of mobile robots. The most commonly used
sensors for achieving recognition and tracking of moving
objects are lidar, vision sensors, and depth cameras. These
sensors provide the robot with external information. Several
methods, such as those utilizing point clouds, RGB images,
and depth images, have been proven effective in this regard
[1], [2], [3].

Accurate prediction of pedestrians’ trajectories can signif-
icantly enhance the robot’s navigation performance. Trajec-
tory refers to the positional change of an object over time.
This change in position and orientation within a given time
step can be interpreted as velocity information [4]. The trajec-
tory prediction problem entails estimating the future move-
ments of a moving object based on historical information [5]
obtained from its behavior within a particular scene.

Predicting trajectories in scenes involving multiple
dynamic objects is a challenging task that requires consid-
ering the spatio-temporal interactions between pedestrians
and the scene, the human analysis and decision-making
processes involved in the environment [6], as well as the
stochastic nature of human walking patterns. While walking,
pedestrians continuously adjust their trajectories based on
the motion states of other dynamic objects and the positions
of static obstacles [7] in order to avoid collisions. Addi-
tionally, the environment surrounding pedestrians and their
spatial relationships with other objects change over time,
necessitating constant adjustments to their own trajectories.
Hence, there exists a natural interplay between pedestrian
trajectory prediction and the spatio-temporal environmental
information [8].

Currently, several methods have been proposed for trajec-
tory prediction, which can be mainly categorized into two
directions.

1) The first approach based on knowledge-based (KB),
or called physics-based [9], reasoning-based [10] or tradi-
tional approach [11].

2) The second direction involves the deep learning (DL)
method, which is data-driven. DL refers to the training of
neural network with more than two hidden layers that derive
supervised learning from data.

The KB approach involves building a motion model based
on intuitive characteristics of pedestrians, which is then used
to predict future trajectories using various physical models.
Classical physical models such as the uniform acceleration
model [12] and uniform velocity model [13] are utilized to
describe themotion state of pedestrians. Trajectory prediction
has also seen the application of filter-based methods like
the extended Kalman filter (EKF) [14]. However, due to
the highly random nature of pedestrian motion affected by
multiple variables, traditional KB approaches face challenges
in handling motion mutability.

Recently, researchers have utilized DL methods, partic-
ularly long short-term memory networks (LSTM), convo-
lutional neural networks (CNN), and generative adversarial
networks (GAN), to address pedestrian trajectory prediction

problems. The researchers have transformed time-varying
trajectory prediction into a task of generating time series
data [15]. Due to the proven performance of recurrent neural
networks (RNN) for this problem [16], [17], the approach
of pedestrian trajectory prediction based on modern RNN
networks has garnered significant attention. Unlike KBmeth-
ods, DL methods do not require interpretable parameters and
physical modeling. However, they do require extensive data
and flexible algorithms.

LSTM is a widely used deep learning method in trajectory
prediction and has demonstrated effectiveness. Alahi et al.
introduced a Social-LSTM model [15], which combines
LSTM with a Social pooling layer. It innovatively incorpo-
rates pedestrian interaction information into trajectory pre-
diction.

Social-LSTM assumes that pedestrian trajectories follow a
bivariate Gaussian distribution, and we adopt this assumption
in our model as well. Taking advantage of GAN’s significant
advancements and success in other domains, Gupta et al. [18]
proposed Social-GAN. GAN is integrated into pedestrian
trajectory prediction tasks, combining time series prediction
with a generative adversarial architecture. This architecture
enhances the resilience and accuracy of network models in
complex scenarios by utilizing trajectory predictions gener-
ated through iterative adversarial training.

The previously mentioned methods take into account the
interaction factors generated during the movement of multi-
ple dynamic targets and incorporate the historical track infor-
mation of pedestrians. However, they neglect the influence
caused by the static environment [19], especially the com-
plex interaction between pedestrians and their surroundings.
These effects alter the decision-making process of pedestrian
movement, which undoubtedly has a significant impact on
trajectory prediction [20]. Therefore, these models have cer-
tain limitations in the task of trajectory prediction in occupied
areas.

Autonomous obstacle avoidance serves as the foundation
for intelligent operation of mobile robots. In the conventional
obstacle avoidance algorithm, the artificial potential field
(APF) method depicts the robot as a particle [21] in space,
influenced collaboratively by the generated repulsive force
field and the gravitational field. The force field arises from the
obstacle, target point, or target trajectory. By utilizing APF,
the robot can achieve optimal direction and speed control.
The dynamic window approach (DWA) restricts the robot’s
velocity samples [22] within specific bounds, employing
kinematic constraints such as velocity and acceleration. This
approach determines the current optimal motion state and
future trajectory based on preset evaluation criteria, including
variables such asmovement speed and deviation of the robot’s
direction from the target point.

All of these methods fall within the realm of traditional
reactive trajectory planning, which treats obstacles as instan-
taneous static entities. However, in an environment of human-
machine coexistence, these methods overlook the distinctive
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aspects of human presence and motion. The robot ought to
devise its future trajectory based on themotion characteristics
[23] of the dynamic objects, particularly as the scene contin-
ues to evolve dynamically.

Aiming at enhancing the capability of robots to evade
obstacles in dynamic environments, this paper proposes a
method for dynamic obstacle avoidance in mobile robots
by leveraging pedestrian trajectory prediction. Initially,
a LiDAR-based approach for pedestrian recognition and
tracking is introduced, which utilizes point cloud data exclu-
sively to recognize and extract dynamic objects. From the
current point cloud information and the mapping of static
environment point clouds, the recognition function module
combines the clustering growth algorithm. Such an approach
enables recognition and extraction of dynamic discrete point
cloud clusters, and facilitates tracking of dynamic point
clouds.

FIGURE 1. Workflow diagram of the motion robot framework.

Secondly, this paper presents a novel deep learning-based
model for predicting pedestrian trajectories. Our prediction
model combines and models pedestrian movement trends,
movement speed, and global environmental information in
a time series. The proposed network model incorporates
LSTM units and GAN architecture, with the addition of
a static obstacle probability distribution module (SOPD).
This module analyzes how static obstacles impact the future
motion intentions and trajectories of pedestrians. Pedestrian
prediction is employed to estimate the probability distri-
bution. Specifically, the future state Xt of the pedestrian
p(Xt |Xobst ,2t ) is based on the observation of the pedestrian’s
historical track Xobs and the distribution of the global envi-
ronment 2obs. Considering the influence of static obstacles
on pedestrian movement in space, this information is intro-
duced as an additional variable to enhance the prediction.
The distribution of pedestrian entry probabilities is estimated
dynamically.

Thirdly, building on pedestrian trajectory prediction,
we present a novel approach called the Improved Dynamic
Window Approach (IDWA). Our approach integrates infor-
mation about robot and obstacle motion to enhance the local

path planning performance of robots operating in dynamic
environments. Considering the temporal characteristics of
pedestrian position and movement, our method incorporates
future trajectory avoidance for dynamic objects, thereby over-
coming the limitations of traditional path planning methods.

The future trajectory of the mobile robot is calculated
based on the velocity sample space of the robot, considering
kinematic constraints. This calculation is done for different
velocity samples. In order to achieve collision-free trajectory
planning in a dynamic environment, the trajectory of the
dynamic obstacle is compared to the future trajectory of the
robot under time-varying conditions. The purpose of this
comparison is to determine the minimum distance between
the two trajectories.

Finally, the Lyapunov direct method is employed to
achieve tracking control of the robot’s reference trajectory.

The main contributions of this paper are as follows:
1) We propose a dynamic object recognition and detection

method that utilizes Lidar data. This method allows for real-
time detection of dynamic objects using point cloud data and
enables long-term tracking of pedestrian motion.

2) We introduce a novel pedestrian trajectory prediction
model that combines LSTM with static obstacle spatial
probability correction. By considering pedestrian movement
attributes and environmental constraints and leveraging GAN
architecture, this method significantly improves the accuracy
of predicting pedestrian future trajectories in complex scenes.

3) To address human-machine coexistence environments,
we propose IDWA, which enables intelligent motion control
of robots in dynamic settings. Through experimental valida-
tion, the algorithm demonstrates excellent dynamic obstacle
avoidance capabilities and generates planned paths that align
with human environmental motion rules. The experiments
confirm the effectiveness of our method in enhancing motion
performance of robots working in human-machine coexis-
tence scenarios.

II. BACKGROUND KNOWLEDGE
In this section, the standard LSTM cell and GAN architecture
used in our model are described.

A. LSTM
LSTM is a variant of RNN which can learn from sequen-
tial data. LSTM can capture the interrelationship between
long-term and short-term information within a sequence.
In predicting pedestrian trajectories, the future movements
of pedestrians may depend on their long-term and short-term
historical trajectories.

In this paper, LSTM is utilized as a component of the future
trajectory prediction model. The following formula presents
the fundamental update formula for LSTM.

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (1)

ft = σ
(
Wxf xt +Whf ht−1 +Wcf ct−1 + bf

)
(2)

Ĉt = tanh (Wxcxt +Whcht−1 + bc) (3)
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FIGURE 2. Structure of LSTM cell.

Ct = ft ⊙ Ct−1 + it ⊙ Ĉt (4)

ot = σ (Wxoxt +Whoht−1 +Wcoct−1 + bo) (5)

ht = ot ⊙ tanh (Ct) (6)

where it , ft , ot are represented the input door, the forgetting
door, and the output door respectively. They decide what
information needs to be stored, what needs to be forgotten,
and what needs to be output as the state of the current
moment. Ct is a long-term memory cell that is used and
updated at each time step, and it can use information from
earlier time steps to calculate the current moment. xt , ht
represents the feature vector of the input value of the current
moment and the hidden layer state vector of the output, and
as the output of the current moment, ht will be transmitted
as short-term memory information to the neural network
operation of the next moment. σ denotes a Sigmoid activation
function that maps input values to [0, 1], controls the size of
the data stream. tanh represents a hyperbolic tangent function.
The update of long-term memory cells Ct relies on the input
gate it and the forgetting gate ft to control what historical
information needs to be abandoned from the state of the previ-
ous moment Ct−1, so as to avoid noise information affecting
the prediction. xt will be incorporated into the memory cellCt
by it , so that the current input is saved to achieve the update
of long-term memory.

Based on the three network structure gates, LSTM can
analyze time series tasks, apply and generate future predicted
changes. In this study, LSTM is used as the basic unit to build
a dynamic object motion prediction model.

B. GAN
Trajectory prediction of dynamic objects is a challenge as
it involves generating multi-modal trajectories. Traditional
methods struggle to address this problem due to the high
level of agent randomness [24]. GANs are extensively utilized
in various man-machine fields, including image recognition,
multi-language translation, and data enhancement, due to
their capability of generating multi-modal samples. They
have proven to be pioneering in this domain.

The structure of a GAN is composed of generator and
discriminator. The discriminator’s objective is to differentiate
the generator’s output and compel it towards generating more
realistic trajectories. This process counteracts the training

model and enhances the network’s performance in complex
problem domains.

Social-GAN incorporates the GANmodel in the domain of
trajectory generation to address the challenge of representing
multi-modal trajectories. it utilizes the global pooling method
to differentiate the impact of other pedestrians in the scene.
However, it encounters challenges in accurately distinguish-
ing the influence of pedestrians with varying speeds and
positions on the target. STI-GAN [20] combines the GAN
network with the graph attention network (GAT) to discern
the impact of pedestrians [25] in different states on the tar-
get by utilizing the attention mechanism’s influence. This
enhancement enables the network model to dynamically con-
sider the potential interference from surrounding pedestrians.

To address the agent prediction problem, our research
presents a pedestrian motion estimation method that incor-
porates the sum of pedestrian dynamics and environmental
constraints. This estimation method is then integrated into
GAN to model the intricate behavior of targets at the spatio-
temporal level, thereby enhancing the trajectory prediction
performance.

III. DYNAMIC OBJECT RECOGNITION BASED ON
POINT CLOUD
Lidar-derived sensor data is frequently utilized in the context
of robots’ environmental perception tasks. Due to its excep-
tional measurement accuracy and robustness [26], Lidar is
extensively employed across diverse environments, including
challenging lighting conditions. By capturing point cloud
information of the environment, Lidar can determine the size
and position of the target objects accurately. On the other
hand, vision sensor-based approaches can be trained using
specific object data for object recognition and tracking [3].
However, point clouds primarily contain spatial information
instead of social properties of objects.

This paper addresses the challenge of robot motion in
dynamic environments, with a particular focus on the kine-
matic properties of dynamic obstacles [27]. Therefore, Lidar
has become our preferred choice due to its ability to capture
dynamic obstacle motion effectively.

In this section, we propose a dynamic object recognition
method that utilizes static point cloud matching. This method
can effectively identify dynamic objects within the robot’s
field of vision and is applicable to a variety of environ-
ments. It provides the foundational information for subse-
quent mobile robots to avoid dynamic obstacles and navigate
accordingly.

A. POINT CLOUD MATCHING
In this study, we enhance the NDT algorithm [28], [29],
a renowned method for point cloud matching, to achieve
dynamic point cloud extraction.

First, the space is rasterized and the point cloud informa-
tion is used to initialize the grids. According to the given size,
the space is divided into several grids of the same size, and
the points in the source point cloud P are projected into the
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corresponding grids according to the coordinates. If there are
at least 5 points in the grid, the mean q and covariance matrix∑

of the points contained in it are calculated:

q =
1
n

n∑
i=1

Xi (7)

∑
=

1
n

n∑
i=1

(Xi − q) (Xi − q)T (8)

where Xi = [xi, yi] is the point cloud coordinates contained in
the grid, n representing the number of point clouds contained.
Next, the grids are initialized based on the calculated q

and
∑

. By constructing the probability density function,
the discrete point cloud can be represented continuously
by piecewise. The probability density of each grid can be
expressed as:

p (X) ∝ exp

(
−
(X − q)T

∑
−1
(X − q)

2

)
(9)

The above steps are repeated for all the grids and finally
complete the initialization of the spatial grid. The target point
cloud Q is matched into the grids and calculate the score of
each point cloud p (Xi) and the total score S (p):

p (Xi) = exp

(
−
(Xi − q)T

∑
−1
(Xi − q)

2

)
(10)

S (p) =

n∑
i=1

p (Xi) (11)

Among them, S (p) is the objective function to be opti-
mized, and our goal is to find the optimal target transforma-
tion matrix T .

T =

[
R t
0 1

]
(12)

where R represents rotation matrix and t represents transla-
tion matrix. Based on the Gauss-Newton method, the total
score of the Q in the grid is optimized under the T , which
means that the two frames of point clouds get the maximum
degree of coincidence matching. That is, the point cloud
matching task is completed.

B. DYNAMIC POINT EXTRACTION
In dynamic environments, dynamic objects often exist in the
free area of the scene, as described in our previous work [30].
From the perspective of point cloud data analysis, the follow-
ing two assumptions can be reasonably made: 1) Dynamic
point clouds mainly exist in blank grids that are not initialized
by source point clouds; 2) Point clouds have a more concen-
trated spatial distribution which are originating from the same
object.

Based on hypothesis 1, the matched target point cloud Q̃
are put into the space, and the point clouds mapped to the

blank grid are statistically to the point cloud D which is
regarded as potential dynamic point cloud convergence.

Q̃ = Q⊙ T (13)

C. DYNAMIC OBJECT RECOGNITION
In dynamic scenarios, the simultaneous existence of multiple
dynamic targets is common. In robot motion, it is crucial to
perceive the entire target and distinguish it from the previ-
ously acquired dynamic point cluster. Hypothesis 2 serves
as the foundation for adopting the region growth method to
extract dynamic objects from the point cloud data.

Dynamic point cloud clusters are extracted using the
Euclidean clustering algorithm [31]. The fundamental con-
cept of the Euclidean clustering algorithm is to group points
within a specified Euclidean distance into clusters. As dif-
ferent dynamic objects have distinct spatial distances, the
dynamic point cloud clustering method based on Euclidean
distance achieves effective extraction of objects in the scene.

Finally, the collection of point cloud clusters
C = [C1,C2, . . . ,Cn] can be get, where C i represents the
point cloud information of a dynamic target. The center of
mass of C i can be seen the location information of the current
pedestrian.

X it =
1
m

m∑
j=1

C i
j (14)

where X it represents the position information of the first
dynamic object in the t time step, m represents the num-
ber of point clouds in C i

j and C i
j represents the j point

cloud coordinate information in the i dynamic point cloud
cluster.

Through the above method, the location information
extraction of dynamic object recognition can be realized
based on point cloud, obtain the historical trajectory of
dynamic object X i = [X i1,X

i
2, . . . ,X

i
t ], realize the target

recognition based on Lidar, and provide data support for the
subsequent dynamic obstacle prediction and robot control.

IV. PEDESTRIAN TRAJECTORY PREDICTION MODEL
In this section, our aim is to achieve the prediction of dynamic
objects by robots in a dynamic environment. The pedestrian
is the primary object in the robot’s visual field, and accurately
predicting their motion trajectory can greatly enhance the
robot’s performance. Pedestrian behavior and movement are
commonly influenced by specific goals, such as the presence
of other pedestrians and obstacles that hinder their movement.
When planning our path, we take into account the target
location and environmental information. Prior research has
neglected the significance of the pedestrian environment, par-
ticularly static obstacles, which play a crucial role in pedes-
trians’ decision-making process [15], [18], [25], [32]. In such
scenarios, multiple alternative paths are often present, and
given the varying motion patterns of pedestrians, a predic-
tive model capable of capturing diverse influencing variables
becomes necessary.
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FIGURE 3. We propose a multimodal network architecture that incorporates static obstacle constraints. The network’s output is generated
using a GAN model and includes four key components: an encoder, a decoder, a SOPD module, and a discriminator.

In this paper, we propose a novel prediction model called
SOPD-GAN (Static Obstacles Probability Distribution Gen-
eration Adversarial Network). This model comprehensively
considers the history of pedestrian trajectories and interacts
with its surroundings to accurately predict pedestrian paths.
This section introduces the model architecture and provides
a detailed explanation of the static obstacles. The pedestrian
movement is described based on probability distribution, and
a motion estimation correction module is developed accord-
ingly. The model predicts pedestrian trajectories based on
historical data and incorporates obstacle information as a
potential variable to enhance prediction performance.

A. PROBLEM DEFINITION
Our goal is to forecast and anticipate the future movement of
the agent in the scene by analyzing the historical trajectory
of the object and the relevant scene information. The position
of the pedestrian can be determined using an accurate target
detection algorithm. As input for the model, we can predict
the future movement trajectory of the pedestrian.

Based on the dynamic object extraction framework pro-
posed, pedestrian location detection is implemented based
on point cloud as the data preprocessing part of the pro-
posed model. The input of model is assumed that the pedes-
trian’s history trajectory X = X1,X2, · · · ,Xn, and the
future predicted trajectory is the output which defined as
Ŷ = Ŷ1, Ŷ2, · · · , Ŷn. Where the historical trajectory of an
object is defined as Xi = {

(
x ti , y

t
i

)
|t = 1, · · · ,Tobs }, and

the environment in which the object resides is defined as
2t . In addition, the predicted trajectory is defined as Ŷi =

{
(
x̂ ti , ŷ

t
i

) ∣∣t = Tobs+1, · · · ,Tpred }, and the real future trajec-
tory is defined as Yi ={

(
x ti , y

t
i

) ∣∣t = Tobs+1, · · · ,Tpred }.

B. OVERALL MODEL
In the scene, pedestrians determine their navigation decisions
based on the constraints of fixed obstacles and their own
objectives. While some literature has examined the influence
of static obstacles on pedestrian paths, these studies primarily
focus on local interactions and overlook the impact of the
overall scene situation. Our proposed model considers the
interaction between pedestrians and the environment, incor-
porating multiple variables.

To accomplish this, we introduce the SOPD-GAN model,
which is comprised of four key modules: the feature encoder
module, decoder module, static obstacle probability distribu-
tion module (SOPD), and discriminator module. The network
structure is depicted in Fig. 3.

The feature encoder module employs a Fully Connected
Layer (FC) to extract high-dimensional features from his-
torical track information. These features are then encoded
using LSTM to capture the historical information. Subse-
quently, the encoder processes the motion features within
the pedestrian’s historical track information, culminating in
the generation of feature encoding, assuming pedestrian free
movement.

In the decoder module, the input consists of integrated
random noise, feature encoding, and SOPD estimation from
the previous time. Leveraging the diverse feature set, the
generator aims to generate a plausible distribution of pedes-
trian motion as a predictive output, while simultaneously
attempting to deceive the discriminator.

In SOPD, we conduct joint probabilistic modeling to
estimate pedestrian movement information and environment
information. We model the movement direction and dis-
placement increment of pedestrians as independent variables,
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and estimate the probability of the spatial impact on the
static environment. By solving the joint probability optimally,
we can obtain an estimation of pedestrian trajectory under
pedestrian constraints.

Subsequently, the generated trajectories are evaluated
using a discriminator to determine their probability of being
true or false trajectories. The main purpose of the discrim-
inator is to serve as an auxiliary module for the generator.
Through adversarial training, the discriminator compels the
generator to produce more realistic samples, thereby enhanc-
ing the prediction performance of the generator model. When
the discriminator cannot clearly distinguish the authenticity
of the trajectory, it signifies that the output is reasonable.

C. FEATURE ENCODER MODULE
The feature encoder module mainly extracts the feature rep-
resentation of the observed pedestrian trajectory based on the
LSTM structure. Firstly, the relative displacement of pedes-
trians in each time step is embed into a high-dimensional
eigenvector eti of fixed length though the FC;

eti = φ(x ti , y
t
i ;Wee) (15)

where φ(·) represents a RuLU nonlinear activation function,
Wee represents the weight of the layer network. Then, LSTM
is used to capture the time dependence between pedestrian
motion states. eti is used the input to the encoder LSTM cell
at time t for pedestrian i.

htei = LSTM en(ht−1
ei , e

t
i ;Wencoder ) (16)

where LSTM en(·) represents the encoder LSTM, ht−1
ei repre-

sents the output state of the LSTM at the last time step and
Wencoder represents the weight of the cell.
It should be noted that when there are multiple agents in

the scene, each object is assigned a separate encoder module,
and the weight of module is shared between each module.

D. DECODER MODULE
The motion status of the object is analyzed through the
encoder module and historical motion information of pedes-
trians is stored. In SCP-GAN, the encoder and decoder are
symmetrical structures, and the decoder is also composed of
a single-layer LSTM cell and an MLP.

htdi = LSTMde(ht−1
di , ρ

t−1
i ;Wdecoder ) (17)

Ȳ ti = φ(htdi;Wed ) (18)

where LSTMde(·) represents the LSTM cell in decoder mod-
ule, htdi represents the hidden state of the layer, ρ

t−1
i Indicates

the status of the SOPD module which will be introduced in
next chapter, ϕ(·) Indicates the MLP, and The weight of them
is represented byWdecoder and Wed .
The decoder ultimately outputs a set of bivariate GMM

predictions Ȳ ti that treat the incremental movement of pedes-
trians in the direction as an independent variable.

Ȳ ti = (1x̄t , σ 2
xt ,1ȳt , σ

2
yt ) (19)

The network’s embedding layer and LSTM structure aim to
capture valuable information regarding the historical trajecto-
ries and complex motion patterns of pedestrians. These layers
analyze and predict pedestrians’ historical motion informa-
tion to generate an initial estimation of motion trends.

E. STATIC CONTEXT PROBABILITY DISTRIBUTION
In this section, we will introduce the approach of estimat-
ing pedestrian motion attributes and obstacle information as
probability distributions. Specifically, what the future state of
pedestrians p(Xt |Xobst ,2t ) is concerned based on the distribu-
tion of historical observation trajectory X t and context 2t .
The influence of static environment on pedestrian move-

ment at time step T are introduced as a potential variable
to improve prediction, where the spatial influence of pedes-
trians is estimated in real-time. Due to the interference of
obstacles, the direction of pedestrian movement will also
change accordingly. Therefore, in this module, the directional
information is also considered, so the state of pedestrians can
be represented as:

Xt = (xt , yt , ψt) (20)

As introduced above, we are interested in the state transi-
tion of pedestrians from previous time step t-1 to time step t ,
which can be represented as:

Xt = Xt−1 +1Xt (21)

where 1Xt represents the increment of pedestrian position
from time step t−1 to t:

1Xt = (1xt ,1yt ,1ψt) (22)

1) PROBABILITY ESTIMATION OF MOTION STATE
In this work, a trajectory prediction neural network model is
built based on LSTM to predict the incremental movement
of pedestrians without constraints and additional constraints
when they only care about historical trajectory information.
The increment of x, y are modeled as independent variables.
They can be got according to formulas (18) - (19).

FIGURE 4. Motion probability estimation, the pedestrian moves from
upper left corner to lower right corner.
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Given the directional inertia of pedestrian motion, the
information regarding their direction ψ is incorporated as an
independent variable in the prediction model. Previous stud-
ies [33] have successfully employed the Von-Mises distribu-
tion approach to describing directional distribution. Hence,
we model the pedestrian motion direction as a Von-Mises-
distributed variable with specific mean and concentration
parameters κψ .

Therefore, the incremental estimate of pedestrian move-
ment at time step t can be described as:

p (1xt ,1yt ,1ψt) ∝ exp

(
−
(1xt −1x̄t)2

σ 2
xt

)

· exp

(
−
(1yt −1ȳt)2

σ 2
yt

)
· exp

(
1κψ cos(ψt −1ψ̄t )

)
(23)

1ψ̄t = arctan(
1ȳt
1x̄t

) (24)

According to formula (23), an estimate of the incremental
distribution p

(
Xobst−1

)
= p (1xt ,1yt ,1ψt) can be obtained,

and the future pose estimation of pedestrians can be described
as follows:

p(Xt |Xobst ) ∝ p
(
Xobst

)
· p(Xt−1|Xobst−1) (25)

2) PROBABILITY ESTIMATION OF STATIC CONTEXT
As previously stated, pedestrian movement behavior varies
across different environments. An illustrative instance of this
is when a pedestrian adjusts their direction to avoid obstacles.
To account for this, a location prior is introduced within
a particular environment, which signifies the likelihood of
a pedestrian entering a specific area of space. Within this
module, the location prior is represented as follows:

p(Xt |Xobst ,2t ) = p(Xt |2t ) · p(Xt |Xobst ) (26)

Pedestrians can be influenced in various ways by obsta-
cles in different scenes, such as corridors, factories with
goods, and temporarily placed signs. To analyze the impact
of obstacles on pedestrian movement behavior, a single-layer
perceptron is created.

p(Xt |2t ) =
1

1 + exp(−α(2t ;Wea))
(27)

In formula (27), α(·) represents the single-layer perceptron,
Wea represents its weight, and 2t represents the observation
context information at time step t . In this article, the raster
map is used to represent a static environment, and the distance
d (k)min from the nearest k occupied or unknown grids is used
as the feature input for the context. We conducted simulation
experiments onMatlab, and Fig. 5 shows the simulation effect
according to formula (27).

Finally, the estimate of the probability distribution
p(Xt |Xobst ,2t ) is got. In this module, the maximum proba-
bility position of this estimate is taken as the output.

FIGURE 5. Static obstacle probability distribution, the black circle
represents two cylindrical obstacles in the environment. Complete
information about the obstacle environment can be obtained through the
method of pre-mapping.

FIGURE 6. In the predicted future movement distribution of pedestrians,
the estimated movement path is offset to the right due to the action of
obstacles.

3) ESTIMATION OF MAXIMUM PROBABILITY POSITION
According to formulas (23) to (27), upon examining these
formulas, it becomes evident that the probability estimation
function, which needs to be solved, comprises numerous
exponential terms. Because iterative methods, such as the
Gauss-Newton method, require multiple calculations of the
partial derivative and entail significant computational costs,
particle swarm optimization (PSO) is employed to optimize
the objective function [34].

PSO is used which is a bionic algorithm that emulates
the behavior of biological populations. Each particle in the
algorithm represents a potential numerical solution, ulti-
mately facilitating the pursuit of the global optimum. This
can be mathematically expressed as:

X ti =
(
x ti , y

t
i , ψ

t
i
)

(28)

V t
i =

(
vtxi, v

t
yi, v

t
ψ i

)
(29)

where Xi and Vi represent the state and velocity of the particle
i at time t .The state transition formula from t to t+1 for each
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particle can be expressed as:

V t+1
i = V t

i + a1r1
[
pti − X ti

]
+ a2r2

[
ptg − X ti

]
(30)

X t+1
i = X ti + V t+1

i (31)

where pti represents the optimal position of the i particle in
the search process, ptg represents the optimal position of all
particle groups in the search process, a1, a2 represents the
acceleration of the particles, and r1, r2 are random numbers
between [0,1] obey a uniform distribution.

To prevent particles from searching over too wide or too
narrow ranges during iteration, which could lead to missing
the optimal value or getting trapped in a local optimum, upper
and lower limits for particle velocity are defined. It can be
expressed as V t

i ∈ [Vmin,Vmax].
Based on the above part, the maximum estimation of

the pose probability of the pedestrian Ŷt =
(
x ti , y

t
i

)
can

be obtained at the next time, which is the output of the
environmentally-constrained motion estimation module.

The prediction of pedestrian movement in time tmodified
by SOPD will be used to predict time step t + 1. Finally,
the generator outputs Ŷ = Ŷ1, Ŷ2, · · · , Ŷpred_len as the final
pedestrian trajectory prediction.

In the training stage, Ŷ will be input into the discriminator
and conduct adversarial training through the GAN network
model to improve the performance of the neural network.

F. DISCRIMINATOR
The discriminator module consists of a separate encoder.
It takes the real trajectory and generator output as inputs, uses
an LSTM cell and an MLP layer to identify the authenticity
of the trajectories, and finally outputs the authenticity confi-
dence of the trajectories:

G. LOSS FUN CTION
The overall loss function Lof the model consists of two
parts, Lvariety representing the minimum difference between
the generated trajectory and the predicted trajectory, and
LGAN (G,D) representing the training loss between the gen-
erator and the discriminator, forcing the generator to create
a trajectory close to the real world. The loss function can be
expressed as:

L = LGAN (G,D)+ τ · Lvariety (32)

LGAN (G,D) = min
G

max
D

(EX∼Pdata(X)
[
logD (X)

]
+ EZ∼Pdata(Z )

[
log (1 − D (G (Z )))

]
) (33)

Lvariety = min
k

∥∥∥Yi − Ŷ (k)
i

∥∥∥
2

(34)

where τ represents the weight parameter that regulates the
generator and discriminator,E represents the expectation, and
k represents the sampling frequency of the generator. The
loss function of discriminator takes the form of binary cross
entropy function.

V. DYNAMIC ENVIRONMENT PATH PLANNING AND
TRAJECTORY TRACKING
Mobile robot operations are constrained by various fac-
tors, including structural limitations, human safety concerns,
and static obstacles. Although there are mature methods
to address these concerns, planning a route that effectively
coexists with the agent in a dynamic environment remains a
challenge garnering significant attention from researchers.

This section presents a proposed dynamic environment
path planning algorithm, known as Dynamic Window
Approach (DWA), introduces a control method based on the
Lyapunov direct method, and integrates a dynamic object tra-
jectory prediction model to enable intelligent motion control
of mobile robots in complex dynamic environments.

A. PATH PLANNING IN DYNAMIC ENVIRONMENT
1) PROBLEM DEFINITION
In the context of robot movement, the conventional approach
to path planning for robots overlooks the distinctive move-
ment patterns of pedestrians. Instead, pedestrians are con-
sidered as instantaneously stationary obstacles, leading to
an inability to differentiate between dynamic objects and
the static environment. To address this gap, the trajectory
approach introduced in this section builds upon the prin-
ciples of DWA [22]. Moreover, it incorporates a trajectory
prediction module that takes into account the movements of
pedestrians.

The motion state of the robot under the time t includes
[x, y, θ, v,w], respectively, the horizontal coordinate, vertical
coordinate, direction, linear velocity and angular velocity
under the world coordinate. The displacement of the robot
movement between two adjacent moments is relatively short,
which can be approximated as a line segment. Then the state
of the robot at t + 1 can be expressed as:

θt+1 = θt + wt ·1t (35)

xt+1 = xt + vt ·1t · cos (θt+1) (36)

yt+1 = yt + vt ·1t · sin (θt+1) (37)

2) IMPROVED DYNAMIC WINDOW APPROACH
Based on the robot motion model, the future trajectory of
the robot can be calculated according to its motion speed.
In this work, improved dynamic window approach (IDWA)
is proposed. Our method simulates the motion trajectory and
control speed of the robot in t = 1 : T , which is used as the
trajectory planning of the motion control of the robot body.

Where, T is the same as the pedestrian track prediction
pred_len. Since there are infinite sets of motion velocities,
the velocity samples are screened, and reasonably limit the
velocity samples of the robot based on the motion and envi-
ronmental constraints of the robot body.

Boundary speed limitation: The motion of mobile robot
is restricted by hardware, and its motion speed is limited by
the boundary speed, which is defined as:

Vb = {v ∈ [vmin, vmax] ,w ∈ [wmin,wmax]} (38)
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Kinetic limitation: In adjacent time steps, due to the
dynamic constraints of the robot’s motor, the robot has a
maximum acceleration limit. The sampling speed of the robot
should conform to the corresponding dynamic limit, that is,
it satisfies:

Vd =

{
(v,w)

∣∣∣∣ v ∈ [vc − v̇a1t, vc + v̇b1t]
w ∈ [wc − ẇa1t,wc + ẇb1t]

}
(39)

where, vc and wcdenote linear velocity and angular veloc-
ity, v̇aandv̇bdenotes maximum deceleration and maximum
acceleration of linear velocity, ẇa and ẇbdenotes maximum
deceleration and maximum angular acceleration of angular
velocity.

Turning radius limitation: The robot is limited by its
moving structure, and its minimum turning radius Ris con-
strained, so the speed sample [v,w] of robot should satisfy
the following requirements:

Vr =

{
(v,w)

∣∣∣ v
w

≥ R
}

(40)

Therefore, the speed sample of the robot should simultane-
ously satisfy the above constraints:

V = Vb ∩ Vd ∩ Vr (41)

3) EVALUATION FUNCTION
Based on the limitation of velocity samples, the feasible
velocity sample space V is sampled to obtain the candidate
trajectory of the array. In the next step, each velocity sample
is needed to evaluate and select the optimal sample at the
current moment. In this paper, pedestrian trajectory predic-
tion is integrated into the evaluation function, which can be
expressed as:

Gt (v,w) = α · norm_angle (v,w)

+ β · goal_angle (v,w)

+ γ · goal_dist (v,w)

+ δ · safe_dist (v,w) (42)

norm_angle (v,w) =

∣∣∣θplan1 − θ

∣∣∣ (43)

goal_angle (v,w) =

∣∣∣∣∣
n∑
i=1

arctan

(
ygoal − yplani

xgoal − xplani

)
− θ

plan
i

∣∣∣∣∣
(44)

goal_dist (v,w) = min
t=1:T

dist
(
Xgoal,Xplant

)
(45)

dist
(
Xa,Xb

)
=

√(
Xax − Xbx

)2
+

(
Xay − Xby

)2
(46)

where Xplant=1:T , X
plan
t =

[
xplant , yplant , θ

plan
t

]
denotes the future

prediction state of the robot corresponding to the veloc-
ity sample, Xgoal =

[
xgoal, ygoal

]
denotes the position of

the target point, Xpredt=1:T denotes the predicted trajectory of
the dynamic obstacle, Xobstacle denotes the coordinates of
the nearest static obstacle of the robot, norm_angle (v,w)

denotes the angle difference between the direction corre-
sponding to the motion trajectory and the current direc-
tion of the robot to avoid sudden changes or oscillations
in angles., goal_angle (v,w) denotes the angle difference
between the motion trajectory and the direction of the tar-
get point. goal_dist (v,w) represents the shortest distance
between the trajectory and the target point, safe_dist (v,w)
represents the shortest distance between the trajectory and the
obstacle, and α, β, γ, δrepresents the weight.

In the DWA, the approach only considers the current obsta-
cle distance and integrates the predicted trajectory of the
dynamic obstacle into the evaluation function to calculate
the possibility of collision in dynamic environments. This
method considers the impact of dynamic targets on robot
movement within a specific future timeframe. The short-
est distance between the robot’s planned trajectory and the
pedestrian’s motion trajectory is calculated, thus combining
the prediction of pedestrian trajectories with robot path plan-
ning.

The future motion state of a reference robot is assumed
as X reft =

[
xreft , yreft , θ

ref
t , vreft ,wreft

]
, which respectively

represent the reference motion state quantity of the robot at
time step t .

The IDWA introduced above is used to calculate the trajec-
tory of the reference robot in time t = 1 : T , which provides
a reference for the trajectory tracking control of the mobile
robot.

B. TRAJECTORY TRACKING
As shown in the Fig.7, (x, y, θ) is the current position state
of the robot, (v,w) is the linear velocity and angular velocity
of the robot, (xd , yd , θd ) is the reference position state of an
expected point in the reference trajectory X ref , (vd ,wd ) is
the reference speed of the reference point, and (xe, ye, θe) is
the error component in the current coordinate system. The
resulting pose error variance is:

 xeye
θe

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 xd − x
yd − y
θd − θ

 (47)

The differential equation of pose error can be obtained by
differentiating it by:

ẋe = vd cos θe − v+ yew
ẏe = vd sin θe − xew
θ̇e = wd − w

(48)

The goal of the trajectory tracking control module is to find
the right linear and angular velocity for the robot and keep its
pose error (xe, ye, θe) bounded.

Based on Lyapunov method [35] and combined with the
above differential equation of car position and attitude error,
this paper selects the Lyapunov function V :

V =
k1
2

(
x2e + y2e

)
+ 2

(
sin

θe

2

)2

≥ 0 (49)
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FIGURE 7. Kinematic model of mobile robot.

The control law is designed as:

[
v
w

]
=

[
vd cos θe + k2xe

wd + k1vdye + k3 sin θe

]
(50)

where k1, k2, k3 > 0 are the control parameter. Take the
derivative of V , and bring in the formula (48):

V̇ = k1 (xeẋe + yeẏe)+ 2 sin
θe

2
cos

θe

2
θ̇e

= k1 [xe (vd cos θe − v+ yew)+ ye (vd sin θe − xew)]

+ (wd − w) sin θe
= k1 [xevd cos θe − vxe] + k1yevd sin θe

+ (wd − w) sin θe
= −k1k2x2e − k3 sin2 θe ≤ 0 (51)

It can be seen that the derivative of the Lyapunov function
is semi-negative definite. According to Lyapunov’s stability
law [36], the control law of formula (48) can ensure the
stability of the system, ensure that the pose error (xe, ye, θe) is
bounded and convergent, and finallymeet the robot’s tracking
of the reference trajectory.

VI. EXPERIMENTS
In this section, the experimental environment is introduced.
Next, real-world experiments are conducted for the pro-
posed dynamic object extraction algorithm. To validate
our trajectory prediction model in this paper, a practical
test is performed in an indoor setting and compared with
the baseline model. The results demonstrate the advan-
tages of our predicted model in the indoor setting. Using
the proposed path planning algorithm, the robot’s intel-
ligent perception, decision-making, and control are suc-
cessfully realized in the presence of pedestrians, thus
demonstrating the effectiveness of our method in dynamic
environments.

A. EXPERIMENTAL ENVIRONMENT
This study conducts experiments in a dynamic indoor envi-
ronment. The mobile robot used is an Ackerman-type robot.
The platform includes a JetsonTX1 device running the
Ubuntu 18.04 operating system, a LiDAR, and an RGB
camera. The LiDAR used is the RpLidar A1 developed by
China’s SLAMTEC Company, with a measuring distance of
12 meters and an angle measurement range of 270o.
Onboard control and sensor data acquisition of the mobile

robot are carried out by an STM32F103 microcontroller,
which communicates with the JetsonTX1 device through a
UART interface. A distributed communication network is
built based on the Robot Operating System (ROS), using a PC
equipped with a GeForce RTX 3060Ti as the ROS network
primary and the JetsonTX1 device as the secondary.

B. DYNAMIC OBJECT RECOGNITION EXPERIMENT
Experiment was carried out in the working scene of the
indoor corridor. The communication network is built based
on roscpp under ROS-Melodic. The point cloud clustering
and matching processing were developed based on point
cloud library (PCL), and finally generate independent func-
tion packages of ROS [37].

The feature pack subscribes to point cloud information
published by LiDAR and robot position published by EKF
fusion of IMU and odometer data. Through the recognition
of dynamic objects, the pose information of target pedestri-
ans is published at 5Hz.The experimental scene is shown in
the Fig.9.

In the navigation process, the mobile robot first uses
LiDAR to sense the indoor environment in real time, and then
detects the dynamic objects in the field of view and tracks
their motion trajectory.

The Fig.10 shows the point cloud data collected when the
mobile robot is working.

In Fig. 10, the blue point cloud represents the static object,
while the red point cloud represents the identified cluster
of the dynamic object’s point cloud. This cluster is uti-
lized to detect the motion state of the dynamic object. The
results demonstrate the effective recognition and extraction
of dynamic targets using our method.

In order to verify the real-time performance of our method,
300 experiments are conducted to calculate the time cost
required.

TABLE 1. Results of dynamic object recognition.

As shown in the Fig.10-11 and table 1, the average time
cost of our recognition method is less than 0.1s, which can
meet the pose update frequency of 10 Hz in most cases, and
the maximum time cost is 0.126s, which can meet the update
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FIGURE 8. Architecture diagram of experimental platform. Our experimental platform comprises three
modules. The STM32 module handles sensor data acquisition and actuator control, including motor driving.
The JetsonTX1 module performs dynamic target recognition, path planning, and tracking calculations. The
PC module is responsible for performing pedestrian trajectory prediction calculations, accelerated by the
loaded GPU.

FIGURE 9. Experimental environment.

frequency of less than 5Hz. Our trajectory prediction module
needs to meet the update frequency of 0.4s per frame, so this
method can satisfy the needs of subsequent prediction tasks.

C. PEDESTRIAN TRAJECTORY PREDICITION
1) EVALUATION METRICS AND BASELINES
Similar to prior work [15], two error metrics, namely Average
Displacement Error (ADE) and Final Displacement Error

(FDE), are employed. However, as Zyner et al. [38] discussed,
these commonly used indicators fail to consider outliers. Con-
sequently, this can lead to a scenario where a prediction with
a slightly incorrect direction is deemed equally erroneous
as a prediction with a completely wrong direction, thereby
producing significantly inferior results.

As such, Average Angle Error (AAE) is also included as
an evaluation metric.

AAE =
1
n

n∑
i=1

1
tpred

tobs+tpred∑
t=tobs+1

∣∣∣∣∣arctan( yti − yt−1
i

x ti − x t−1
i

)

− arctan(
ŷti − ŷt−1

i

x̂ ti − x̂ t−1
i

)

∣∣∣∣∣ (52)

AAE reflects the average angular deviation between the true
and predicted trajectory directions at all time steps during the
prediction process.

Social GAN [18] is used as a baseline model to compare
with our model, which is the state of the art method.

2) EXPERIMENTAL DETAILS
Similar to SGAN [18], the last 8 timesteps track sequence
is used as the observation input and predicted the next
12 timesteps track sequence as the model output at a frame
rate of 0.4 seconds. That is, 3.2 seconds of historical data as
the input, and then output the predicted state of 4.8 seconds.

The model proposed in this paper is built based on
pytorch [39]. The hidden state dimension of the encoder is
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FIGURE 10. Results of dynamic object recognition. The experiment was carried out in an indoor corridor environment, in which
blue point clouds represent static objects and red point clouds represent recognized moving objects. Lidar is located at the
origin. With the movement of pedestrians, the static background is blocked to varying degrees.

FIGURE 11. Time cost of experiment.

16 and the hidden state dimension of the decoder is 32.
The Adam optimizer is used for 200 echo trainings, where
the initial learning rate was 0.001. In addition, our training
process is carried out on the PC equipped with GeForce RTX
3060Ti.

During the experiment, the mobile robot side collects the
surrounding environment and its own state in real time, pro-
cesses it through the dynamic object recognition module,
obtains the real-time pose of the pedestrian and publishes
it in the Topic published to the ROS network. The host
side subscribes the Topic information, and prediction of the
future pedestrian trajectory is accelerated the operation of
the neural network by GPU. The pedestrian prediction tra-
jectory is published to the ROS Topic in nav_msgs/Path

data format and updated frequency is 0.4 seconds for each
frame.

3) RESULTS AND DISCUSSION
To verify the validity of the model proposed in this paper, the
performance of our model is compared with baseline in the
indoor scene experiment, the experimental results are shown
in Fig. 12.

As can be seen from the Fig.12 (f), compared with Social-
GAN, our model takes environmental information into

consideration for pedestrian trajectory prediction. In the
experiment, the comparison algorithm predicted that the
pedestrian would tend to keep the original motion state and
move towards the corridor wall, leading to the failure of
trajectory prediction. Our model combines the static obstacle
information, revises the historical trajectory and obtains the
predicted trajectory, which can realize the pedestrian trajec-
tory prediction in the static environment. Meanwhile, the
experimental results are also shown in Table 2:

TABLE 2. Comparison of trajectory prediction.

Our model performs on FDE and AEE metrics, and in
particular on AEE, our approach has significant advantages
over the baseline model. As can be seen from the results, our
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FIGURE 12. Results of pedestrian trajectory prediction experiment. (a) Grid map of static environment. (b) Thermal diagram of probability
description of static obstacles. (c) Probability distribution of pedestrian motion state. (d) Description of Future Trajectory after Fusion of
Pedestrian Kinematics and Environmental Constraints. (e) Experimental scene. (f) Comparison of prediction performance between SGAN
and our model in experiments. Among them, the blue line represents the observation trajectory, and the red line represents the real
trajectory of pedestrians’ future movement. The yellow line represents the prediction result of SGAN, and the purple line represents the
prediction output of our method.

method shows certain advantages in scenarios with abundant
environmental information.

In comparison with the trend estimation of the movement
direction, the environment on the pedestrian movement trend
is taken into account which effectively provides a more accu-
rate motion estimation, which has a significant impact on the
robot’s motion in a dynamic environment.

D. PATH PLANNING AND TRAJECTORY TRACKING
In this section, experiments on mobile robot motion in
dynamic environment is conducted. Based on the pedestrian
trajectory prediction module in the previous section, the
dynamic motion function of the mobile robot is verified in a
unified experimental scene, and our proposed IDWA method
is compared with DWA.

1) EXPERIMENTAL DETAILS
The path planning and trajectory tracking module of the
mobile robot is developed based on rospy and is deployed and
run in JetsonTX1 which is mounted on the mobile robot. The
path planning module subscribes to the predicted trajectory
of SOPD-GAN module and the pose state of the robot.

The update frequency of the planned pathmodule is in 1Hz.
At the same time, the trajectory tracking module published
the control data [v,w] at a frequency of 10Hz, so as to realize
the tracking of the planned trajectory of the robot.

2) RESULTS
Based on the prediction of the future trajectory of dynamic
objects, the path planning and trajectory tracking experiments
of mobile robots are carried out. In the experiment, themobile
machine is made start from point A and move to point B
autonomously. The linear distance between the two points
was 10 m, as shown in the Fig.13.

As can be seen from the Fig.13 (a), at the moment T=1,
since the future trajectory of the pedestrian is taken into
consideration, the robot determines that there will be collision
risk when going straight, so it actively avoids to the bottom.
Although this route is not the fastest route to reach the target,
it is a reasonable strategy in the dynamic scene.

At the T=5, based on the pedestrian movement trajectory,
the robot chooses to carry out the deceleration-turn strategy.
By reducing its own speed, the robot allows the pedestrian to
pass preferentially, successfully obtains the free movement
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FIGURE 13. Results of path planning and trajectory tracking experiment. The purple line represents the historical track of the pedestrian, and the
cyan line represents the historical track of the robot. The light green dashed line represents the predicted trajectory of the pedestrian in the next
12 frames of the SOPD-GAN, and the red dashed line represents the future planned trajectory of the robot itself. It can be seen from (b), (c), and
(e) that our method plans a motion strategy of deceleration avoidance and acceleration for the robot.

space at the time T=6, and starts to carry out the dynamic
target obstacle avoidance task. At the time T=8, the robot
completes the obstacle avoidance task, obtains the conditions
to accelerate to the target point B, and finally reaches the
point B at the time T=10, completing the motion task.

In the experiment, parameters of path planning and motion
control are shown in the table 3 -5:

TABLE 3. Mobile robot hardware parameters.

From the results, it can be seen that our method com-
bined with obstacle trajectory prediction can independently
propose strategies such as advance steering and deceleration

avoidance, which significantly improves the robot’s working
performance.

TABLE 4. Path planning evaluation function parameters.

TABLE 5. Lyapunov direct method parameters.

The basic task of the mobile robot is to reach the target
place in time without colliding with the dynamic obstacles
and maintaining a certain safe distance.

In the experiment, comparative experiments are conducted
using traditional DWA and the path planning algorithm based
on improved DWA proposed in this paper, and the results are
shown as follows:

The Fig.14 shows the position and course Angle changes
of the mobile robot during the experiment.

As can be seen from the Fig.14, our method realizes the
existence of dynamic obstacles earlier, the heading Angle
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FIGURE 14. Results of mobile robot obstacle avoidance experiment in
dynamic environment. Our method is compared with DWA, and the blue
line represents our method and the purple represents DWA.
(a) Comparison of motion paths of mobile robots. (b) Comparison of
heading angles of robots in motion.

begins to change, and the medium response robot begins to
avoid obstacles.

TABLE 6. Obstacle avoidance experiment result.

As can be seen from the table 6, our method can reach the
destination in less time and shorter driving distance under
the same conditions. At the same time, it can be found
that our approach maintains a sufficient safe distance from
pedestrians.

Due to the early start of avoiding obstacles, our overall
path is smoother. The fluctuation of the heading Angle is
always maintained at a relatively stable value, which ensures
the smoothness of the robot’s movement.

By incorporating the future trajectory of dynamic targets
into path planning, the performance of traditional reactive
path planning algorithm is improved in dynamic scenarios.

VII. CONCLUSION
In this paper, we propose a framework for motion robots
operating in dynamic environments. We verify the feasibility
and performance of this method through experiments. The
proposed methods encompass dynamic object recognition
and tracking, prediction of dynamic object trajectories, path
planning in dynamic environments, and motion control.

Our object recognition algorithm is implemented using
LiDAR technology. By leveraging the proposed hypothesis
on the spatial distribution of dynamic point clouds, we match
the acquired point cloud data with the static point cloud to
extract clusters of interesting points, enabling the retrieval of
location information for dynamic objects.

To address the trajectory prediction problem of dynamic
agents, we introduce SOPD-GAN. This approach transforms
the prediction problem into a decision problem by estimating
the kinematic properties of pedestrians and considering the
effects of static obstacles as potential variables. Integrated
with LSTM, this module incorporates movement environ-
ment information and the object’s historical trajectory into
the network prediction stage. As the motion of the agent is
characterized by uncertainty and high intelligence, we intro-
duce GAN into the model architecture to generate reasonable
trajectory predictions using data-driven methods, thereby
simulating multi-modal trajectories. he results show that this
method can construct a suitable prediction model with high
accuracy. Specifically, our method achieved an accuracy of
0.0881 and 0.0691 in FDE and AEE of predicting pedestrian
trajectory, surpassing the baseline method by 20% and 14%.

Building upon the trajectory prediction of dynamic obsta-
cles, we propose IDWA, which accounts for the future tra-
jectory avoidance task of dynamic objects. The future trajec-
tory of the mobile robot is evaluated against different speed
samples alongside the trajectory of dynamic obstacles. This
evaluation yields future path planning for the mobile robot in
a time-varying environment.

The experimental results demonstrate the feasibility of the
proposed framework in dynamic robot environments. The
trajectory prediction model accounting for environmental
constraints proposed in this paper proves effective in sce-
narios with static obstacles, outperforming the representative
baseline model across key evaluation indicators.

Traditional mobile robots are typically based on pre-
programmed or reactive modes of operation. With ongoing
research and increasing demand, there is an urgent need to
enhance the intelligence of robots. In dynamic scenes, robots
must differentiate between static obstacles and dynamic
objects. The handling method of dynamic objects, to some
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extent, determines the depth of integration that robots can
achieve in human society. This area of research presents inter-
esting and challenging opportunities. Future work will focus
on optimizing the prediction model and resolving the path
planning problem in dynamic robot environments, aiming
to improve the intelligence of robots in scenarios involving
interactions and movement patterns with pedestrians.
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