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ABSTRACT Federated Learning (FL) is a paradigm in Machine Learning (ML) that addresses data privacy,
security, access rights and access to heterogeneous information issues by training a global model using
distributed nodes. Despite its advantages, there is an increased potential for cyberattacks on FL-based ML
techniques that can undermine the benefits. Model-poisoning attacks on FL target the availability of the
model. The adversarial objective is to disrupt the training. We propose attestedFL, a defense mechanism
that monitors the training of individual nodes through state persistence in order to detect a malicious worker
in small to medium federation size. A fine-grained assessment of the history of the worker permits the
evaluation of its behavior in time and results in innovative detection strategies. We present three lines of
defense that aim at assessing if the worker is reliable by observing if the node is truly training, while
advancing towards a goal. Our defense exposes an attacker’s malicious behavior and removes unreliable
nodes from the aggregation process so that the FL process converge faster. attestedFL increased the accuracy
of the model in different FL settings, under different attacking patterns, and scenarios e.g., attacks performed
at different stages of the convergence, colluding attackers, and continuous attacks.

INDEX TERMS Security and privacy, intrusion detection systems, distributed systems security, federated
learning, poisoning attack, behavior.

I. INTRODUCTION
Federated Learning (FL) has started to transform a number
of industries. This new paradigm in Machine Learning
(ML) addresses critical issues such as data privacy, access
rights, security, and access to heterogeneous information by
training a global model using distributed nodes [1]. The
approach stands in contrast to the traditional centralized
ML techniques, where all data samples are uploaded to
a single server, as well as to more classical decentralized
approaches, the local data samples are assumed to be
identically distributed. Without the need for data sharing,
FL trains an algorithm across multiple decentralized nodes
that hold their local data samples.

Despite the advantages and successful application of FL in
certain industry-based cases, there is an increased potential
for cyberattacks on this ML technique, which can seriously
undermine its benefits. In fact, by design, FL requires
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frequent communication between nodes during the learning
process to be able to exchange the parameters of the ML
model. This represents an attack surface from which an
attacker can exploit system vulnerabilities to gain access to
the learning process.

Regarding the cybersecurity of FL, the poisoning attack
is an attack type that takes advantage of the ML model
during training. Some poisoning attacks target the model
integrity (backdoor attacks), while others target the ML
model availability. In the first category, also known as
targeted attacks, a backdoor is inserted so that the model’s
boundary shifts in some way as to include the malicious
training data, thus compromising the integrity of the model.
In fact, FL raises the challenge that hiding training data
allows the attackers to inject backdoors into the global
model [2]. For instance, the attacks can modify an image
classifier so that it assigns an attacker-chosen label to
images with certain features, or force a word predictor
to complete certain sentences with an attacker-chosen
word [3].
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In the category of poisoning attacks that target the ML
model availability also known as untargeted attacks, the aim
is to generate poisoned local model updates to inject into the
system so that the parameters that the global model learns
become essentially useless. Model poisoning exploits the
fact that FL gives malicious nodes direct and unrestricted
influence over the global model. In fact, each round of the
iterative process consists of training local models on local
nodes to produce a set of potential model updates at each
node. Thus, an attacker can impact the weights in the global
model so that the new learned model never converges on the
federated learning task.

In the gamification process of attacks and defenses against
untargeted attacks, many known defenses have shown that
robust aggregators are provably effective under appropriate
assumptions at mitigating untargeted attacks [4], [5], [6],
[7]. However, Fang et al. [8] proposed a directed deviation
attack that multiple aggregators did little to defend against.
The existing defenses leave a margin for poisoning since the
theoretical guarantees of these defenses may only hold under
assumptions on the learning problem that are often not met
[9]. Pan et al. [10] proposed a defense where a reinforcement
learning agent learns, from the updates provided by workers
and the relative decrease of loss as its reward, to propose the
weight update of the global model at each iteration. In the
approach, each coordinate of the learned policy is interpreted
as the current credit on the corresponding node and attests to
the reliability of theworker. The authors proposed a detection
technique, which consists in removing unreliable nodes at
every iteration based only on the credits in the learned policy
sequence.

Based on the open challenge to protect against untargeted
attacks, we conduct an extensive detection and behavioral
pattern analysis and propose attestedFL, a defense mecha-
nism that protects the system and can restore robustness in
adversarial settings without modifying the base aggregation
algorithm. While the untargeted attack tries to decrease the
convergence of the model, attestedFL studies the behavior of
the workers over time through state persistence and removes
unreliable nodes from the aggregation process so that the FL
process converge faster. This results in innovative detection
strategies. We present three lines of defense that aim at
assessing if the worker is reliable by observing if the node
is truly training and advancing towards a goal. Unlike the
existing defenses, our proposed approach does not bound
the expected number of malicious workers and is shown to
be robust in more challenging scenarios. The three lines of
defense to protect against local model poisoning attacks in
small to medium size federation of nodes are: attestedFL-1
observes the convergence in time of the local model towards
the global model, attestedFL-2 monitors the angular distance
of successive local model updates throughout the training of
a node and attestedFL-3 removes local model updates from
workers whose performance does not improve compared
to their own previous performance on a quasi-validation
dataset.

We conduct untargeted attacks on various federated
learning settings and present different attacking patterns.
We evaluate the impact of our defense and report the
accuracy the model reaches epoch after epoch. The results
of our extensive simulation analysis of different cyberattack
scenarios show an increase in accuracy, demonstrating the
efficiency and security of our proposed defense. Unlike the
existing defenses, our proposed approach does not bound the
expected number of malicious workers and is shown to be
robust in more challenging scenarios.

The contributions of this paper are summarized as follows:

• We propose the design of attestedFL, a fine-grained
assessment of a worker’s behavior over time through
state persistence for detection of untargeted attacks in
federated learning, which does not require any upper
bound on the malicious nodes ratio. Nodes that are
not training represent unreliable workers that must be
eliminated.

• We present three lines of defense to protect against
local model poisoning attacks in small to medium size
federation of nodes that are identifiable.

• We implement untargeted attacks and evaluate the
impact of the defense in different FL settings and
under different attacking patterns in order to validate
the efficiency and security of our detection mechanism.
We evaluate the scalability and computation overhead
incurred by attestedFL.

The rest of the paper is organised as follows. In Section II
we present related work. In Section III we describe the threat
model. We present attestedFL in Section IV. In Section V,
we provide experimental results and analysis of the impact of
the defense against poisoning attacks. We conclude the paper
and provide future work in Section VI.

II. RELATED WORK
In this paper, we focus on the most common implementation
of federated learning algorithms i.e. the data-parallel dis-
tributed learning system with one node acting as the chief and
a set of nodes acting as workers. Although federated learning
enables nodes to construct a machine learning model without
sharing their private training data with each other, the fact
that the chief has no visibility into how the model updates
are generated represents a major vulnerability in the process.
Attacks exploit this vulnerability and when the adversarial
goal is to ensure that the distributed implementation of the
Stochastic Gradient Descent (SGD) algorithm converges to
sub-optimal models, we consider that those model-poisoning
attacks target the availability. The aim of the defense in this
case is to ensure convergence to the true optima.

In the field of defending against Byzantine adversaries,
approaches have been proposed to ensure the robust aggrega-
tion of distributed SGD against adversarial workers sending
poisoned gradients during the training phase [11]. A very
commonly used aggregation rule is averaging [4]. Byzantine
workers propose vectors farther away from the correct area
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of search. They can force the chief to choose a vector
that is too large in amplitude or too far in direction from
the other vectors. Thus, the linear combinations give the
adversary full control of the aggregated gradient [5]. Hence,
Byzantine-resilient gradient aggregation rule techniques have
been proposed to guarantee the production of gradients that
will make the SGD process converge despite the presence of
a minority of adversarial workers.

Among the Byzantine-resilient aggregation rule tech-
niques, considering that the geometric median of means of
independent and identically random gradients converges to
the underlying gradient function, Chen et al. [6] proposed an
approach to select among the proposed vectors, the vector
closest to a center. They take the vectors that minimize the
sum of the squared distances to every other vector. This
goes from linear to squared-distance-based aggregation rule.
However, two Byzantine workers can collude, one helping
the other to be selected, by moving the center of all the
vectors farther from the ‘‘correct area’’. The majority-based
approach considers every subset of vectors, and identifies the
subset with the smallest diameter. Combining the intuitions of
the majority-based and the squared-distance-based methods,
Blanchard et al. [5] proposed to choose the vector that is the
closest to its neighbors.

However, Mhamdi et al. [7] discovered a hidden vulnera-
bility of distributed learning in Byzantium. They put forward
that convergence is not enough and that in high number of
dimensions, an adversary can build on the loss function’s
non-convexity to make SGD converge to ineffective mod-
els. Precisely, they prove that existing Byzantine-resilient
schemes leave a margin of poisoning. This is due to the
fact that each gradient aggregation rule technique performs
a linear combination of the selected gradients. Thus, the
final aggregated gradient might have one unexpectedly
high coordinate. Depending on the learning rate, updating
the model with such gradient may push and keep the
parameter vector in a sub-space rarely reached with the usual,
Byzantine-free distributed setup, thus offering sub-optimal
models.

Moreover, the assumptions made in the techniques for
Byzantine-tolerant distributed learning are explicitly false
for federated learning with adversarial nodes. Particularly,
they assume that the nodes’ training data are i.i.d. (inde-
pendent and identically distributed), unmodified, and equally
distributed [3]. In reality, participants’ local training datasets
in federated learning are relatively small and drawn from
different distributions. Since non-i.i.d. data are used in FL,
each local model may be quite different from the global
model. Thus, there are significant differences between the
weights of individual models.

Clustering techniques aim to detect model updates that
are very different from what they should be. However,
the attacker might generate poisoning models that are
very similar to the true distribution (called ‘‘inliers’’), but
that can still successfully mislead the model. Anomaly
detectors consider the magnitudes of model weights (e.g.,

Euclidean distances between them) or measure cosine
similarity between submitted models and the joint model.
However, in federated learning, local training datasets on
different devices may not be independently and identically
distributed (i.e., non-IID) [12]. Since FL take advantage of
the diversity of participants with non-i.i.d. training data,
including unusual or low-quality local data and by design,
the chief should accept even local models that have low
accuracy and significantly diverge from the current global
model. As the local training datasets on different worker
devices are more non-IID, the local models are more diverse,
leaving more room for attacks.

In terms of the attacks, back-gradient optimization based
attack is the state-of-the-art untargeted data poisoning attack
for multiclass classifiers. The Gaussian attack randomly
crafts the local models on the compromised worker devices.
It was demonstrates that both attacks cannot effectively
attack Byzantine-robust aggregation rules [13]. However,
Fang et al. [8] proposed a directed deviation attack and
applied it to four Byzantine-robust federated learning meth-
ods. Their attack was successful and increased the error
rates of the models although they were claimed to be robust
against Byzantine failures. They craft local models for the
compromised workers to deviate a global model parameter
the most towards the inverse of the direction along which the
global model parameter would change without attacks. They
proposed updates to make the jth global model parameter
change direction (increases or decreases) upon the previous
iteration. They also present two defenses to defend against
their directed deviation attack. One generalized defense
removes the local models that have large negative impact
on the error rate of the global model (inspired by Reject on
Negative Impact (RONI) that removes training examples that
have large negative impact on the error rate of themodel [14]),
while the other defense removes the local models that result
in large loss (inspired by TRIM that removes the training
examples that have large negative impact on the loss [15]).
However, their results show that the defenses are not effective
enough, highlighting the need for new defenses against their
directed deviation attack. Since their attack manipulates the
local models in each iteration not for the purpose of training,
this behavior can be detected by our approach because we aim
at detecting unreliable nodes that are not training.

The works in [16], [17], and [18] provide an overview of
the attacks on FL so that system designers are aware of the
potential vulnerabilities and can develop a general purpose
defense mechanism robust against various attacks without
degrading model performance.

In [19], the authors explain the state-of-the-art defensive
mechanisms and group them according to the confidentiality,
integrity and availability triad. For defending integrity and
availability, post-training defenses aim to remove the negative
effect after training. Adversarial Training inserts poisoned
data on the dataset during the training phase. Once trained, the
model can differentiate poisoned data. However, this defense
requires a large dataset and is computationally challenging
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in the FL setting. In robust FL aggregation, the server
could discard malicious updates or remove the poisoning
effect. Since FedAvg is the baseline aggregation, the server
could use a robust aggregator instead. Server Cleaning or
Sanitization focuses on filtering malicious updates, similarly
to Robust FL Aggregators, where the server discards them,
i.e., does not modify the base aggregation algorithm. Server
Cleaning methods can defend against the majority of attacks
except for Adversarial Examples. However, this method
has to be implemented explicitly for defending against a
particular threat. Therefore, Server Cleaning techniques are
not generalizable. By combining three different strategies in
the monitoring of workers, our technique aims at defending
against more threats than what the current server cleaning
techniques are able to cover.

A recent survey in the field highlights the most advanced
schemes of federated learning poisoning attacks and defenses
[20]. They classify the defense strategies against poisoning
attacks in federated learning into three categories: model
analysis, byzantine robust aggregation and verification-
based. The verification-based methods propose a trusted
execution environment that can use digital signature tech-
niques to verify that the gradient uploaded by the client is
computed by standard SGD (or other optimization methods).
The byzantine robust aggregation methods consist in gradient
clipping, a method that cannot work well in the non-IID
setting, removing extreme values, a method that is more
like a median aggregation than an average aggregation and
differential privacy, a method that reduces the accuracy of the
global model.

Similarly in [21], they classify the defensive strategies
into clustering-based detection, comparison-based detection,
statics-based defenses and model aggregation schemes.
In [22], they conduct a systematic literature review and
highlight attacks and defense mechanisms found in the
related studies. No strategy considered the behavior of the
worker during training in the federated learning process.
A recent work on federated learning attack surface discuss

about the taxonomy, cyber defences, challenges, and future
directions [23]. They conclude that incentive strategies to
detect spurious model updates such as assigning a specific
score to honest andmalicious participants after detection may
be helpful in recognizing the true participants for algorithm
training. However, this incentive mechanism does not specify
how to recognize true participants. Their strategy aims at
giving a score after detection. We propose a strategy to detect
the malicious workers by monitoring their behavior during
training. They will then be eliminated from the learning
process. We do not rely on a score metric after the fact but
rather assess the behavior during the training so that the FL
process continues to execute.

In [24], the authors present a data poisoning attack that
allows an adversary to implant a backdoor into the aggregated
detection model to incorrectly classify malicious traffic as
benign. They propose possible directions to find a solution

to mitigate their attacks. One direction is to introduce an
FL poisoning defense deployed on the sever-side for finding
better features and clustering algorithms to identify poisoned
model updates. This is exactly what our work aims to do
by monitoring the features of angular distance of successive
local model updates, the convergence and the performance
during training.

In [25], they classify detectionmethods into the ones aimed
at defending against Byzantine attacks and the ones aimed at
defending against backdoor attacks. Some detection methods
leverage techniques such as robust statistics allowing them
to derive a theoretical guarantee on the effectiveness of
the defense scheme against Byzantine attacks. However,
Mhamdi et al. [7] discovered a hidden vulnerability of dis-
tributed learning in Byzantium. They put forward that
convergence is not enough and that in high number of
dimensions, an adversary can build on the loss function’s non-
convexity to make SGD converge to ineffective models.

In [26], they propose an algorithm to distinguish normal
users, malicious users and untrustworthy users in decentral-
ized federated learning based on historical gradient. They do
so mainly based on the median gradient of neighborhoods
of a worker in the FL process. Comparing workers between
each other is only a first line of defense but also, comparing
a worker’s contribution to training, iteration after iteration
is another line of defense. Both a horizontal and vertical
assessment of the behavior of the worker in its neighborhood
should be considered for a more robust detection of malicious
behavior.

In [27], they shed light on several misleading trends
in the experimental setup of FL defense works. They put
forward four component: FL baselines and datasets used
for evaluation, distribution of FL clients’ data and attacks
evaluated against. In our work, we evaluated the impact
of our defense in different FL settings and under different
attacking patterns in order to vary the experimental setup
and validate the efficiency and security of our detection
mechanism. We used real-world FL tasks and considered
multiple strong poisoning attacks for evaluation.

In [28], they propose Fed-LSAE, an aggregation method
for FL which takes advantage of latent space representation
via the penultimate layer and Autoencoder to exclude
malicious clients from the training process. The aggregation
algorithm is limited in its effectiveness against covert
communication where the sender can control the weight of
the model update and make it closer to the desired direction
[29]. Our work does not modify the base aggregation
algorithm in order to perform detection.

Similar to our work, in [30], they propose to analyze the
behavior of the workers however, they use a combination of
input, (adversarial) conceptual drift, and model performance
monitors to observe anomalous behaviors. The authors do not
evaluate the impact of their defense in different FL settings
and under different attacking patterns nor do they provide
results or analysis in their proposed work.
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To bypass the cosine similarity detection, in [31], they
propose an attack to break distributed backdoor defenses
for Federated Learning in Non-IID Settings. However, our
defense considers three lines of defense and not only looks at
cosine similarity. We specifically designed it as such in order
to assess from different angles the malicious workers.

Attackers craft local model updates by looking at the
cross-sectional status of local model updates at each iteration.
No detection strategy thus far forced the attackers to consider
their behavior over time before crafting their attack. Our
detection performs a longitudinal status monitoring of the
actions of all nodes and thus forces attackers to craft models
that have to be undetected from this perspective too. The
attacker thus faces two challenges. First, the aggregation
rules where the detection monitors each iteration at a time
to exclude malicious updates by comparing workers to each
other, and second, our detection aims at further monitoring
the history of a worker’s local model updates to reject the
worker if it is not training.
The challenge still remains to defend against untargeted

model poisoning attacks and reduce the adversarial leeway
that causes drift to sub-optimal models. Existing defense
mechanisms omit inspecting the behavior in time of a
particular node during its training process in order to detect
an anomaly and reject poisonous model updates. Without
temporal and dynamic monitoring methods, the chief cannot
detect and remove malicious or unreliable workers from the
system.

III. THREAT MODEL
We consider a federated learning process where the goal of
the attacker is to conduct sabotage activities with the aim to
disrupt the system.
Attacker’s Knowledge and Capability: Among all nodes,

we assume that the attacker controls the entire training
process for one or a few compromised workers and cannot
observe the local data samples of other workers. The attacker
does not control the aggregation algorithm used to combine
workers’ updates into the joint model, nor any aspects of
the benign participants’ training. We assume that benign
nodes create their local models by correctly applying the
training algorithm prescribed by federated learning to their
local data. (1) The attacker controls the training dataset of any
compromisedworker; (2) it controls the local training process
and the hyperparameters; (3) it can modify the weights of the
local model update and relay false information on behalf of
theworkerwhen communicating with the chief node; and, (4)
it can change its local training from round to round.

Depending on the type of attack, the attacker may or
may not need to access the local data samples depending
on how the local models sent from the compromised worker
devices are crafted. We consider two cases depending on
whether the attacker needs the local training datasets on the
compromised workers in order to fabricate the malicious
local model update. If the attacker can craft the local models
on the compromised worker devices by directly modifying

the weights in the local model updates sent back to the
chief such that the global model deviates the most towards
the inverse of the direction along which the before-attack
global model would change, then in this untargeted attack,
the attacker didn’t need to observe the local data samples of
the compromised worker. Untargeted attacks make the learnt
model unusable and eventually lead to denial-of-service
attacks [8]. The attacker was able to target the availability and
the aim of the defenses in this case is to ensure convergence.

However, if the attacker’s objective is to cause the jointly
trained global model tomisclassify a set of chosen inputs with
high confidence, i.e., it seeks to poison the global model in
a targeted manner as in [16] and [32], then for this attack
type, the attacker would need to observe the local training
dataset on the compromised worker device in order to craft
the malicious local model and target the integrity of the
training.
Attack: We consider a poisoning attack where the

adversary can leverage its knowledge of the submitted
weights updates to send via adversarial workers, malicious
updates aiming at significantly decreasing convergence and
preventing the distributed learning process from converging
to a satisfying state. We do not make any assumptions on the
true data distribution so the final model parameters are not
known.

The attacker tries to deviate from the GlobalModelGM t+1

with an arbitrary Malicious ModelMM t :

GM t+1
= GM t

+
r
n

m∑
j=1

(LM t+1
j − GM t )

⇒ MM t
= GM t

+
r
n

m∑
j=1

(LM t+1
j − GM t ) (1)

where, t is the current time slot, r is the learning rate, LM t+1
j

is a Local Model of worker j at time t, n is total number of
nodes, and m is the subset of workers participating in the
training. Since non-i.i.d. data is used in this case, each local
model may be quite different from the global model. With the
convergence of the global model, the deviations cancel out bit
by bit, which can be denoted as:

m−1∑
j=1

(LM t+1
j − GM t ) → 0 (2)

Based on this, an adversary may upload a model as:

LM t+1
m =

n
r
MM t

− (
n
r

− 1)GM t

−

m−1∑
j=1

(LM t+1
j − GM t ) (3)

by applying basic algebra and Equation 2 then for a big
enough t , LM t+1

m can be defined as in Equation 4:

LM t+1
m ≃

n
r
(MM t

− GM t ) + GM t (4)
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We illustrate in Figure 1 the targeted and untargeted
attacks. If MM t remains the same at every time step, the
attack tries to guarantee the replacement of the global model
GM by MM and represents a targeted attack. In this case,
attackers collude and together every epoch they go towards
the same goal with the direction slightly changing as time
advances. This is represented in the left diagram by the dotted
red arrows pointing to the same red circle at every stage of
convergence. In an untargeted attack, MM t is different from
epoch to epoch, we show two scenarios in the figure. In the
first scenario, one attacker may attack individually and on
each epoch, goes in a different direction, towards different
goals. This is represented in the right diagram by the blue
arrows. In the second scenario, attackers may collude and
together they go in a direction that is different from epoch
to epoch i.e. each epoch different goals. This untargeted
attack is represented in the right diagram by the dotted red
arrows pointing to the different red circle at every stage of
convergence.

In targeted attacks, as time advances attackers are training,
meaning that they are advancing towards the same goal.
Whereas, in untargeted attacks, as time advances attackers
are not training, they are not advancing towards a goal. Red
arrows highlight this behavior. Targeted attacks are more
costly for the attacker because the attacker will have to
participate in the FL process at every iteration by locally
training the model with its poison set. The steps of fabricating
a poison set and training locally a model are not required in
an untargeted attack. Although untargeted attacks are simpler
to perform than targeted attacks, defense techniques against
targeted attacks based on resilient gradient aggregation rules
and clustering techniques do not remediate the untargeted
scenario [8].
FL protocol: In some settings, a direct application of

the generic FL protocol without any consideration of the
underlying network and communication infrastructure is not
feasible. In fact, in some network configurations, the number
of nodes that form a federation can be very small, for
instance the number of sensors in a specific smart city
application or the number of customers of a local hospital
service application or edge computing devices. Bonawitz et
al. propose an FL protocol that is adapted to a wireless mobile
environment where the workers aremobile phones [9]. Others
adapt the FL process for vehicular network applications
because of the nature of the communications between the
connected vehicles in this setting. Consequently, in its current
form, the FL protocol does not directly apply to all settings.
Thus, some defense algorithms against attacks on the FL
process are more suitable to cloud assisted applications or
data centers for example. We propose a defense for small to
medium federation of nodes that are identifiable.

IV. attestedFL DESIGN
Our defense protects against untargeted attacks by reducing
the drift towards sub-optimal models that they cause.
Attackers in this context represent unreliable workers that

are not training and must be neutralized. During the training
process of a worker, there exists a complicated probabilistic
dependency among the iterates. Such dependency cannot
be specified from the distributed computing point of view.
Since non-i.i.d. data is used in FL, each local model may
be quite different from the global model. Thus, there are
significant differences between the weights of individual
models. However, a fine-grained assessment of the history of
the worker permits the evaluation of its behavior in time and
results in innovative detection strategies.

FIGURE 1. Model poisoning attacks - The dotted red arrows represent
colluding attackers. The green circles represent the different stages of
convergence of the global model. The green arrows represent benign
worker nodes. The blue arrows represents single attackers attacking
individually towards different goals.

attestedFL uses three lines of defense to protect against
untargeted local model poisoning attacks. The detection
strategies aim at assessing if the worker is reliable by
observing if the node is really training iteration after iteration.
Malicious nodes are not concerned in truly training their local
model, but rather fabricating update values, thus they are
considered unreliable. attestedFL removes the local models
that are unreliable before computing the global model in each
iteration of federated learning.

The first defense used by attestedFL is called attestedFL-
1 and it monitors the history of the worker’ updated local
models and observes the convergence of the local model
towards the global model in order to remove the local models
of workers that appear not to be training. Many known
defense mechanisms use the Euclidean distance function
between two vectors ∥ X−Y ∥ to provide byzantine
resilient aggregation rules in order to transform the workers’
submitted gradients into a single, aggregated one [5], [7]. The
idea of the mechanisms is to compare the Euclidean distance
between model updates sent by different workers so that the
chosen vector becomes the result of a distance minimization
scheme. However, our reason for using Euclidean distance
is to compare the Euclidean distance of consecutive model
updates sent by the same worker. By doing so, we are able to
examine the behaviour of the worker throughout the training
in order to remove abnormal training behavior. Bymonitoring
the history of each worker, we can remove the local models
of workers that appear to be not training.
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The second defense, attestedFL-2, monitors the angular
distance of successive local model updates throughout the
training of a node to remove abnormal training behavior.
Some defensemechanisms in the literature also use the cosine
similarity metric to detect malicious workers. For instance,
the approach in [33] uses the cosine similarity between,
again, model updates sent by different workers to adapt
the learning rate per client based on the update similarity
among indicative features in any given iteration. In [16],
they highlight a defense that computes the pairwise cosine
similarity between the different workers of the FL process
hoping that the attacker’s malicious model update will stand
out. While previous defenses compute a vertical examination
of the workers between each other, we propose a horizontal
examination and combine the use of Euclidean distance and
cosine similarity between models sent by the same worker
in order to monitor the behaviour of the worker in time and
detect a malicious behaviour.

The last defense, attestedFL-3, removes local model
updates of workers when their performance doesn’t improve
compared to their own previous performance on the same
small validation dataset that the chief holds. We use different
metrics in order to account for different lines of defense
to protect against the attacks. attestedFL-1 observes the
Euclidean distance of the local model towards the global
model. When the attacker is able to manipulate the magnitude
of the weights of the local model updates in order to bypass
the first line of defense, attestedFL-2 monitors the cosine
similarity by providing a second line of defense. When
observing the angular distance of successive local model
updates throughout the training of a node, we are able
to detect the malicious workers that weren’t flagged by
attestedFL-1 because the direction of a local model update
cannot be manipulated without reducing attack effectiveness.

Algorithm 1 is implemented at the chief node. The attest-
edFL algorithm uses the three lines of defense attestedFL-1,
attestedFL2 and attestedFL-3 for the detection of unreliable
workers under an untargeted model poisoning attack on a
federated learning task. Unlike other works, our defense
does not require explicit bounds on the expected number of
attackers as it evaluates workers individually.

A. ATTESTEDFL-1
The insight in this work is that when a shared model is
under an untargeted attack, monitoring the workers history of
updates will expose an attacker’s malicious behavior in time
and show that it is not training, not advancing towards a goal.

1) CONVERGENCE OF THE MODELS
attestedFL-1 proposes to monitor the history of updated
local models in comparison to the global model as training
advances. Precisely, we aim at observing the convergence of
the Euclidean distance of the local model towards the global
model. Let us define the Euclidean distance of the local model
of a worker j and the global model at the iteration t as in

Algorithm 1 attestedFLAlgorithmUsing attestedFL-
1, attestedFL-2 and attestedFL-3 to Remove Local
Model Updates of UnreliableWorkers

Input: Global Model GM t at iteration t that the chief
sent to the workers, Local Model updates
LMi,t+1 of each worker i, Hi,z a subset z of a
worker’s previously uploaded consecutive
Local Model update recorded as a pair of LM
and GM at that time

Output: Reliable Global Model GMt+1 at iteration t
Function Main():

for Iteration t do
for ∀ workers i do

Reliable = false;
Let St be the weight of indicative features
at iteration t;
if attestedFL-1(Hi,z) == true then

if attestedFL-2(Hi,z) == true
then

if attestedFL-3(Hi,z) ==
true then

Reliable = true ;
if Reliable == true then

Let Real be the vector containing the
index i of all reliable workers ;

Federated aggregation of the LMi,t+1 workers
in Real;

Function attestedFL-1(Hj,z):
/* See Section IV-A */
if 1′

i(t) ≤ µ(t) − 4σ (t) then
return true

Function attestedFL-2(Hj,z):
/* See Section IV-B */
Input: T : total training iterations

simi(t) =
LM t

j {i}·LM
t+1
j {i}

∥LM t
j {i}∥∥LM

t+1
j {i}∥

SIMj(t) = SIMj(t − 1) ∪ simj(t)
if limt→T SIMj(t) ≈ 0 then

return true
Function attestedFL-3(Hj,z):

/* See Section IV-C */
Input: T : total training iterations
E tj − E t−1

j = E tj (LM
t
j ) − E t−1

j (LM t−1
j )

Ej(t) = Ej(t − 1) ∪ {E tj − E t−1
j }

if limt→T Ej(t) ≈ 0 then
return true

Equation 5

1j(t) =∥ LM t+1
j − GM t

∥ (5)

Let N be the set of all worker nodes, such that |N | = n
and let Nb ⊂ N be the subset of b benign workers. For
benign workers, as t increases, 1(t) tends to a stable value,
preferably to a very small value as training advances, i.e.,
if T = {1, 2, . . . , tf } is the total number of training steps,
tc ∈ T is a given step of the training and j ∈ Nb is a worker,
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then 1 behaves as in Equation 6.

lim
tc→ tf

1j(tc) ∼ 0 (6)

It is observed that tc is the first iteration step when 1(t) is
computed by the chief. Before iteration tc, there is a warm-up
period for the workers to start converging towards the global
model. This is to account for the fact that before tc the local
models of all workers may be too far from the global model.
Let j be a malicious worker, i.e., j ∈ N \ Nb. In targeted

attacks, since the attacker tries to deviate from the global
model with a fixed Malicious Model MM t , 1 is expected
to increase as training advances, i.e., 1 behaves as in
Equation 7.

lim
tc→ tf

1j(tc) ∼ x (7)

where, x ∈ R and is sufficiently large (but finite).
In untargeted attacks, 1 is randomly distributed.

An attacker targeting availability will in expectation over the
entire training process not decrease in the difference of its
residual in comparison to the global model. The difference
will be randomly distributed as an attestation that the worker
is not training, hence the limtc→ tf 1j(tc) does not exist.

2) CONVERGENCE SPEED
In addition to the convergence of the model, we wish to
capture the rate of decrease to assess convergence speed.
The rate of decrease captures an attack where even if 1j
tends to zero the total effect of the adversarial is significant.
For example, if the convergence of the model is a harmonic
sequence such that LM t+1

j −GM t
= 1/t , then the total effect

of this attack is still non-zero. By only relying on1j, we could
not capture behaviors such as the harmonic behavior.

To detect this type of behavior, we introduce the con-
vergence speed. Precisely, the average rate of decrease
corresponds to the changes in 1j, while the model is training.
Knowing that at the beginning of training, the weights of local
models tend to considerably diverge from those of the global
model, we propose to attribute more and more importance
to the 1 values as the training advances. Hence tc ≤ t the
weighted-average rate of decrease is defined as follows:

1′
j(t) =

∂1j

∂t
=

t∑
tc

(
1 − exp−

t
c (1j(t+1)−1j(t))

)
c

(8)

In fact, 1′
j(t) represents the sum of the weighted-average

of the difference in convergence for the t − tc = c previous
iterations of the training, i.e., 1′

j(t) measures how fast the
local model of j is converging to the global model. The
weights in the index around the current iteration increase so
as to better capture training behavior. In fact, the closer t is
to the current training step, the more the contribution to the
average rate of decrease. This represents a better assessment
of the cumulative distribution.

At each iteration t , we then compute the mean, µ(t),
of 1j(t) for all j ∈ N and we also compute its standard

deviation, σ (t). Inspired from the assumptions in [8] about
each ith parameter of the local model update of the benign
worker being a sample from a Gaussian distribution with
mean µi and standard deviation σi, Fang et al. estimate
that the global model weights are wmax,i < µi + 4σi <

wmin,i with large probabilities. We use the same bounds as
reference to exclude nodes having rate of convergence that
fall under µ(t)−4σ (t). Hence in Algorithm 1, the conditions
implemented for attestedFL-1, for the node j at iteration t are
as follows:

attestedFL-1 =

{
accept j if 1′

j(t) ≤ µ(t) − 4σ (t)
reject j otherwise

(9)

It is expected that 1′
j(t) < 1′

k (t) if j ∈ Nb and k ∈

N \ Nb, i.e., the convergence speed of benign nodes will
always be faster than the convergence speed of malicious
nodes performing an untargeted attack.

• Within certain bounds over time, the effect of certain
behavior such as the harmonic can be captured by the
rate of decrease. As the harmonic effect becomes more
visible, convergence won’t be quick, decreasing the rate,
the node becomes more and more an outlier and gets
rejected by attestedFL-1.

attestedFL-1 would force attack weights to show a trend
in learning while trying to maximally mislead the estimated
model. This adds an additional challenge for the attacker
to choose from iteration to iteration weights inline with the
training process expected at the local node, thus becoming
less focused towards the poisoning objective. We note that
if the attacker ‘‘always’’ agrees with the global model, this
behavior, although not desirable since the local data is not
useful, does not make the global model converge on the FL
task. In other words, this behavior will not lead to a successful
attack. We do not detect this type of attacker as here we only
address the model-poisoning attacks that target the model
availability by disrupting the training on the FL task.

B. attestedFL-2
In this section, we propose attestedFL-2, a technique that
also aims at assessing the reliability of the worker during
training. The approach is to discard unreliable nodes from
the aggregation process and maintain workers that seem to
be training. This will devalue contributions from workers that
are not training and will enable the FL process to converge
faster.

While attestedFL-1 and attestedFL-2 try to detect a worker
that is failing to train towards a consistent goal, they evaluate
different behaviors of a malicious worker and use different
metrics and strategies to do so. attestedFL-2 accounts for
conditions under which attestedFL-1 would fail to detect
the attack. In attestedFL-2, we measure the cosine similarity
of successive local model updates, and observe how the
angular distance is behaving throughout the training of a
node. Although, the model updates from different nodes are
almost orthogonal to each other with very low variance, this
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is not the case for model updates provided by the same
node as training advances. Iteration after iteration the same
node is sending local model updates that are more correlated
between each other than with model updates of other nodes.
A node that is not exhibiting some type of correlation over
time between its local model updates may be considered as
unreliable.

Particularly, we use cosine similarity on the indicative
features. This means that we consider only the values in
the output layers of the model because they map directly to
output probabilities. Let simj(t) be the cosine similarity on the
indicative features of successive local models of worker j at
iteration t , it is defined as follows:

simj(t) =
LM t

j {i} · LM t+1
j {i}

∥ LM t
j {i} ∥∥ LM t+1

j {i} ∥
, (10)

where LM t
j {i} are the i indicative features of LM

t
j

Every iteration, attestedFL-2 extracts a subset of aworker’s
previously uploaded consecutive local model updates and
computes the cosine similarity between successive updates,
i.e., at iteration t for all j ∈ N the chief computes the set
SIMj(t) = {simj(t − c), simj(t − (c + 1)), . . . , simj(t −

1), simj(t)}.
Our defense looks at a pattern in SIMj(t) and not just the

local successive updates because the variance in the updates
of two consecutive iterations causes the cosine similarities
at each iteration to be an inaccurate approximation of a
worker’smalicious likelihood. In Algorithm 1, the conditions
for attestedFL-2 are as follows:

• For benign nodes that are training, the cosine similarity
metric attests to the similarity of the successive LMj
updates as training advances. In this case, the elements
of the set SIMj(t) increase their cosine similarity over the
iterations.

• Under an untargeted attack, the cosine similarity score
between local model updates of a single worker present
lower and lower values as training advances. The ele-
ments of the set SIMj(t) decrease their cosine similarity
at each iteration, a progression is not observable in this
case.

C. attestedFL-3
Federated learning explicitly assumes that participants’ local
training datasets are relatively small and drawn from different
distributions. Since non-i.i.d. data are used in FL, each
local model may be quite different from the global model.
Thus, there are significant differences between the weights
of individual models. FL takes advantage of the diversity of
participants with non-i.i.d. training data, including unusual or
low-quality local data, and by design, the chief should accept
even local models that have low accuracy and significantly
diverge from the current global model.

In attestedFL-3, to assess if theworker is reliable, assuming
that the chief has a small validation dataset, the chief can
test to see how the local model of a worker predicts on

the validation dataset. From local model update to another
sent by the worker, the chief tests for the same sample set
the worker’s performance. This will highlight if the node
appears to be learning. The intuition is that on a same sample,
we evaluate the performance over a set of iterations within a
time window to see how they individually perform compared
to their own previous performance on that validation dataset
and not compared to other nodes because every node is
learning differently.

Precisely regarding the small validation dataset, Pan et al.
[10] introduced the concept of quasi-validation set, a small
dataset that consists of data samples from similar data
domains. Inspired from their work, we use a quasi-validation
set that represent a collection of data samples that follows a
similar, but not necessarily identical distribution as the true
sample distribution. In practice, if a gold-labeled validation
set (i.e., a set of samples from the true sample distribution)
is available during the learning process, it can be used as
a quasi-validation set. Otherwise, the chief can randomly
collect a small number of validation data samples from
similar data domains to form the quasi-validation set.
We compute the impact of each local model on the error

rate for the quasi-validation set and remove the local models
that have large negative impact on the error rate. Specifically,
at iteration t , for each worker j, we compute the error, E t+1

j ,
of the current local model LM t+1

j on the quasi-validation set
and for the same worker we compute the error of the local
model at the previous iteration, i.e. E tj . Hence the error rate
impact of a local model is defined as follows:

E t+1
j − E tj = E t+1

j (LM t+1
j ) − E tj (LM

t
j ) (11)

The conditions implemented inAlgorithm 1 for attestedFL-
3 are as follows:

• If the node is training well, its performance on the
quasi-validation set will improve, i.e., E t+1

j − E tj will
be smaller over time and the node will be considered
reliable.

• If E t+1
j − E tj increase over time, then the node is

considered unreliable. This is due to the fact that
attackers are not concerned in training locally their
model but rather fabricating update values.

It is important to note that a worker is considered
unreliable only when its performance on the quasi-validation
set decreases. If the performance stays constant or doesn’t
improve, we do not consider the worker as malicious. This
prevents a worker from being wrongly disqualified in the
advent of the chief’s set being not diverse.

V. EVALUATION
To demonstrate the untargeted attack, we implement three
different federated learning settings each using a different
dataset. The first two settings are for different benchmark
systems for image classification. The first use case consists in
training a fully connected neural network for the hand-written
digital classification task on the MNIST dataset. This
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public dataset contains 60,000 28×28 images of 10 digits
for training and 10,000 for testing. The model consists
of 784 inputs, 10 outputs with soft-max activation and
one hidden layer with 30 ReLu units. The dimension of
parameters is 25,450. The image use case is training a
ResNet-18 model for the image classification on the CIFAR-
10 dataset. This dataset contains 60,000 28×28×3 images
of 10 classes of objects for training and 10,000 for testing.
The standard model ResNet-18 has 18 end-to-end layers and
11,173,962 learnable parameters in total. Regarding the local
dataset construction procedure, in all use cases, each worker
has a training set. We simulate the federated learning setting
by sequential computation of gradients on randomly sampled
mini-batches of the local training set. At all times, workers
have non-overlapping local datasets.

The third FL setting aims at evaluating a more realistic
deployment and consists of training a Convolutional Neural
Network (CNN) classifier for mobility mode inference as in
[34]. The CNN architecture used in the work is that of [35]
and is summarized as follows:

1) 5 convolutional layers, each one followed by a max-
polling layer

2) Convolution kernels of size 8 and a max-pooling
operation of size 2

3) Number of Kernels equal to 96, 256, 384, 384 and
256 for five convolutional layers

A subset of open access trajectory data gathered by the
city of Montréal using a smartphone app, MTL Trajet [35]
is used to train the federated CNN for transportation mode
inference. The MTL Trajet dataset contains the coordinates
collected by theGPS sensor of smartphones andmode prompt
data collected by users after they finished a trip. The training
dataset consists of trip information from 10 users collected
during the fall of 2016. The trip data of each traveler is
assigned to each worker, so the final training dataset consists
of 321 (80%) trip segments and 87 trip segments in the test
set (20%) comprise the training and test datasets. To evaluate
the performance of our defense when the FL process is under
attack, we study the accuracy the model is attaining during
training. We refer to the different FL settings as MNIST,
CIFAR and MTL Trajet.

A. EXPERIMENTAL SETUP
The setup consists in an Amazon EC2 t3.2xlarge Virtual
Machine used to run the nodes who are participating in the
FL process, where one node is designated as chief while the
others are workers.

As a base case scenario, we run the FL model under no
attack and the accuracy at each epoch is reported. In the
baseline scenario, the FL process is expected to end with
a trained model at a good accuracy. We present results for
various attack strategies of continuous untargeted attacks,
adaptive attacks, single attacker, two attackers colluding and
attacks at different stages of convergence. Performing attacks

at different stages of convergence enables us to better assess
the performance of the defense mechanism.

The aim of poisoning attacks that target the availability is
to generate poisoned local model updates to inject into the
system so that the parameters that the global model learns
become essentially useless. An easy attack strategy would be
to have multiple attackers send their poisoned local model
updates to sabotage the system because together they will
have an impact on the weights of the global model. A stronger
attack strategy would be that even if few attackers send
their poisoned local model updates to add stealth and remain
undetectable, they are able to sabotage the system. Some
detection mechanisms require that a high number of attackers
be present in order to recognize what constitutes a malicious
behavior and remove unreliable nodes. Those presumably
robust aggregators struggle with flagging an attacker that is
acting alone in order to compromise the system’s availability.
So in order to be undetectable, few attackers try to collaborate
hoping to have a noticeable impact on the weights of the
global model.We consider the strongest attack strategy where
the system’s availability can be compromised by only one or
few attackers. Even under a setting where only one stealthy
worker is aiming to compromise the system, we want to show
that our defense is robust.

B. EXPERIMENTAL RESULTS
1) DEFENSE AGAINST CONTINUOUS UNTARGETED ATTACKS
We first test the impact of our defense in the CNN FL setting
on MTL Trajet dataset. Continuous untargeted attacks are
implemented after epochs 30, 130 and 190 by one and then
by two workers. The model accuracy is impacted when one
or two workers send continuous untargeted attacks at epoch
30, 130 and 190, respectively (Figure 2). We observe that the
accuracy in these three tests drops, but shows recovery after
some epochs. The model tends to recover better from attacks
at the early stages of training. This behavior is expected since
attacks injected, as the global model is converging, tend to
stay for a longer period of time.

To defend against this scenario of continuous untargeted
attacks, we implement the attestedFL algorithm. At each
epoch, attestedFL tests if nodes are sending reliable weights
by examining their past training behavior. To better assess
the impact of attestedFL-1, we present in Figure 3 the
convergence of the attacks in comparison to that of the
defense. Meaning that the defense is evaluated with the
attack. We notice that the accuracy was decreasing under
attack, but increased at an average of 41% by attestedFL-1.
While the attack tries to decrease convergence, attestedFL-
1 increases the accuracy the model can achieve under this
adversarial setting. The defense shows promising results for
attacks at any stage of convergence. This is due to the fact that
the defense looks at a pattern in the training and eliminates
misbehaving nodes.

To better observe the pattern in the training, we present
in Figure 4 the variation of 1′

j(t) as t increases. We notice
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FIGURE 2. Accuracy of the MTL Trajet CNN model under a continuous
untargeted attack after the epoch 30, 130 and 190 by one and two
workers for every training iteration.

FIGURE 3. Convergence of the MTL Trajet CNN model during continuous
untargeted attacks at EPOCHs 30, 130 and 190 by one and two workers in
comparison to the convergence with attestedFL-1 for every training
iteration (logarithmic trend fit).

that benign nodes are faster at converging than the malicious
nodes performing an untargeted attack, in fact the speed of

convergence of malicious nodes shows variations but with a
trend of decelerating its convergence.

FIGURE 4. Variation of 1′

j (t) of the benign workers and the attackers
during continuous untargeted attacks on the MTL Trajet CNN model at
epoch 30, 130 and 190 done by one and two workers for every training
iteration.

To assess the impact of attestedFL-2, we present in
Figure 5 the convergence of the attacks in comparison to
the convergence when the defense is evaluated with the
attack. We notice that the accuracy was decreasing under
attack, but increased at an average of 45% by the defense.
attestedFL-2 increases the accuracy the model reaches under
this adversarial setting.

Figure 6 shows the evolution of the cosine similarity
during training of the different nodes of the system in this
scenario. We see how the attacker is not training, thus its
cosine similarity is sparsely distributed between 0 and 1.
As opposed to benign workers, where the cosine similarity
between consecutive local model updates is distributed
between 0.95 and 1 as a good indication that the worker is
training.

To assess the impact of attestedFL-3, we present in
Figure 7 the convergence of the attacks in comparison to the
convergence when the defense is evaluated with the attack.
We notice that the accuracy was decreasing under attack, but
increased at an average of 43%by the defense. Figure 8 shows
the evolution of the error rate between consecutive iterations
of benign and malicious nodes. As training advances, a larger
error rate impact between consecutive iterations indicates that
the worker is not training and should be removed. If the node
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FIGURE 5. Convergence of the MTL Trajet CNN model during continuous
untargeted attacks at epoch 30, 130 and 190 by one and two workers in
comparison to the convergence of attestedFL-2 at every training iteration
(logarithmic trend fit).

is training well, its performance on the quasi-validation set
will improve, i.e., E t+1

j − E tj will be smaller over time and
the node will be considered reliable.

We also apply all three lines of defense attestedFL-1,
attestedFL-2 and attestedFL-3 to protect against the untar-
geted poison attack and present in Figure 9 the convergence
of the attacks on the MTL Trajet CNN model in comparison
to that of the defense. We noticed that the accuracy was
decreasing under attack, but increased at an average of 50%
by the defense.

2) IMPACT OF THE DEFENSE IN DIFFERENT FL SETTINGS
In this section, we present the results of attestedFL under
different FL settings in order to demonstrate that our proposed
defense is effective acrossmany datasets.We vary the number
of rounds and show the effect of our defense for different
benchmark systems for image classification, MNIST and
CIFAR.

Figure 10 shows how the model accuracy is impacted
by the untargeted static attack on MNIST compared to
the blue baseline curve of the federated learning process
under no attack. In this scenario, when activated individually,
we notice that attestedFL1, attestedFL2 and attestedFL3
are able to protect against the attack by improving the
accuracy of the model by an average of 98.5%, 75.7% and
97.1% respectively compared to the attack scenario. Against

FIGURE 6. Cosine similarity of one attacker and eight workers in an
untargeted continuous attack scenario at epoch 30, 130 and 190 for every
training iteration.

FIGURE 7. Convergence of the MTL Trajet CNN model during continuous
untargeted attacks at epoch 30, 130 and 190 by one and two workers in
comparison to the convergence of attestedFL-3 for every training iteration
(logarithmic trend fit).

sophisticated attacks, we can activate all three lines of defense
at the same time. In this scenario, we started all attestedFL

VOLUME 11, 2023 125075



R. A. Mallah et al.: Untargeted Poisoning Attack Detection in Federated Learning via Behavior AttestationAl

FIGURE 8. Impact of each local model on the error rate for benign and
malicious workers during continuous untargeted attacks on the MTL
Trajet CNN model at epoch 30, 130 and 190 done by one and two workers
for every training iteration (logarithmic trend fit).

FIGURE 9. Convergence of the MTL Trajet CNN model during continuous
untargeted attacks at epoch 30, 130 and 190 by one and two workers in
comparison to the convergence under the three lines of defense
(attestedFL-1, attestedFL-2, attestedFL-3) for every training iteration
(logarithmic trend fit).

defenses only after 10 iterations of training and the results for
MNIST show that they provide the best protection in terms of
convergence of the model.

Figure 11 shows the accuracy of the model at every
iteration for CIFAR. We notice the impact of the attack
compared to the baseline and how the three lines of defense
were able to increase the accuracy. In this scenario, the
accuracy increased at an average of 53.4% when all defenses
were activated at the same time.

3) ADAPTIVE ATTACKS
We test the effectiveness of attestedFL under different
attacking patterns that create difficulties in our defense.
In fact, an adversary’s knowledge of the different layers of
attestedFL would force attack weights not only to be chosen

FIGURE 10. Effect of the three lines of defense (attestedFL-1,
attestedFL-2, attestedFL-3) against an attack on the MNIST model.

FIGURE 11. Effect of the three lines of defense (attestedFL-1,
attestedFL-2, attestedFL-3) against an attack on the CIFAR model.

to maximally mislead the estimated model, but also to show a
trend in learning. Moreover, iteration after iteration the same
node must send local model updates that are more correlated
between each other to show some type of correlation over
time between its local model updates.

First, we investigate a static attack where a fixed number
of worker are compromised and perform continuous attacks
during the entire learning process. Another attack pattern
consists of a fixed number of workers pretending to be
benign in the first fixed number of rounds and start the attack
afterwards. We call this attack the pretence attack. Finally,
we proposed an attack pattern where each compromised
worker is assigned with its role by the adversary. During the
learning process, the worker changes its role with a certain
probability. In this case, the malicious node maintains two
concurrent local models, one malicious, the other benign.
We call this attack a randomized attack where the adversary
could choose to not intercept and replace a node’s real updates
to avoid detection.

Figure 12 shows the accuracy of the global model when
under a static, pretence and a randomized attack for MNIST
andCIFAR defendedwith attestedFL-3. The results show that
under any attacking pattern, the defense increased accuracy
because it is adding an additional challenge for the attacker
layer after layer. attestedFL proved to be effective because it
was able to increase the accuracy between 7% and 67% for
MNIST and CIFAR with only one of its layers of defense.
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In fact, the attacker must choose from iteration to iteration
weights inline with the training process expected at the local
node, thus becoming less focused towards the poisoning
objective.

FIGURE 12. Accuracy of the global model under a static, pretence and
randomized attack for MNIST and CIFAR defended with attestedFL-3.

Finally, we implement a targeted attack and evaluated the
performance of attestedFL in this scenario. Under targeted
attacks, the goal of the adversary is to ensure that the learned
model behaves differently on certain targeted sub-tasks while
maintaining good overall performance on the primary task.
Hence, we considered the targeted model update poisoning
attack as in [16]. The attack tries to guarantee the replacement
of the global model by a malicious model. In this case,
attackers may collude and together, every epoch, they go
towards the same goal with the direction slightly changing
as time advances.

Since untargeted attacks reduce the overall performance
of the primary task, they are easier to detect. On the other
hand, targeted attacks are harder to detect as the goal of the
adversary is often unknown a priori. However, Figure 13
shows the performance at every training iteration of the
different layers of attestedFL when defending against a
targeted attack on MNIST.

The results show that when all defense layers are activated,
attestedFL is able to protect against the targeted attack
because we notice that the accuracy increased compared to
the under attack scenario. Particularly, attestedFL-1 increased
the accuracy of only 1%. Attackers were able to evade
detection by attestedFL-1 because in the targeted scenario,
as time advances, attackers are training, meaning that they are
advancing towards the same goal. The flags of attestedFL aim
at detecting workers that are not training, thus the attackers
were not flagged. On the other hand, attestedFL-2 performed
better in this scenario. As training advanced, the attacker
was sending local model updates that were less and less
correlated between each other. Since the attacker was not
able to maintain cosine similarity of successive local model
updates throughout the training, the attacker was flagged by
attestedFL-2. attestedFL-3 also enabled the detection of the
attacker at every iteration because the performance on the
quasi-validation set at the chief node decreased over time.

However, an attacker that has access to the validation set can
train on it locally and evade detection by attestedFL-3.

FIGURE 13. Accuracy of the global model at every training iteration of the
different layers of attestedFL when defending against a targeted attack
on the MNIST model.

4) SCALABILITY AND COMPUTATION OVERHEAD
In this section, we vary the number ofworkers in the federated
learning task and present the impact of the attack/defense in
this scenario. Figure 14 compares the accuracy of the global
model at every iteration when attestedFL is protecting against
an attack onMNISTwhen 50workers are involved in the task.
attestedFL improved the accuracy of approximately 64.9%.
This demonstrates that attestedFL is scalable.

FIGURE 14. Effect of attestedFL against an attack on the MNIST model
under different scales of federated learning settings.

To evaluate the computation overhead incurred by our
defense, we run the system with and without attestedFL
with 10 - 50 workers on a commodity CPU. We present the
computation overhead incurred by training an MNIST and
a CIFAR classifier. The attack in both settings is a static
continuous untargeted poisoning on the FL process done by
a fixed number of workers.

Precisely, Figure 15 plots the relative slowdown added by
attestedFL-1, attestedFL-2, attestedFL-3 and also when all
the defenses are activated at the same time for the 10 and 50
workers scenarios of the different training settings.
We notice that attestedFL-1 and attestedFL-3 are more

expensive than attestedFL-2 in all scenarios and under differ-
ent datasets. Moreover, when training a deep learning model,
the cost of training is high enough that the relative slowdown
from attestedFL when all the defences are activated at the
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FIGURE 15. Running time overhead of attestedFL as compared to
Federated Learning for MNIST and CIFAR with 10 - 50 workers on a
commodity CPU. The attack consists of a fixed number of compromised
workers that perform continuous untargeted poisoning during the entire
learning process.

same time is negligible thanwhen attestedFL-1 or attestedFL-
2 or attestedFL-3 are activated separately. Finally, the running
time overhead added by the defense is more significant when
we increased the number of workers in the FL process. When
50 nodes are involved in theMNIST scenario, attestedFL took
2.8 more time to complete an iteration compared to the time it
took to complete a round of FL training without the defense.
As this was not the primary focus, our Python prototype is not
optimized, but there are known optimizations to improve the
speed of computing distances and cosine similarities at scale.

In our implementation, the chief does not need to replicate
all local model updates sent by each worker in order to
maintain their history. Only the previous one needs to be
stored in order to compute the cosine similarity required
in attestedFL-2, and on the next iteration. This model gets
replaced for each worker. In this way, history is maintained
through a sliding window of a fixed-length for the previous
distance values, cosine similarities and error metrics so
that storage is optimised during training. We tested many
implementations of our defense and some of them ran out
of memory. The best optimisation was the use of this sliding
window which represents a better assessment of the fact that
the closer the values are to the current training step, the more
the contribution is to the training.

The machine learning community proposed the Multi-
Krum algorithm aiming at preventing an attack by a single
attacker [5] and FoolsGold prevents the targeted attack.
Independently, these two defenses fail to defend both attacks
concurrently, either by failing to detect the single attacker
scenario or by allowing attackers to collude to overpower the
system (against Multi-Krum). Our defense will not interfere
with the above defenses as it adds a protection against the
untargeted attack where the other two defenses fail.

If the attacker can choose different sets of workers to
control at each epoch as in the randomized attack, which
represents a more sophisticated attack, our defense forces it
to conduct a bounded number of attacks per compromised
worker otherwise the attacker will be detected by attestedFL.
The behavior of compromised nodes will be detected as

malicious by our technique even with a defense-aware
attacker. To evade detection by our technique, the attacker
must try to exploit very large networks and launch attacks
at large scale while trying to show a pattern in the training of
the worker and see if they can attain their goal of decreasing
performance.

VI. CONCLUSION
We presented attestedFL, a defense against untargeted model
poisoning attacks in federated learning that proved to
reduce the attack effectiveness by monitoring through state
persistence if theworkers in the model are training. While the
attacks tried to decrease the accuracy, attestedFL increased it,
showing the efficiency and security of our proposed defense.
Our defense looks at a pattern in the training of the worker
in its subset of previously uploaded consecutive local model
updates. attestedFL would force an attacker to choose from
iteration to iteration weights inline with the training process
expected at the local node, thus becoming less focused
towards the poisoning objective.

Our defense is mostly effective if staged by the chief at
every iteration. However, since the intuition is that for poison-
ing to take effect, recent local model updates of workers have
a higher weight on the global model, the assumption can be
relaxed. In future work, we will explore such optimizations
of our defense and evaluate it under different architectures
and topologies (vertical FL, decentralized FL). We will also
investigate subversion strategies. Given bounds on howmuch
a deviation in a local model update can influence the output
of the global model, an investigation is required into the
relationships between the number of single shot attacks that
must be done, the time to launch the attack, the size of
the network and the impact required for a stealthy attack to
succeed and circumvent attestedFL.

The data used to support the findings of this study as
well as the code are made publicly available by the authors
on https://git.io/JtLzH.
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