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ABSTRACT Facial paralysis is a debilitating condition that weakens or damages facial muscles resulting
in asymmetric or abnormal facial movements. To aid in the diagnosis and rehabilitation of facial
paralysis, researchers have developed machine learning and deep learning computer-aided diagnosis systems.
However, machine learning models have limitations as they rely on facial landmark techniques and
manual face palsy region extraction methods to obtain spatial information. Moreover, deep learning models
need large, labelled datasets for training whereas existing available facial paralysis datasets are small
and restricted. This presents significant challenges, including difficulties in data acquisition, insufficient
patient numbers, and inadequate diversity within the datasets. These limitations can potentially restrict the
generalizability of these models and introduce biases in the resulting outcomes. In this study, we propose
an approach for the diagnosis and grading of facial paralysis comprised of two datasets, one from MEEI
(Massachusetts Eye and Ear Infirmary) videos of patients and the other from the YFP (YouTube Face Palsy)
dataset. The model uses a transfer learning approach to fine-tune the VGGFace model, which is pre-trained
on facial images, on the prepared datasets for facial paralysis. The resultant model was subsequently renamed
as FP-VGGFace for the purpose of this research. Additionally, two more pre-trained models on facial images,
ResNet50 and VGG16, are also fine-tuned for the facial paralysis task. This was undertaken to conduct a
performance comparison of multiple models on the prepared dataset. The findings indicate that the models
exhibit high accuracy, benefiting from pre-training on a diverse dataset that enables the capture of spatial
information from facial images. The FP-VGGFace model achieves the best accuracy (99.3%) and F1-score
(99.3%) surpassing all benchmark models. This study underscores the potential of utilizing pre-trained deep
learning models for the diagnosis and rehabilitation of facial paralysis.

INDEX TERMS Bell’s palsy, deep learning, facial palsy, facial paralysis, transfer learning, VGGFace.

I. INTRODUCTION

Face paralysis is the abnormal movement of the facial
muscles which are responsible for several functions in a
face [1]. Paralyzed patients may exhibit asymmetric facial
expression, eye blinking, speaking, and movement of mouth
muscles [2]. Face paralysis is known as idiopathic facial
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palsy, bell’s palsy, and facial nerve paralysis. Facial paralysis
is normally caused by inflammation or infection of the head
trauma, facial nerve, neck or head tumour, and stroke [3].
It causes sudden weakness and damage to one or both sides
of facial muscles. There are 150,000 people affected by facial
palsy in the United States every year [4]. Although, face
palsy diagnosis and grading of the severity level of diseases
is a crucial task. In the whole process, rapid and objective
assessment [5] helps to choose the optimal rehabilitation

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

127492

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023


https://orcid.org/0000-0003-4184-6603
https://orcid.org/0000-0002-7032-9544
https://orcid.org/0000-0003-3647-8578
https://orcid.org/0000-0002-0164-8031
https://orcid.org/0000-0003-4305-0908
https://orcid.org/0000-0003-2249-9538

W. Ali et al.: Transfer Learning Approach for Facial Paralysis Severity Detection

IEEE Access

treatment by physicians. The Electromyography test is widely
used to detect facial palsy and determine the severity
of the nerve damage [1]. eFACE, House-Brackmann, and
Sunnybrook scales assist the clinical method to categorize the
severity level of face paralysis [5]. Mostly these grades are
classified into normal, near normal, mild, moderate, severe,
and completely paralyzed.

In existing studies, both machine learning (ML) and deep
learning (DL) models are proposed for facial palsy detection
and severity prediction. Most studies in the literature used
ML algorithms to detect face paralysis with the help of facial
landmarks [6], [7], [8]. These models first perform landmark
detection using other models like the MEE shape predictor [4]
and then pass it to the classifier for prediction. However,
landmarks systems are only capable of detecting the shape
of the paralyzed face and are unable to capture texture infor-
mation [9]. Consequently, the accuracy of landmark detection
impacts the performance of the models. Deep learning models
typically use convolutional neural networks (CNN) to extract
deep features from the facial images [10], [11]. They detect
subtle changes and identify patterns from facial features
which help in better detection of facial palsy. However,
DL techniques are computationally expensive to train models
from scratch. Moreover, these models are data-hungry, they
need a large labelled dataset to train resourcefully [11], [12].
Those employing pre-trained models are based on natural
images, which causes inadequate feature learning in the case
of facial paralysis classification. Hence, they fail to produce
high-quality results for facial paralysis tasks [10], [13].
Moreover, numerous computer-aided approaches employ
specialized optical equipment and multidimensional imaging
techniques to quantify facial paralysis [3], [14]. Although
these methods have high accuracy they are expensive and
complex for common use [14]. The aforementioned issues
need a robust approach to diagnose and grade the severity
level of facial paralysis.

The existing facial paralysis diagnosis studies are limited to
small and private datasets. A limited dataset causes the issues
of class imbalance, fewer subjects, and the lowest diversity
in data. Consequently, it produces a less generalized model
having biased results towards the minority class instances.
In this study, we propose a model for the diagnosis of the
severity level of paralysis in patients. We intend to solve
the matter with a transfer learning approach. The VGGFace
model is pre-trained on the VGGFace dataset, which has
more than 2.6 million face images of 2622 individual
identities. Additionally, the merger of two face palsy datasets,
Massachusetts Eye and Ear Infirmary (MEEI) [5] and
YouTube Facial Palsy (YFP) [15] datasets is the first time
used to fine-tune the model. The MEEI face palsy images
are extracted at the rate of three frames per second from
MEEI videos of patients. The YFP dataset is extracted
with six frames per second from videos of facial palsy
patients. The fusion of both datasets achieves balanced
instances, more subjects for each class, and diverseness in the
dataset.
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The proposed novelties in this article make our approach
more robust, efficient, and reliable in classifying face palsy
in patients. This work presents several key contributions in

the field of facial paralysis diagnosis and grading.
« To obtain more accurate and detailed feature extraction

from facial paralysis images, we use a transfer learning
approach to leverage the extracted features from the
VGGFace model, allowing us to capture spatial texture
information more effectively.

« A novel dataset is created by combining two exist-
ing datasets, namely MEEI and YFP. This approach
increases the number of subjects and introduces diver-
sity to the dataset, which improves the robustness and
accuracy of the model.

e« A comparative analysis is conducted on various
pre-trained deep learning models trained on facial
images to determine the optimal approach for facial
paralysis classification.

These contributions offer a promising solution for address-
ing the limitations of existing methods and improving
the accuracy and robustness of facial paralysis diagnosis
and grading. The remaining paper is organised as follows.
Section II explores the literature on automatic facial palsy
detection and severity classification. Section III provides
the dataset and methodology details. Section IV presents
experimental settings. Results are analysed in Section V.
Section VI discusses the findings of this work. Finally,
Section VII presents the conclusion of the paper and provides
future work directions.

Il. RELATED WORK

Computer-aided diagnosis methods for facial paralysis detec-
tion have been created using both ML and DL techniques,
according to the literature. These techniques are found
to be especially useful in strengthening the efficacy of
rehabilitation treatments as well as accelerating the process of
diagnosis. The literature on the diagnosis and rehabilitation
of facial paralysis can be broadly categorised into two
dimensions: machine learning and deep learning. Fig. 1
shows the taxonomy of the ML and DL techniques used for
facial palsy detection in the literature.

Facial Palsy
Detection Models

MACHINE LEARNING
TECHNIQUES

DEEP LEARNING
TECHNIQUES

Extract facial landmarks and
pass it to the machine
learning model for predictions.

Deep learning approches are
used for automatic feature
extraction from images
T I
v v v v v v

l DT ‘ l CNN ‘ l LSTM ‘ l BiLSTM ‘

[swm | [ R | [ensemble] [ Pretrainea | [ Hypria |

FIGURE 1. Dimensions of the literature review for facial paralysis
detection. DT: decision tree, RF: random forest, KNN: K-nearest
neighbour, SVM: support vector machine, LR: logistic regression, CNN:
convolutional nerural network, LSTM: long short-term memory, BiLSTM:
bidirectional long short-term memory.
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A. MACHINE LEARNING MODELS

Machine learning approaches rely on facial landmark
techniques for diagnosing facial paralysis in the affected
regions of the face. The key points around the eyes and
mouth are particularly useful for measuring the severity
level of paralysis. Several algorithms have been designed to
automatically identify the crucial key points on the face that
are necessary for diagnosing facial paralysis.

For example, authors in [8] proposed ML-based
approaches for paralysis detection using facial landmarks
techniques. The facial landmark technique is used for feature
extraction and the model selects ten significant features
using the Gini index. These features are then fed to logistic
regression (LR) and support vector machine (SVM) models.
The SVM performed better than LR and achieved an
average accuracy of 76.87%. However, the model accuracy is
significantly low. Furthermore, the dataset used for training
is limited and has only 757 healthy faces and 717 paralyzed
faces.

In this study [16], an ensemble approach with five SVMs
and a rule-based classifier is proposed to predict the severity
level of facial palsy patients. Kinect V2 library is used to
extract 32 landmark points on the face which are then passed
to the symmetry analysis unit for feature extraction. The
model was tested on the augmented dataset of originally
13 facial palsy patients with 375 images and 50 healthy
participants with 1650 records. The proposed model achieved
96.8% accuracy in detecting the correct face palsy class.

The work in [3] used three ML models: decision tree (DT),
SVM and an ensemble approach to grade the severity of the
facial paralysis. A dynamic three-dimensional stereo pho-
togrammetry imaging system is used to capture asymmetry
in facial images. From these images facial landmarks are
extracted that help to measure facial expression on images
dataset. The model was simulated on 16 facial palsy patients
and it achieved the best accuracy of 91.1% for the SVM
classifier. However, the accuracy and number of subjects
represent inadequate model performance.

The study in [17] detects bell’s palsy by identifying
dissimilarity between the blinking patterns of eyes. The
proposed method calculates blink similarity between two
eyes and passes the extracted features to a range of ML
classifiers. The stochastic gradient descent (SGD) displayed
the best accuracy of 94.7% among other ML models.
Although this model achieves better accuracy with the limited
dataset, it only considers the eye portion for palsy detection.
It may fail if the video inadequately captures the eye part of
the face.

The authors in [1] performed facial paralysis classification
using images captured with laser speckle contrast imaging
(LSCI). First, LSCI is employed to generate RGB colour
images and blood flow images of the paralyzed faces. Then,
the patient’s face is divided into areas of concern using an
improved segmentation approach to assess the facial blood
flow. The three HB score classifiers are used to determine
the facial paralysis severity. The model achieved 97.14%
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accuracy which is relatively better as compared to other ML
models.

In the article [18], multiple ML models are employed
for facial palsy classification in three severity levels. The
image dataset is preprocessed using facial landmarks and it
measures the symmetry and asymmetry between face sides
in images. The images are then fed to the SVM model
for severity prediction which generates the best accuracy
of 95.58%. However, the accuracy of the approach relies
on the careful collection of data, which involves ensuring
consistency in the angle of the face and the camera used to
capture the images.

The study in [7] refers to machine learning models to
extract images, acquire facial landmarks, and compute the
feature values to train the model and predict outcomes for
new patients. The study compares RF and SVM classifiers to
evaluate their effectiveness in the proposed method. The RF
performed better than SVM and achieved an overall accuracy
of 88.9%. However, the study uses a limited number of
subjects and excludes texture features while feature learning.

The overall findings indicate that ML approaches are not
suitable for facial palsy detection as their dependence on
facial landmark techniques for feature extraction generates
poor facial palsy detection results.

B. DEEP LEARNING MODELS

Deep learning approaches are particularly effective for
automatic feature extraction from images using convolutional
operations. Multiple deep learning models have been devel-
oped to automatically extract features from facial images.
These models are capable of identifying patterns and subtle
changes in facial expressions that may indicate the presence
of facial paralysis.

For example, the article [10] proposed a CNN model for the
classification of facial palsy images in five different severity
levels. The authors used the generative adversarial network
(GAN) model to address the class imbalance issue in the
dataset. However, the synthetic images generated by GANs
do not retain the same level of quality as the real images which
negatively impacts the performance of the model. As a result,
the model produces a low accuracy of 92.60%.

The work in [19] proposed 3DPalsyNet for grading
facial palsy and detecting facial emotion using a 3D CNN
architecture. Dynamic actions were captured by ResNet and
served as the foundation for recording the video data’s
dynamic behaviours. Two datasets were used for training, one
with face palsy images and the other for facial expressions
and the model achieved significantly low accuracies of 82%
and 86% respectively.

Authors in [20] proposed a hierarchical framework com-
prising three components to detect the local palsy region
of facial palsy patients. The first one detects faces, the
second component performs landmark detection and the final
component detects facial palsy regions. To train and evaluate
the model YouTube faces facial palsy dataset of 21 patients
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was collected and labeled by the neurologists. The CK+
dataset was used to enhance the dataset size for normal
images. The model achieved precision and recall of 93% at
recall 88% respectively.

In [21], the authors proposed a transfer learning approach
for predicting the stress state of facial nerve paralysis (FNP)
patients. An FNP dataset is created with the facial emotion
expressions of paralyzed patients. The prepared dataset is
used to fine-tune the VGGNet model, which is pertained
on the facial emotion recognition (FER2013) data set. The
results generate an accuracy of 66.58% for the VGGNet
model, which is significantly less mainly due to the low-
quality dataset.

The work in [12] proposed an automatic facial paralysis
detection model using a cascaded encoder architecture.
The first encoder generates spatial information about facial
attributes depicted through semantically segmented facial
regions in input images. The second encoder performs an
assessment of facial paralysis based on the extracted spatial
information. The model produced a facial palsy detection
accuracy of 95.60% which can be improved by employing
better feature extraction techniques.

To categorize the facial nerve function in facial areas,
a region-based parallel convolutional network model, named
TPCNN, is presented in [11]. The dataset used in the study
is small and unbalanced, hence the model utilized strategies
such as pre-padding, data augmentation, and optimal weights
for each class during the training phase. The model achieved
a classification accuracy of 69% to differentiate between
normal faces and faces with facial nerve palsy.

The study in [13] used deep convolutional networks for
feature extraction for the assessment process of unilateral
peripheral facial paralysis (UPFP). The GoogLeNet, pre-
trained on non-biological images, was used for fine-tuning on
the UPFP dataset. After fine-tuning the model accurately dif-
ferentiated House-Brackmann (HB) degrees on the provided
image dataset with 91.25% accuracy.

In [14], authors proposed a hybrid approach by combining
CNN and LSTM models to quantitatively assess the grade for
face palsy on the YFP dataset. First, the model captures the
image sequence from the video and performs face detection
and image segmentation on the paralysis area. The local
and global CNN models perform feature extraction, which
after concatenation are passed to LSTM. The LSTM output
feature vector is passed to the dense layer for classification
using the softmax activation function. The model achieves
an accuracy of 94.8% and beats other state-of-the-art
models.

In this study [9], authors focus on asymmetric facial
muscle movement during the facial paralysis diagnosis task.
For that, it uses double-path LSTM which employs deep
differentiated networks to extract global and local feature
vectors. The resultant feature vectors and then concatenated
and fed to a dense layer for classification. However, the
proposed model achieves low accuracy of 73.4% which can
be easily improved using the transfer learning approach.
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Authors in [22] proposed a Bi-LSTM-based methodology
for identifying facial weakness in videos. The model was
tested on an ‘“‘in-the-wild” video dataset validated by
neurologists and emergency medical service personnel. The
results beat various facial weakness detection options already
in use with an accuracy of 94.3%. However, the achieved
accuracy is quite low for medically critical applications and
needs to be improved.

The triple-stream LSTM was proposed by authors in [23] to
automatically assess the severity of facial paralysis. For each
facial action, the model first performs preprocessing on the
video and splits it into three overlapping videos. Then, triple-
stream LSTM extracts face features from the video segments
of several facial regions simultaneously. These features are
subsequently concatenated through parameters automatically
learned by the network. The average accuracy of all facial
actions is 86.37%. When working with large datasets, using
a three-stream LSTM model is computationally expensive.

The study in [24] proposed a hybrid deep learning
model for facial nerve paralysis detection using DeepID and
Inception-v3 pre-trained model. The hybrid approach helped
to achieve an accuracy of 97.5% even with a small dataset
of 1049 facial images. However, retraining the model with a
bigger dataset may improve the results even further.

Based on the literature review, the following research
directions are set for this study. The existing studies mainly
use limited datasets; the proposed model should use a
relatively bigger dataset. The deep learning model learns
spatial information from facial images and generates better
results. If coupled with transfer learning, deep learning
models can demonstrate better performance even with the
limited data. The proposed model attempts to improve
the severity prediction accuracy using the transfer learning
approach.

lll. PROPOSED METHODOLOGY

The proposed methodology for facial palsy severity grading
is depicted in Fig. 2. The model takes two facial palsy
datasets: MEEI and YFP and merges them to create a more
diverse and robust dataset. To balance the merged dataset
for normal faces, CK+ dataset is combined with the MEEI
& YFP datasets to create a balanced dataset. In the third
step, data preprocessing operations are performed to improve
model accuracy and reduce computation overhead. The fourth
step describes the transfer learning approach of using the
pre-trained VGGFace model and fine-tuning it for the facial
paralysis task. Finally, the feature vector is fed to the classifier
for detecting the severity of facial paralysis.

A. DATA ACQUISITION

The development of effective diagnosis techniques heavily
relies on the availability of suitable datasets. However, the
datasets used in previous studies are mainly private and non-
shareable, which negatively impacts the progress of research
in this field. Obtaining appropriate facial paralysis datasets
is a challenging task that often requires requests to multiple
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FIGURE 2. lllustration of the proposed model for facial paralysis severity detection. HMS: Harvard Medical School, NTUST: National Taiwan University of

Science and Technology.

sources and publications. In our effort for suitable datasets,
we are fortunate enough to acquire two datasets.

We obtained two facial paralysis datasets, namely
Massachusetts Eye and Ear Infirmary (MEEI) [5] and
YouTube Facial Palsy (YFP) [15] datasets. The MEEI
is a private dataset and can be requested by sending an
email to d.guarinlopez@ufl.edu. On the other hand, the
YFP dataset can be obtained from the following GitHub
link: https://github.com/AvLab-CV/YouTube-Facial-Palsy-D
atabase. The first dataset, MEEI, was gathered by Jacqueline
J. Greene (MD) and his team from the MEEI, Harvard
Medical School, Boston, USA and is clinically approved
by the Facial Nerve Center at MEEI. The second dataset,
YFP, was acquired by Gee-Sern Jison Hsu (Professor) and
his colleagues from the National Taiwan University of
Science and Technology. Access to these datasets enables
the development of more accurate and efficient techniques
for the diagnosis of facial paralysis and benefiting patients.
Please note that these datasets are not publicly available and
require specific permissions or requests for access.

B. DATASET PREPARATION

The facial paralysis dataset consists of MEEI, YFP, and CK+
datasets. Fig. 3 shows the complete process of the dataset
preparation. From the MEEI videos, it captures frames from
the images. The face part of the images is cropped to
extract the relevant portion of the image. YFP and CK+
image datasets are merged with the MEEI dataset. Data
preprocessing and data augmentation operations are applied
on the merged dataset to add diversity to the dataset. Finally,
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the dataset is arranged into six classes based on the severity
levels of facial palsy. The subsequent subsections provide
details about the individual operations performed during the
data preparation phase.

Caputer Frames
MEEI Videos e VRS Crop Face Images!
Dataset
YFP & CK+
Datasets

FIGURE 3. Dataset preparation steps used to generate a target facial
paralysis dataset.

Dataset Inclusion
& Augmentation

(MEEI) + (YFP) + (CK+)
(Six Class)
Dataset

1) MEEI DATASET

The MEEI data repository contains videos of 60 subjects with
six severity levels of facial paralysis measured by the eFACE
scale [5]. In each video, the patients pretend to perform some
expressions and repeat dialogues that help illustrate the palsy
region. We extracted frames from the videos at a rate of three
frames/second and cropped the face parts from images using
the DIib library, a popular software tool for machine learning
and computer vision tasks. Specifically, we captured frames
from videos and performed face cropping on each frame to
remove other identifying information from the image, such
as the background. By focusing on the face part of each
image, we can simplify the task of facial paralysis detection
and classification by removing extraneous information and
focusing on the most relevant part of the image. Fig. 4 shows
the samples before and after the face cropping.
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FIGURE 4. Face cropping operation depicted over MEEI (Massachusetts Eye and Ear Infirmary) dataset [5].

Face cropping and image resizing can improve the
accuracy of the task of facial paralysis detection and
severity classification. The severity levels of both flaccid and
non-flaccid categories of facial palsy are merged into normal,
near normal, mild, moderate, severe, and complete classes.

2) YFP DATASET

To increase the number of subjects, we merged the YFP
dataset with the MEEI dataset. The YFP dataset consists of
32 videos featuring 21 patients diagnosed with facial palsy.
The patients were instructed to speak and perform various
facial expressions while being captured by the camera. Each
video was transformed into a sequential collection of images
at a sampling rate of six frames per second. Some sample
images of the YFP dataset are provided in Fig. 5.

FIGURE 5. YFP (YouTube Face Palsy) dataset sample images [15], [20].

Subsequently, the resulting frames are labeled using the
House-Brackmann scale [13], a widely employed grading
system for evaluating the severity of facial paralysis. The
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scale employs grades I, II, III, IV, V, and VI to signify
different levels of facial nerve dysfunction or paralysis.
Grade I represents normal, grade II represents near nor-
mal, grade III signifies mild paralysis, grade IV is for
moderate, grade V indicates severe and grade VI represents
complete paralysis. These grades enable us to represent
distinct levels of impairment experienced by the patients. The
scores on this scale provide valuable insights into the extent
of impairment faced by the individuals. The YFP dataset was
highly imbalanced, with a huge variance in image count per
subject. Therefore, we used limited images from each subject
to create a well-balanced and diverse dataset.

3) CK+ DATASET

To address the issue of class imbalance between normal
and paralyzed images, we used the CK+ dataset. The CK+
dataset is a normal images dataset which contains facial
images of healthy human beings. It was originally extracted
from 593 videos of 123 different people in the age range of
18 to 50 years using 30 frames per second. The CK+ dataset
is a widely used dataset for facial expression classification
experiments. In this study, we have used 350 images from
the original dataset to balance normal facial images in our
prepared dataset.

4) DATA PREPROCESSING

Data preprocessing is required in the merged dataset to
improve its quality by performing image preprocessing and
augmentation operations. The cropped images in the prepared
dataset are resized to a standard size of 224 x 224 for input
to the transfer learning model. Further, they are rescaled
in the range 0 to 1 by dividing all pixel values by 225.
Rescaling is used to normalize the image data in the standard
range of O to 1. Some classes have more images than
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others whereas certain images in the dataset are noisy and
represent inadequate information about facial palsy. First,
noisy images are removed from the dataset. Then, to achieve
the balance among all the classes additional images were
generated using data augmentation techniques. Traditional
image augmentation techniques such as shearing, flipping,
rotation, and zooming are used for data augmentation. The
aim is to achieve the same number of images in each
facial palsy class to increase the diversity of the training
data and improve the generalization ability of the model.
Fig. 6 illustrates the augmentation steps by taking a sample
original image as an input. These augmentation steps are
crucial in preparing a high-quality dataset for training an
accurate facial paralysis classification model. Both image
preprocessing and augmentation operations are performed
using the Keras library ImageDataGenerator class. Table 1
describes the specifics of the operations performed during the
augmentation and preprocessing phases.

TABLE 1. Description of the data preprocessing and data augmentation
steps perfomed in the study.

Preprocessing &

Augmentation Description

steps

Resizing Resize images of the merged dataset to 224x224.

Rescaling I;;;cale images by dividing all pixel values by

Shearing Apply shear transformation with a shear range of
up to 0.2.

Flipping Apply horizontal flip to augment the dataset.

. Apply rotation transformation with a rotation

Rotation
range of up to 20%.

Zooming Apply zoom transformation with a zoom range of
up to 0.2.

5) DATASET DISTRIBUTION

We created a balanced facial palsy dataset with six classes
representing the six severity levels of facial paralysis. The
prepared dataset consists of 6,600 images divided into six
different classes. Each class contains 1100 images, with
770 images allocated for training, 165 images for validation,
and 165 images for testing. Consequently, we had a total of
4620 images dedicated to training and 1980 images equally
divided for validation and testing, resulting in a distribution
ratio of 75% for training and 15% for both validation and
testing. Table 2 provides specifics of the distribution.

TABLE 2. Facial paralysis dataset organization into training, validation,
and testing sets.

Severity classes Training  Validation Testing Total
Normal 770 165 165 1100
Near Normal 770 165 165 1100
Mild 770 165 165 1100
Moderate 770 165 165 1100
Severe 770 165 165 1100
Complete 770 165 165 1100
Total 4620 990 990 6600
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C. TRANSFER LEARNING

To automatically extract features from facial paralysis
images, we employed a transfer learning approach that
addresses the issue of data scarcity. This study possesses a
unique aspect, focusing on the utilization of pre-trained mod-
els such as VGGFace [25], ResNet50 [25], and VGG16 [25]
which are originally trained on facial images, as opposed to
natural images. The reason for selecting these models is their
availability as facial images pre-trained models among all
best-performing models available on Keras applications. This
approach enables us to learn discriminative features that can
aid in extracting pertinent information from paralyzed facial
images. VGGFace, being a well-generalized model for face
recognition and detection, serves as our primary choice.

Inspired from [26] and [27], transfer learning for this work
is formally defined as:

Definition 1: “Given any source domain Dg trained on

a learning task Ts, and a target domain Dt for a learning
task T, transfer learning aims to improve the learning of a
target function fr in Dt by using learned knowledge from Dy,
provided that Ds # Dt or Ts # Tr.”
In our facial palsy severity prediction work, VGGFace is the
source model Dg and the FP-VGGFace is the target model
Dr. Since both domains are different but have overlapping
features, hence, transfer learning logically applies to our
target learning task 7r7. Fine-tuning is performed to adjust
the parameters of pre-trained models for our facial paralysis
task. Fine-tuning involves adapting the parameters of the
pre-trained model to extract relevant features for the new task.
In the context of feature extraction from images, we used the
pre-trained model as a feature extractor by passing images
through the network and extracting features from one of its
intermediate layers. These extracted features are then used
as input to a model that is for training on the new task of
classifying facial paralysis. Fine-tuning is done by further
training the entire pre-trained model on the new task or by
training only the last few layers of the model while keeping
the earlier layers frozen.

FP-VGGFace CNN is used in this study to extract features
from facial paralysis images. FP-VGGFace is a modified
version of VGGFace [28] that was trained specifically
for extracting features from faces. VGGFace consists of
11 blocks, each of which starts with a linear operator and
then includes one or more non-linearity, such as max pooling
and ReL.U. Since the linear operator in the first eight of these
blocks is a bank of linear convolution filters, they are referred
to as convolutional blocks. The last three blocks are fully
connected layers and they resemble the convolutional layers.
These layers take input feature maps from the preceding
convolutional blocks and capture high-level relationships
between the features. A ReLU rectification layer is placed
after every convolution layer. The first two fully connected
layers’ output has 4,096 dimensions, and the last fully
connected layer generates an output of 2,622 dimensions.
Hence, the VGGFace model is trained to identify 2,622
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FIGURE 6. lllustration of the dataset augmentation techniques over a sample image [5].
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FIGURE 7. lllustration of transfer learning approach for proposed FP-VGGFace model.

unique individual faces. A softmax layer is used to evaluate
the class probability for the result.

FP-VGGFace is the fine-tuned version of VGGFace on
the prepared dataset using a transfer learning approach. The
fine-tuning process uses the frozen convolution base with
a trainable head. The frozen base refers to the concept of
freezing the initial layers of the model, which means they
are not further trained. This approach leverages the prior
knowledge gained from a previous task. On the other hand,
the trainable head refers to the last layers of the model
that are trained specifically for the new task of multiclass
classification of facial paralysis. The final layer of the model
is customized based on the number of classes. Furthermore,
the classification heads of the models are also adjusted
accordingly. This architecture allows for the reuse of spatial
information extracted from face images to accurately classify
facial paralysis in patients. The architecture of the proposed
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methodology for facial palsy classification is shown in
Fig. 7.

Algorithm (1) defines the transfer learning approach on
the prepared dataset for facial paralysis severity detection.
The input N represents the merged facial paralysis dataset,
and W represents the pre-trained weights of the VGGFace
model. The goal is to utilize this input to build a model using
transfer learning and obtain evaluation matrices as output.
The algorithm’s output includes the model itself and the
evaluation matrices, which provide valuable insights into the
model’s performance. In step 3, the facial paralysis dataset
N is split into training and testing sets, denoted as Xyqin,
Yirain> Xtest, and Yieq, respectively. This division allows the
evaluation of the model during the training and testing phases.

The pre-trained VGGFace model is denoted as M in
the algorithm (step 4). The model includes the pre-trained
weights W obtained from the training process on the
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Algorithm 1 FP-VGGFace Transfer Learning
1: Input < N represents the prepared facial paralysis
dataset. W represent the training weights of VGGFace
model pre-trained on VGGFace dataset.

2: Output <— Model and evaluation matrices.

3: (Xtrain» Yrain» Xtest> Ytest) <= splitDataset(V)

4: M < VGGFaceModel(W)

55 M «— M+ adjustLastLayers()

6: FP-VGGFace « freezingModelBase(M )

7: H <—setHyperparameters()

8: while (model not converged) do

9: traing.. < (] > List for training accuracy
10: trainjoss < (1 > List for training loss
11: valaee < [1 > List for validation accuracy
12: valpss <[] > List for validation loss
13: traingee, trainigss, valaee, valioss <« FP-

VGGFaC&Fit(H’ Xtraina Ytrain, XvaI, Yval)

14: Predyype) < modelPredict(Xiest, Yiest)

15: plotAccuarcy(trainaec, valaec)

16: plotLoss(trainioss, valioss)

17: Truejabel = Yiest

18: plotConfussionMaterics(Truejapel, Prediabel)

19: plotROC(Truegpel, Prediabel)
20: end while

VGGFace dataset. This initialization serves as a starting
point for fine-tuning. The last layers of the model M are
adjusted to align with the number of classes in the new task,
denoted as M (step 5). This adjustment is performed using the
adjustLastLayers() function, ensuring compatibility between
the model and the facial paralysis classification problem. The
freezingModelBase() function is used to transfer the weights
from the previous task and prevents the model’s base layers
from being trained during the training process. This step helps
retain the valuable pre-trained features while allowing the
head, which includes the last several layers and the final
dense layers, to be trained on the facial paralysis dataset. The
fine-tuned model, named as FP-VGGFace, is saved in step 6,
for training and testing in subsequent steps of the algorithm.
Hyperparameters H are set to specify various aspects of the
model training process, such as learning rate, optimizer, and
batch size. These hyperparameters are fine-tuned to optimize
the model performance.

The algorithm calculates various metrics to assess the
model’s performance. These include training accuracy
(traingec), training loss (fraing,g), validation accuracy
(valgee), and validation loss (valjyss). These metrics provide
insights into the model’s ability to learn and generalize from
the data. Equation (1) provides mathematical formula for
calculating categorical cross entropy loss.

N C
. 1
traingyss, valjpss = _N Z Z ly;ECpl()gpmodel [yi € Cc]

i=1 c=1

ey
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where N represents the number of observations and C shows
the number of classes. 1y,cc, indicates membership of the
sample i for a category c. pmoder[yi € C¢] is the probability
predicted for the sample i belonging to the class c¢. The
model FP-VGGFace is trained using the hyperparameters
H for 25 epochs or is stopped if it fails to improve. The
FP-VGGFace.Fit() function is used to update the model’s
performance metrics, including traing.., trainjgs, valgee,
and valjgs (step 13). After training, the proposed model
FP-VGGFace is utilized to predict the labels (Predigper)
for the test set (Xiesr, Yiesr) (step 14). These predictions
serve as the basis for evaluating the model’s performance
on unseen data. The algorithm visualizes the training and
validation accuracy (traing.. and val,.) as well as the
training and validation loss, (trainj,s and valj,gs). These
visualizations help assess the model’s learning progress
and identify any signs of overfitting or underfitting. The
true labels (Truejqpe;) for the test set (Y ) are set, and a
confusion matrix is plotted using the plotConfusionMatrix()
function. This matrix provides a comprehensive overview of
the model’s predictions, enabling detailed analysis of true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). Finally, plotROC() performs receiver
operating characteristic (ROC) curve analysis using area
under the curve (AUC) metric.

In order to handle a multi-class classifier, we modified
the model’s last layer and employed a softmax activation
function to categorize between six classes. This categoriza-
tion represents the severity levels of paralysis, including
normal, near normal, mild, moderate, severe, and completely
paralyzed. The softmax function is provided in Equation (2)
which normalizes a vector of output from the previous layer’s
perceptrons and converts it into a probability distribution with
values between 0 and 1. It calculates the likelihood that an
input belongs to each of the potential classes. The target class
is determined based on the highest probability.

< @
chzl ey
where x is the input vector, ¢ is the exponential of the
input vector and C is the number of classes in the multi-class
classifier.

Softmax(x); =

IV. EXPERIMENTAL SETTINGS

For training deep learning models, we utilize Python
3.6 and Google Colab GPUs. TensorFlow and Keras, popular
open-source libraries for building deep neural networks,
are used throughout the study. The implementation of the
baseline models and the overall code is done using Keras
library.

A. EVALUATION METRICS

The evaluation metrics used in this study are the standard
statistical measures to evaluate the performance of deep
learning models. These include accuracy, precision, recall
and F1-score. The mathematical expressions to evaluate their
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values are given in Equations (3), (4), (5), (6).

(TP+1N)
Accuracy = 3)
(TP+TN + FP+ FN)
. P
Precision = ——— “4)
(TP + FP)
TP
Recall = ——— (5
(TP + FN)
F1 — score — (2 % Pr?c.ision * Recall) ’ ©)
(Precision + Recall)

These measures are evaluated from the confusion matrix
and they represent correct and incorrect classifications of
the model, thus depicting the overall model performance.
TP represent the correct severity class prediction, and TN
shows the correct healthy classification. FP is incorrectly
classified facial palsy patient and FN is incorrectly classified
as a healthy person.

B. HYPERPARAMETERS

The hyperparameter value selection uses a grid search
mechanism where we systematically try different combina-
tions of values to judge the model performance. As deep
learning models are non-deterministic and exact outcomes
cannot be predicted, a series of experiments were run
with different hyperparameter values. These hyperparameters
include learning rate, epoch, optimizer, loss function, dropout
and trainable layers. The loss function is always categorical
cross entropy for multiclass classification experiments. For
FP-VGGFace and VGG16 models, the learning rate is chosen
as 0.001 and the optimizer is set as Adam. For the ResNet50
model, the learning rate is 0.0001 and the optimizer is
stochastic gradient descent (SGD). The remaining details
about the hyperparameters are provided in Table 3.

TABLE 3. Hyperparameter settings for the experimentation.

Hyperparameter FP-VGGFace VGG16 ResNet50

Learning Rate 0.001 0.001 0.0001

Epoch 25 25 25

Optimizer Adam Adam SGD

Loss Function Categorical Categorical Categorical
Cross Entropy Cross Entropy ~ Cross Entropy

Dropout - 0.6 0.5

Trainable Layers 10 8 150

V. RESULTS AND ANALYSIS

In this section, we present graphical results that represent
the model accuracy and loss for both the training and
validation phases. It also presents confusion matrices that
show the accuracy achieved by each model on the test set. The
receiver operating characteristic (ROC) curve demonstrates
the classification performance of the models using area under
the curve (AUC) metric.

A. FP-VGGFACE MODEL
Fig. 8 displays the accuracy and loss curves for training and
validation, demonstrating the performance of the proposed
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FP-VGGFace model on the prepared dataset. The blue
curve represents training accuracy, and the orange curve
shows validation accuracy. Training accuracy demonstrates
a gradual learning trend of the model by progressively
improving the accuracy with the increase in the number of
epochs. The model starts from 0.71 accuracy and attains
a maximum value of 0.98 after 20 epochs. Validation
accuracy closely follows the training accuracy and achieves
an overlapping value of 0.98 after 25 epochs except for
some spikes. At certain epochs (e.g., 20) validation accuracy
also becomes superior to training accuracy. The curves did
not change afterwards and hence training was stopped after
25 epochs.

The loss curves for both training and validation also follow
a similar pattern and gradually decrease as the number of
epochs increases. The two curves illustrate the loss of the
model on the training and validation datasets, respectively.
The training loss is the value of the loss function on the
training set at each epoch of training. The validation loss is
the loss function’s value on the validation set at each epoch
of training. Furthermore, it indicates the model’s capacity to
generalize on unseen data. The validation loss beats training
loss at intermediate epochs, which demonstrates the model’s
capability to perform well for unseen data. The curves show
the model’s tendency to learn the patterns from the facial
palsy dataset by gradual improvement of the training and
validation accuracies and gradual reduction of the training
and validation loss.

To assess the performance of the FP-VGGFace model
on unseen data, we simulated it on the test dataset. Fig. 9
shows the model results using the confusion matrix and
AUC-ROC curve. These results are achieved after retraining
10 layers of the VGGFace model and retaining the remaining
weights from the pre-trained model. The model performed
on the optimized hyperparameter values on the prepared
dataset. The confusion matrix provides the summary of
both correct and incorrect predictions while the AUC-ROC
curve demonstrates the classification accuracy using the
AUC metric. The confusion matrix displays superior model
performance as the majority of datapoints are TP and only
a few are FN or FP. Hence, the misclassification number
is negligible and a maximum of only three samples for
severe class are misclassified while the majority are correctly
classified. The ROC curve validates the results of the
confusion matrix and remains closer to the top left corner for
all classes of the model. The ideal value of AUC is 1 and
the FP-VGGFace model achieves it except for severe and
near normal classes, which shows the best performance of
the proposed model.

B. RESNET50 MODEL

The training and validation performance of the fine-tuned
Resnet50 model on our prepared dataset is depicted in
Fig. 10. The graphs consist of training and validation curves
for accuracy and loss. These curves depict progressive
learning but irregular spikes demonstrate model challenges in
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FIGURE 8. Training and validation performance analysis of the proposed FP-VGGFace model using accuracy and loss curves.
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FIGURE 9. Proposed FP-VGGFace model performance analysis on test data using confusion matrix and AUC-ROC curve.

acquainting with the target facial paralysis dataset. The high
value of the training accuracy curve means that the model fits
on the training data with an increase in epochs number. The
training accuracy progresses gradually; however, validation
accuracy struggles to keep pace and hence drops below the
training accuracy for epochs number 15 to 20. Although it
matches with the training accuracy subsequently at 25 epochs
and remains same afterwards but the results display model
difficulty to learn facial paralysis features.

The model loss demonstrates a similar pattern to the
accuracy curves. For both training and validation, it starts
from a high initial value of 2.5 but decreases with the model
training. The low value of training loss indicates that the
model fits the training data well, while the high loss means
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that the model is making many incorrect predictions. The
validation loss measures the model’s ability to generalize to
new data. The loss curve for training and validation ultimately
drops to 0.2 at which point training is stopped as no further
improvement is observed.

The results of the ResNet50 model using the test dataset are
competitive with the FP-VGGFace model (Fig. 11). With the
150 trainable layers on the prepared dataset in comparison
with only 10 layers of the FP-VGGFace model, the model
demonstrates its validity in the facial paralysis prediction
domain. However, the performance still lags behind the FP-
VGGFace model. The confusion matrix demonstrates few FP
and FN cases with the majority of the datapoints being either
TP or TN. The highest number of misclassifications are with
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FIGURE 10. Training and validation performance analysis of the ResNet50 model using accuracy and loss curves.
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FIGURE 11. ResNet50 model performance analysis on test data using confusion matrix and AUC-ROC curve.

the moderate facial palsy class where 13 test datapoints are
misclassified. For the remaining classes, misclassifications
are negligible. The ROC curve also displays the competitive
performance of the model with a maximum AUC of 0.99 for
normal and near normal classes. The remaining AUC values
are also greater than 0.96, hence it can be classified as a better
model performance.

C. VGG16 MODEL

Fig. 12 displays the training and validation accuracy graphs,
which illustrate the performance of the fine-tuned VGG16
model on our prepared dataset of facial paralysis detection.
The graphs include two curves: the blue curve represents
training accuracy, and the orange curve shows validation
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accuracy. The accuracy curve exhibits progressive learning
of the model during the training and validation phases and is
superior to the ResNet50 model. Both curves depict learning
tendency during the training process and validation results
occasionally surpass training results. Finally, both curves
overlap at 0.97 accuracy with no further improvement. Hence,
the training was stopped at 25 epochs.

The loss curves also demonstrate the learning performance
of the model on training and validation data. The training
loss measures the accuracy of the model with respect to
the training data, while the validation loss indicates the
model’s ability to generalize on unseen data. The training
and validation loss curves represent steady learning of the
model due to a gradual decrease in the loss. The low
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FIGURE 12. Training and validation performance analysis of the VGG16 model using accuracy and loss curves.
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FIGURE 13. VGG16 model performance analysis on test data using confusion matrix and AUC-ROC curve.

validation loss from 15 epochs to 20 epochs also demonstrates
better performance of the validation curve than the training
curve.

Fig. 13 illustrates the model performance on test data using
the confusion matrix and AUC-ROC curve. The confusion
matrix evaluates the model’s performance by summarizing
the number of correct and incorrect predictions made on the
test dataset. The results show an overall better performance
of the VGG16 model on the test data except few exceptions.
The complete and normal classes have more FP and FN
instances as compared to other subtypes. These results are
achieved with 8 trainable layers of the pre-trained VGG16
model. This may be improved by raising the count of trainable
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layers but then the model freezes already learned weights and
starts to unlearn basic facial features. We also tried tuning the
learning rate and dropout rate but that also did not improve
model performance. An increase in the number of epochs
also failed to improve the learning rather it stayed the same.
So, the optimal results achieved for facial paralysis severity
classification are AUC = 0.98 for near normal, AUC =
0.97 for severe, AUC = 0.96 for mild and moderate while
least AUC was recorded for complete and normal classes
having AUC = 0.94. Although the overall VGG16 model
performance is better from the confusion matrix and ROC
curve analysis but stands worse than both benchmark models,
ResNet50 and FP-VGGFace.
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D. COMPARATIVE ANALYSIS

Table 4 shows the overall accuracy, precision, recall and
F1-score of FP-VGGFace, ResNet50, and VGG16 models.
These metrics provide a holistic view of the model’s
performance in accurately classifying facial paralysis.
FP-VGGFace displays superior performance for all metrics
as compared to the other two benchmark models. It achieved
an accuracy of 99.3% in facial palsy severity detection. The
second-best performing model is ResNet50, which achieved
an accuracy of 95.8%. Lastly, VGG16 achieved an accuracy
0f 93.1% on our prepared dataset. The precision and recall for
FP-VGGFace are estimated as 99.4% and 99.3% respectively.
However, for ResNet50 and VGG16 benchmark models, they
remain in the range of 93.1% to 96.1%, which is quite low in
comparison with FP-VGGFace model. The F1-score which
demonstrates the cumulative performance of the model in
terms of both precision and recall also declares FP-VGGFace
as the best-performing model.

TABLE 4. Performance comparison of proposed FP-VGGFace model with
two benchmark models ResNet50 and VGG16.

Model Accuracy Precision Recall F1-score
FP-VGGFace 0.993 0.994 0.993 0.993
ResNet50 0.958 0.961 0.958 0.958
VGG16 0.931 0.934 0.931 0.931

For the experimentation, both the FP-VGGFace and
VGG16 models converged by retaining some of the last
layers. However, for the ResNet50 model, a large portion
of its layers required further training to converge. This
was necessary to accurately diagnose the severity level of
facial paralysis. FP-VGGFace performed exceptionally well
for classifying the grading of facial paralysis because it
is based on the pre-trained VGGFace model, which was
originally designed for face recognition and face detection
tasks. The model’s weights, being generalized for facial tasks,
contribute to its outstanding performance in facial paralysis
classification. On the other hand, the ResNet50 model has
a significant number of layers and parameters compared to
other models. During the fine-tuning process, when some of
its layers are retrained, it tends to suffer from overfitting.
To achieve better results in facial paralysis classification with
the ResNet50 model, it is necessary to further fine-tune a
substantial portion of the model. Hence, to achieve competi-
tive performance, we retrained its 150 layers. Lastly, VGG16
does not learn outstanding weights for the facial paralysis
task, as the FP-VGGFace model has strong generalizability
for facial tasks, leading to its superior performance in this
specific classification task. Fig. 14 illustrates the comparison
of FP-VGGFace with benchmark models using accuracy
metric.

In the final phase of our study, we conducted extensive
comparisons between our proposed FP-VGGFace model and
several existing models commonly used for face paralysis
classification. The models we evaluated include PHCNN-
LSTM [14], VGGI16 Net [10], Cascade Training [12],
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FIGURE 14. Accuracy metric comparison of the proposed FP-VGGFace
model with benchmark models.

TPCNN [11] and FaceDisNet [29]. To ensure a compre-
hensive evaluation, we considered multiple performance
metrics, including accuracy, precision, recall, and F1-score.
The results, as shown in Fig. 15, highlight the superiority of
our proposed FP-VGGFace model. It achieved an impressive
accuracy of 99.3%, outperforming all the compared models.
Specifically, PHCNN-LSTM achieved an accuracy of 94.8%,
VGG16 Net achieved 92.6%, Cascade Training achieved
95.6%, TPCNN achieved 89.0%, and FaceDisNet achieved
98.0% for multi-class disease diagnosis. The results of
our proposed model for other evaluation metrics are also
better than existing models by a wide margin. These results
showcase the effectiveness of our proposed FP-VGGFace
model in face paralysis classification. It demonstrates
the potential for diagnosing the severity level of facial
paralysis.

In each of the existing models, certain limitations were
observed. The PHCNN-LSTM [14] model was trained on
a class-imbalanced dataset, leading to a significant variance
in the inter-class counts, affecting its overall accuracy.
The VGG16 Net [10] model, being pre-trained on natural
images without facial data, lacks specific facial features
and may not perform optimally in facial-related tasks. The
triple-path convolutional neural network (TPCNN) [11] has
the lowest accuracy among all models. In addition, the
three-model approach and the parallel convolutional neural
network structure require substantial computational resources
and time for training. The FaceDisNet [29] computer-aided
diagnosis system for facial diseases uses integrated spatial
information from several CNNs of various architectures,
which is computationally expensive. It requires a large
amount of computational resources. Lastly, the Cascaded
Training [12] showed a strong emphasis on segmented
facial regions like the mouth, nose, and eyes, but it
appeared to be less attentive to other crucial parts of the
patients’ faces, potentially affecting its comprehensive facial
analysis.
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FIGURE 15. Performance comparison of the proposed FP-VGGFace model with existing models using standard evaluation matrices.

VI. DISCUSSION

The existing models for facial paralysis detection and
classification have utilized both machine learning and deep
learning techniques. However, these models have been
limited by the use of private and small datasets, resulting
in a small number of subjects and limited diversity in
the data. The recent machine learning approaches in facial
paralysis have focused on facial landmark detection, which
may overlook texture information and rely on external
methods for landmark detection. On the other hand, deep
learning approaches require large labelled datasets, but the
field of facial paralysis suffers from limited data availability.
Transfer learning, commonly used with natural images, lacks
knowledge and features specific to facial images, leading to
insufficient feature learning for facial paralysis images.

In this study, we utilized a combination of two datasets: the
MEEI dataset, which is clinically approved, and the YouTube
Face Palsy dataset, widely used in facial paralysis research.
This merger allowed us to increase the number of images,
subjects, and diversity within the dataset. Both datasets
primarily consist of paralyzed facial images. To address
the issue of class imbalance between normal and paralyzed
images, we incorporated images from the CK+ dataset,
which contains normal facial expressions. Our goal was to
detect facial paralysis and classify its severity level, aiding
in selecting appropriate treatment options and guiding the
rehabilitation process.

After merging the datasets for face paralysis detection and
classification, we still faced the challenge of insufficient data
to train a deep learning model from scratch. Recognizing this
limitation, we turned to transfer learning as a solution. This
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approach allowed us to capitalize on the knowledge gained
from pre-trained models in the domain of facial images.
Hence, we utilized pre-trained models such as VGGFace,
VGGI16, and ResNet50, which are trained on larger facial
image datasets like VGGFace and VGGFace2, to effectively
transfer the learned knowledge to our face paralysis analysis
task.

Considering the aforementioned challenges, we conducted
several experiments to address face paralysis detection and
classification. These experiments yielded promising results,
showcasing the effectiveness of our proposed model. Further-
more, we conducted a comparative analysis to evaluate the
accuracy of the proposed model in comparison to existing
approaches. This analysis provides valuable insights into
the performance and potential of our proposed method in
accurately detecting and classifying facial paralysis severity.

VII. CONCLUSION

This paper presents an approach for the severity classification
of face paralysis, which occurs due to facial muscle weakness
and nerve damage, resulting in impaired facial function.
Our transfer learning approach addresses the limitations of
existing models and proposes a facial palsy classification
model for grading the severity level of patients. The results
reveal the superior performance of our model by achieving
a remarkable accuracy of 99.3%. Overall, our deep learning
approach, incorporating transfer learning and fine-tuning,
enables us to leverage pre-existing knowledge and features
extracted from facial images for accurate and efficient face
paralysis detection and classification. An automatic facial
paralysis detection and classification system has significant
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benefits for both physicians and patients involved in the
rehabilitation process. It can assist physicians in selecting
the most suitable treatment plan based on accurate and
objective assessments of the patient’s condition. Additionally,
it enables patients to track and evaluate their recovery
progress throughout the treatment process.

Future research in the field of facial paralysis holds
significant potential for advancements and improvements in
healthcare facilities. The domain of facial paralysis lacks
generalized models for effective detection and classification.
Key areas where advancements can be made include the
preparation of datasets related to facial paralysis. This
involves the collection of diverse and representative datasets
featuring cases of facial paralysis. In the future, an incre-
mental learning approach could be employed. The model
can be designed to learn incrementally as new data becomes
available over time.
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