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ABSTRACT Defects in the printed circuit board assembly significantly impact product functionality and
quality. Automated optical inspection (AOI) systems, employed by manufacturing quality control teams, are
designed to accurately detect these defects in a timelymanner, thereby reducing the underkill (false negatives)
and overkill (false positives) rates. An AOI system requires optimal settings for resolution, brightness,
camera angle, and data variety to ensure effective defect detection. However, consistently achieving
these ideal conditions in a manufacturing environment presents challenges. Our proposed framework
enhances defect detection through data preparation and detection modules, effectively addressing these
manufacturing challenges.We developed one- and two-stage object detectors and assessed their performance
using precision, recall, and intersection over union metrics. Our framework employs a diverse range of
augmentation techniques to effectively train the defect detectors, enabling the expansion of a limited data
set. The trained detectors are evaluated using real-world data. We assessed quality control plans across
various confidence thresholds. At a 65% confidence threshold, one-stage detector models did not exhibit
any false negatives and had minimal false positives. The You Only Learn One Representation (YOLOR)
model outperformed both one-stage and two-stage detectors, achieving 100% precision and recall, a 96%
mIoU, and an impressive inference time of 11 ms, making it an ideal choice for high-production printed
circuit board assembly lines.

INDEX TERMS Computer vision, faster-R-CNN model, image augmentation techniques, one-stage and
two-stage defect detectors, PCBA defect detection framework, printed circuit board defects, YOLO object
detection models.

I. INTRODUCTION
A populated printed circuit board, often referred to as printed
circuit board assembly (PCBA), represents a compact yet
intricate electronic component. It is manufactured using a
circuit board assembly process with several manual and
automated steps. Many faults can occur in this process,
such as overheating during soldering, wrong component
placement, or power supply failure, which can produce
defects in the circuit boards. There are two main categories
of PCBA defects: functional (e.g., missing component or
short circuit) and cosmetic (e.g., component scratch or
component skew). A functional defect prevents the circuit
board from functioning correctly, whereas a cosmetic defect
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impacts its quality [1]. Product quality control (QC) plays a
critical role in identifying these defects in the PCBAs and
thereby helps the manufacturers meet the product quality and
functionality requirements of the customers while keeping
the manufacturing costs down. The QC team comprises
human inspectors and automated tools that aim to reduce the
underkill (false negative) and overkill (false positive) rates by
accurately identifying both functional and cosmetic defects in
the PCBAs.

The typical inspection methods employed by the QC
team include manual visual inspection (MVI) and automated
optical inspection (AOI). In MVI, a skilled inspector visually
inspects the PCBA to identify defects with the help of a
magnifier or telescope. However, with an increase in the
demand and production of PCBAs and a decrease in trace
spacing and components volume, the QC team has to rely on
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other automated tools to timely and accurately identify their
defects. AOI is a machine-based automated visual inspection
technique used primarily to check the defects in the electronic
boards during the final production stage [2]. An AOI system
captures an image of the circuit board, which is then analyzed
by processor software. Different analysis techniques are
used to differentiate between good and defective products.
These techniques include template matching, in which the
PCBA image is compared with the ideal PCBA, and pattern
matching, in which both the good and defective images are
first collected, and then statistical methods are applied to
learn their features.

The AOI image capture system relies on the correct
lighting source and positioning to ensure that the different
areas of the circuit board are well lit and highlight the
different types of defects [3], [4], [5], [6]. However, achieving
this critical adjustment in the illumination setting (i.e., the
angle and intensity of the illumination source) and the
camera’s viewing angle in the AOI system is challenging [6].
In addition, because of tight scheduling and the high
production rate of PCBA products, collecting an extensive
data set of PCBA images with a near-equal distribution of
all types of defects in them is not feasible [7], [8]. A critical
need exists to improve the AOI system by addressing the
challenges mentioned above to reduce the underkill and
overkill rates of the PCBAs.

In this paper, we propose a PCBA defect detection
framework powered by computer vision (CV) algorithms
that is robust to changes in the calibration of the AOI
capture system. The main contributions of this study
include the development of a novel framework with data
augmentation techniques and defect detection algorithms
to overcome the challenges mentioned above. The other
contributions include providing insights for an effective QC
strategy with a high detection rate and low false alarm
rate (FAR). We conducted our experiments on a real-world
data set and performed a comparative analysis of state-
of-the-art CV-based defect detection approaches. Beyond
the technical advancements, our research offers invaluable
insights intended to revolutionize QC strategies. It equips
practitioners with actionable insights to enhance their defect
detection processes, promising transformative impacts on
industry practices and quality assurance standards.

The rest of this article is organized as follows. In section II,
we provide a detailed literature review. We explain the details
of our proposed defect detection framework in section III.
We present the numerical experiment setup in section IV.
We provide the results and the analysis of the models
in section V, followed by the insights obtained from this
research study, and conclusions and future research directions
in section VI.

II. RELATED LITERATURE
There are three categories of automated inspection
approaches for PCBs/PCBAs: referential, non-referential,
and hybrid approach [1]. We first present the literature review

for the referential methods, followed by themore efficient and
popular non-referential methods. Thereafter, we highlight
the identified limitations in existing literature, followed by
the innovations in our approach designed to mitigate these
shortcomings.

A. REFERENTIAL APPROACH
The referential approach utilizes an image template of an
ideal product (defect-free) to classify products as defective
or non-defective using a difference threshold. An inherent
drawback lies in the necessity for precise alignment of
test images to template images in dimensions, angles, and
contrast [1].

To address challenges in manual inspection, an automated
referential method is introduced in [9]. Thismethod compares
a defect-free PCB standard image to a potentially defective
PCB test image, employing a subtraction algorithm to iden-
tify regions of interest (RoIs). Specific image conditions, such
as non-uniform illumination and camera angle tilting, are
discussed in [10]. These factors led to the underperformance
of the reference comparison approach in a study involving
a PCB product with four defect types. In [2], addressing
extended detection times in PCB referential inspections,
a technology for online PCB defect detection is proposed,
considering a limited number of defect types (three). The
approach involves processing and binarizing color images,
deriving a system self-inspection template from a reference
image, and using an image aberration detection algorithm
to segment threshold values. The method reduces detection
algorithm time, optimizing hardware design for rapid PCB
defect identification. Another referential method is the pixel
subtraction technique. In [11], authors proposed a method
for detecting and eliminating PCBA defects using visual
subtraction technology, addressing challenges like missing,
incorrect, and reverse detection in PCB component assess-
ment. The method efficiently detects defective components
in non-stop production lines.

B. NON-REFERENTIAL APPROACH
In recent years, AOI has gained prominence in the electronics
industry for detecting defective products, constituting a non-
referential automated inspection approach [12]. AOI has
successfully replaced MVI, boosting inspection speed and
accuracy [13]. The proliferation of affordable computational
power, especially cloud computing services, has integrated
deep learning (DL) algorithms into AOI systems [14]. Since
the advent of the AlexNet architecture in 2012, a majority
of AOI systems have adopted convolutional neural network
(CNN) designs [15], [16], [17], [18], [19], [20].

In [15], authors employ a real PCB dataset of 1540 images
featuring only two defect types: short circuits and projections.
The aim is to reduce the FAR in PCB defect detection. They
propose feature pyramid networks (FPNs) combined with
faster regions with convolutional neural networks (Faster
R-CNNs) to detect PCB defects. Reference [16] addresses
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low detection efficiency and high missed detection rates in
defect detection methods. This model enhances the you only
look once (YOLO) family of models, particularly YOLOv3,
for PCB surface defect detection involving six common
defect types. In [17], YOLOv3 is further improved by
adjusting the output layers and anchor boxes to detect PCB
electronic components. Reference [18] uses a deep ensemble
self-adaptation method to detect six defect types on PCBs.
The method involves a deep ensemble CNNmodel, achieving
high detection rates and utilizing a self-adaptation technique
for different production lines and environmental variations.

Following the improvement of the YOLO family of
models, [19] presents a DL model based on YOLO for PCB
quality inspection. The method employs skilled engineers
to record and label defective PCBs, training a YOLO/CNN
model to detect defects. Authors in [20] propose a lightweight
PCBA-type defect detection model, encompassing four
defect types. Their model integrates two sub-models: LD-
PCB, for real-time defect detection and accuracy enhance-
ment, and a character recognition model known as CR-PCB,
notably improving irregular character recognition accuracy.
Reference [21] demonstrates DL implementation in assessing
PCB quality via X-ray imaging. Addressing challenges of
noisy RoIs and variable imaging sizes, the study introduces
and compares two AI-based models. Real-world 3D X-ray
experiments substantiate the effectiveness of the proposed
methods.

Several studies have employed DL models to address
defect detection across diverse applications, aiming to replace
human inspectors with automated systems [22], [23], [24],
[25], [26]. For instance, Cha et al. [23] introduced a method-
ology rooted in vision-basedDL to identify cracks in concrete
and steel surfaces. Another approach, reliant on a Faster
R-CNN, has been advanced to identify five distinct defect
categories within remote video footage [24]. In the work by
the authors in [25], a dual encoder-decoder solution known
as the Polyp Segmentation Network (PSNet) was introduced
to detect colorectal polyps. The pixel-wise segmentation
approaches are mainly utilized in literature when the problem
requires precise object boundaries, instance separation, and
detailed shape information.

Challenges in DL algorithms for PCB/PCBA defect
detection are addressed in [27], [28], [29], [30], and [31].
Reference [27] tackles issues like template design, computa-
tional costs, and noise susceptibility by proposing a method
for identifying six defect types. To enhance small defect
detection, they use a deeper model backbone and replace
region proposal network (RPN) with guided anchor RPN
(GARPN). In [28], data augmentation using affine transfor-
mations mitigates data scarcity and diversity issues, followed
by CNN-based model training. Reference [29] addresses low
automation, detection rate, and stability problems. Reference
[30] introduces as single shot detector (SSD) method
achieving 94.69% accuracy, though performance is limited
for small defects. Reference [31] recognizes limitations

of common object detection techniques for dense PCBA
components and proposes an approach exclusively focused
on electronic component identification. They compare their
approach with region-based CNNs (RCNNs) and SSDs,
revealing limitations.

C. RESEARCH GAPS IN LITERATURE
In our review of the existing literature, we observed the
following shortcomings: (i) The literature studies assume that
the images in the data sets are acquired using AOI image
capture systems, operating under optimal conditions for
resolution, brightness, camera angle, and distance. (ii) Many
studies primarily explore the detection of a limited number
of defects on manufactured boards. These investigations
predominantly concentrate on the most common defect types
encountered in PCBs. (iii) It is assumed that balanced
data sets, crucial for effectively training CV-based defect
detection models, are readily available. These data sets
are presumed to consist of nearly equal proportions of
different defect types. Nonetheless, these assumptions do
not align with the complexities of real-world manufacturing
settings. Firstly, ensuring consistent optimal calibration of
equipment, such as high-definition cameras and lighting
systems, for collecting consistently high-quality image data
over time is far from guaranteed. Secondly, within the realm
of densely populated manufactured PCBAs, the prevalence
of diverse defects is a reality. Thirdly, acquiring balanced
data sets with a sufficient quantity of image data showcasing
proportional representation across all defect types remains an
intricate endeavor. To address these challenges, our research
introduces a defect detection framework aimed at enhancing
the quality control process, ultimately reducing both underkill
and overkill rates associated with PCBAs.We employ various
data augmentation techniques to expand the PCBA image
data set and develop defect detection models for accurate and
timely identification of defective PCBAs.

III. DEFECT DETECTION FRAMEWORK
A schematic of our proposed defect detection framework
is shown in Figure 1. The framework comprises two main
modules: (i) the data preparation module and (ii) the defect
detection module. The data preparation module preprocesses
the collected data using various problem-specific techniques
and prepares the data set to be utilized by the next module.
The defect detection module consists of various computer
vision (CV) algorithms for developing the defect detection
model using the prepared data set from the former module.
Next, we describe these modules in detail.

A. DATA PREPARATION MODULE
The images collected by the AOI image capture system
are processed using the data preparation module. These
images are generally not captured in ideal settings with the
optimal resolution, brightness, camera angle, and positioning.
Hence, in this module, we first preprocess these images by
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FIGURE 1. Defect detection framework.

identifying the types and locations of the defects in themwith
the help of expert QC teammembers.We then split the labeled
(annotated) image data into training and testing data sets.
Next, we augment the training data set with artificial images
to help make the defect detection models (in the next module)
more robust in detecting defects in real-world manufacturing
environments. The data preparation module consists of the
following components:
■ Annotation component: Image annotation is a primary

preprocessing step for developing CV-based detection
models. Annotation allows computers to gain a high-
level understanding of digital images. Annotation files
identify the types of defects in the images and specify
their respective coordinates.

■ Augmentation component: Data augmentation tech-
niques help expand a training data set by creating
modified versions of the images [32]. These techniques
rely on altering image pixels to create synthetic images,
which are then used to train the CV-based models
to make them more robust to variations in defects.
The augmentation techniques are problem and data

set specific. For this research problem, some of the
augmentation techniques that will be explored are
described as follows [32].
Color space transformation: The variations in the
intensity of light are due to changes in the illumination
and angle of the light source. To make the models less
sensitive to variations in light and color, we will explore
the color space transformation. This will be achieved by
altering the RGB and HSV values in the raw images.
Rotation: The images may have been taken from
different camera angles as well as the products may
not be fixed in the same position. This would result
in different orientations of the components. With the
rotation transformation, an image is rotated along an
axis or the center of the image. We will explore
this augmentation technique to make the models less
sensitive to identifying objects (defects) with their
specific orientations.
Kernel filters: Due to the tilting in the AOI image
capture system, there may be some noise appearing
in the product images. By exploring kernel filters to
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FIGURE 2. Architectures of one-stage and two-stage object detection models [33].

blur or sharpen the images, such sensitivities can be
decreased.

The augmented training data set containing annotated images
is then passed on to the defect detection module.

B. DEFECT DETECTION MODULE
We consider both two-stage and one-stage object detection
models in this study. Two-stage detectors have high localiza-
tion and object recognition accuracy, whereas the one-stage
detectors achieve high inference speed. The two stages of
two-stage detectors can be divided by an RoI pooling layer.
For instance, in Faster R-CNN, a RPN, proposes candidate
object bounding boxes in the first stage. In the second
stage, features are extracted by RoI pooling operation from
each candidate box for the classification and bounding-box
regression tasks [33]. On the other hand, one-stage detectors
skip the region proposal stage of two-stage models and
run detection directly over a dense sampling of locations.
Figure 2a shows the basic architecture of two-stage detectors,
and Figure 2b exhibits the basic architecture of one-stage

detectors. The main difference between them is that in
the two-stage object detector, the models employ region
proposal network to feed region proposal into classifier
and regressor for object recognition, whereas, in the one-
stage object detectors, the models predict bounding boxes
from input images directly [33]. Next, we describe the
popular and top-performing object detection models from
both the categories, which will be explored in the algorithm
pool.

1) YOLOv4:You Only Look Once (YOLO) object detec-
tor family of models are one-stage object detectors
known for their high speed and accuracy [34]. YOLOv4
is one of the popular models known for achieving
state-of-the-art performance on the publicly available
COCO image data set [35]. The object detection task
in this model is divided into two parts. The first
part uses regression to identify object positioning via
bounding boxes and the second part uses classification
to determine the object’s class. The implementation of
YOLOv4 uses the Darknet framework [36].
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2) YOLOR: You Only Learn One Representation
(YOLOR) is a novel object detectionmodel [37], which
proposes a unified network to encode implicit and
explicit knowledge. It achieves its explicit knowledge
based on features obtained from the shallow layers in
the neural network and implicit knowledge from the
features obtained from the deep layers. It uses Scaled
YOLOv4 CSP for the explicit model [37].

3) Faster R-CNN: R-CNN object detection family com-
prises the most popular two-stage object detection
methods. The R-CNN family of models includes
R-CNN, Fast R-CNN, and Faster R-CNN. First,
Girshick et al. [38] proposed R-CNN method which
utilizes selective search in order to extract around
2000 regions from an image. These regions were
referred to as ‘‘region proposals’’ by the authors. The
Fast R-CNN method was later proposed by Girshick
[39], which addressed some of the drawbacks of the
R-CNN model. The Fast R-CNN method generates a
convolutional feature map by feeding an input image
to the CNN and based on the convolutional feature
map, region proposals are identified. Nevertheless,
both R-CNN and Fast R-CNN were time-consuming
due to selective search. Consequently, Shaoqing Ren
et al. [40] developed the Faster R-CNN object detec-
tion algorithm, in which a CNN network learns the
appropriate region proposals, thus eliminating the need
for the selective search algorithm. Faster R-CNN uses
three neural networks: feature network, RPN, and
detection network. The feature network aims to find the
main characteristics of objects. RPN aims to generate
several bounding boxes called RoIs that are highly
likely to contain any object. Finally, in the detection
network (also, referred to as the RCNN), the class and
bounding boxes are created based on the inputs of both
the feature network and RPN [40].

Transfer learning is the ability to transfer the knowledge
obtained from solving a different but related problem to
an existing problem. In the context of the proposed study,
transfer learning is expressed as the retraining of the CNN
model, which is already trained on another related data set
and utilizing its trained network weights to quick start the
training process for the problem proposed in this study.
We will use models pre-trained on a large-scale image
data set, COCO [41], including 80 classes of objects
in approximately 330,000 images. Next, we describe the
metrics for performance evaluation of the defect detection
models with respect to the research objective of reducing the
underkill and overkill rates of the PCBAs.

C. PERFORMANCE EVALUATION METRICS
The true positive (TP) value represents the number of defects
accurately detected, the false positive (FP) value represents
the number of defects inaccurately predicted, and the false
negative (FN) value represents the number of actual defects

that the object detection model misses. The metrics used by
the proposed object detection framework are as follows.

1) The precision metric measures the rate at which the
model correctly predicts the defects. The precision is
calculated as

Precision =
TP

TP+ FP
(1)

2) The recall metric measures how well the model finds
the defects. The recall is calculated as

Recall =
TP

TP+ FN
(2)

3) The false acceptance rate (FAR) metric [42] measures
the fraction of false defect detection when there are no
defects on the PCBA. The FAR is calculated as

FAR =
FP

TP+ FP
(3)

4) The intersection over union (IoU) metric evaluates
the accuracy of the predicted bounding boxes when
compared to the ground truth in an image.

IoU =
Bp ∩ Bg
Bp ∪ Bg

, (4)

where Bp denotes the prediction area and Bg represents
the area corresponding to the ground truth of the object.
The average metric value across all classes is the mean
IoU, also denoted as mIoU.

IV. EXPERIMENTS
In this section, we first describe the data set used for the
experiments, followed by the data preparation steps and
model setup.

A. DATA SET
We conducted our experiments using a real-world PCBA
image data. These product images were captured with
different settings of the optical equipment in the AOI capture
system. The characteristics of the captured image data
are as follows. The images were captured from varying
distances. The camera angle was varied resulting in different
perspectives of the image data. There was also a variation in
the brightness of the images. The products were not fixed in
the same position and direction. There were some images that
did not have the complete PCBA and there was a variation in
the background as well.

Table 1 shows the details of the data set. The image data
had a total of 309 images, of which 270 belonged to the
defective classes and 39 of them were non-defective. There
were 19 different defect types (classes) associated with the
defective product images. These contained both functional
and cosmetic defects. The defective product images had either
single or multiple defect types. Out of the 270 defective
images, 15 of them had two defect types while the others
had only one defect type present. There were 15 images of
each defect type in this data set. We selected this data set
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TABLE 1. Details of the image data set.

FIGURE 3. Instances of defect types (red rectangular box indicates the
defect position).

for our experiments as it had all the characteristics that could
be found in a real-world manufacturing environment, which
include non-ideal settings for resolution, brightness, camera
angle, distance, and very few samples of a large number of
defects.

Table 2 shows the types of defects and their categories. The
defect type title contains the component and the description
of the inconsistency. Each component is identified by a
reference designator. For example, ‘‘C31 Raised’’ means
that the component is raised from the designated position.
Similarly, ‘‘Missing’’ denotes the absence of a component
in its designated spot, ‘‘Damaged’’ refers to a deformed
component, and ‘‘Displaced’’ indicates that the component
is not precisely placed in its intended location. Out of the
19 defect types in the data set, two existed together, namely,
R20 Damaged and Screw/Cables Solder. Figure 3 shows
samples of two defect types along with the locations of the
defective components.

B. DATA PREPARATION
Data preparation is one of the main modules in the proposed
framework. There are various steps taken to prepare the data
so it can be used to develop the CV-based defect detection
models in the next module. The data preparation process is
described as follows.

TABLE 2. Defect types and categories.

The data set contained different sizes of the captured
raw images. Before performing the annotation task, all the
images (defective and non-defective) were resized to the same
dimension. The annotation of all the images comprising non-
defective and defective products was performed manually
by our team with the help of the manufacturing quality
control team. We annotated them into 19 classes of defect
types. We peculiarly annotated the image data. Due to the
similarities among most of the components on the PCBA
and the complexity in the dense PCBA, we expanded beyond
the defected area. We enlarged the RoI by encompassing
area nearby adjacent components to train the models more
efficiently. However, it is to be noted that the added area in the
annotation box did not contain other defective components.
The LabelImg application, a graphical image annotation tool
written in Python, was used for generating the annotations for
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the images in the data set [43]. The annotation output files
of this graphical user interface application were converted
from text to JSON files to meet the requirement of the
faster R-CNN model training (explained in the next section).
Next, the data was divided into training and testing sets.
We selected three images of each defect type out of the
15 images available in the original data set for the testing
set. Eight images of non-defective products were added to
the test set. Finally, our test set included 62 images with their
corresponding annotations. This test set was not modified and
kept aside for the experiments.

Augmentation is critical in adding synthetic image data to
expand the training data set for developing robust CV-based
defect detection models. Also, creating annotation files for
the synthetic samples to train the object detection models is
tedious. Hence, to counter the time-consuming and expensive
process requiring manual reproduction of the annotation
files, we utilized different color space transformations and
image rotation techniques to generate a data set of synthetic
analogues of the original image data. It should be mentioned
that the YOLO object detection models employ data augmen-
tation techniques in its bag of freebies framework. It uses
several data augmentation techniques to generate images
in different conditions. Photometric distortions including
brightness, contrast, hue, saturation, and noise, and geometric
distortions including random scaling, cropping, flipping,
and rotation are the augmentation techniques that are used
in the YOLO detectors. After applying the augmentation
techniques, we obtained a data set of 2000 images per defect
type.

The two-stage object detection model (Faster-RCNN) does
not accept images without annotation in the training phase.
Hence, the training data set only contained the annotated
images for the defective products (i.e., 2000 images *
19 defect types = 38,000 images). However, for the one-
stage detection (YOLO) models, we included an additional
2500 images of non-defective products to facilitate effi-
cient learning [36]. The augmentation process encompassed
rotation, color space transformation, and kernal filters. For
each image, a rotation of approximately 2.16 degrees was
applied, generating 167 images with varying angles for
each class. This rotation filter resulted in augmenting each
image to a total of 2000 images. Subsequently, the generated
images were classified into three distinct brightness levels:
‘‘dim,’’ ‘‘dark,’’ and ‘‘bright.’’ These terms correspond to
specific levels of luminosity or light intensity, wherein ‘‘dim’’
signifies a lower brightness level, ‘‘dark’’ conveys an even
lower intensity, and ‘‘bright’’ denotes a higher luminosity.
The adjustments in light and noise introduced by the color
space transformation and kernel filters were calibrated to
exhibit approximately 33 percent variation from one category
to another. Table 3 shows the total number of samples in the
training and testing data sets for the different categories of
object detection models.

K-fold cross-validation is a technique used to reduce the
risk of overfitting by assessing the model across multiple

TABLE 3. Training and testing data sets.

data subsets. It involves training and evaluating the model
on k different subsets, exposing it to diverse variations in
the data. The final performance metric is often the average
across all k folds, mitigating the impact of overfitting to
specific subsets. By evaluating the model on various test
sets, k-fold cross-validation provides a realistic estimate of
its generalization to new, unseen data distinguishing between
learned training patterns and underlying patterns likely to
generalize. We utilized a 5-fold cross-validation technique.
In this method, we consistently followed the procedure of
selecting three out of the total 15 images per defect type for
evaluation, while applying augmentation techniques to the
remaining images. This meticulous process was employed
to systematically assess the model’s performance, with the
primary aim of mitigating the risk of overfitting.

C. MODEL SETUP
We trained the various defect detection models using the
Azure cloud platform. Specifically, the models were trained
with Standard NC6s v3 (6 vcpus, 112 GB memory) Azure
Virtual Machine (VM) running on Ubuntu 18.04. Table 4
shows the training settings of the different object detector
models. We developed the YOLOv4, the YOLOR-P6, and the
Faster R-CNN (using ResNeXt-101-FPN 3x) models in the
object detection module. The backbone for the Faster R-CNN
model is selected based on its demonstrated performance on
the COCO data set (see Figure 4 [44]). Hyper parameter
tuning process was conducted to select the best parameter
values. Table 5 shows the different network configurations
and transfer learning weights (pre-trained models) used in
the experiments. It is to be noted that by increasing the input
image size and batch size in CNN-based object detection
models, the learning rate may improve; however, there is a
trade-off with the computational costs. We found 640*640
to be an ideal image size for the models. This standardized
image size was maintained throughout the inference period
when assessing the processing speed of the models. Next,
we present the performance comparison of these models.
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FIGURE 4. Performance comparison among the various backbones for Faster R-CNN models [44].

TABLE 4. Training settings of different defect detector models.

V. RESULTS AND ANALYSIS
In this section, we first provide the results of the experiments
for the defect detection models. Then, we analyze the results
and present the key findings from this analysis.

We used different confidence thresholds indicating the
prediction confidence of the defect detection models to
help the quality control (QC) team in their decision-making
process. Table 6 shows the results obtained from the
experiments. There is a trade-off among the performance
metrics at each threshold. As the confidence threshold
increases from 25% to 95%, the precision score increases,
while the recall score decreases. We show three different
confidence thresholds, 25%, 65%, and 95%, in Table 6. Both
TP and FP values decrease as the confidence threshold value
is increased. A larger threshold value reduces the number
of positive detections. Conversely, the FN value increases as
the confidence threshold value increases. A larger threshold
value increases the number of missed detections.

In the case of a high confidence threshold (95%), the QC
plan will revolve around identifying the products only if
there is a high certainty of the defects. Although this model
behavior will result in a minimum number of FP products,

FIGURE 5. Model output examples for three different defect types (from
left to right: C119 Damaged, U14 Short Circuit, U18 Foreign Component).

it will fail to identify some defective products correctly (i.e.,
the FN rate will be higher). Table 6 shows the high FN
values associated with each model at this threshold. In such
a threshold setting, the manufacturer will risk shipping
defective products; hence, this confidence threshold may not
be an ideal choice in the QC plan. In the case of a low
confidence threshold (25%), the QC plan will revolve around
inspecting many non-defective products that the model may
have identified with defects with a low probability. Table 6
shows the FN rate to be 0 and a high FAR rate associated with
each model at this threshold. With this threshold setting, the
QC plan will need a human evaluation of these products and
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TABLE 5. Model configuration and pre-trained weights for TL [36], [37], [45], [46].

TABLE 6. Performance summary of different defect detection models on
PCBA data set.

will increase the team’s workload and the costs. Based on our
discussions with the manufacturing QC team, we identified
that it is critical to keep the FN rate as close to 0 as that
would prevent the defective products from shipping out to the
customers. In addition, it is important to keep a very low FP
rate to minimize the workload of the human operators (and
reduce the associated costs). Based on the results in Table 6,
we found the favorable confidence threshold to be 65%
among all the threshold values and across all the different

FIGURE 6. Successful multiple defect type detection of test image data.

models that would keep both the underkill and overkill rates
to a minimum (closer to 0).

It is to be noted that the production rate of printed circuit
board assembly lines may also influence the QC plans. If the
rate of PCBA production is high, then a QC plan may need to
include a model with a fast inference time for real-time defect
detection. This will help in maintaining the high production
rate and decrease the cost of delays in the inspection process.
In such a case, both the YOLOv4 and the YOLOR-P6 are top
modeling choices. Table 6 shows the model inference times.

Next, for the confidence threshold of 65%, we looked at the
models’ performances for each defect type. Table 7 shows the
TP and FP values for all 19 different defect types obtained
using the YOLOv4, the YOLOR-P6, and the Faster-RCNN
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TABLE 7. TP and FP values per defect type for different models.

models. The results show that the YOLOR-P6 model has the
best performance for detecting actual defects among all three
models. It is also able to keep the FP rate at a minimum
among all models for all defect types. The YOLOv4 and
the Faster-RCNN models do not have a desirable FAR value
for a couple of defect types. Both models struggled with the
raised components, including C31 Raised and U32 Raised.
These two defect types were misclassified for a total count
of six and 11 times in YOLOv4 and Faster-RCNN model
outputs, respectively. It indicates that these models have poor
performance, mainly with the defects in which the component
is raised. Components with these defect types have similar
visionary characteristics as the non-defective components.

Figure 5 shows some examples of outputs obtained from
each of the models. The magnifying glass highlights the
defective component and displays the confidence score
associated with detecting the defect. Figure 6 displays the
outputs of the models with images containing multiple
defects. The three test PCBA images contain R20 damage
and screw/cables solder defects, which are detected with over
90% confidence in all three models. The Faster-RCNNmodel
detects both defects with 100% accuracy. In fact, the Faster-
RCNN model outperforms the other two models in terms
of the level of certainty in detecting the defects in all these

images in Figures 5 and 6. However, the Faster-RCNNmodel
has an abysmal performance on the non-defective products
image data (as demonstrated by comparatively larger FP
values in Table 7). We evaluated our framework on various
PCBA products and obtained similar results.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
In this paper, we investigated the problem of automated
inspection for the PCBA manufacturing process under
adverse conditions. There are various conditions in real-
world manufacturing systems that impact the performance
of the AOI systems. Our defect detection framework com-
prises problem-specific data preparation and defect detection
modules to overcome these conditions. We evaluated our
framework on a real-world manufacturing data set. The
selected PCBA product was complex and dense, and the
difference between the defective and the non-defective areas
was proportionally a tiny region. We employed various
augmentation techniques to counter the issue of images taken
in non-ideal settings for the resolution, brightness, camera
angle, and distance. We demonstrated that our framework
is able to expand a small data set containing PCBA images
with a large number of defects and use this new balanced
data set to train the object detection models. We developed
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one- and two-stage object detectors and evaluated their
performance using precision and recall metrics.We compared
different quality control plans based on the models and their
performance under various confidence thresholds. We found
a favorable confidence threshold of 65%, at which there
were no false negatives in one-stage detector models, and
the false positives were also minimal. The YOLOR model
outperformed the other one-stage and two-stage detector
models in the precision and recall metrics. We also found that
the one-stage detector models, the YOLOR and the YOLOv4,
have a significantly faster inference time and they would
be an ideal choice in high production printed circuit board
assembly lines. In summary, our object detection framework
accurately and timely identifies the various functional and
cosmetic defects in PCBA and thereby helps in increasing
manufacturing productivity while lowering the underkill and
overkill rates.

As a direction for future research, delving into genera-
tive techniques like generative adversarial networks holds
promise. These methods could assist in generating expansive
real labeled PCBAdata sets with reduced human intervention.
Subsequently, evaluating the object detection models trained
on these augmented synthetic data sets in comparison to mod-
els trained solely on real data could provide valuable insights.
Another promising research direction is the exploration of
pixel-wise segmentation methods for this problem. While we
employed state-of-the-art object detection models to tackle
the research problem, evaluating the performance of novel
segmentation techniques for pixel-wise defect identification
and precise defect location remains untapped.
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