
Received 11 September 2023, accepted 27 October 2023, date of publication 6 November 2023,
date of current version 20 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3330441

Implementation and Performance Study of the
Micro-ROS/ROS2 Framework to Algorithm Design
for Attitude Determination and Control System
ALFREDO MAMANI-SAICO 1 AND PABLO RAUL YANYACHI 2, (Senior Member, IEEE)
1Electronic Engineering Professional School, Universidad Nacional de San Agustin de Arequipa, Arequipa 04000, Peru
2Instituto de Investigación Astronómico y Aeroespacial Pedro Paulet, Universidad Nacional de San Agustin de Arequipa, Arequipa 04000, Peru

Corresponding author: Pablo Raul Yanyachi (raulpab@unsa.edu.pe)

This work was supported by Programa Nacional de Investigación Científica y Estudios Avanzados (PROCIENCIA-CONCYTEC), for the
Development of this Research Project under Agreement PE501079885-2022.

ABSTRACT Robot Operating System 2 (ROS2) and Micro-ROS, as advanced robotic platforms, present a
potent fusion of versatility, efficiency, and scalability. While ROS 2 continues to evolve with a modular
architecture and flexible communication framework, Micro-ROS provides a lightweight and efficient
solution tailored for resource-constrained systems. Together, they extend the horizons of robotics across
a spectrum of applications, ranging from autonomous robots to highly constrained environments, thus
setting a comprehensive standard in the realm of contemporary robotic system development. In this study,
we leverage the capabilities of ROS2 and Micro-ROS to realize an experimental platform designed for the
development of attitude control algorithms. This platform comprises a dedicated Computer Environment
Dedicated toData Processing (CEDDP) and amodule for AttitudeDetermination&Control System (ADCS).
Our investigation entails a measurement of the response time of the CEDDP unit under both exclusive and
shared network usage scenarios. Furthermore, we quantify the extent of message loss across three segments
during a complete control-task cycle, under various Quality of Service (QoS) configurations. Additionally,
we analyze message periodicity at four key points within the ROS2 entities participating in the system. The
outcomes of our experimentation reveal a robust experimental platform built upon the ROS2 andMicro-ROS
frameworks. Employing a best-effort QoS policy, along with minor adjustments to QoS profiles, emerges as
an optimal approach for designing attitude control algorithms.

INDEX TERMS Data distribution service, CubeSat, quality of service, real-time processing, software
architecture, ROS2.

I. INTRODUCTION
The Attitude Determination & Control System (ADCS)
is a fundamental component of aerospace and robotics
engineering, responsible for accurately determining and
maintaining the orientation of a vehicle or object in space.
It combines sensors, algorithms, and actuators to manage
rotational aspects, ensuring precise alignment with desired
reference axes for optimal performance and functionality
[1]. Several aerospace research topics focus on addressing
dynamic models and attitude control problems. For instance,
in [2], a model of an artificial satellite is constructed,

The associate editor coordinating the review of this manuscript and

approving it for publication was Alessandro Floris .

comprising both a rigid and a flexible component. Subse-
quently, [3] entails an evaluation of three robust control
laws proposed by Boskovic, Dando, and Chen. Furthermore,
[4] involves the implementation of algorithms rooted in the
theory of the 3D inverted pendulum, employing quaternions
as a fundamental framework. However, one of the critical
elements in designing attitude control algorithms is the
software, proper design and implementation of this software
is essential to ensure extensible and reliable operation of the
ADCS, since implementing redundant systems is not always
the optimal choice [5].

On another note, Robot Operating System 2 (ROS2)
emerges as an open-source software platform meticu-
lously engineered with a specific focus on facilitating the

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 128451

https://orcid.org/0009-0002-9890-4050
https://orcid.org/0000-0001-5398-1461
https://orcid.org/0000-0002-8745-1327


A. Mamani-Saico, P. R. Yanyachi: Implementation and Performance Study

development of robotic systems, now extended to encompass
industrial environments as well [6]. Since 2018, a progres-
sion known as Micro-ROS has been under development,
representing a variant of ROS2 tailored for microcontrollers.
Its primary objective revolves around bridging the divide
between resource-constrained microcontrollers and more
robust processors within robotic applications [7]. The tran-
sition from ROS to ROS2 has been intricately orchestrated
to cater to the demands of contemporary robotic systems.
Among the most noteworthy enhancements is the incorpora-
tion of the Data Distribution Services (DDS) standard, which
significantly enhances real-time data exchange capabilities
[8]. DDS functions as middleware, providing the communi-
cation layer for both ROS2 and Micro-ROS. Furthermore,
a supplementary extension, SROS2, has been introduced
to bolster system security through the implementation of
authentication, encryption, and access control mechanisms
[9]. Additionally, ROS2 introduces heightened control over
Quality of Service (QoS), allowing for tailored adaptations
to varying performance and reliability requirements [10].

A. RELATED WORKS
The study conducted by Buckner et al. [11] presents one
of the initial endeavors that employs the Robot Operating
System as a flight software framework for nanosatellite
control. This application has been demonstrated in the context
of two CubeSat platforms: the Drag De-Orbit Device (D3)
and the Passive Thermal Coating Observatory Operating in
Low Earth Orbit (PATCOOL) [12]. According to Gonzalez
et al. [13], a significant portion of publications detailing
CubeSat mission flight software predominantly utilize oper-
ating systems such as GNU/Linux or FreeRTOS. Within
this context, Micro-ROS has achieved native compatibility
with a selection of Real-Time Operating Systems (RTOS),
including FreeRTOS, Zephyr, NuttX, as well as Linux and
Windows [14]. Consequently, our particular focus resides in
the exploration of studies pertaining to the implementation
of ROS2 with enhancements in data exchange mechanisms
and performance analysis. These themes hold profound
importance as we endeavor to establish a reliable attitude
control software framework. Subsequently, we present a
collection of proposals and outcomes elucidated by various
researchers:

• Fernandez et al. [15] have conducted performance
studies of ROS2 concerning latency, throughput, and
overhead within a two-node network encompassing
50 distinct QoS and cybersecurity configuration scenar-
ios.

• Chen [16] evaluates the impact of combining diverse
QoS and security configurations in ROS2, employing
a node network analogous to the operation of an
unmanned asset group. This study revealed that enabling
security led to increased message drop rates across all
QoS profiles, and scaling the network to more nodes

yielded various consequences contingent upon different
QoS configurations.

• The work by Fernandez [17] demonstrated measurable
latency and performance variations among different QoS
profiles and security settings.

• Park et al. [18] assessed the periodicity of a multi-agent
service robot control node in both ROS2 and ROS,
indicating that ROS2 holds the potential to meet real-
time constraints.

• Jalil et al. [19] analyze the efficiency of local caching,
cache management, and QoS balancing optimization
to enhance ROS2 node communication when utilizing
RELIABLE and KEEP_LAST options within the Aggre-
gated Robot Processing (ARP) architecture. This study
effectively improved latency and reduced packet loss,
although susceptibility to low-level hardware impacts
was noted.

B. SOFTWARE REQUIREMENTS
The functional and non-functional requirements for software
design, as previously identified in the study conducted
by Gonzales et al. [13], are outlined in Table 1. These
requirements encompass five quality attributes pertinent to
software design in attitude control and future space missions.

C. PURPOSE OF OUR STUDY
The aim of this study is to implement and evaluate the
performance of Micro-ROS and ROS2 as a scalable software
solution for prospective aerospace mission projects at the
Instituto de Investigación Astronómico y Aeroespacial Pedro
Paulet (IAAPP) of the Universidad Nacional de San Agustín
de Arequipa (UNSA). The outcomes of this study will offer
benefits to researchers and students at UNSA by enabling
them to address attitude control challenges in CubeSats or
replicate the architecture in emerging research centers as a
cost-effective alternative. Furthermore, this study represents
an enhancement of a previously developed prototype within
the institute, wherein the simulation of a 1U Cubesat
Dynamics and a testing system for students were executed,
employing cost-effective components [21].

Regarding the technical purpose of our study, our aim is
to fulfill real-time communication requirements between the
ADCS module and the Computer Environment Dedicated to
Data Processing (CEDDP). This objective would be achieved
by identifying an appropriate configuration of Micro-ROS
QoS policies. Micro-ROS/ROS 2 has been chosen over
other frameworks due to its capability to operate efficiently
in resource-constrained environments, strong interoperabil-
ity, and its flexible, modular approach that enables the
expansion of possibilities for implementing complex control
software. Furthermore, the robust development community
and technical support behind Micro-ROS/ROS 2 provide
a solid foundation for implementing complex hardware
control solutions, as required for our application. Our
rationale is based on utilizing a CEDDP, such as a high-

128452 VOLUME 11, 2023



A. Mamani-Saico, P. R. Yanyachi: Implementation and Performance Study

TABLE 1. Functional and non-functional software requirements.

performance computer, for intensive algorithm processing,
while employing a microcontroller within the ADCS module
as a means of data exchange among the components of
the experimental platform. This approach facilitates the
utilization of cost-effective and accessible hardware.

This article is structured as follows: Section II identifies
the general components of the experimental platform and
outlines the modular design of both hardware and software.
Section III elaborates on our experimental configurations and
techniques employed to gather latency, message loss, and
data periodicity data. Section IV provides a comprehensive
analysis of the measurements and presents the obtained
results. Section V offers the conclusions derived from the
study, along with insights into the direction of future projects.

II. MODULAR ARCHITECTURE DESIGN AND
IMPLEMENTATION
The design of the overarching architecture comprises the
following components: Detection, Actuation, Periphery,
Control, and Visualization. Each of these components is
distributed within the hardware architecture as depicted in
Figure 1.

A. HARDWARE ARCHITECTURE
The distribution of the elements constituting the hardware
of the system is illustrated in Figure 1. Two main blocks
can be identified: the CEDDP block, encompassing control
and visualization components, enabling state monitoring and
command transmission; and the ADCS block, housing the
detection, actuation, and periphery components, physically
implemented within the ADCS module. These blocks are
interconnected via a wireless link and are discernible by
the resources available within their equipment. The ADCS
module consists of components with limited resources and
low cost, whereas the CEDDP can range from a laptop to a
sophisticated server.

In this study, the detection component encompasses an
Inertial Measurement Unit (IMU), providing orientation
information, along with a voltage measurement sensor
facilitating battery state evaluation. On the other hand, the
actuation component includes reaction wheels that generate

torque within nanosatellite units to achieve the desired orien-
tation. Furthermore, the peripheral component incorporates
backup devices and crucial status indicators for calibration
purposes. To enable data exchange between the ADCS and
CEDDP blocks, the ESP32 microcontroller and a remote
computer are employed. Moreover, the microcontroller acts
as a central conduit for the data flow among the ADCS
components. The details and costs of the primary components
employed in constructing the experimental platform are
meticulously described in Table 2.

TABLE 2. List of main components and costs of attitude control
experimental platform.

B. SOFTWARE ARCHITECTURE
The architecture of the experimental software comprises
a robust back-end and an intuitive graphical interface on
the front-end. The back-end, associated with the detection,
actuation, and control components, is developed within
the ROS2 and Micro-ROS environments. It handles data
exchange and sends control commands to the ADCS module.
On the other hand, the front-end is exclusively linked to the
visualization component and is responsible for visual pre-
sentation and user interaction, delivering a user-friendly and
easily comprehensible experience. This modular architecture
allows for a clear separation of responsibilities, streamlining
software development, maintenance, and scalability.

1) FRONT-END SOFTWARE
Figure 2 illustrates the Graphical User Interface (GUI)
developed for this study using Tkinter, a standard GUI

VOLUME 11, 2023 128453



A. Mamani-Saico, P. R. Yanyachi: Implementation and Performance Study

FIGURE 1. Experimental hardware distribution.

programming toolkit for Python. Through the GUI, the
operator gains real-time access to data such as angular accel-
eration, quaternion orientation, Euler angles, ADCS module
temperature, and battery status. Additionally, it includes a
plotting section to visually assess the behavior of received
orientation data and a 3D visual modeling section. The
interface further presents two operational modes: ‘‘Test
Mode’’, allowing the transmission of velocity commands
to the ADCS module to verify proper reaction wheel
functionality; and ‘‘Active Mode’’, enabling the reading
of Pulse-Width Modulation (PWM) data and direction of
rotation of the reaction wheel generated within the control
component.

2) BACK-END SOFTWARE
The back-end serves as the internal architecture of the
graphical interface, and its design has been realized with the
objective of generating reliable velocity commands for three
reaction wheels and establishing appropriate routes for the
flow of each message type during data exchange. Figure 3
depicts the nodes, topics, and message types constituting the
architecture. Two distinct node groups can be discerned:

• The MICROROS_GROUP consists solely of the
adcs_node as its node element, executed on the
ESP-WROOM-32 microcontroller. This node publishes
battery state (/batt_state), calibration (/calib_state),
temperature (/temp), and IMU values (/imu). It sub-
scribes to the /pwm_topic, which contains PWM values,
rotation direction, and enable signal for each reaction
wheel.

• The ROS2_GROUP comprises three nodes executed
on a remote computer. The control_node implements
the attitude control algorithm, publishing velocity
commands when the interface is in ‘‘Active Mode’’.
The interface_node publishes velocity commands exclu-
sively when the interface is in ‘‘Test Mode’’. The
pwm_pub_node conditions the velocity commands into
a 12-bit resolution PWM signal, publishing it on the
/pwm_topic at a frequency of 100Hz.

III. EXPERIMENTAL SETUP
This section outlines the appropriate conditions under which
the requisite data were acquired to analyze the performance
of the proposed modular design, as detailed in the preceding
section. To achieve this, techniques akin to those expounded
upon in the prior study by Delgado et al. [22] were employed.
In this context, performance analysis primarily hinges upon
three pivotal metrics: periodicity, latency, and data loss.

Figure 4 illustrates the experimental setup stemming from
the back-end architecture. For this instance, three nodes have
been incorporated to facilitate the execution of a control task.
The control task forms a closed-loop cycle encompassing
functions denoted as A, B, C, and D. It commences with the
transmission of IMU data and concludes with the reception of
control signals (PWM and rotation direction). The execution
of the attitude control algorithm transpires between points B
and C.

Due to the absence of synchronized clocks between the
microcontroller and the computer, measuring point-to-point
latency between A-B and C-D poses a challenge. A compar-

128454 VOLUME 11, 2023



A. Mamani-Saico, P. R. Yanyachi: Implementation and Performance Study

FIGURE 2. Graphical user interface.

FIGURE 3. Experimental software architecture.

ative analysis of the latency of the ESP32 microcontroller,
employed in this study, is elaborated upon in [23].

A. QUALITY OF SERVICE SETTINGS
The implementation of DDS in Micro-ROS, known as
Micro XRCE-DDS, allows for configurations related to
memory management. Given that these devices possess

limited memory resources, it prioritizes the use of static
memory over dynamic memory. Consequently, this imposes
an upper limit on memory allocations that the user can
configure. The Micro XRCE-DDS Client empowers users
to create entities for reliable (RELIABLE) or efficient
(BEST EFFORT) communications. This is achieved through
functions such as rclc_publisher_init_default

VOLUME 11, 2023 128455



A. Mamani-Saico, P. R. Yanyachi: Implementation and Performance Study

FIGURE 4. Experimental setup.

and rclc_publisher_init_best_effort. How-
ever, users can customize their own QoS using the
rmw_qos_profile_t structure. Similarly, within ROS2
entities, QoS profiles can be customized using the
rclpy.qos Python module.

TABLE 3. Setup QoS in DEFAULT and BEST EFFORT.

In this study, we tested three QoS configurations classified
in the Micro-ROS tutorials available at https://micro.ros.
org/docs/tutorials/programming_rcl_rclc/pub_sub/. As out-
lined in Table 3, the first configuration utilized the default
(RELIABLE) profile for all participating entities. In the
second configuration, the BEST EFFORT profile was
employed for the Micro XRCE-DDS entities. However, due
to reliability compatibility between QoS, the BEST EFFORT
profile had to be employed in the ROS2 subscriber callback
function. For the third configuration, each entity in both
Micro XRCE-DDS and ROS2 was customized in accordance
with Table 4. The QoS parameters are defined as follows:

• History: Determines how received samples are stored,
and can be set as either KEEP_LAST or KEEP_ALL.

• Depth: Specifies the size of the queue and is only valid
if the ‘‘History’’ policy is configured as KEEP_LAST.

• Reliability: Defines how sample delivery is ensured, and
can be set as either RELIABLE or BEST EFFORT.

• Durability: Defines whether samples persist for late sub-
scriptions and can be set as either TRANSIENT_LOCAL
or VOLATILE.

TABLE 4. Setting custom QoS profile.

IV. ANALYSIS AND RESULTS
This section analyzes latency, message loss, and periodicity
behavior, considering various configurations in which
QoS profiles are varied. It is important to note that the
XRCE-DDS middleware implementation is recent and
still under development. Therefore, this evaluation aims
to elucidate the current capabilities of Fast DDS and
Micro XRCE-DDS, communication mechanism between
ROS2 and Micro-ROS developed by eProsima, within an
experimental software framework for control algorithm
design. The eProsima Micro XRCE-DDS library, designed
for environments with extremely constrained resources, acts
as a bridge that enables communication between devices
with resource constraints and the DDS network. This
client-server protocol facilitates the participation of devices
with limited resources in DDS communications, with the
eProsimaMicro XRCE-DDSAgent acting as an intermediary
to enable this communication. Additionally, eProsima Micro
XRCE-DDS provides an API layer that allows users to
efficiently implement plug-and-play eProsima Micro XRCE-
DDS clients. The computational environment resources
utilized in the evaluation are specified in Table 5.

TABLE 5. Evaluation environment.

A. LATENCY
We evaluated the latency between points B and C, as depicted
in Figure 4. In this evaluation, we measured the response
time of the CEDDP unit from the moment it acquires the
network topic to the point it sends control commands to a
new topic. Measurements were conducted in two scenarios
for each configuration type described in Table 3. In the first
scenario, exclusive network usage was considered, where
only the computer and the ESP-WROOM-32 microcontroller
were connected to the network. In the second scenario,
network sharing was considered with other common devices
like additional computers and mobile phones. Additionally,

128456 VOLUME 11, 2023



A. Mamani-Saico, P. R. Yanyachi: Implementation and Performance Study

latency measurements were recorded every 50 samples over
a period of 10 seconds after subjecting the system to a stress
load for 5 minutes. This approach allowed us to obtain more
representative data and analyze latency behavior under both
intensive and sustained usage conditions.

FIGURE 5. CEDDP response time: (a) Latency without network traffic;
(b) Latency with network traffic.

Figure 5 presents the results of latency measurements
between points B and C, conducted with a consecutive
interval of 50 samples. In Figure 5a, the results for an
exclusive-use network are shown, where the third config-
uration exhibits a lower average latency compared to the
other two configurations. On the other hand, in a shared-
use network, the average latency increased by 70% for the
second configuration and 170% for the third configuration,
due to network congestion causing delays in the execution of
ROS2 nodes. In both scenarios, it can be observed that the
first configuration is the least stable in terms of latency.

B. MESSAGE LOSS
The evaluation of message loss has been performed in a
closed-loop execution cycle of the control task according
to the experimental configuration described in the previous
section. The message flow is unidirectional, sent from the
microcontroller to the computer, and culminates with the
return to the same microcontroller. A total of 1000 messages
have been analyzed between point-to-point. Table 6 presents
the results of the message loss evaluation for the three
configurations described in Table 3.

TABLE 6. Message loss with varying setup of QoS.

During the first segment (A->B), no losses were observed
in any of the configurations. However, in the second
segment (B->C), significant losses were evident in the first
configuration, while the second configuration maintained
greater stability. During the third segment (C->D), only the
first configuration showed slight losses.

These findings suggest that, for data exchange at a
frequency of 100 Hz, the implementation of the first
configuration is not recommended due to the significant
losses observed in the second segment. In contrast, the second
configuration proved to be more robust and stable during
this time interval. As for the third configuration, it could be
considered depending on the requirements for other metrics
such as latency and periodicity.

C. PERIODICITY
The periodicity allows for tracking stability in real-time
data exchange. This is relevant for the programmability
of control_node and enables the design of attitude control
strategies efficiently and effectively with a high-frequency
response. The frequency has been measured for each
participating entity, labeled as A, B, C, and D, under different
QoS configurations as described in the previous section.
Each entity has been programmed to operate at a frequency
of 100 Hz. To measure the frequency at points B and C, the
commands ros2 topic hz /imu and ros2 topic
hz /pwm_pub were used. To calculate the frequency at
points A and D, the following equation was utilized, where
samplesize, with a value of 50, represents the quantity of
measured data points, and elapsedt ime is the time taken to
record the 50 data points.

Frecavg(Hz) =
Sample_Zise

Elapsed_Time(s)
(1)

Table 7 displays the detailed experimental data regarding
periodicity for the first configuration. The results are
presented in terms of average (Avg.), standard deviation (St.
d), minimum value (Min.), and maximum value (Max.) of the
recorded frequency.

TABLE 7. Periodicity with setup 1 of QoS.

Table 8 presents the empirical data for the second configu-
ration. The results indicate that the frequencies are operating
close to the target frequency of 100 Hz. Consequently, the
participating entities demonstrate highly precise and stable
frequencies, capable of delivering robust performance in

VOLUME 11, 2023 128457



A. Mamani-Saico, P. R. Yanyachi: Implementation and Performance Study

terms of quality of service for data exchange at 100 Hz within
these entities.

TABLE 8. Periodicity with setup 2 of QoS.

Similar to the second configuration, the third configura-
tion, as shown in Table 4, operates close to the 100 Hz target
with a standard deviation lower than that of the previous
configurations.

TABLE 9. Periodicity with setup 3 of QoS.

Periodicity is a key characteristic for the design of event-
triggered controllers, as the actual time behavior between
events may differ from numerical simulations [24]. For the
design of attitude control algorithms on our platform, the
controller is triggered by the arrival of IMU data. Hence,
in Figure 6a, we depict the periodicity behavior in entity
B of the control node. Similarly, Figure 6b illustrates the
periodicity behavior for entity D of the adcs_node node,
which activates an actuator, such as reaction wheels.

The results presented in Figure 6 reaffirm the stability
of periodicity in entity B as optimal for designing attitude
control algorithms using the architecture outlined in this
study. However, it is observed that the default configuration
(SETUP 1) of the participating entities exhibits greater
instability in terms of periodicity compared to the best-effort
(SETUP 2) and custom (SETUP 3) configurations.

D. LAUNCHING INSTRUCTIONS
The operational setup of the experimental platform within
the laboratory is depicted in Figure 7 illustrating the ADCS
module within a Dyson Sphere. This setup serves as a
mechanism for simulating outer space, where a attitude
control algorithm implementation is intended. A detailed
representation of real-time data transmission with respect to
various attitude angles of the ADCS module is illustrated in
Figure 8. The incorporation of the Dyson sphere introduces
adaptability to accommodate diverse yaw, pitch, and roll
orientations.

FIGURE 6. QoS Setup Comparison Summary: (a) Entity B; (b) Entity D.

FIGURE 7. Experimental platform ready to use.

It is crucial to note that to establish communication
between the ESP32 microcontroller and the computer,
an instance of the Micro-ROS agent needs to be executed
with a ROS2 Foxy environment using the command ros2
run micro_ros_agent micro_ros_agent udp4
-port 8888. Additionally, the Micro-ROS client must
be loaded onto the microcontroller utilizing the standard
ROS2 client libraries rclc and rcl [25], enabling the
implementation of the adcs_node node. The client libraries
for the Arduino IDE are available at the following link:
https://github.com/micro-ROS/micro_ros_arduino/releases.

V. CONCLUSION AND FUTURE WORK
This research study highlights the successful implementation
of an experimental hardware and software architecture
platform for attitude control algorithm design. The utilization
of low-cost components extends its applicability in academic
and research environments. A thorough performance evalua-
tion has been conducted across various configuration scenar-
ios, focusing on three crucial metrics. Latency measurement
among the participating ROS2 entities, reflecting computer

128458 VOLUME 11, 2023



A. Mamani-Saico, P. R. Yanyachi: Implementation and Performance Study

FIGURE 8. Real-time attitude viewer: (a) viewer rotation around the yaw axis; (b) viewer rotation around the negative pitch axis; (c) viewer rotation
around the positive pitch axis; (d) viewer rotation around the roll axis; (e) picture rotation around the yaw axis; (f) picture rotation around the
negative pitch axis; (g) picture rotation around the positive pitch axis; (h) picture rotation around the roll axis.

response time, reveals that the CEDDP unit exhibits rapid
response rates when employed in a dedicated network for the
experimental platform. However, within a shared network,
a substantial increase in latency is observed. Concerning
message loss, the default configuration exhibits a significant
loss rate, with the ‘‘BEST_EFFORT’’ QoS policy being
the most suitable for mitigating this issue. In terms of
periodicity, it has been demonstrated that configurations
utilizing ‘‘BEST_EFFORT,’’ alongwithminor adjustments to
QoS profiles, prove optimal for algorithm design within the
control node. These configurations successfully enhance the
standard deviation of periodicity, thereby optimizing system
accuracy and reliability.

In future research endeavors, the experimental platform
developed in this study can be employed for formulating
attitude control algorithms, encompassing both nanosatellites
and diverse categories of robots. The integration of ROS2 and
Micro-ROS as flight software components could streamline
the interconnection among nanosatellite units, enabling the
assessment of their effectiveness and feasibility in real-
world operations, as well as their capability to manage
communication within nanosatellite fleets. Additionally,
expanding the study to evaluate performance across varying
communication frequencies based on the system’s require-
ments could yield crucial insights. This expansion has the
potential to provide essential data for optimizing coordination
and communication among units in space missions, thereby

contributing to technological advancements in the realm of
nanosatellites and their application across various facets of
space exploration and scientific research.

ACKNOWLEDGMENT
The authors would like to thank Universidad Nacional
de San Agustin de Arequipa (UNSA) and the Instituto
de Investigación Astronómico y Aeroespacial Pedro Paulet
(IAAPP), for their support in providing the necessary
facilities and equipment.

REFERENCES
[1] X. Xia, G. Sun, K. Zhang, S. Wu, T. Wang, L. Xia, and S. Liu,

‘‘NanoSats/CubeSats ADCS survey,’’ in Proc. 29th Chin. Control Decis.
Conf. (CCDC), May 2017, pp. 5151–5158.

[2] P. R. Yanyachi and P. S. D. Silva, ‘‘Modelagem E controle de atitude de
satélites artificiais com apendices flexíveis,’’ Ph.D. thesis, Departamento
de Engenharia de Telecomunicações e Controle, Univ. de São Paulo, São
Paulo, 2005.

[3] B. E. Garcia, A. Martin, and P. Raul, ‘‘Non-linear control strategies for
attitude maneuvers in a CubeSat with three reaction wheels,’’ Int. J. Adv.
Comput. Sci. Appl., vol. 11, no. 11, 2020.

[4] F. Bobrow, B. A. Angelico, F. P. R. Martins, and P. S. P. da Silva,
‘‘The Cubli: Modeling and nonlinear attitude control utilizing quater-
nions,’’ IEEE Access, vol. 9, pp. 122425–122442, 2021.

[5] J. Bouwmeester, A. Menicucci, and E. K. A. Gill, ‘‘Improving CubeSat
reliability: Subsystem redundancy or improved testing?’’ Rel. Eng. Syst.
Saf., vol. 220, Apr. 2022, Art. no. 108288.

[6] J. He, J. Zhang, J. Liu, and X. Fu, ‘‘A ROS2-based framework for industrial
automation systems,’’ in Proc. 2nd Int. Conf. Comput., Control Robot.
(ICCCR), Mar. 2022, pp. 98–102.

VOLUME 11, 2023 128459



A. Mamani-Saico, P. R. Yanyachi: Implementation and Performance Study

[7] Micro-ROS. (2018). Micro-ROS Puts ROS 2 Onto Microcontrollers.
[Online]. Available: https://micro.ros.org/

[8] Y. Maruyama, S. Kato, and T. Azumi, ‘‘Exploring the performance of
ROS2,’’ in Proc. Int. Conf. Embedded Softw. (EMSOFT), Oct. 2016,
pp. 1–10.

[9] Y. Liu, Y. Guan, X. Li, R. Wang, and J. Zhang, ‘‘Formal analysis and
verification of DDS in ROS2,’’ in Proc. 16th ACM/IEEE Int. Conf. Formal
Methods Models Syst. Design (MEMOCODE), Oct. 2018, pp. 1–5.

[10] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, ‘‘Robot
operating system 2: Design, architecture, and uses in the wild,’’ Sci. Robot.,
vol. 7, no. 66, May 2022, Art. no. eabm6074.

[11] S. Buckner, C. Carrasquillo, M. Elosegui, and R. Bevilacqua, ‘‘A novel
approach to CubeSat flight software development using robot operating
system (ROS),’’ in Proc. 34th Annu. AIAA/USU Small Satell. Conf., 2020,
pp. 1–8.

[12] B. D. Yost, S. Weston, J. Hines, and C. Burkhard, ‘‘An overview of the
current state of the art on small spacecraft avionics systems,’’ inProc. AIAA
SCITECH Forum, Jan. 2022, p. 0521.

[13] C. E. Gonzalez, C. J. Rojas, A. Bergel, and M. A. Diaz, ‘‘An architecture-
tracking approach to evaluate a modular and extensible flight software
for CubeSat nanosatellites,’’ IEEE Access, vol. 7, pp. 126409–126429,
2019.

[14] K. Belsare, A. C. Rodriguez, P. G. Sánchez, J. Hierro, T. Kołcon, R. Lange,
I. Lütkebohle, A. Malki, J. M. Losa, F. Melendez, M. M. Rodriguez,
A. Nordmann, J. Staschulat, and J. von Mendel, ‘‘Micro-ROS,’’ in Robot
Operating System (ROS). Cham, Switzerland: Springer, 2023, pp. 3–55.

[15] J. Fernandez, B. Allen, P. Thulasiraman, and B. Bingham, ‘‘Performance
study of the robot operating system 2 with QoS and cyber security
settings,’’ in Proc. IEEE Int. Syst. Conf. (SysCon), Aug. 2020, pp. 1–6.

[16] Z. Chen, ‘‘Performance analysis of ROS2 networks using variable quality
of service and security constraints for autonomous systems,’’ Doctoral
dissertation, Dept. Elect. Comput. Eng. (ECE), Naval Postgraduate School,
Monterey, CA, USA, Sep. 2019.

[17] J. M. Fernandez, ‘‘Quality of service and cybersecurity communication
protocols analysis for the robot operating system 2,’’ Doctoral dissertation,
Dept. Elect. Comput. Eng. (ECE), Naval Postgraduate School, Monterey,
CA, USA, Jun. 2019.

[18] J. Park, R. Delgado, and B. W. Choi, ‘‘Real-time characteristics of ROS
2.0 in multiagent robot systems: An empirical study,’’ IEEE Access, vol. 8,
pp. 154637–154651, 2020.

[19] A. Jalil, J. Kobayashi, and T. Saitoh, ‘‘Performance improvement of multi-
robot data transmission in aggregated robot processing architecture with
caches and QoS balancing optimization,’’ Robotics, vol. 12, no. 3, p. 87,
Jun. 2023.

[20] M. S. Essers and T. H. J. Vaneker, ‘‘Design of a decentralized
modular architecture for flexible and extensible production systems,’’
Mechatronics, vol. 34, pp. 160–169, Mar. 2015.

[21] P. R. Yanyachi, H. Mamani-Valencia, and B. Espinoza-García, ‘‘Low-cost
test system for 1U CubeSat attitude control with reaction wheels,’’ in Proc.
IEEE Biennial Congr. Argentina (ARGENCON), Sep. 2022, pp. 1–8.

[22] R. Delgado, J. Park, and B. Choi, ‘‘Open embedded real-time controllers
for industrial distributed control systems,’’Electronics, vol. 8, no. 2, p. 223,
Feb. 2019.

[23] D. Eridani, A. F. Rochim, and F. N. Cesara, ‘‘Comparative performance
study of ESP-NOW, Wi-Fi, Bluetooth protocols based on range, trans-
mission speed, latency, energy usage and barrier resistance,’’ in Proc. Int.
Seminar Appl. Technol. Inf. Commun. (iSemantic), Sep. 2021, pp. 322–328.

[24] R. Postoyan, R. G. Sanfelice, and W. P. M. H. Heemels, ‘‘Explaining the
‘mystery’ of periodicity in inter-transmission times in two-dimensional
event-triggered controlled systems,’’ IEEE Trans. Autom. Control, vol. 68,
no. 2, pp. 912–927, Feb. 2023.

[25] J. Staschulat, I. Lütkebohle, and R. Lange, ‘‘The rclc executor: Domain-
specific deterministic scheduling mechanisms for ROS applications on
microcontrollers: Work-in-progress,’’ in Proc. Int. Conf. Embedded Softw.
(EMSOFT), Sep. 2020, pp. 18–19.

ALFREDO MAMANI-SAICO was born in Cusco,
Peru, in 2000. He is currently pursuing the
Bachelor of Electronic Engineering of with Uni-
versidad Nacional de San Agustin de Arequipa
(UNSA), where he is also a Junior Researcher
with Instituto de Investigación Astronómico y
Aeroespacial Pedro Paulet (IAAPP). His research
interests include robotics, distributed systems, and
remote sensing. He has developed the software
presented in this paper.

PABLO RAUL YANYACHI (Senior Member,
IEEE) received theM.Sc. degree in automatic con-
trol from the Polytechnic Institute of Leningrad,
and the Ph.D. degree in electrical engineering
from the Polytechnic School, University of São
Paulo, Brazil. He is currently a main Professor of
academic with the Department of Electronic Engi-
neering, Universidad Nacional de San Agustin de
Arequipa (UNSA). He is the Station Manager
of the Nasa Laser Tracking Station TLRS-3,

Arequipa, Peru. He is also the Director of Instituto de Investigación
Astronómico y Aeroespacial Pedro Paulet (IAAPP), UNSA.

128460 VOLUME 11, 2023


