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ABSTRACT Multiple Unmanned Aerial Vehicle (UAV) cooperation systems, such as flocking, consensus,
formation control have a wide range of applications in monitoring, mapping, and target tracking. Optimal
cooperative control of such systems is particularly important to increase their working efficiency. This
paper studies the optimal trajectory tracking and formation control problems for multi-UAVs with a leader-
follower structure, and the distributed model predictive control (MPC) scheme based formation control
method is proposed. In particular, a novel MPC strategy is firstly designed for the leader modelled by the
nonlinear Newton-Euler equations, to generate a feasible tracking trajectory for the formation systems. Then,
by separating the system dynamics of the followers into the translationmotion and the rotationmotion, a two-
layer distributedMPC formation control algorithm is designed to reduce the computation and communication
loads, while only requiring limited information of the neighbors’ states. Finally, simulation and comparison
studies verify the effectiveness of the designed algorithms.

INDEX TERMS UAVs, model predictive control, leader-follower control.

I. INTRODUCTION
Research on behaviors of multiple unmanned aerial vehicle
(UAV) cooperation systems has gained much attention from
the communities in aeronautics and robotics, mainly due to its
significantly improved flexibility and adaptability compared
with the single agent [1], [2], [3]. Cooperative trajectory
tracking of multi-UAVs, as one of the most controversial
issues in cooperative control problems, is capable of simul-
taneously realizing trajectory tracking and formation control,
showing great potential in practical applications such as
border patrol, combat support, cargo transportation, and
forest detection [4], [5], [6], [7], [8]. In this paper, to further
improve the working efficiency, we investigate the optimal
cooperative trajectory tracking problem of multi-UAVs.

In practice, the nonlinear, high coupling, and nonholo-
nomic system dynamics of a UAV make it difficult to
design the trajectory tracking controller. To address this issue,
numerous control strategies for single UAV tracking have
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been developed. Existing results are classified into three
types: linear control strategies, nonlinear control strategies,
and intelligent control strategies. PID [9], LQR [10] and
H∞ [11] are typical linear control strategies, where the
systemmodel is linearized to reduce computation complexity.
To overcome the performance degradation raised by the
inaccuracy of the linear model, some nonlinear control
strategies such as sliding mode control [12], backstepping
control [13] and state feedback linearization approaches [14]
are investigated. Because of the advantages in handling
parameter adaptive adjustment and nonlinear functional
approximation, intelligent control strategies including neural
network [15], fuzzy logic system [16] and reinforcement
learning [17] are also being studied. However, these control
techniques either ignore the widely existed constraints (input
saturation), or do not optimize the system performance,
resulting in the control strategies being practically infeasible
and consuming unnecessary resources.

Model predictive control (MPC) provides an inspiring
solution to the optimal trajectory tracking of UAV. The
main idea is to obtain an optimal control input sequence by
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solving an open-loop constrained optimization problem at
each sampling instant. Then, only the first element of the
control sequence is applied to the system. This mechanism
endows MPC with the ability to control the system with high
nonlinearity and negligible state/control input constraints,
Motivated by these benefits, trajectory tracking of UAV using
MPC has received a lot of attention [18], [19], [20], [21],
[22]. In [20], an MPC approach was developed for a UAV
to tracking a flat trajectory, with the system model linearized
at several waypoints. Islam et al. designed an MPC tracking
algorithm for a quaternion orientation based quadrotor, which
effectively avoids the gimmal lock phenomenon in vertical
take off and landing (VTOL) [21].

To realize the cooperative trajectory tracking of multi-
UAVs, additional formation controller should also be con-
sidered. So far, a large amount of control techniques have
been researched for the formation control of multi-UAVs,
with typical schemes including the consensus-based method,
the virtual structure method, the algebraic graph theory and
the leader-follower strategy [23]. For example, time-varying
formations were achieved by constructing a consensus-based
controller in [24]. Zhou and Schwager proposed a formation
controller using virtual structure method that enables a group
of micro aerial vehicles to perform agile maneuvers in a
fixed formation [25]. Huang et al. proposed a graph theory
based formation control strategy to handle the formation
control problem among heterogeneous multi-agents [26].
Based on the above techniques, the formation control
methods in the famework of the distributed MPC are
also investigated to endow the controller with optimized
performance [27], [28], [29].

It should be noted thatmost works onmulti-UAV formation
control focus on the formation producing while ignoring
the trajectory tracking of the overall system. Although the
distributed MPC algorithms in [28] and [29] consider the
optimal cooperative trajectory tracking problem of multi-
UAVs, each agent is required to constantly perceive the
information of the reference trajectory, placing high demands
on the agent’s hardware configuration. As a result, in this
paper, we address the issue by employing the leader-follower
based optimal control method, in which only the leader UAV
is required to be sophisticated, allowing it to constantly track
the reference and produce a feasible trajectory while taking
the nonlinear system dynamics into consideration. Then,
using a resource-aware distributedMPC formation controller,
the multiple low-cost follower agents keep a desired distance
with the leader UAV. The main contributions of this paper are
as follows:

• To increase the accuracy of the UAV’s state trajectory
and cope with the control input constraints, a new MPC
trajectory tracking algorithm is designed for the leader
UAV with system dynamics directly regulated by the
rotor’s angular velocity. This differs from the traditional
simplified system dynamics in [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], and
[22], where the control inputs are taken as force and

FIGURE 1. The basic configuration of quadrotor.

torques while neglecting the coupling among the input
variables.

• For the follower agents, two-layer distributed MPC
formation control methods with limited neighbor infor-
mation are proposed to reduce communication load.
We separate the system dynamics into the translational
motion in the upper level and the rotation motion
in the lower layer using the linear parameter varying
(LPV) method. The communication burden is thereby
decreased in two aspects. A distributed MPC approach
with limited information about neighbor agents is
designed to guarantee position formation in the upper
level. A decentralized MPC without communication is
designed to achieve the attitude stabilization in the lower
layer.

The remainder of this paper is organized as follows:
Section II establishes the system dynamics and introduces the
control object. In Section III, MPC based optimal cooperative
trajectory tracking controller is designed. Then, simulation
studies are provided in Section IV. Finally, Section V makes
the conclusions.

II. PROBLEM FORMULATION
Consider the multiple UAV systems composed of a
leader quadrotor and N homogeneous follower quadrotors.
We assume that all the quadrotors have identical structures
shown in Fig. 1, thus following the same modeling principle.
For each quadrotor, the four propellers are located in a cross
configuration and turn in opposite directions. Specifically,
the front propeller 1 and the back propeller 3 turn in the
clockwise direction, while the right propeller 2 and the left
propeller 4 turn in the counterclockwise direction. By varying
the angular velocity of the rotors, one can change the lift force
and the torques applied on the quadrotor, hence activating
quadrotor motion in 6 degrees of freedom.

In this paper, the leader-follower structure is employed to
reduce the cooperative trajectory tracking cost, allowing a
sophisticated leader quadrotor to guide a swarm of low-cost
follower quadrotors. Note that the leader quadrotor is critical
to the formation, since it constantly tracks the reference
trajectory and provides guidance to the follower agents.
Therefore, in this section, we develop theNewton-Euler equa-
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tions as the leader’s model, and we use a simplified model for
the follower by considering the hardware configuration.

A. LEADER UAV MODEL
To facilitate model the system, two basic coordinates, named
as earth-fixed frame E and body-fixed frame B, are used, and
the following assumption is made:
Assumption 1: (i) The quadrotor is a symmetrical rigid

body; (ii) the mass and moment of inertia of the quadrotor
do not change; (iii) the geometric center coincides with its
center of gravity; (iv) the center of gravity coincides with the
origin of the body-fixed frame.

Let p = [x, y, z]T and v = [ẋ, ẏ, ż]T be the position and
the linear velocity of the quadrotor in the earth-fixed frame
E, respectively. Let θ = [φ, θ, ψ]T and ω = [φ̇, θ̇ , ψ̇]T

be the attitude and the angular velocity of the quadrotor
in the body-fixed frame B, respectively. The elements in θ

separately denote the roll angle, pitch angle and yaw angle
along the axises obxb, obyb and obzb. Then, the kinematic
model of the quadrotor is:

ṗ = v,

θ̇ = ω. (1)

Following the instruction of Newton-Eular equations, the
dynamic model of the quadrotor can be formulated as [30]:

v̇ =


cosφ sin θ cosψ + sinφ sinψ)F/m,
cosφ sin θ sinψ − sinφ cosψ)F/m,
(cosφ cos θ )F/m− g,

ω̇ =


θ̇ ψ̇(

Iy − Iz
Ix

) −
Jr
Ix
θ̇�+

1
Ix
τx ,

φ̇ψ̇(
Iz − Ix
Iy

) +
Jr
Iy
φ̇�+

1
Iy
τy,

θ̇ φ̇(
Ix − Iy
Iz

) +
1
Iz
τz,

(2)

where Ix , Iy and Iz are the components of the body inertial in
the directions of the axis obxb, obyb and obzb, respectively; Jr
indicates the rotor inertial; g is the gravitational acceleration;
F and τ = [τx , τy, τz]T represent the lift force and the torque
applied on the quadrotor, respectively. Let �i, i = 1, 2, 3, 4
denote the rotor’s angular velocity, we have

� = �2 +�4 −�1 −�3 (3)

and

F = b(�2
1 +�2

2 +�2
3 +�2

4),

τx = lb(�2
4 −�2

2),

τy = lb(�2
3 −�2

1),

τz = d(�2
2 +�2

4 −�2
1 −�2

3), (4)

respectively. Here, l is the distance between the rotor’s center
and the geometric center of the quadrotor; b, d denote the
thrust and drag factors.

In [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], and [22], the variables F , τx , τy and τz

are taken as the four separate control inputs. However,
it should be noticed that there is coupling among the input
variables because of the term � in (3). To resolve this
problem, we directly select the leader’s control input ul =

[�1, �2, �3, �4]T in this paper. System dynamics of the
leader can be derived by substituting the equations in (3) and
(4) into (2), improving control accuracy.

B. FOLLOWER UAV MODEL
Due to the limitation of the hardware configuration, we fur-
ther divide system dynamics into the translation motion and
the rotation motion for the followers to reduce the complexity
of the model.

For the translation motion, define the control input utr =

[upx , upy , upz ]
T , where

upx = (cosφ sin θ cosψ + sinφ sinψ)F/m,

upy = (cosφ sin θ sinψ − sinφ cosψ)F/m,

upz = (cosφ cos θ )F/m− g. (5)

The system model in the upper level can be formulated by the
following linear system:

ẋtr =

[
03 I3
03 03

]
xtr +

[
03
I3

]
utr , (6)

where xtr = [pT , vT ]T .
For the rotation motion, LPV method in [31] is adopted to

decrease the modelling error. The detailed formulation of the
attitude system is

ẋro =

[
03 I3
03 A22

]
xro +

[
03
B21

]
uro (7)

with

xro = [θT ,ωT ]T ,

uro = [F, τx , τy, τz, �]T ,

A22 =


0 Iy−Iz

2Ix
ψ̇

Iy−Iz
2Ix

θ̇
Iz−Ix
2Iy

ψ̇ 0 Iz−Ix
2Iy

φ̇
Ix−Iy
2Iz

θ̇
Ix−Iy
2Iz

φ̇ 0

 ,

B21 =

0 1
Ix

0 0 −
Jr
Ix
θ̇

0 0 1
Iy

0 Jr
Iy
φ̇

0 0 0 1
Iz

0

 . (8)

Remark 1: Note that A22 and B21 are time-varying param-
eters. By linearizing the system at the operation points with
a small time interval, (7) can well approximate the original
nonlinear systems.

C. CONTROL OBJECT
For a sophisticated leader modelled by (1)-(4) and N low
cost followers described by (6) and (7), we firstly aim at
designing an optimal trajectory tracking controller for the
leader that generates a feasible tracking trajectory while
satisfying the control input constraints. Then, a two layer
distributed leader-follower formation controller is designed to
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realize that (i) the overall system forms a prescribed spatial
configuration with optimized performance; (ii) only limited
information of the neighbors’ states is transmitted through the
communication networks.

III. MODEL PREDICTIVE CONTROLLER DESIGN
In order to realize the control object while avoiding unnec-
essary resource consumption, MPC based optimal trajectory
tracking controller for the leader is designed in Section III-A,
and the distributedMPC formation controller for the follower
is studied in Section III-B.

A. TRAJECTORY TRACKING
For the ease of computer processing, the discrete-time version
of the nonlinear leader’s model is firstly required. Then,
in standard MPC, an constrained optimal control problem
(OCP) minimizing the a cost function over a prediction
horizon is recursively solved at each sampling instant.

Considering a sampling interval T , the discrete-time
system state xl(k) and control input of the leader at time step
k are given by

xl(k) =


x1l (k)
x2l (k)
...

x12l (k)

 =


pl(kT )
θ l(kT )
vl(kT )
ωl(kT )

 ,

ul(k) =


u1l (k)
u2l (k)
u3l (k)
u4l (k)

 =


�1(kT )
�2(kT )
�3(kT )
�4(kT )

 .
Using Eular explicit method, we have

xl(k + 1) = f (xl(k),ul(k))

yl(k) = C lxl(k) =

[
I3 03 03 03
03 I3 03 03

]
xl(k), (9)

where

f (xl(k),ul(k)) =

x1l (k) + Tx l7(k)
x2l (k) + Tx8l (k)
x3l (k) + Tx9l (k)
x4l (k) + Tx10l (k)
x5l (k) + Tx11l (k)
x6l (k) + Tx12l (k)

x7l (k) + T [cos(x4l (k)) sin(x
5
l (k)) cos(x

6
l (k))

+ sin(x4l (k)) sin(x
6
l (k))]F(k)/m

x8l (k) + T [cos(x4l (k)) sin(x
5
l (k)) sin(x

6
l (k))

− sin(x4l (k)) cos(x
6
l (k))]F(k)/m

x9l (k + T [(cos(x4l (k)) cos(x
5
l (k)))F(k)/m− g)]

x10l (k) + T [x11l (k)x12l (k)( Iy−IzIx
) −

Jr
Ix
x11l (k)�(k) +

τx (k)
Ix

]

x11l (k) + T [x10l (k)x12l (k)( Iz−IxIy
) +

Jr
Iy
x10l (k)�(k) +

τy(k)
Iy

]

x12l (k) + T [x10l (k)x11l (k)( Ix−IyIz
) +

1
Iz
τz(k)]


(10)

yl(k) is the output of the leader at time step k , and
F(k) = b(u1l

2
(k) + u2l

2
(k) + u3l

2
(k) + u4l

2
(k)),

τx(k) = lb(u4l
2
(k) − u2l

2
(k)),

τy(k) = lb(u3l
2
(k) − u1l

2
(k)),

τz(k) = d(u2l
2
(k) + u4l

2
(k) − u1l

2
(k) − u3l

2
(k)).

(11)

With the time-varying reference trajectory yr (k) =

[pr (k), θ r (k)]
T and the prediction model in (9), the cost

function measuring the tracking cost and control energy is
designed as follows:

J (ul(·; k); xl(k), yr (k))

≜
N−1∑
i=0

[
∥∥yl(k + i; k) − yr (k + i)

∥∥2
Ql

+ ∥ul(k + i; k) − ue∥2Rl ]

+
∥∥yl(k + N ; k) − yr (k + N )

∥∥2
Pl
, (12)

where ul(k + i; k), i = 0, · · · ,N − 1 is the feasible
control input at time step k + i predicted at k , and yl(k +

i; k), i = 0, · · · ,N denotes the corresponding predicted
output starting from the initial value yl(k) = C lxl(k); ue is
the control input when the leader stays at a static hovering
state, which guarantees that the leader will adjust its state near
the equilibrium. N is the prediction horizon. The weighting
matrices Ql , Rl and Pl are all positive definite.

Using (12), the OCP is given by
Problem P1:

U∗
l (k) = arg min

ul (·;k)
J (ul(·; k); xl(k), yr (k))

s.t. xl(k + i+ 1; k) = f (xl(k + i; k),ul(k + i; k))

xl(k; k) = xl(k)

yl(k + i; k) = C lxl(k + i; k)

xl(k + i; k) ∈ Xl
ul(k + i; k) ∈ Ul .

Here, U∗
l (k) = [u∗

l (k; k),u
∗
l (k + 1; k), · · · ,u∗

l (k + N −

1; k)]T is the optimal control input sequence predicted at time
step k; ul(k+ i; k) ∈ Xl and Ul denote the state constraint set
and the input constraint set, respectively.
After solving Problem P1, the current control input of the

leader is determined by the first element of U∗
l (k), that is

u∗
l (k) = u∗

l (k; k) (13)

The block diagram of the model predictive trajectory
tracking controller for the leader is detailed in Fig. 2.
Remark 2: Since the discretization of the nonlinear sys-

tem dynamics will lead to the model inaccuracy, adopting
such a model may cause system instability especially when
the sampling interval T is large. One way to avoid this
issue is to adopt the high order accuracy difference schemes
such as the Runge-Kutta method to reduce the error of
discretization. A different approach would be to incorporate
an event triggered mechanism as in [32], where the control
law is updated once the discrepancy between the actual and
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FIGURE 2. The block diagram of the model predictive trajectory tracking
controller.

FIGURE 3. Two-layer formation control structure.

desired system performance reaches a threshold. The state
estimator designed in [33] also provides a inspiring solution
to suppress the influence of model inaccuracy.
Remark 3: Note that in comparison with conventional

methods, the advantage ofMPC strategy lies two points. First,
it can do online optimization and achieve optimal control
performance. Second, it can add the system constraints
directly into the optimization problemwhich can easily fulfill
system constraints. The disadvantage is that MPC requires
more computational resources.

B. FORMATION CONTROL
In this subsection, two-layer distributed MPC formation
controller for the low-cost follower with limited neighbor
information is designed.We first show the two-layer structure
of the proposed control strategy, then present the distributed
MPC strategy for the position formation in the upper level and
design the decentralizedMPC attitude stabilizationmethod in
the low level.

(Two-layer control structure) For the ease of presentation,
our two-layer control structure is shown in Fig. 4, where the
multi-quadrotors including one leader and two followers. The
cooperative behaviors are enforced for the translation system
of the followers. In the upper level, only the leader’s position
and linear velocity are required. A reference generating
operator then transforms the obtained control input into
the reference attitude. Finally, using a decentralized MPC
strategy, the rotation system in the lower level will track the
reference command.

(Upper level controller design) In the upper level, the
discrete-time system dynamics of the translation motion is
first established for the follower i.
Similar to the method in Section III-A, the discrete-time

system state and the control input are given by

xitr (k) =

x
1i
tr (k)
...

x6itr (k)

 =

[
pi(kT )
vi(kT )

]
,

uitr (k) =

u1itr (k)u2itr (k)
u3itr (k)

 =

uipx (kT )uipy (kT )
uipz (kT )

 .
Using the Eular explicit method with the sampling internal

T , we have

xitr (k + 1) = g(xitr (k),u
i
tr (k))

=

[
I3 T I3
03 I3

]
xitr (k) +

[
03
T I3

]
uitr (k),

yitr (k) = C trxitr (k) =
[
I3 03

]
xitr (k), (14)

where yitr (k) is the output of the follower in the upper level at
time step k . Then, the following cost function is defined.

J (uitr (·; k); x
i
tr (k), y

j
tr (·; k))

≜
∑
j∈Ni

∥∥∥yitr (k + N ; k) − yjtr (k + N ; k) + dij
∥∥∥2
Pijtr

+

N−1∑
h=0

[
∑
j∈Ni

∥∥∥yitr (k + h; k) − yjtr (k + h; k) + dij
∥∥∥2
Qijtr

+

∥∥∥uitr (k + h; k)
∥∥∥2
Ritr

], (15)

where uitr (k + h; k), h = 0, · · · ,N − 1 is the feasible
control input at time step k + h predicted at k for the
follower i, and yitr (k + h; k), h = 0, · · · ,N denotes the
corresponding predicted output starting from the initial value
yitr (k) = C trxitr (k); Ni is the neighbor set of the follower
i. yjtr (·; k) is the output sequence of neighbor j predicted at
current time step k . However, the fact that each agent solves
the optimization problem synchronously prevents agent i
from accessing the neighbor information. Therefore, with the
received information of neighbor j at the most recent time
step through the communication network, i.e., xjtr (k − 1)
and U j∗

tr (k − 1), the following assumed output sequence of
neighbor j is used as the substitutions:

ŷjtr (k + h; k) = C tr x̂
j
tr (k + h; k), (16)

where the assume state sequence x̂jtr (k + h; k) evolves
according to the initial state x̂jtr (k; k) = g(xjtr (k − 1),ui∗tr (k −

1; k − 1)) and the assumed predictive control input of j as
follows.

ûjtr (k + h; k) ={
uj∗tr (k + h; k − 1) h = 1, · · · ,N − 2

uj∗tr (k + N − 2; k − 1) h = N − 1.
(17)
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With the assumed output sequence of neighbor j in (16),
an OCP is formulated for the follower agent i:
Problem P2:

U i∗
tr (k) = arg min

uitr (·;k)
J (uitr (·; k); x

i
tr (k), ŷ

j
tr (·; k))

s.t. xitr (k + h+ 1; k) = g(xitr (k + h; k),uitr (k + h; k))

xitr (k; k) = xitr (k)

yitr (k + h; k) = C trxitr (k + h; k)

xitr (k + h; k) ∈ Xtr
uitr (k + h; k) ∈ Utr (18)

where U i∗
tr (k) = [u∗

tr (k; k),u
∗
tr (k + 1; k), · · · ,u∗

tr (k +

N − 1; k)]T is the obtained optimal control input sequence.
By solving ProblemP2, the first element ofU i∗

tr (k) is applied
to the agent i:

ui∗tr (k) = u∗
tr (k; k). (19)

It should be noted that transmitting neighbors’ information
xjtr (k − 1) and U j∗

tr (k − 1) puts a high requirement on
the bandwidth of the communication network. To reduce
the communication load, we design a new OCP, where the
assumed output sequence of neighbor j is constructed under
limited neighbors’ information, that is, only the elements
xjtr (k − 1) and uj∗tr (k − 1; k − 1) are required.

Problem P3:

U i∗
tr (k) = arg min

uitr (·;k)
J (uitr (·; k); x

i
tr (k), ŷ

j
tr (·; k))

s.t. xitr (k + h+ 1; k) = g(xitr (k + h; k),uitr (k + h; k))

xitr (k; k) = xitr (k)

yitr (k + h; k) = C trxitr (k + h; k)

xitr (k + h; k) ∈ Xtr
uitr (k + h; k) ∈ Utr
ŷjtr (k + h; k) = C tr x̂

j
tr (k + h; k)

x̂jtr (k; k) = g(xjtr (k − 1),uj∗tr (k − 1; k − 1))

x̂jtr (k + h+ 1; k) = g(x̂jtr (k + h; k),03) (20)

Here, we approximate ŷjtr (k+h; k) by assuming that the state
of neighbor agent j evolves in a constant control input.
(Lower level controller design) According to the definition

of utr in (5), with the help of the counter transformation
method, the optimal control input ui∗tr obtained in the upper
level can be transferred into the lift force and the attitude
values as follows.

F ir (k) = m
√
u1i∗tr

2
(k) + u2i∗tr

2
(k) + (u3i∗tr (k) + g)2

φir (k) = arcsin(
m

F r (k)
(u1i∗tr (k) sinψr (k)

−u2i∗tr (k) cosψr (k)))

θ ir (k) = arctan(
1

u3i∗tr (k) + g
(u1i∗tr (k) cosψr (k)

+u2i∗tr (k) sinψr (k))).

(21)

where ψr is a predetermined yaw angle. Then, we take
the vector θ ir (k) = [φir (k), θ

i
r (k), ψr (k)]

T as the reference
attitude, which will be tracked by the rotation system in the
lower level.

Different from the sampling interval T in the upper level,
here, we further divide T intoNinner subintervals with the new
sampling interval T̄ =

T
Ninner

. Then, the discrete-time state
xiro(k̄) and the control input are

xiro(k̄) =

x
1i
ro(k̄)
...

x6iro(k̄)

 =

[
θ i(k̄ T̄ )
ωi(k̄ T̄ )

]
,

uiro(k̄) =


u1iro(k̄)
u2iro(k̄)
u3iro(k̄)
u4iro(k̄)

 =


τ ix(k̄ T̄ )
τ iy(k̄ T̄ )
τ iz(k̄ T̄ )
�i(k̄ T̄ )

 .
By applying Eular explicit method with the sampling internal
T̄ to the continuous-time system dynamics in (7), the
discrete-time system dynamics are given by

xiro(k̄ + 1) = h(xiro(k̄),u
i
ro(k̄))

=

[
I3 T̄ I3
03 Ā22

]
xiro(k̄) +

[
03
T̄ B21

]
uiro(k̄)

yiro(k̄) = Croxiro(k̄) =
[
I3 03

]
xiro(k̄), (22)

with

Ā22 =


1 Iy−Iz2Ix

T̄ x6iro(k̄)
Iy−Iz
2Ix

T̄ x5iro(k̄)
Iz−Ix
2Iy

T̄ x6iro(k̄) 1 Iz−Ix
2Iy

T̄ x4iro(k̄)
Ix−Iy
2Iz

T̄ x5iro(k̄)
Ix−Iy
2Iz

T̄ x4iro(k̄) 1

 , (23)

where yiro(k̄) is the output of the follower in the lower lever at
time step k̄ .
For the system dynamics in (22), define a cost function as

J (uiro(·; k̄); x
i
ro(k̄), θ

i
r (k)) ≜

∥∥∥yiro(k̄ + N̄ ; k̄) − θ ir (k)
∥∥∥2
Pro

+

N̄−1∑
h=0

∥∥∥yiro(k̄ + h; k̄) − θ ir (k)
∥∥∥2
Qro

+

∥∥∥uiro(k̄ + h; k̄) − uir
∥∥∥2
Rro
,

(24)

where uiro(k̄ + h; k̄), h = 0, · · · , N̄ − 1 is the future feasible
control input predicted at time step k̄ for the follower i, uir =

[F ir , 0, 0, 0, 0]
T , yiro(k̄ + h; k̄), h = 0, · · · , N̄ denotes the

corresponding future output starting from the initial output
yiro(k̄) = Croxiro(k̄).
Next, the OCP for the lower level is presented as follows:
Problem P4:

U i∗
ro(k̄) = arg min

uiro(·;k̄)
J (uiro(·; k̄); x

i
ro(k̄), θ

i
r (k))

s.t. xiro(k̄ + h+ 1; k̄) = h(xiro(k̄ + h; k̄),uiro(k̄ + h; k̄))

xiro(k̄; k̄) = xiro(k̄)

yiro(k̄ + h; k̄) = Croxiro(k̄ + h; k̄)

uiro(k̄ + h; k̄) ∈ Uro,
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FIGURE 4. The flow chart of the two-layer distributed MPC formation
algorithm.

where U i∗
ro(k̄) = [ui∗ro(k̄; k̄),u

i∗
ro(k̄ + 1; k̄), · · · ,ui∗ro(k̄ + N̄ −

1; k̄)]T is the optimal control input sequence. Then, the
control input at time step k̄ is determined by the first element
of U i∗

ro(k̄):

ui∗ro(k̄) = ui∗ro(k̄; k̄). (25)

Note that there do not exist any information of the neighbor
agents. Therefore, the controller in the lower level works in a
decentralized manner.

For the ease of practical implementation, the designed
two-layer distributed MPC formation algorithm is detailed
in Fig. 4, where Mmax represents the maximum iteration
numbers.
Remark 4: In comparison with one-layer method, the

two-layer distributed MPC formation control methods have
two advantages. Firstly, it can greatly reduce the com-
putational burden due to separating a large optimization
problem into small optimization problems. Secondly, it is
more flexible to design, test and error diagnosis.

IV. SIMULATION
In this section, simulation examples are provided to show
the effectiveness of the designed controller. Here, the
multi-quadrotors system consists of one leader and two

FIGURE 5. Communication network among the agents.

TABLE 1. Basic parameters for the quadrotor.

followers. The communication network among the agents is
shown in Fig. 5, whereN1 = {2, 3},N2 = {1} and N3 = {1}.
Here, we assume that the three quadrotors share the same
system parameters listed in Table 1. Each rotor’s angular
velocity subject to the following constraints

0 ⩽ �i(k) ⩽ 600, i = 1, 2, 3, 4. (26)

A. EXAMPLE ONE
We consider the formation control for the multi-quadrotors
with the leader tracking a line formulated by

xr (t) = 0.2t,

yr (t) = 0.2t,

zr (t) = 0.2t,

φr (t) = 0, θr (t) = 0, ψr (t) = 0. (27)

For the leader, the initial system state xl(0) =

[2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T and the sampling period T =

0.3s. ue is calculated to be [557.142, 557.142, 557.142,
557.142]T . The desired distances d21 = [2, 0, 2]T and
d31 = [−2, 0, 2]T . The prediction horizon N in the controller
is set as 10. It should be noted that in MPC, a longer
prediction horizon improves control performance by bringing
more information to the optimization problem. A longer
prediction horizon, on the other hand, increases the number
of optimization variables, imposing even more stringent
constraints on hardware setup. Additionally, the weighting
matrices also influence the control performance. There is a
trade-off between the output weighting matrices Ql,Pl and
the input weighting matrix Rl . Specifically, larger Ql and Pl
will make the system reach the reference trajectory faster,
at the cost of consuming more control cost. Here, Ql,Pl and
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FIGURE 6. Trajectory of the three quadrotors under limited information
(line).

FIGURE 7. Trajectory tracking error of the leader with nonlinear model
(line).

FIGURE 8. The control input of the leader with nonlinear model (line).

Rl are I6, I6 and 10−5I6, respectively; The system state is
constrained by Xl = {xl |[0, 0, 1] · pl ⩾ 0}. For the followers,
in the upper level, the initial states of the translation system
are x2tr (0) = [1, 0, 0, 0, 0, 0]T and x3tr (0) = [3, 0, 0, 0, 0, 0]T .
The sampling period T = 0.3s; The weighting matrices in the
cost function are set to be Q21

tr = Q31
tr = I3, P21tr = P31tr =

I3 and R2tr = R3tr = 10−1I3; The system state is constrained
by X i

tr = {xitr |[0, 0, 1] · pi ⩾ 0}, i = 1.2. In the lower level,
the initial states of the rotation systems are x2ro(0) = I5 and
x3ro(0) = [0, 0, 0, 0, 0, 0]T . The sampling period T̄ = 0.1s,
and the iteration numbers Ninner = 3. The prediction horizon
N̄ is given by 3. For the weighting matrices,Q2

ro = Q3
ro = I3,

P2ro = P3ro = I3 and R2ro = R3ro = I5.
We operate the simulation by MATLAB and solve OCP

by fmincon function. In section III-B, two sets of OCPs have
been developed, driving the agents to form the desired spatial
configuration. The main difference lies in that Problem
P3 requires less information than Problem P2, consuming
less communication resource. Figs. 6-13 are the simulation
results by using Problem P3. Fig. 6 shows the actual
trajectory of the three quadrotors. it can be seen that the
three agents track the straight line while maintaining the

FIGURE 9. Relative distance between the follower 1 (two-layer model)
and the leader (nonlinear model) under limited information (line).

FIGURE 10. Relative distance between the follower 2 (two-layer model)
and the leader (nonlinear model) under limited information (line).

FIGURE 11. The control input of the follower 1 with two-layer model
(line).

formation. Fig. 7 indicates that the leader is able to track
the reference trajectory. Fig. 8 shows that the control input
constraints of the leader are not violated. Figs. 9-10 are the
relative distance among the followers and leader, implying
that the desired spatial configuration is formed. For ease
of checking the satisfaction of constraints, the control input
signal is transferred into the rotor’s angular velocity with
(4). Figs. 11-12 show the detailed angular velocity values
applied on the followers, which satisfy the constraint in (26).
We use the calculation time interval of OCP to denote the
computation cost. Fig.13 shows that computation burdens
of the followers have been greatly decreased. Figs. 14-16
are the simulation results by using Problem P2. We can see
from Fig. 14 that the trajectories of the follower agents are
smoother than Fig. 6. In Figs. 15-16, the predefined formation
is reached in 2.5s, which is shorter than the one in Figs. 9-
10. This is reasonable because that the MPC controller in
the latter uses more information, which helps to improve the
accuracy of the control scheme.

B. EXAMPLE TWO
In this example, we consider the formation control for the
multi-quadrotors, where the reference trajectory for the leader
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FIGURE 12. The control input of the follower 2 with two-layer model
(line).

FIGURE 13. Calculation time of the three quadrotors.

FIGURE 14. Trajectory of the three quadroters under sufficient
information (line).

is a spiral ascending curve formulated by

xr (t) = 10 cos(t/16),

yr (t) = 10 sin(t/16),

zr (t) = 0.1t,

φr (t) = 0, θr (t) = 0, ψr (t) = π/2 + 0.001t. (28)

The initial system state xl(0) for the leader is
[4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T . For the two followers, the
initial system states in the upper level are set to be
x1tr (0) = [3, 0, 0, 0, 0, 0]T and x2tr (0) = [4.5, 0, 0, 0, 0, 0]T ,
respectively. x1ro(0) = [0, 0, 0, 0, 0, 0]T and x2ro(0) =

[0, 0, 0, 0, 0, 0]T are the initial system state in the lower level.
The other parameters relating to the cost functions are the
same as the values in example one.

Fig. 17 shows the 3D trajectories of the three quadrotors.
Figs. 18-20 give the tracking results of the leader. We can
see from Figs. 18-19 that the leader asymptotically converge
to the reference spiral ascending curve while following the
target attitude. Fig. 20 shows the satisfactory of the leader’s
input constraints. Controlled by the designed two-layer
distributed MPC formation algorithm, Figs. 21-23 and

FIGURE 15. Relative distance between the follower 1 (two-layer model)
and the leader (nonlinear model) under sufficient information (line).

FIGURE 16. Relative distance between the follower 2 (two-layer model)
and the leader (nonlinear model) under sufficient information (line).

FIGURE 17. Trajectory of the three quadrotors under limited information
(curve).

FIGURE 18. Position tracking error of the leader with nonlinear model
(curve).

FIGURE 19. Attitude tracking error of the leader with nonlinear model
(curve).

Figs. 24-26 are the simulation results of the followers 1 and 2,
respectively. Figs. 21-22 and Figs. 24-25 indicate that the
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FIGURE 20. The control input of the leader with nonlinear model (curve).

FIGURE 21. Relative distance between the follower 1 (two-layer model)
and the leader (nonlinear model) under limited information (curve).

FIGURE 22. Relative attitude between the follower 1 (two-layer model)
and the leader (nonlinear model) under limited information (curve).

FIGURE 23. The control input of the follower 1 with two-layer model
(curve).

FIGURE 24. Relative distance between the follower 2 (two-layer model)
and the leader (nonlinear model) under limited information (curve).

desired distance and attitude error among the agents are
reached in 8s, validating the effectiveness of the formation
control algorithm. Fig. 23 and Fig. 26 show the rotor’s angular

FIGURE 25. Relative attitude between the follower 2 (two-layer model)
and the leader (nonlinear model) under limited information (curve).

FIGURE 26. The control input of the follower 2 with two-layer model
(curve).

velocity of the two followers, which meet the requirements of
the angular velocity constraints in (26). Since we solve OCP
using limited information of the neighbors, their exist small
variation of the system state. However, as stated in III-B,
translating more information will put high requirements on
the hardware configuration of the agent. Hence, there is a
tradeoff between the cost the control performance of the
agent.

V. CONCLUSION
In this paper, we have developed an MPC based control
strategy to solve the trajectory tracking and formation control
problems of the multi-UAVs. For the leader, a new MPC
trajectory tracking controller has been designed, which
provides a feasible trajectory for the followers. Then, a two-
layer distributed MPC formation controller with limited
neighbor information has also been developed. Finally, the
simulation examples have verified the effectiveness of the
proposed algorithms.

The controller in this study is designed using the nominal
model. However, due of the following two facts, this model
cannot effectively reflect the state evolution process of the
actual system: (i)The deviation of the center of gravity
from the actual center of mass do exists, resulting in the
modeling inaccuracy. (ii) The external disturbances caused
by actuator faults, sensor faults and climatic circumstances
are not considered. The disadvantages listed above motivate
us to investigate robust MPC algorithms in our future work.
Possible scheme by incorporating the neural network learning
system used in [34], [35], and [36] into MPC will be
investigated to mitigate for the model uncertainties.
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