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ABSTRACT Multi-bit error and downtime due to uncorrectable error (UE) in a dual in line memory
module (DIMM) have received great attention in data centers for its high repair or replacement cost. These
problems can be alleviated by utilizing ECC (Error Correction Code) technology, which enables prompt
error correction during initial occurrences and prediction of future UEs based on recurring error patterns.
The technologies for addressing errors can be categorized into reliability, availability, and serviceability
(RAS), and need to be optimized using various parameters such as accuracy, recall, F-measures, and cost
reduction. This paper describes an overview of the current RAS technologies and trends in memory for data
centers, which includes an analysis of conventional ECC technologies and their recent developments. Once
UEs cannot be completely eliminated with ECCs, page offline methods based on analysis on error patterns
and characterization of UE can be performed. Recent research trends for reducing memory capacity wasted
by UE and page offline have been towards on-die ECC in high bandwidth memory architecture.

INDEX TERMS Correctable error (CE), error correction code (ECC), memory reliability, availability,
serviceability (RAS), uncorrectable error (UE).

I. INTRODUCTION
The scale of data centers has exponentially increased with
the increase in workload, hardware density, and high-
performance requirements. As a result, downtime due to
device failure has become one of the most serious problems
in maintaining stable operation. Industry and academia have
developed various solutions for downtime-related problems
in terms of reliability, availability, and serviceability (RAS)
[1], [2].

Reliability represents the ability of equipment to prevent
or correct errors and can be quantified by averaging the time
interval between failures, defined as the mean time between
failures (MTBFs). For example, reliability features attempt
to correct or isolate errors while stopping a related program
or the entire system. Thus, reliability depends exponentially
on the minus of recovery time and inversely on the MTBF
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[3]. Availability is a probability of a system operating nor-
mally and indicates whether users can continue to use the
service. It is quantified as the duration of the downtime for
a certain period, according to the number of 9 s [4], [5].
For example, 99.9% and 99.99% probability of availability
indicates unavailability of a system for 526 and 53 min per
year, respectively. Serviceability is the ability of a system
to maintain operation without failure and repair itself with-
out intervention. Therefore, early detection and response to
potential problems can be significant for serviceability [6].

Since the early 2000s, RAS techniques have been devel-
oped for reducing the server downtime caused by system
failure or data loss [7]. The downtime cost per data center
has steadily increased, reaching 740,000 USD per data center
based on the availability of 99.9% in 2016 [8]. If multiple
datacenters are allocated to a major industry company, the
downtime cost can be substantial. Once availability increases
to 99.99%, the cost can be reduced to one-tenth or less.
Therefore, RAS features are essential to the data center.
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FIGURE 1. Basic memory structure (a) in a node and (b) in a DIMM.

RAS features are widely applied to most hardware in data
centers. The rate of hardware failure depends on the type of
data center workload. In particular, for a database and mem-
cache, the failure rate of memories can be higher owing to
the frequent access of storage devices [9]. Moreover, in the
case of Web, Hadoop, and Ingest, the CPU performs massive
calculation and requires frequent memory access. Therefore,
the RAS inmemory has played an increasingly important role
for increase in capacity required by most workloads [10].
Errors in memory are divided into correctable errors (CEs),

which can be corrected using an error correction code (ECC),
and uncorrectable errors (UEs) [6]. Because of the signif-
icantly greater influence of UE on downtime than that of
CE, various studies have been conducted for modifying or
predicting UE [5], [7], [8]. Conventional methods determine
UE if the CE in a single cell repeats at a certain rate or
higher [10]. To achieve a higher detection rate of UE, certain
patterns of CE have been utilized in several RAS techniques
[11]. Because a large portion of UE in these methods is not a
real UE, conventional RAS techniques cannot avoid memory
loss due to the removal of memory access at the location of
UE. Recently, to reduce unwanted memory loss, RAS tech-
niques have adopted artificial intelligence in UE prediction
at the expense of computational overhead [11]. To overcome
this problem, on die ECC (OD-ECC) in conjunction with
system ECC can be adopted for newly developed memories
[12], [13], [14], [15]. ECC technology increases reliability by
adding extra memory bits for error correction at the expense
of overhead, which ensures data integrity and uptime.

Prior survey/review papers [16], [17], [18] regarding mem-
ories focus on architecture, neural network, and software, but
none of prior works has comprehensively reviewed mem-
ory RAS, error correction techniques, and future challenge.
As the size of data scale in data centers increases, it is
essential to manage memory RAS techniques not only to
reduce the probability to generate errors but also to lower
the downtime cost. Therefore, this paper analyzes the RAS
technologies used in real data centers of various companies
including Intel, IBM, Dell, google, and so on and aims to pro-
vide guidance for future memory research directions based

FIGURE 2. Error handling mechanism for server of a data center.

on existing studies. The rest of this paper is organized as
follows: Section II provides a survey of the memories for
datacenters as backgrounds. In Section III, we discuss about
several error correction techniques. Section IV presents error
prediction based on page offline. Section V discusses future
work. Finally, Section VI concludes the study.

II. BACKGOURND
A. MEMORY STRUCTURE
Fig. 1(a) shows the basic memory structure in a node. A data
center is composed of large number of nodes, where each
node consists of two sockets for the two CPUs. Each CPU has
two integrated memory controllers (IMCs) that manage data
in and out of memory within multiple channels [19]. An IMC
is also called a memory chip controller (MCC) or memory
controller unit (MCU). A channel typically comprises up to
two dual in line memory modules (DIMMs) and its advan-
tages and disadvantages differ depending on the types of
DIMM. DIMMs in laptops and PCs are unbuffered DIMMs
(UDIMMs) [20] and can be expanded up to two ranks, where
buffers and registers are excluded for fast response. Regis-
tered DIMMs (RDIMMs) are used in relatively small-scale
servers [21]. By adding a buffer to memory, the address and
command signals of the DIMM can be expanded to four
ranks per DIMM. An ECC is embedded in the RDIMM. For
relatively large-scale servers, an ECC can be embedded in a
load-reduced DIMM (LRDIMM) with an isolated memory
buffer to RDIMM [22]. Data are sequentially transferred
through buffers without relying on rank. LRDIMM supports
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FIGURE 3. RAS feature time line from 1940 to 2020.

high-capacity memories that provide a fast response rate at
the expense of a significant increase in cost.

The structure of a DIMM can be seen as the physical or the
data-bus perspective view as depicted in Fig. 1(b). From the
physical perspective view, a DIMM consists of eight DRAM
chips and additional one for parity [23]. Each chip outputs
8-bit data, which makes total 72-bit data be one rank. Four
banks compose one bank group for data-bus perspective, and
four bank groups make one rank. The bank consists of cell
arrays, row and column decoders, and sense amplifiers. The
number of bits controlling the row or column address depends
on each manufacturer [25].
Errors are classified as soft and hard [26]. Soft errors are

caused by the collision of high-energy particles with the cos-
mic radiation, which leads to CEs at higher rate. Conversely,
hard errors are UEs that keeps their values either ‘0’ or ‘1’
permanently. Errors are marked as ‘×’ in the bank. If soft
errors repeat frequently in a cell, they can be treated as a hard
error. Faults represent a pattern on errors among cells and can
be classified into row, column, bank, and stuck at the bit.

B. DATA CENTER ERROR HANDLING MEACHANISM
Fig. 2 shows the error-handling mechanism of a server in
a data center [27]. When memory starts read, an error is
checked. If an error exists, the same data is read again.
If the re-checked data has an error, data without an error are
obtained from the mirrored area. Otherwise, get data for the
cell is processed. Once the mirrored data exhibits an error,
a UE is reported without getting data. If no error is presented,
a CE is reported while getting data. A conventional solution
for UEs is sparing and migration at the page level or higher
from mirrored area. Mirroring skill can improve a system
fault tolerance and error correction capabilities.

When an error occurs, an embedded code is deployed to
perform real-time initial correction. Once the correction is
completed, the error is considered as a CE. When the same
error repeats or leads to multi-bit errors, ECC generates logs
for errors and patterns over time to predict future UE and
addresses potential issues. This sequential approach is crucial
for maintaining system stability and minimizing unexpected
failures. The commonly used RAS technologies [29] address
memory errors in the following methods:

• ECC detects and corrects errors in real-time.
• Predictive failure analysis monitors the health in mem-

ory modules, predicts potential failures, and enables
proactive maintenance.

• Hot swapping and redundancy allow for the replace-
ment of faulty memory modules while the system is
running and maintains availability by automatically
replacing failed modules.

• Memory mirroring and RAID provides fault tolerance
by duplicating data across multiple memory modules
and retrieving correct data if errors occur.

• Error logging and reporting record errors.

C. DEVELOPMENTS OF RAS
Fig. 3 shows development of RAS features from 1940 to 2020
[14], [28], [29]. Each solid line represents the year in
which the technology was first released or documented in a
paper, patent, white paper, manual, or other similar form of
documentation.
In the 1940s, erroneous data caused by computers was

studied at Bell Labs. Before an error occurs, three identical
sets of data are stored. If an error does occur, two other sets are
used for data recovery, resulting in 66% redundancy. To solve
this problem, the concept of a Hamming code that can verify
hundreds of data with just a few parity bits was introduced
[30]. During this time, magnetic tapes were used to store
parity in 1951 [31]. Since then, various codes have been used
for transmission/reception as well. As an example, Reed-
Solomon (RS) code [32] was used in cyclic redundancy check
(CRC) [33]. When using the magnetic tape, the focus was on
reducing device failure due to errors in memory. After IBM
was granted the first DRAM patent in 1968 [34], techniques
such as downtime and maintenance emerged as a key area
of concern, and the concept of RAS was utilized in the 1970s
[35]. The capacity of DRAM started with 1 Kbit in the 1970s,
increased to megabit and gigabit in 1980s and 2000s, respec-
tively, resulting in significant scale issues and multi-bit errors
between multiple devices. Scalable memory interconnection
(SMI) or scalable coherent interface (SCI) have been released
to correspond to scale issues [36]. To resolve and simulate
the multi-bit error, chipkill [37] and address error injection
that determines faulty cells by injecting a virtual or real error
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have emerged [38], respectively. Multi-bit error significantly
depends on environmental conditions such as space [39],
[40]. Memory scrubbing techniques for detecting multi-bit
or UE in advance were used by scrubbing memory data
[41]. In 1990s, availability and serviceability features attained
more importance than the reliability technology owing to
increase in UE or multi-bit error caused by high capacity of
DIMM and accelerated performance of other devices [40].
Since 2000,most of RAS techniques have focused on avail-

ability. To handle errors at the device level, single device data
correction (SDDC) [42] used by Intel in 2002 can reconstruct
memory contents even if there are many errors throughout
the chip. Double device data correction (DDDC) allows the
memory DRAM device to continue to function in an event of
a hard failure [43]. An improved version of DDDC was used
as DDDC+1, which reduced costs due to UE by improving
uptime [29]. Page offline was developed for UE prediction
and widely adopted to handle the smallest unit of capacity
from 1∼4 KB to be isolated [44]. From SDDC to page
offline, RAS techniques adopt sparing and migration of a
specific address [45]. RAS features in early 2010 included
memory-based error recovery (MBER) [46] and rank sparing
[47]. As data integrity and recovery of lost data have gained
more importance, data recovery techniques similar to MBER
have emerged for reliability. As data centers require higher
memory usage, a tradeoff between memory loss and UE rate
has been strongly related. Rank sparing and adaptive double
DRAM device correction (ADDDC) [8] were developed to
manage larger unit compared to a page. As many techniques
related to availability have been released and used since
2000, the probability of normal operation in memory has
significantly increased [48]. Since 2018, the initial diagnosis
of the fault for reliability has gained importance because one
fault can cause significant number of errors. To reduce the
initial fault, error check and scrubbing (ECS) related tech-
nologies were emerged [49]. As the generation is replaced
from DDR4 to DDR5, early diagnosis methods of faults have
been researched extensively to integrate ECC into memories.

III. ERROR CORRECTION SKILLS
A. BASIC ERROR CORRECTION SKILLS
Error correction skill is used in server computers that deal
with data corruption in all situations from computational
science to financial computing. Several ECC algorithms
exist, such as Hamming, RS [50], and Bose Chadhuri Hoc-
quenghem (BCH) codes. This section describes various ECC
skills based on ECC algorithms.

1) SINGLE ERROR CORRECTION DOUBLE ERROR
DETECTION
The encoding process of single error correction double error
detection (SECDED) is shown in Fig. 4(a) [51], [52]. P, D,
and P′ denote initial parity, data, and parity bit, respectively.
This example is the encoding process of only 16-bit combin-
ing data and 5-bit parity, which equals to (16,11) as a cord
word. Input is random data, and all parity bits, P′

0-P′
4, in the

FIGURE 4. SECDED of (a) encoding and (b) decoding process with third
data error.

encoding process are 0. The encoding result for parity bits
can be derived as follows:

P′

0 = P0⊕D1 ⊕ D2 ⊕ D4 ⊕ D5 ⊕ D7 ⊕ D9 ⊕ D11, (1)

P′
1 = P1 ⊕ D1 ⊕ (D3 ⊕ D4) ⊕ (D6 ⊕ D7) ⊕ (D10 ⊕ D11),

(2)

P′

2 = P2 ⊕ (D2 ⊕ D3 ⊕ D4) ⊕ (D8 ⊕ D9 ⊕ D10 ⊕ D11),
(3)

P′

3 = P3 ⊕ (D5 ⊕ · · · ⊕ D11), (4)

P′

4 = (P0 ⊕ · · · ⊕ P4) ⊕ (D1 ⊕ · · · ⊕ D11), (5)

where P0, P1, P2, P3, and P4 are initially set to 0. If the
sum of each row data bits is even, the dedicated parity bit
becomes 0. If not, the parity bit is set to 1. As a result of
this encoding, P′

4P′
3P′

2P′
1P′

0 is 01100 with the data value
of Fig. 4(a). Fig. 4(b) shows the situation where the third data
bit is corrupted to 1, which makes E1, E2, and E4 to be 1.
SECDED is used with 64-bit data and 8-bit parity, (72, 64),
resulting in 12.5% redundancy in DRAM. The redundancy
can be reduced by increasing parity or data bit.

2) SINGLE SYMBOL CORRECTION DOUBLE SYMBOL
DETECTION
Single symbol correction double symbol detection (SSCDSD)
is a correction method that uses 4–8 bits as a symbol [53].
In most cases, all bits of a symbol can be modified using
SSCDSD. Error correction codes based on the SSCDSD can
provide up to 42 times better error avoidance than SECDED
[54]. Fig. 5(a) shows the implementation of SSCDSD. The
code word with 18 symbols, (144, 128), includes 128-bit
data and 16-bit ECC with 8-bit CRC and 8-bit parity [55],
[56]. Four code words are composed of one cache line.
The SSCDSD can correct multiple bit errors within a single
symbol, regardless of the error pattern within an 8-bit symbol,
as shown in Fig. 5(b). However, if an error occurs across
two symbols, it can be detected as a UE symbol, similar to
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TABLE 1. Type of CDC depending on polynomial.

FIGURE 5. Examples of SSCDSD for (a) symbolic construction, (b) single
symbolic error, and (c) multiple symbolic error [53].

SECDED. SSCDSD can also divide the data and parity by
4-bit symbol units according to the type of DRAM. The ECC
type using this 4-bit symbol unit is called chipkill correction
[57]. The SSCDSD depends on the CPU architecture and
generation, resulting in different error-correction coverage
and memory-configuration requirements to enable advanced
ECC.

3) CYCLIC REDUNDANCY CHECK
CRC detects accidental errors in computer data and is typi-
cally used in digital code transmitters/receivers and storage
devices [55], [56]. Various types of CRC depending on the
divisor or polynomial generator exist. Table 1 shows the type
of CRC depending to the order of polynomial expressed as
CRC-n, where n is the highest power of the polynomial.
A simple and easy way to understand CRC process is shown
in Fig. 6. Fig. 6(a) shows the process of CRC transmitter,
transmission, and receiver [58], [59]. The remainder of the
transmitter is created by dividing the data into polynomial
bits. Subsequently, the bits of the data and remainder are com-
bined and transmitted to the receiver. The result is obtained by
dividing the combined bits into the polynomial bits. No error
is generated if all bits of the result are 0. Figs. 6(b) and 6(c)
show examples of encoding and decoding, respectively. Poly-
nomial p(x) can be expressed as follows:

p (x) = x3 + x + 1 → 1011. (6)

Transmitter and receiver use polynomial bit of 1011 in (6).
As the encoding process, data 1001 are divided into polyno-
mial bits, resulting in the remaining bits 110. The combined
data 1001110 are transmitted to the receiver, and the data are

FIGURE 6. (a) Process in transmitter, transmission, and receiver of CRC
and examples of (b) encoding and (c) decoding [58], [59].

FIGURE 7. Example of chipkill correction method [61].

FIGURE 8. Chipkill mask method of (a) write-shift and (b) read-shift
logics [62].

again divided by 1011. If all bits of the result of the division
are 0, the data are accepted. Hardware implementation can
be configured with shift registers and XOR gates for division
and data shifting [60].

4) CHIPKILL CORRECTION
Because SECDED corrects one-bit error and detects two-bit
error, multiple-bit errors cannot be tolerated. To overcome
this problem, a correction method chipkill can be applied
[61], [62]. Fig. 7 shows four 72-bit ECCwords are distributed
to four DIMMs evenly. Because SECDED codes are deployed
simultaneously for four different words, the maximum four
CEs can be corrected at a time. For the chipkill operation,
the server must be simultaneously able to use four DIMMs,
and the code word (72, 64), resulting in 12.5% redundancy at
least.
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FIGURE 9. Interleaved parities and syndrome generation process
(a) without errors and (b) with errors during write and read.

FIGURE 10. Multi-bit error correction of (a) encoding and (b) decoding
process for byte original word.

FIGURE 11. A method to correct multi-bit errors when row and column
check bits are generated.

Fig. 8 shows a simplified example of using a write-
and read-shift logics to mask a non-operating chip [62].
In Fig. 8(a), N0, N1, N2, and N3 denote the nibbles corre-
sponding to each chip, and C1 and C2 denote the correction
and detection nibbles, respectively. M0–M4 are the mask-
ing bits. If the chip operates normally, all masking bits
are 0; otherwise, one of the register records 1 to alarm a
non-operating chip. Assuming that chip2 is not operating
correctly, M4M3M2M1M0 needs to be 11100 for bypassing
chip2 at the expense of losing the detection nibble C2. Sub-
sequently, in Fig. 8(b), the same masking bits are used as the
read process. In the real application, N0–N31 are the nibble
bits, and C0–C2 are correction bits with C3 a detection nibble.

B. ADVANCED ERROR CORRECTION SKILLS
In order to increase the capacity and the bandwidth of DRAM,
the die-stacked structure is widely used. Furthermore, to min-
imize the impact on latency during error correction, there
is a trend to implement ECC skills within DRAM chip to
address multi-bit errors. However, the implementation of
robust ECC for multi-bit error correction faces significant
challenges due to limited area, latency, and power constraints
in memory. For example, while chipkill is widely used in
server environments to effectively address single or multiple
errors in DRAM, its application in high-capacity memory

architectures is limited due to latency inefficiencies [63].
This section provides detailed explanations of advanced error
correction techniques capable of addressing and detecting
multi-bit errors.

1) MULTI-BIT ERROR CORRECITON AND DETECTION SKILLS
The codes that have been used traditionallyweremainly capa-
ble of correcting single error and, in some cases, detecting
double errors. This is because soft errors typically only affect
a single bit. However, as technology scaled, the probability
of soft errors affecting more than single bit significantly
increased. As a result, single error correction became insuffi-
cient. Generally, multiple errors are located in close proximity
to each other. To address these, there is a method called
SEC-DAEC (Single Error Correction-Double Adjacent Error
Correction) that can correct up to two adjacent errors [64],
[65], [66]. As one of the SEC-DAEC skills, the interleaved-
parity (IP) method can be utilized. Fig. 9(a) shows the process
of generating parities and syndrome during write and read
operations without errors. In SECDED, parities are created
during the write process and the syndrome is used to deter-
mine the presence of errors during the read process. On the
other hand, parities for IP are generated separately during
write and read operations. The generated parities are cal-
culated for XOR to compute the syndrome. For example,
in the case of data D0, D1, and D2 without errors, parity
bits P1, P2, and P3 are generated during write. During read,
additional parity bits P’1, P’2, and P’3 are generated for the
corresponding data. Syndrome is calculated by performing
XOR calculations on the parity bits generated during thewrite
and read processes. The result of obtaining 000 in this case
indicates the absence of errors. If errors exist in D0, D1, and
D2 in Fig. 9(b), P’1, P’2, and P’3 are generated differently
from the write process. By obtaining a result of 111, the
syndrome calculation can be used to identify the position of
the data and perform error correction.
SEC-DAEC is a technique capable of correcting up to

two adjacent errors, whereas Single Error Correction-Double
Error Correction-Triple Adjacent Error Correction (SEC-
DEC-TAEC) enhances this capability by correcting two
errors and also three adjacent errors. In other words,
SEC-DEC-TAEC can handle a greater number of bit errors
and provides more robust error correction functionality. Thus,
SEC-DEC-TAECoffers higher reliability and error correction
capability than SEC-DAEC [67], [68].
Fig. 10 shows the process of generating a specific check

bit for an original word in bytes using SEC-DEC-TAEC.
During the encoding process in Fig. 10(a), original word,
which consists of n bytes, is divided into 2n half-bytes.
For each half-byte, row check bits are generated in the row
direction, and column check bits are generated in the column
direction. During the interleaving process, a dataD and check
bit C are rearranged in a crossover pattern, leading to the
formation of the final codeword. During the decoding pro-
cess, the final codeword generated in the encoding process is
deinterleaved to arrange it into n half bytes and n check bits.

VOLUME 11, 2023 124787



J. Lee et al.: Review of Memory RAS for Data Centers

TABLE 2. Comparison of ECC skills.

FIGURE 12. Symbol and bit arrangement in SPC-RS.

FIGURE 13. Single-error search of CRC where g(x) = x4+x+1 with a
syndrome s(x) = x2+1 [70].

Subsequently, the decoding process is applied for the original
word.

Fig. 11 shows the process of correcting multi-bit errors
using the codeword generated in Fig. 10. D0 to D7 represent
each half byte, and R0 to R3 are the check bits in the first
row, while R4 to R7 are the check bits in the second row
used to detect errors in the generated rows. Similarly, in the
column direction, check bitsC0 toC3 are generated vertically.
By utilizing the generated check bits, the exact positions of
each data can be determined, enabling the correction of errors
up to 2 bits. The correction of 3-bit errors is only performed
if they are adjacent bits. This method generates one check bit
for each half byte, leading to over three times the utilization
of parity bits when compared to SECDED. As a result, SEC-
DEC-TAEC consumes greater power, area, and delay.

2) ADVANCED CRC
Recent researches in CRC have been focusing on trans-
forming specific bits into symbols to enable single symbol

FIGURE 14. DDR5 memory: (a) structure of system ECC and OD-ECC,
(b) UBER comparison when on-die scrubbing is adopted.

correction (SSC) [69]. This method combines the use of
Single Parity Check (SPC) and RS code as SPC-RS code in
Fig. 12. This code consists of n code lengths and k symbols,
with each symbol comprising m data bits. One of these sym-
bols is utilized as a check bit to determine the presence of
errors in each symbol. Another method for error correction
in CRC without the use of Look-up tables exists. Fig. 13
shows the process of single error search using a generator
polynomial g(x)= x4+x+1 when the syndrome s(x)= x2+1
is generated [70]. By performing XOR calculations with the
combined result of m-bit data and s(x) using g(x) from t0 to t5,
the presence of errors is determined by the resulting value of
the summation symbol

∑
representing the sum of all data.

This allows for the detection of single error. For example,
by detecting that the value of

∑
is greater than or equal to 2 in

t0, t1, t2, t4, and t5, but only 1 in t3, it is possible to identify
a single error. Additionally, by expanding the series of g(x),
double error correction can also be achieved. In addition to
this method, there are other approaches such as modifying
the existing forms of g(x) and s(x) to reduce the latency in
the error correction process or attempting to correct errors of
more than 2-bits [71], [72].

3) ON-DIE ECC
Fig. 14(a) shows a multi-bit error for the structure of DDR5
memory having four system ECCs and three OD-ECCs with
a hamming code of (72,64) and (104,96), respectively [73],
[74]. By simultaneously applying the system ECCs and
OD-ECCs, the uncorrectable bit error rate (UBER) can be
decreased to one third. For example, if 3-bit error occurs
in a memory without OD-ECC as depicted in Fig. 14(a),
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it is treated as a UE. However, with OD-ECCs orthogonal to
system ECCs in Fig. 14(b), these 3-bit error can be corrected
by each OD-ECC. Thus, UBER can be reduced as the number
of OD-ECCs increases at the expense of additional chip area.
Fig. 14(c) shows a simulated comparison of system ECC,
OD-ECC, and scrubbing. System ECCs in conjunction with
OD-ECCs reduces UBER to one third. The UBER is reduced
to 10−5 with all three techniques combined, which leads to
significant increase in reliability.

4) ECC COMPARISON
Table 2 shows a comparison of ECC techniques. This com-
parison is based on [64] and [67] and compared the required
parity, area, power, and delay for 16 or 64-bit data. Single
symbol error correction (SSEC) [79] uses symbol correction
code to correct multi-bit errors. As the number of errors to be
corrected increases, the overhead of the encoder and decoder
also increases. Therefore, it is important to carefully consider
the form of ECC that can be implemented in memory.

IV. ERROR PREDICTION
In general, errors are logged into a file via the Mcelog Linux
kernel module [10], [80], [81], and the following contents are
also stored to the log file.

1) Time stamp
2) Physical address
3) Server name
4) Sockets, channels, and banks where physical addresses

are located.
5) Memory access, such as reading or writing, is per-

formed when an error occurs.

UE causes a higher system crash rate, in general, and thus
the prediction of UE with a CE had been widely adopted in
the 2010s. This method was based on historical CE statistics:
when the CE exceeds a certain number for a certain period,
a certain capacity can be replaced before the UE occurs.
In addition, statistical information was used in failure models
or rates for analyzing the relationship between devices and
environmental conditions or determining whether UE predic-
tions were appropriate for low- or high-end servers [10], [82],
[83], [84].

Several solutions are available for preventing predicted UE
from occurring. For example, cache lines were controlled
to remove errors by isolating 8 KB capacity or less at the
expense of system overhead [85], [86], [87], [88]. However,
page offline can remove UEs more than 94% by isolating
4 KB capacity without additional hardware expense [27],
[89]. Since a page is the minimum capacity that can be
controlled by the system, page offline is amethod tominimize
memory capacity waste.

Fig. 15 shows the conventional page offline policy. Ini-
tially, at the operating system (OS) level, a threshold for the
number of CE is set to X for a given time window T . When
an error occurs, the address for the error is obtained, and the
number of repetitions is counted. If the error count exceeds

FIGURE 15. Conventional policy for page offline.

FIGURE 16. X/T control to determine weak or strong ECC.

FIGURE 17. Leaky bucket (a) concept and (b) flow chart.

X in T , the page is not isolated. If not, the error counting
becomes reset. X can be set differently depending on the
device. For example, the degree of wear differs depending on
the usage and reliability of DIMM. Therefore, the probability
of failure of a DIMM goes higher as time goes on, which
requires to control X for the optimum solution [90]. Fig. 16
shows the control of the strong and weak ECCs by adjusting
X [91], where Pn(X ) is a probability density function (PDF)
of error correction capability corresponding to X [92].

One method for determining X is the leaky bucket
algorithm [93]. This algorithm is used to warn the system
through a trigger when a certain threshold exceeds X in parts,
such as UE, DIMM, Socket, page, and CE. Fig. 17(a) shows a
basic concept of a leaky bucket. The incoming rate represents
a water fills up rate in a certain bucket, and the water leak
rate varies by the pressure to the hole. When the amount
of water filling is higher than the amount of water leaked,
a warning is issued, which follows the same principle as the
error exceeding X . The algorithm completes after making
decision for simple or critical waring in Fig. 17(b). Depending
on warning level, the size of offline can be determined.

Fig. 18 shows a simple leaky bucket algorithm based on
the warning level and leaky rate. In Fig. 18(a), the warn-
ing level and the leak rate are three and two, respectively.
A leak rate of two indicates that the error count maintains
its value during the two consecutive time sequence if no error
presents. Fig. 18(b) depicts the values of count and warning
for the given warning level and leak rate of three and four,
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FIGURE 18. Example of simple leaky bucket algorithm according to
warning and leaky rate: (a) Warning = 3, leak rate = 2, and (b) Warning =

3, leak rate = 4.

FIGURE 19. CE and UE associations for the other 2-rows from
2-servers [92].

respectively, which shows that the error count cannot quickly
leak compared to the case of Fig. 18(a).

A higher leak rate can be applied to an older device that
has not been replaced recently. Depending on the waring
level, the mean cost to recovery (MCTR) was analyzed [94].
Random forest (RF) with deep learning performs the best in
determining the optimized warning level. If the warning level
is normalized to its maximum value up to 1.

Even though the number of CE works as an important
role in predicting the UE for page offline, the counting of
CEs within a page makes page-to-page faults prediction be
difficult due to inter-page circuit connection. Fig. 19 shows
the CE and UE associations by observing two different rows
from two different servers [95]. A row without UE has a
higher CE rate than a row with UE. For example, the num-
ber of CE, unique CE location, pages with CEs, and pages
with 10 CEs for the row without UE are 908, 52, 19, and
4 respectively. These numbers indicate that CE is not related
to UE. Because UE prediction based on the number of CE in
a page cannot be applied based on the observation in Fig. 19,
the method for predicting UE by setting a specific CE pattern
has been researched as shown in Fig. 20 [11], [96], [97]. For
the column-based UE prediction in Fig. 20(a), the possibility
of UE occurrence is determined when a pattern is determined
by the length of the column pattern, lc. When the pattern
repeats, the column fault is declared. Similar to the column
fault, the row- and bank-based UE prediction of Fig. 20(b) are
evaluated by the length of the row pattern, lr, and the given
area lc × lr , respectively.

A. COLUMN-PATTERN-BASED UE PREDICTION
The UE prediction can be performed using column faults
because theUE occursmore frequently and is scattered across

FIGURE 20. (a) Column and row and (b) bank prediction according to
error pattern [11], [96], [97].

FIGURE 21. (a) Precision, recall, and (b) the number of repair values for
CE rate and column fault [98].

the column [98]. When a signal is transmitted to the gate of
a transistor, the effect is insignificant. However, data move
along the bit lines connected to either a source or a drain.
Moreover, the charge flow is interrupted owing to the resis-
tance or capacitance of the bit line, which causes a higher
error rate. For high-density capacity memory, the problem
can be more significant owing to the thin bit line and many
surrounding signal lines [99], [100].

The conventional prediction method based on column
faults [98] was evaluated using two metrics: precision and
recall as

Precision =
TP

TP+ FP
, (7)

Recall =
TP

TP+ FN
, (8)

where TP, FP, and FN are the true positive, false positive,
and false negative, respectively. TP and FP indicate the cases
that UE does and does not occur, respectively, when UE is
predicted. FN indicates that no prediction is performed when
UE occurs. Therefore, precision refers to how good the UE
prediction is when the prediction is made. Low precision
causes unnecessary memory isolation and thus results in
memory loss. Recall indicates the ratio between predicted UE
and the total occurrence of UE. A low recall indicates that
many UEs still exist on the server and suffer from crashes
because the UEs cannot be distinguished.
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FIGURE 22. UE prediction comparison in terms of precision and recall
between (a) page level and (b) row fault [95].

FIGURE 23. Comparison in terms of (a) precision and (b) recall of row
and column fault for UE prediction [95], [98].

Fig. 21 shows the precision, recall, and number of repair
values for CE rate and column fault. On the x-axis, X in CE
rate(X ) and column fault(X ) are the number of repetitions,
which are the threshold values. For the page offline based
on CE rate, the best performance in precision and recall is
CE rate (500), as shown in Fig. 21 (a). For the CE rate
(2000), the precision and recall were 10 and 7%, respectively.
When the page offline was performed owing to a column
fault, precision, recall, and repair were better than the CE
rate. At the lowest X value of 6, precision and recall were
45 and 35%, respectively. However, a low X can result in a
higher repair, as shown in Fig. 21(b), which results in higher
maintenance or replacement costs for the waste of DIMMs.
Compared to the high repair value due to the low CE rate(X ),
even with the low threshold, the repair due to column faults
was much lower. When X had the highest value of 25, the
performance was better than the CE rate in terms of precision,
recall, and repair. As a result, UE prediction using a column
fault, rather than the CE rate, is much better [98].

B. ROW-PATTERN-BASED UE PREDICTION
In Fig. 22, a row predictor, which analyzes CE spread in
the row of a specific length lr, is used for the page offline
method [95]. Similar to the column predictor shown above,
if the number of fault repetitions of a specific X exceeds a
row fault (X ), the error can be treated as UE. Fig. 22(a) shows
that the page is offline when X was set to 6, 10, 16, and

24. The highest values for precision and recall were 7.2 and
0.4%, respectively. When using the row fault, as shown in
Fig. 22(b), the highest precision and recall values were 60 and
33%, respectively. Eventually, a specific pattern of rows and
columns is better for precision and recall than using CE rate
for predicting UE.

Fig. 23 shows a comparison of the precision and recall of
the row- and column-fault UE prediction. In both methods,
the precision tends to increase and recall decreases with
an increase in the threshold. The row fault had a higher
precision value than the column. Therefore, row faults are
advantageous for increasing the accuracy of UE prediction.
Conversely, the columns are more advantageous in terms of
recall. The results obtained may depend on various parame-
ters including environment, state, and workload of a DIMM.

C. HYBRIDE UE PREDICTION
As can be observed above, column and row type errors
appear frequently, 15–30% of errors occur in the column/row,
and 40% of them are repeated [101]. However, determining
UE with only one predictor cannot guarantee high precision
because errors occur randomly in DRAM based on the work-
load or data type. For a specific ECC skill, UE prediction
is possible in the row or column using a pattern of error
correction or detection. In [102], temporal and spatial locali-
ties were used instead. Temporal locality is a characteristic
with a high possibility of referencing recently used data.
At themoment of an additional symbol error presents after the
first symbol error is observed, the probability of the chipkill
triggering within 1 min is more than 90%. The timing of the
UE is predicted by associating the temporal characteristics
with the UE. Spatial locality is a characteristic in which
adjacent data points are highly likely to be referenced. When
an error occurs in a cell or specific area, the surrounding error
is examined. Using these two characteristics, the prediction
coverage can be increased by up to 80% and repeated errors
can be prevented by 76%. This means that 63% of the failures
can be prevented, but chipkill requires 38% more overhead
than SECDED [103].

A combination of various types of predictors can be used
to solve this problem. In [104], deep learning can be used
for multiple predictors to be combined as a hybrid includ-
ing logistic regression (LR) models [105], support vector
machines (SVM) [106], classification and regression trees
(CART) [107], backward propagation (BP) [108], gradient
boosting decision trees (GBDT) [109], RF [110], [111], and
extreme gradient boosting (XGBoost) [109]. Recently, boost-
related deep learning has been widely used for UE prediction
[11], [112]. In [11], column, row, and bank predictors were
used as hybrid predictors at appropriate ratios of 0.474, 0.246,
and 0.219, respectively.

D. PERFORMANCE EVALUATION OF PAGE OFFLINE
Fig. 24 shows an analysis of various types of predictors [11],
where data obtained from four different servers. The results
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FIGURE 24. Performance evaluation of predictors: (a) precision, recall,
(b) F-measure, and cost reduction [11].

FIGURE 25. Hardware block diagram of on-byte-error-tracking [113].

were described in terms of precision, recall, F-measure, and
cost reduction. Two figures indicate that the hybrid method,
boost, tends to outperform other single pattern predictor. For
the lower value of X , better performances can be expected
compared to higher value of X . Similarly, the longer the
length is, the better the performances are. Fig. 24(b) shows
the analysis of the predictors in terms of the F-measure and
cost reduction. The F-measure is the balance score between
precision and recall and can be obtained as follows:

F − measure =
2 · precision · recall
precision+ recall

. (9)

A high F-measure can be obtained with a high percentage
of precision and recall. For example, in the case of CE, the
F-measure can be low even though the recall is relatively high
due to low precision. However, in the case of row pattern
presented with high L, the F-measure is higher than CE
because both precision and recall are relatively well balanced.
For cost reduction, the cost (>0) can be reduced by predicting
UE correctly, and a negative value indicatesmore loss through
UE prediction. Cost reduction can be expressed as follows:

Costreduction =
Cc · TP− Cr · FP− Cm(TP+ FP)
Cc (TP+ FN ) + Cr (TP+ FN )

,

(10)

where Cc is the unit cost incurred by the UE, Cr is the
unit cost of DIMM replacement, and Cm is the unit cost
incurred due to migration. (10) is a value for determining
whether UE prediction is beneficial in terms of cost reduction.
In the case of CE in Fig. 24(b), because the cost caused by
frequent replacement or migration is larger than the cost that

is beneficial for UE prediction, the cost reduction is negative.
Except for Boost, the column showed the best performance.

E. ERROR CHECK AND SCRUB
The early diagnosis and identification of memory faults can
reduce the cost of UEs. Many companies have intensively
researchedmethods without consuming hardware areas. Con-
versely, in academia, many studies have been conducted on
methods of accurately predicting a UE even if the hardware
area and power are consumed. For example, Fig. 25 shows
a hardware block diagram of OBET, in which on-byte-error-
tracking (OBET) technology has an error flag that indicates
existence of a fault between specific data units at the expense
of 1.6 and 3% of area and power, respectively [113]. The byte
error flag has three states: 0, no error, 0×00FF, that is multiple
errors, and 0xFFFF, that is parity error. The remainder of the
situation can be a single-bit error or other errors. The greatest
benefit of adding flags between data is scrubbing. In conven-
tional ECS methods, the entire specific data are scrubbed to
detect CE or UE in memory at larger power or longer latency
in extracting errors. Because OBET uses selective scrubbing
by adding flags and utilizing the information, less overhead
and power can be expected. As a result, OBET is useful for
detecting multiple errors or UEs rather than a single error.
Techniques similar to OBET include DUO [114] and XED
[115]. DUO uses RS code for small redundancies but with
long latency. XED is beneficial for handling multi-bit errors
rather than simple single-bit correction by storing catchwords
with error information in the 9th chip that stores parity. XED
also needs to use a small hardware area because of the use of
a register.

F. COST ANALYSIS
The cost of running a datacenter is represented by total
cost ownership (TCO) with many factors varying under dif-
ferent situation. In this section, the relationship between
UE prediction and cost saving is investigated followed by
methods for reducing downtime costs through accurate UE
prediction.

1) TOTAL COST OWNERSHIP
At a large scale, such as a datacenter, TCO can be determined
by the number of parameters: the five models in [116], [117],
[118], and [119] define TCO as:

TCO = Cinfra + Cserver + Cnetwork + Cpower + Cmain, (11)

where Cinfra is the infrastructure, Cserver server acquisition,
Cnetwork network acquisition, Cpower power, and Cmain main-
tenance costs. The TCO varies largely based on failure rates
or environment in which servers are operated. Eight models
can be rarely used due to large dependency of environment,
where parameters include energy, DIMM cost, DRAM fault
in time (FIT), availability/mean time to failure (MTTF),
silent data corruption (SDC) derating, performance, and
thermal [103].
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2) PREDICTION COST EVALUATION
If the error data according to the server cannot be identi-
fied, the efficiency of UE prediction is significantly reduced.
To express the efficiency of UE prediction in a sever, (10)
can be re-written in the form of prediction P and recall R as
follows:

Cost reduction =

[
1 −

Cm + Cr
(Cc + Cr )P

]
R. (12)

Similar to (10), P can determine whether UE prediction is
beneficial. If P > (Cm + Cr) / (Cc + Cr), the cost reduction
becomes positive. Commonly, simultaneous optimization of
precision and recall can hardly be achieved [11]. According
to IBM, the cost of server downtime per minute is over
$167, which is more than the cost of repairing a DIMM
[48]. Therefore, UE prediction with low accuracy needs to
be avoided because the inaccurate downtime cost causes
lower or negative cost reduction. In hard disks, when UE
prediction is inaccurate, more replacement can be considered
instead of the accuracy of prediction by further investing in
MCTR [994], where replacing both failed and healthy devices
simultaneously as:

MCTR = FN × nF + FP× nH , (13)

where nF and nH are the numbers of failed and healthy
devices, respectively. To express the cost and time for recov-
ery, the mean time to repair (MTTR) is widely used:

MTTR = 0.1 +
0.9FN
P

. (14)

Putting (13) into (14) gives

MTTR = 0.1 +
0.9(MCTR− FP·nH )

P · nF
. (15)

Because MCTR is linear to MTTR, their optimization cannot
be easily accomplished. When UE precision P is low, both
MCTR and MTTR increase. As a result, a method either
to increase P or to replace devices rapidly requires to be
conducted.

V. FUTURE WORK
Regarding the recently observed bit error rate in studies
[120], [121], SDC occurrences can be estimated at around
every 300,000 SECDED decoding cycles in a single DRAM
chip system incorporating on-die (136,128) SEC and system
SECDED (72,64). SDC occurs when two data bits are simul-
taneously corrupted and are treated as a single data. Fig. 26
shows the situation where SDC occurs in the on-die ECC and
DRAM controller. If D0 and D1 are recognized as a single
error data and D3 is incorrectly corrected in the on-die ECC,
the DRAM controller also misinterprets it and erroneously
modifies the i-th data, Di, resulting in SDC.
High bandwidth memory 2 extension (HBM2E) [73]

applied SECDED simultaneously to OD-ECC and the system
ECC in Fig. 27. Double errors that cannot be resolved by
System ECC1 can be prevented by OD-ECC1,2 in Fig. 27(a).
However, if there are two in the OD-ECC 0 region, and these

FIGURE 26. Process of generating SDC in on-die ECC and DRAM controller.

FIGURE 27. In HBM2E on-die ECC, (a) errors can be corrected and
(b) cannot be corrected.

errors are included in the System ECC1 region, they are
treated as UE in Fig. 27(b). This problem can be alleviated
by using SSCDSD in HBM3 [122]. However, similar to
SECDED, double symbol errors occur, and there are cases
where neither System ECC nor On-die ECC can correct them.
As a result, research need to focus on minimizing UE through
the application of existing ECC technologies or advanced
techniques in On-die ECC.

On-die ECC with SECDED can provide an advantage in
terms of latency compared to SSCDSD, but it may have a
disadvantage in terms ofmulti-bit error correction. Therefore,
combining suitable ECC techniques for multi-error correc-
tion and appropriate ECS techniques can greatly enhance
RAS, emphasizing the need for relevant research in future
memory technologies.

VI. CONCLUSION
This paper provides an overview of the RAS features used in
data centers and introduces various methods for improving
memory RAS by referencing research papers, patents, and
websites. Conventional ECC techniques have been widely
discussed for lowering the probability of error generation.
Further reduction in UEs can be accomplished with page
offline methods in a system level to avoid system faults
or damages at the expense of an extra hardware. Recently,
starting from DDR5, on-die ECC effectively decreases the
error rate by several orders of magnitude within a memory
chip. However, further advancements are needed to address
downtime costs in on-die ECC techniques, including the
mitigation of SDC and improvements in hardware efficiency,
power consumption, and latency.
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