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ABSTRACT Multi-view video (MVV) data processed by three-dimensional (3D) video systems often suffer
from compression artifacts, which can degrade the rendering quality of 3D spaces. In this paper, we focus
on the task of artifact reduction in multi-view video compression using spatial and temporal motion priors.
Previous MVV quality enhancement networks using a warping-and-fusion approach employed reference-
to-target motion priors to exploit inter-view and temporal correlation among MVV frames. However, these
motion priors were sensitive to quantization noise, and the warping accuracy was degraded, when the target
frame used low-quality features in the corresponding search. To overcome these limitations, we propose a
novel approach that utilizes bilateral spatial and temporal motion priors, leveraging the geometry relations
of a structured MVV camera system, to exploit motion coherency. Our method involves a multi-view prior
generation module that produces both unidirectional and bilateral warping vectors to exploit rich features in
adjacent reference MVV frames and generate robust warping features. These features are further refined
to account for unreliable alignments cross MVV frames caused by occlusions. The performance of the
proposed method is evaluated in comparison with state-of-the-art MVV quality enhancement networks.
Synthetic MVV dataset facilitates to train our network that produces various motion priors. Experimental
results demonstrate that the proposed method significantly improves the quality of the reconstructed MVV
frames in recent video coding standards such as the multi-view extension of High Efficiency Video Coding
and the MPEG immersive video standard.

INDEX TERMS Multi-view video compression, video enhancement, motion vector, VVC, MPEG-
immersive video, TMIV.

I. INTRODUCTION
Multi-view video (MVV) has been widely used for emerging
three-dimensional (3D) video systems and services such
as metaverse and virtual reality (VR), providing a user
with a more augmented experience. A VR user wearing a
head-mount device can freely navigate a 360-degree virtual
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space and enjoy a video content in an arbitrary viewpoint
with 6 degree-of-freedom (DoF) [3], [4]. For these 3D video
systems, the high quality of MVV is required to faithfully
realize a 3D space and render acceptable quality of synthe-
sized viewpoints [5]. However, transmitting the large number
of views causes significant network bandwidth problems. The
quality of video data degrades due to quantization noise after
compression, producing visually unpleasant artifacts such as
blocking artifacts and blurring effects.
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In the past decades, 3D video coding standards have been
established to meet the quality of experience [1], [2], [6]
based upon existing 2D video coding standards [7], [8].
When compressing MVVs, inter-view correlation has been
exploited in addition to spatial and temporal correlation [9],
[10]. Although the 3D video coding standards have attempted
to reduce the size of MVV data, they had the same drawbacks
as in the conventional lossy coding system. While viewpoints
are generated in a 3D virtual space using texture and geometry
components, the distortion would cause severe VR sickness
during a navigation [11].
Several post-processing techniques have been developed

to restore the quality of MVV data. Convolutional neural
network (CNN) has been actively used to develop a com-
pression artifact reduction network (CARN). The CARNs
were used to remove unwanted artifacts from compressed
images [12], [13], [14] and videos [15], [16], [17]. Because
MVV data are obtained from cameras that are located on
the horizontal and vertical planes, inter-view correlation
could be further exploited for artifact reduction [18], [19].
In [20], a multi-view denoising network (MVCNN) was
presented to manage 3D focus image stacks and fuse them to
compute an enhanced target image. TheMVCNNwas trained
with residual learning and batch normalization on top of a
denoising CNN [21]. In [22], the same baseline was resorted
to reduce artifacts in stereo images. Conventional CARN
methods have attempted to use richer appearance features
in spatially and temporally adjacent reference frames [18],
[23], [24]. In [23] and [24], channel attention mechanisms
have been exploited to choose relevant features in reference
frames. In [18], a cross-scale warping module based on a
spatial transformer network (STN) has been introduced to use
the spatial priors of adjacent light filed images. The reference
and the target images were aligned with a warping vector to
transfer the high quality of reference features. It demonstrated
that transferring inter-view features could improve the quality
of a target view. However, their unidirectional optical flow
was sensitive to quantization noise, which would readily
mislead spatial priors after warping.

This paper focuses on utilizing robust spatial and temporal
priors for compression artifact reduction of MVV frames.
To this aim, we develop a multi-view prior generation
(MPG) module to improve the performance of an MVV
CARN. In previous works [25], [26], considering an MVV
compression circumstance, a current frame is coded using a
high quality of reference frames that are coded with lower
quantization parameters (QPs) of lower temporal layers [27].
The prediction structure allowed for the current frame to
employ the high quality of spatial and temporal reference
features along camera and temporal directions, respectively.
However, the previous works had limitations to use such
MVV prediction structures [4], [25], and we believe there
is more room to exploit the structure. In [25], multi-view
image quality enhancement (MVIQE) network has been
developed to produce a spatial prior using only the disparity
vector.

In this paper, learning to convey relevant spatial and
temporal features from the reference to the current frame is
carefully investigated. While a warping-and-fusion method
based on a unidirectional warping vector is employed in our
previous work [25], a bilateral warping vector estimation
and fusion method is further introduced to consider the
geometry relations of MVV camera systems and generate
robust warping features. These features are further refined
to remedy unreliable alignments cross MVV frames caused
by occlusions. Various warping vectors along the camera and
temporal directions are included to improve performance.

Motion prediction has played an important role in
video generation tasks, including view synthesis [28] and
video frame interpolation and extrapolation [29], [30],
[31]. However, it was not fully investigated in an MVV
compression circumstance due to the insufficient number
of video sequences. The MVV test sequences have been
actively used for evaluating coding performance in 3D video
standardization [1], [2], but a larger size of MVV dataset
are required to train a reference-based compression artifact
reduction, using spatial and temporal correlation in 3D video
coding. We generate computer-synthesized MVV frames for
training to challenge this problem.

Our primary contributions are described as follows:

• Wepropose anMPGmodule to generate coherent spatial
disparity and temporal motion priors to improve the
performance of compression artifact reduction for MVV
frames. This is accomplished by using a bilateral vector
cross MVV frames that are captured from a structured
MVV camera system and compressed with 3D video
coding standards. Our network includes a refinement
module to remedy unreliable alignment caused by
occlusions and temporal inconsistency.

• Experimental results demonstrate that the proposed
method outperforms state-of-the-arts studies in MVV
compression artifact reduction. Our model is tested with
recent 3D video coding standards such as the multi-view
extension of High Efficiency Video Coding [1] and the
MPEG immersive video standard [2].

II. RELATED WORKS
A. PREVIOUS CARNS FOR SINGLE AND
MULTI-VIEW VIDEO
Several single-image-based CARNs have been developed to
improve the quality of compressed images. In early studies,
Zhang et al. [21] and Ehrlich et al. [13] presented denoising
CNNs for image restoration for JPEG-compressed images.
CNN-basedmodels were applied to compressed images using
video coding standards. Dai et al. [32] and Zhang et al.
[33] developed deep residual CNNs using variable filter sizes
to remove the quantization noise of High Efficiency Video
Coding (HEVC)-compressed frames. Generative adversarial
network (GAN) was used to generate an improved quality of
an image [34]. They used a single input image to improve.
However, the methods cannot be efficiently applicable to
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MVVs, because it is difficult to exploit inter-view correlation.
Multiple images were used to provide more priors, and
their features were digested through various fusion methods
for single and multi-view videos. Zhu et al. proposed a
CNN-based post-processing module to improve the quality
of synthesized view and reduce warping distortion in 3D-
HEVC [35]. Input frames were concatenated and fused in
a network. Jammal et al. used low-quality and high-quality
images from different views of the same scene to produce
an enhanced image [36]. In [37], multi-view graph neural
network (MV-GNN) was proposed to alleviate quantization
noise of a target image.

The performance of a CARN can be further improved by
transferring useful features from a source to a target [25].
For this purpose, a warping module has been introduced
to search a rich feature in a reference frame and locate it
to the corresponding position of the current frame. There
were several reference-based image quality enhancement
studies using a warping-and-fusion approach [18], [19]. The
methods have been originally designed for super-resolution
(SR) and extended to artifact reduction (AR) later. When
a high-quality image was used for a reference, a target
image could exploit the corresponding patch to improve the
quality in feature levels. CrossNet [18] has been developed
to use a cross-scale optical flow to fuse features from light
field images. TTSR (Texture Transformer Network) [19] was
also difficult to apply to reconstructing compressed contents
due to the loss of texture information. Although CrossNet
and TTSR has attempted to utilize reference frames for
image quality enhancement, since they considered limited
number of reference frames, it does not use the multi-view
characteristics sufficiently.

There are several studies to use multiple reference images
with awarpingmodule forMVV frames. A recent video super
resolution method with recurrent back-projection network
(RBPN) [38] attempted to extract residual features from the
neighboring frames to develop multi-image super resolution
(MISR) method. While the RBPN enhances the quality of
the target frame by adding missing details from neighboring
temporal frames, it does not aim to reduce compression
artifacts and can only consider low quality temporal frames
of the corresponding target video. Yang et al. presented
a multi-frame quality enhancement (MFQE) method to
exploit the correlation among input video frames [26],
[39]. They selected several frames in a video sequence by
using a convolutional long short-term memory (ConvLSTM)
module, because the quality of video frames could be
fluctuated with a different QP value, determined by a coding
configuration. In this way, it can exploit rich texture video
patches from neighboring frames, when enhancing the target
frame. However, this method only exploits the frames in
the same target video sequence and does not consider other
useful information from other views or neighboring frames.
Furthermore, they used the same unidirectional warping
vector, which would degraded the warping accuracy. Lu et al.
proposed a quality enhancement network (QE-Net) for an

FIGURE 1. MPEG-Immersive video (MIV) compression using atlas patches
for base (V0) and additional views (V1) in the time steps of T0, T1, and T2.
Residual patches generated from a pruning process of additional views
contain high-frequency components, which would suffer substantial
degradation of visual qualities due to compression artifacts.

HEVC low-delay configuration. They used a fusion model
of spatial and temporal features extracted from multi-scaled
convolution layers [40]. Chen et al. presented a residual
network to remove quantization artifacts of multi-view
depth videos [41]. However, it was indicated that inaccurate
warping vectors could transfer undesirable priors [37].

Lastly, MVIQE [25] enhances the target image by warping
spatial reference images using disparity vectors estimated
by PWC-Net [42] which is a widely used flow estimation
network. However, because MVIQE only uses unidirectional
motion vectors, it is also prone to performance degradation
with quantization noise. Furthermore, it does not consider
temporal correlation between consecutive frames and there-
fore is not suitable for video artifact reduction.

B. MVV COMPRESSION
The 3D video coding standards in ISO/IEC Moving Picture
Expert Group (MPEG) have been established to reduce the
size of MVV data [1], [2] based upon existing 2D video
coding standards such as HEVC [7] and Versatile Video
Coding (VVC) [8]. In the multi-view HEVC (MV-HEVC)
and 3D HEVC standards [1], inter-view redundancy was
reduced using a disparity vector (DV), because the positions
of the multi-view cameras are structured in an 1-D arc or
a 2-D grid coordinate. A DV was used for searching a
corresponding block among views and subsequently applied
to conventional motion and disparity compensated prediction
of a conventional codec pipeline [9], [10].

MPEG-Immersive video (MIV) group [2] has developed a
codec-agnostic approach to manage a number of input views
for MVV compression. MVVs are pre-processed to create
atlas patches to contain common data patches among input
views and residual data patches after inter-view prediction.
For example, as shown in Fig.1, all the samples from base
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views are packed into an atlas V0, whereas samples from
additional views are pruned and packed into the other atlas
V1. The pruning process is conducted with an adjacent
reference view. The atlas patches are then compressed, using
a legacy 2D video codec. In MIV reference software (TMIV),
the residual patches generated from a pruning process of
additional views contain high-frequency components, which
would suffer substantial degradation of visual qualities,
as shown in Fig.1. Furthermore, it contains synthesis artifacts.

FIGURE 2. MV-HEVC HBP coding structure for MVV coding. Vi and Ti
denote indices of viewpoints and time steps, respectively.

In the MVV coding standards, a base-view, which is
denoted by V0 in Fig. 2, is compressed using only the
temporal correlation with previously coded frames at differ-
ent time steps. While a base-view is independently coded
with the other views, non-base views are compressed using
not only temporal prediction but also inter-view prediction.
For example, in Fig. 2, the frames of V1 are coded using
inter-view reference frames of V0 and V2 at the same time
step and temporal reference of the same viewpoint. The HBP
coding structure in Fig. 2 presents five layered groups with
different colors. QP values are determined by the layers. I0 in
the base-view is coded using the lowest QP value, which
produces the highest peak signal-to-noise ratio (PSNR) value
among all the MVV frames. The frames in the next layer (i.e.
B frames colored with blue) are coded with reference frames
from the lower layer, using an increasing offset to the QP.
In Fig. 2, both inter-view prediciton and temporal prediction
are applied to a B frame at T4 and V1 in the third layer,
by referencing the B frames of the second layer.

Because the non-base view frames are coded with higher
QP values than in the base view frames, the quality of the
non-base view frames drop with the HBP coding structure of
MV-HEVC and 3D-HEVC. In TMIV, the atlas patches often
contain high-frequency components as shown in Fig. 1, when
they are generated from a pruning process. However, many
details in the patches would be blurred due to quantization,
which degrades the quality of the non-base views.

Multi-view plus depth (MVD) format video data, used
for the 3D video coding standards, is represented with a
pair of multi-view texture and depth videos. Depth videos
are captured from depth camera directly or derived from
stereo matching of the corresponding texture video data.
Yu et al. [43] used depth video data to locate the high-quality
texture to display a rich virtual view using the depth
image-based rendering (DIBR) method and improve the

low-quality view. However, high-quality and high-resolution
depth video format data is not usually available in a decoder
side due to a inaccurate depth sensor. An intermediate
view can be generated using DIBR techniques in 3D
video coding. Because the depth information is usually
incomplete, the quality of an intermediate view also drops
dramatically. TMIV reference software can drop a depth
map and let a decoder generate it to improve overall coding
performance [44].

FIGURE 3. MVV frames captured from 2D camera arrays and adjacent
spatial and temporal reference frames to enhance the current frame,
using unidirectional reference-to-target warping vectors.

III. PROPOSED METHOD
A. MOTIVATION AND PROBLEM FORMULATION
In 3D video compression, a reconstructed frame exhibits
quantization artifacts with a high QP value, which signifi-
cantly degrades visual quality. This study proposes a method
to enhance the quality of the current frame Ftar using a
set of adjacent spatial and temporal reference frames Fr =

{Fx+,Fx−,Fy+,Fy−,Ft+,Ft−} with high fidelity in MVV
compression. MVV frames are captured in 2D camera arrays,
as shown in Fig. 3. Fx+ and Fx− represent MVV frames
of the left and right views along an x-axis, respectively.
Similarly, Fy+ and Fy− represent the MVV frames aligned
to an y-axis. Ft+ and Ft− are the forward and backward
temporal reference frames. In the 3D video coding standards,
because the reference frames are coded with higher quality
in an HBP coding structure, they can yield useful priors to
enhance the quality of the current frame. Following this idea,
our goal is formulated by,

Fenh = N (Ftar ,Fr ,w | θ ), (1)

whereN is a model,Fenh is the enhanced output ofFtar ,w is a
learned warping vector, and θ is a set of learnable parameters.
In (1), we adopt a warping-and-fusion approach as in

MVIQE [25]. In the method, a unidirectional vector w is
trained to warp a reference feature to a current feature,
and a warped feature is used as priors to characterize a
disparity between a reference frame and a current frame.
In our observation, MVV frames tend to display symmetric
warping vectors from the current patch to the corresponding
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FIGURE 4. Ftar , Fr+, and Fr− are used to derive unidirectional and
bilateral warping vectors, i.e., wu and wb, and produce an intermediate
frame FI ′ . MPG is used to generate the intermediate frames in an x-axis,
y-axis, and a temporal direction. The final output is produced from the
intermediate frames by fusion.

patches of two reference frames in the both direction, i.e.
wr+ ≃ −kwr−, and k is approximately one, when the frames
are captured from a structured camera array. The priors are
useful because the bilateral vector is robust to noise for frame
generation [45]. Therefore, we use both a unidirectional
warping vector as in the MVIQE and a bilateral warping
vector as complements and consider them in our network
design, given as

Fenh = N (Ftar ,Fr+,Fr−,wbr±,wur± | θ ), (2)

where Fr+ and Fr− are the two reference frames in
the positive and negative directions, and wb and wu

are a bilateral and a unidirectional warping vector,
respectively.

Furthermore, we consider a network to learn a warping
vector for each axis. Fig. 4 presents an overall view of the
network architecture with the MPG modules, individually
using Fx , Fy, Ft , and Ftar . The three MPGs share the same
network architecture but differently trained. The network
produces intermediate frames FIx ′ , FIy′ , and FIt ′ to fuse the
final output, using (2).

B. MULTI-VIEW PRIOR GENERATION MODULE
In this subsection, we explain an MPG module to pro-
duce the priors of the current frame Ftar , by applying
warping vectors to two reference frames Fr+ and Fr−,
as shown in Fig. 5. The proposed network first extracts
feature vectors ftar , fr+, and fr− to perform the task in
a feature domain. Then, unidirectional warping vectors
and bilateral warping vectors are used to produce the
priors.

1) UNIDIRECTIONAL MOTION-BASED PRIOR GENERATION
In the MPG, PWC-Net [42] is applied to derive a forward and
backward unidirectional warping vectors, denoted by wr+
and wr−, as in [25]. The vectors are used to warp the features
of the reference frames. In Fig. 5, a reference feature map fr+
is warped into f ur+, given as

f ur+(z) = fr+(z+ wur+), (3)

where wur+ represents a forward warping vector. Similarly,
we compute a backward warping vector wr− to produce fr−,
given as

f ur−(z) = fr−(z+ wur−). (4)

The two unidirectional warping vectors have been used to
generate the corresponding intermediate frames.

2) BILATERAL MOTION-BASED PRIOR GENERATION
Unidirectional vectors are tend to be sensitive to quantization
noise in MVV compression, because a target frame suffers
from more severe degradation and a reference-to-target
prediction leads to inaccurate warping textures. The network
has attempted to tackle quantization noise, but unreliable
warping vectors would cause distortion.

Therefore, considering the geometry relations of MVV
camera systems [46], we include another prior generated
from a bilateral warping vector wbr . As shown in Fig. 6, wbr
presented with a blue solid line is chosen among bilateral
vectors around a current frame. Such approach that involves
reference-to-reference prediction tends to exhibit robustness
to quantization noise due to fine quantization step size of
reference frames. The vector is obtained by minimizing the
difference between fr+ and fr− around the current pixel z,
given as

w∗
s = arg min

ws∈S
|fr+(z+

ws
2
) − fr−(z−

ws
2
)|22, (5)

where S is a search range of [−s, s]× [−s, s]. Because PWC-
Net [42] has been used to compute an optical flow using
five-layered feature pyramid, s is adjusted to 6, 4, 4, 2, and 2,
in each layer.

Then, we calculate wbr+ and wbr− as w∗
s /2 and −w∗

s /2,
respectively. The intermediate frames are generated by,

f br+(z) = fr+(z+ wbr+), (6)

and

f br−(z) = fr−(z+ wbr−), (7)

where wbr+ and wbr− represent a forward and a backward
bilateral warping vector. In the next subsection, We explain
the derivation method of wbr+ and wbr−.
The bilateral warping vectors are used to transfer the

corresponding texture of the reference frames captured from
a structured MVV camera array. However, the accuracy
would be degraded with the positions of objects relative to
MVV cameras, although the camera system is calibrated
appropriately [46]. As a remedy, we modify the bilateral
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FIGURE 5. Multi-view prior generation module to produce two unidirectional warping vectors and bilateral warping vectors as
complements to estimate accurate priors. All warped frames are fused to produce the final output.

FIGURE 6. Illustration of a bilateral warping vector and its refinement.

vectors, using a two-stage generation method. We also
explain the procedure in the following.

3) IMPLEMENTATION OF BILATERAL MOTION ESTIMATION
AND REFINEMENT MODULE
We explain the implementations of bilateral motion estima-
tion and refinement module in Fig. 5 to optimize (5), and
produce wbr+ and wbr−. The overall procedure is presented
Fig. 7. The bilateral motion estimation generates an L-
level feature pyramid for both reference features fr+ and
fr− along each axis. As in [42], a warping vector wb(l − 1)
extracted from an l − 1 level feature is used to calculate the
current warping vector wb(l) in the next level. We adopted
a warping layer and a bilateral cost volume layer of [31] in
the architecture of bilateral motion estimation. Motivated by
[47], the features of reference frames are warped and used
to produce the current warping vector through a correlation
layer with a bilateral frame and subsequent convolution
layers. We use five convolution layers, in which each of
output channels is 128, 128, 96, 64, and 32 with the kernel
size of 3. Then, the output features and warping vectors are
up-sampled for the next level, by using convolution layers
with kernel size of 4. This procedure is repeated for all levels
of the feature pyramid, and, when l = 6, the final warping
vector wbr+ is produced. While wbr+ is the forward bilateral
warping vector between the target frame and the forward
reference frame, The backward bilateral warping vector wbr−
is obtained by reversing wbr+, symmetrically.

In Fig. 7, wbr+ and wbr− are further refined to wb,ur+ and wb,ur− ,
respectively. For this, wbr+ and wbr− are first used to generate
f br+(z) and f

b
r−(z) as intermediate features using (6) and (7),

respectively. Then, f br+ and f br− are used as reference features
to obtain wb,ur+ and wb,ur− , respectively. That is mathematically
defined as,

wb,u∗r+ = arg min
wb,ur+∈S

|fr+(z) − f br+(z+ wb,ur+ )|22, (8)

and

wb,u∗r− = arg min
wb,ur−∈S

|fr−(z) − f br−(z+ wb,ur− )|22, (9)

where S is a search range as in (5). The optimization is
conducted using a flow refinement module colored with
orange in Fig. 7, in which a bilateral frame prior is first
generated as in the bilateral motion estimation module and
used to compute the difference with the references. The
subsequent convolution layers are used to calculate the
refined warping vectors. The sizes of the kernels are 3, while
the last convolution layer used for up-sampled features uses
the kernel size of 4.

For fusion, all the priors including f ur+(z), f
u
r−(z), f

b
r+(z), and

f br−(z) and the target feature are fused to generate F
′
I as shown

in Fig. 7. Specifically, we concatenate the features and put the
features into a reconstruction model [48] to obtain the images
as in the MVIQE. When F ′

It , F
′
Ix , and F

′
Iy are obtained along

the temporal, x-axis, and y-axis directions, respectively, using
the MPGmodules, the intermediate frames are fused again to
produce the final output Fenh. The procedure is presented in
Fig. 4.

C. LOSS FUNCTION
For the loss function, we use Charbonnier loss function.
Specifically, we first define a reconstruction loss function
Lr to approximate the final output Feng and the intermediate
frames FI ′ in Fig. 4 to the ground-truth MVV frame Fgt
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FIGURE 7. Illustration of bilateral motion estimation network blocks and refinement modules in the MPG model. The bilateral
motion estimation blocks produce wb

r±
and the warped features f b

r±
(z). wb

r±
are further refined with f b

r±
(z) to produce wb,u

r±
as

presented in the orange blocks.

as follows:

Lr =

∑
Fr∈R

√∥∥Fr − Fgt
∥∥2 + ρ2, (10)

where R = {Fenh,FIx ′ ,FIy′ ,FIt ′}, and ρ is set to 0.001.
We also use a warping loss function Lw to improve the

accuracy of the warping. Using warping loss combined with
reconstruction loss allows for the generation of accurate
warping vectors. Lw is defined as follows:

Lw =

∑
Fw∈W

√∥∥Fw − Fgt
∥∥2 + ρ2, (11)

where Fw is the warped reference frame. W includes six
warped reference frames using unidirectional vectors (i.e.,
Fur− and Fur+ along t , x, and y directions) as a result of (3) and
(4) and six warped reference frames using bilateral vectors
(i.e., Fbr− and Fbr+ along t , x, and y directions) as a result of
(6) and (7). When the refinement module is used, wbr+ and
wbr− are replaced with wb,u∗r+ and wb,u∗r− , respectively, using (8)
and (9) in an end-to-end learning. ρ is set to 0.001.
The final loss function is defined as in the following.

Ltotal = Lr + Lw. (12)

IV. EXPERIMENTAL RESULT
A. TRAINING
1) DATASET
We use multi-view synthetic data to train the proposed
network as in [49]. We used Unity software to generate
virtual in-door and out-door scenes that displayed moving 3D
foreground objects. In the scenes, there were several virtual
cameras placed in 3D space, and the multi-view perspective
videos were directly captured from the virtual cameras. The
cameras are positioned along each of x, y, and z axes.

We have grouped multi-view videos with five views v1, v2,
v3, v4, and v5 in the same scene to train the proposed network.
We define v1 as the target view and select v2, v3, v4, and v5 as
the reference views which are the source of spatial reference
frames. The temporal reference frames for training are also
located at v1 but are sampled at the forward and backward
time steps of the target frame.

We convert the synthetic training data into YUV video
format and encode it with different quantization parameter
(QP) using a MV-HEVC reference software. Since the
reference frames are coded with relatively high quality than
the target frame in 3D video coding standards, we encode
reference frames with lower QP values than the QP value of
the target. We utilized only Y frame in the training.

2) TRAINING DETAILS
The training dataset and the validation dataset are 1,200
frames and 400 frames respectively. For training, we extract
128×128 patches from the current frame and reference frame.
The input patches are rotated either horizontally or vertically
with a probability of 0.5. The batch size is 4. We train the
network with a learning rate of 10−4, a maximum epoch
of 25,000, and use the Adam optimizer [50]. Our network
was trained and implemented in pyTorch [51] and run on
machines equipped with multiple RTX 2080 Ti Graphical
Processing Units (GPUs).

B. TEST CONFIGURATION
To demonstrate the performance of the proposed network,
we used MPEG-I MVV dataset for testing [52]. We used
four different video sequences, consisting of ‘‘Kitchen’’,
‘‘Cadillac’’, and ‘‘Mirror’’, which are computer-generated
(CG) data, and ‘‘Painter’’ as natural content (NC). All four
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TABLE 1. Quantitative evaluation using PSNR values in MPEG-I test video sequences with HEVC multi-view extension.

TABLE 2. Quantitative evaluation using PSNR values in MPEG-I test video sequences with TMIV software.

sequences have a 2D camera array along the x-axis and y-
axis.

For the HEVC experiments, the number of video frames
is 48, 49, 49, and 60 for ‘‘Kitchen’’, ‘‘Cadillac’’, ‘‘Mirror’’,
and ‘‘Painter’’, respectively. We used MIV common test
conditions (CTC) specifications in [52] using 65 frames
for TMIV experiments. TMIV CTCs specify the sequence-
dependent QPs, denoted as RP1, RP2, RP3, and RP4.
We followed the pre-defined QPs in the CTCs. All target and
reference frames are cropped by 1024 × 1024.

C. QUANTITATIVE PERFORMANCE COMPARISONS
We show the quantitative performance of the proposed
method denoted by ‘‘Ours.’’ We calculate the PSNR values
for quantitative comparisons. The results are evaluated with
several state-of-the art studies, including CrossNet [18],
MVIQE [25], TTSR [19], and MFQE2 [39]. We used a
pre-trained model of MFQE2. The other tested methods have
been trained with the same conditions in Sec. IV-A.

Table 1 shows the PSNR results with MPEG-I test video
sequences, using HEVC multi-view extension software. The
proposed method improves the PSNR values of the target
video frames by approximately 2 dB and significantly
outperforms the tested methods with different QPs. TTSR
provided comparable results in the ‘‘Painter’’ sequence
with the target QP (Tar QP) 27. However, the proposed
method provides the best performance on the average. The
performance improvements vary with the target QP values.
When the videos include less quantization noise, e.g. Tar
QP=27, the difference of the PSNR value in the ‘‘Painter’’
sequence was 0.7 dB between Ours and Target. On the other
hand, the difference was approximately 2.4 dB in Tar QP=42.
The performance of the proposed method was more reliable,
when the videos had more severe noise. The priors have been
helpful to enhance the video quality. We observed similar
phenomenons in the other test sequences.

In Table 2, we have examined the performance of the PSNR
values, when the target videos are codedwith TMIV reference
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FIGURE 8. Qualitative comparison in MPEG-I test video sequences with HEVC software.

FIGURE 9. Qualitative comparison in MPEG-I test video sequences with TMIV software.

software. The PSNR values of the target video frames have
been enhanced by approximately 1 dB. The performance
improvements were relatively small as compared to the
improvements in Table 1. In TMIV reference software,
the target and the reference frames are reconstructed with
atlases, which are synthesized using several coding tools and
geometry information. Pixel pruning is employed to decrease

redundant pixels in neighboring views through depth-based
warping. The pruned pixels are arranged and packed into one
or more atlases. Although these procedures were effective to
minimize the pixel redundancies, it has been also observed
that the reconstructed videos included not only quantization
noise but also visible view synthesis artifacts. Synthesis
artifacts cause a blurry effect across significant areas of the
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FIGURE 10. R-D curves in MPEG-I test video sequences with TMIV software.

FIGURE 11. Qualitative comparison for ablation tests to examine various warping vectors.

target frames unlike quantization noise. In this situation, the
accuracy of the previous motion prior with uni-prediction
is compromised when attempting it to align it with the
corresponding textures in the reference frames. For instance,

the Crossnet suffered from the substantial degradation of the
quality. However, the proposed motion priors can overcome
this problem because they also try to match the reference-to-
reference textures with bilateral motion priors. Our network
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FIGURE 12. Qualitative comparison for ablation tests to examine the performance in fusing MPGs.

has been developed to incorporate various motion priors to be
robust to quantization noise, but also the experimental results
demonstrated that the proposed method can be effectively
applied to TMIV reference software.

1) ABLATION TESTS
The proposed method uses various motion priors, includ-
ing unidirectional warping vectors (U ), bilateral warping
vectors (B), and their refined vectors (R). We evaluate
each contribution by enabling modules one-by-one. Table 3
presents the incremental performance in U , U + B, and
U + B + R. As shown, the performance is improved with
U approximately by 1.8 dB and increased with U + B
and U + B + R approximately by 1.96 dB and 2.04 dB,
respectively. The visual results are presented in Fig 11.
Whereas unidirectional warping vectors used unreliable
textures in the reference, the bilateral warping vectors and the
refined vectors were able to refine the distortion.

We also conducted ablation tests to examine the perfor-
mance in fusing MPGs. In Fig. 4, we used the priors (T ) to
a temporal direction and the priors (S) to spatial directions
of both x and y axes in addition to Ftar denoted as F . The
performance of the proposed method has been improved by
0.13 dB, 0.22 dB, and 2.04 dB, respectively, using F , S, and
T . The visual results are exhibited in in Fig 12.

2) RATE-DISTORTION PERFORMANCE
We evaluate the R-D performance of the tested methods
in Fig. 10. The BD-rate savings of the proposed method
are −32.6%, −28.8%, −36.5%, and −41.0% for ‘‘Mir-
ror’’, ‘‘Cadillac’’,‘‘Mirror’’,‘‘Kitchen’’, and ‘‘Painter’’ test

TABLE 3. Ablation tests of the MPG module. U , B, and R refer to
unidirectional, bilateral, and refined warping vectors, respectively. The
incremental PSNR values are presented to reveal each contribution within
MPG. F , S, and T refer to Ftar , spatial priors, and temporal priors,
respectively, during fusion. Cadillac sequence in Tar QP=27 was used for
the tests.

sequences. As compared to the tested methods, the R-D
curves demonstrate that the proposed method significantly
improved the performance of the reconstructed frames in
post-processing.

D. QUALITATIVE PERFORMANCE COMPARISONS
We compare the perceptual quality of tested methods using
frame-by-frame visual comparisons. Fig. 8 and Fig. 9 show
the visual comparisons with ‘‘Mirror’’ and ‘‘Painter’’ coded
with the HEVC and TMIV software, respectively. It was
demonstrated that the proposedmethod provided better visual
quality in the video frames. For example, in Fig. 9, the
texture of the clothe was blurred in the target frame, and it
was difficult to search the corresponding textures. CrossNet,
TTSR, and MFQE2 relies on the uni-directional motion
priors, and they are difficult to improve the performance,
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when either a target or a reference have missed the relevant
texture features. However, the bilateral motion priors use the
reference-to-reference texture matching. Thus, the textures
could be restored using the richer ones from the reference.

V. CONCLUSION
The paper addressed the challenge of reducing compression
artifacts in MVV data coded by 3D video systems. These
artifacts can negatively impact the quality of rendered 3D
spaces.We proposed an efficientmethod to enhance theMVV
quality by using spatial and temporal motion priors. Previous
approaches employed motion priors for quality enhancement,
but they were sensitive to noise and suffered from degraded
warping accuracy. To tackle this, the paper introduced a
new method that utilized bilateral motion priors, leveraging
the structured geometry of the MVV camera system for
motion coherence. This involved generating unidirectional
and bilateral warping vectors for robust feature extraction
from adjacent reference MVV frames. These features were
refined to account for challenges such as occlusions. The
effectiveness of the proposed method was demonstrated
through experiments and comparison with existing tech-
niques. The proposed method significantly improved the
quality of reconstructedMVV frames inmodern video coding
standards such as the HEVC multi-view extension and the
MPEG immersive video standard.
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