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ABSTRACT Most selective compliance assembly robot arms (SCARAs) adopt a conventional indirect-
drive structure consisting of servo motors and gearings, which presents drawbacks, including low precision,
limited lifespan, and complex structure. In contrast, a direct-drive SCARA (DDSCARA) is compact and
delivers superior positioning accuracy and velocity. However, the direct-drive structure is more prone to
resonance. In this article, we use real-time filters to eliminate resonance and add the dynamics feedforward
(DFF) obtained by decoupling the DDSCARA’s dynamics into the control system to improve position
accuracy. The experimental results show that the DFF reduces the position error by about ten times.
In addition, a key contribution of this article is the comparison of the DDSCARA with SCARA. The general
kinematic and dynamic models of both robot arms are established. They verify the strong coupling of the
DDSCARA. We use the direct collocation method (DCM) to optimize the trajectory of both SCARA with
reducers and the DDSCARA. We show that for SCARA with reducers, the impact of DCM is limited
compared to trajectories widely used. On the contrary, for the DDSCARA, the DCM reduces the power
losses significantly. This is validated by experiments that reveal a reduction of the power loss by 50.3% for
a motion time of 0.3 s, and a decrease in the mean absolute error of both rotor joints’ position by 52.4% and
67.8%, respectively.

INDEX TERMS Direct-drive selective compliance assembly robot arm (DDSCARA), resonance, real-time
filters, dynamics feedforward (DFF), direct collocation method (DCM).

I. INTRODUCTION
Industrial robots have significantly contributed to man-
ufacturing by enhancing production efficiency and pro-
moting societal development [1]. The automotive industry,
3C (computer, communications, and consumer electronics)
industry, metallurgy industry, logistics industry, and other
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sectors have leveraged robots to achieve their rapid growth.
As the capabilities of robots continue to advance, higher
performance requirements emerge [2]. Among the various
industrial robots, the selective compliance assembly robot
arm (SCARA) stands out due to its simple structure,
small footprint, fast movement speed, and high positioning
accuracy. SCARA plays an important role in the process flow
of the electronic manufacturing industry, particularly in tasks
such as component surface mounting and integrated circuit
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packaging, where operational accuracy requirements are
stringent [3]. Additionally, SCARA is used in point-to-point
(PTP) tasks such as assembly, packaging, palletizing, and
welding [4], [5]. SCARAs generally have two rotary joints
to achieve position determination in the plane range, and the
third joint is a moving joint in the vertical direction [6].

SCARAs can be classified into two types based on
their drive mode: direct-drive SCARA (DDSCARA) and
indirect-drive SCARAwith a reducer. Indirect-drive SCARA
typically relies on servo motors with reducers or belt drives
to increase the torque and achieve the desired transmission
[7]. Several factors, such as the stiffness of the reducer
shaft, gear meshing, gaps, and friction, may contribute to the
compliance of SCARA joints [8]. Additionally, transmission
gaps in the structure may result in cumulative errors, which
is especially problematic in high-precision applications.
Moreover, reducers have a limited lifespan, and harmonic
transmissions may lead to failure, while gears are susceptible
to recoil. The primary types of reducers include harmonic
reducers, planetary reducers, and rotate vector (RV) reducers.
For instance, when harmonic reducers are employed at
the joints of a SCARA robot, its compliant characteristics
become more prominent [9]. At high speeds, the large inertia
of the robot leads to significant residual vibrations at the
end when the motion stops, thereby decreasing machining
accuracy and increasing positioning time [10]. Furthermore,
mechanical transmission mechanisms like gearboxes are
susceptible to mechanical fatigue at very high acceleration
and deceleration, and their use can reduce the stiffness of the
mechanical structure, thereby reducing the bandwidth of the
position loop and potentially causing resonance issues.

Compared to indirect-drive SCARA, the DDSCARA con-
nects the load directly to the motor without any intermediary
transmission device [11], [12], [13]. This structure offers
several advantages, including fewer parts, a compact design,
the absence of transmission gaps, high reliability, high
speed, and high positioning accuracy, and they ultimately
improve the dynamic response of the system gain. The torque
motor located at joints serves as the core component of the
DDSCARA and uses a surface-mounted permanent-magnet
(PM) machine. This type of motor is highly advantageous
due to its high peak torque-to-inertia ratio [14], making it
particularly well-suited for use in the DDSCARA compared
to other motor types. Despite its advantages, the direct-
drive structure in the DDSCARA yields a lower moment
of inertia ratio between the motor and the load compared
with that with reducers, making it more susceptible to
resonance [15]. In [16], the dynamic model of a flexible
manipulator with N elastic links and actuators is established.
Its vibration is analyzed considering revolute and pris-
matic joints, illustrating structural vibration and interaction
between joints and links’ fluctuations. Besides, the moment
of inertia of the DDSCARA varies with changes in posture,
leading to changes in resonance frequencies, amplitudes, and
phases.

The primary cause of resonance in the DDSCARA is the
compliant coupling between the motor and load, particularly
the joint compliance [17]. Several techniques can mitigate
resonance, such as increasing the inertia ratio betweenmotors
and loads, stiffening the transmission, increasing damping,
and incorporating filters. In [18], for PM-motor-driven
elevators, a frequency component proportionally modulated
with the disturbance of the rotor acceleration torque and
speed error was added to the control system to eliminate
the vibration caused by resonance, and this method does not
analyze how to tune the control gains and lacks experimental
verification [18]. Sliding mode control has been used to
eliminate vibration in a single DC motor, but it requires an
accurate plant model and cannot allow fast disturbance [19].
In [20], an accurate compliance analysis and finite-element
analysis model of a nanopositioning stage is conducted, and
natural frequencies are obtained. It uses a second-order low-
pass filter to suppress vibration. For the DDSCARA, its
resonance frequency changes with postures, so it is difficult
to establish an accurate model of the natural frequencies.
If only a second-order low pass filter is used to suppress the
vibration, it dramatically reduces the bandwidth and phase
margin of the system, which can make the system unstable.
Based on [21], we propose the addition of real-time filters
to eliminate resonance. We measure resonance points in
different postures of the DDSCARA, adding Bi-Quad filters
that vary with postures into the velocity loop to eliminate
resonance.

As the direct-drive system lacks mechanical transmission,
the dynamic coupling between components intensifies,
resulting in a complex drive current waveform duringmotion.
This strong coupling in direct-drive motion systems presents
new challenges and difficulties in design and optimization.
The general dynamics model of SCARA is used to decouple
the dynamics to achieve dual-axis coordinated control [22]
and demonstrate the strong coupling of the DDSCARA
compared with the structure using reducers. In [23] and [24],
Euler–Lagrange andGibbs–Appell methods provide dynamic
models of elastic manipulators with flexible revolute and
prismatic joints and telescopic joints. The Euler-Lagrange
equation facilitates calculations for obtaining their torque
vectors. We obtained the dynamics equation [25] using the
Euler-Lagrange equation and derived the feedforward for
the DDSCARA’s decoupling control. We used dynamics
feedforward (DFF), which can enhance the control accuracy
[10], [26]. In the existing literature, we have not found
a comparison between the DDSCARA and SCARA with
reducers concerning the impact of coupling. Therefore,
we aim to compare the two types of SCARAs in this article.

Trajectory planning can improve the speed, accuracy, and
dynamic performance of robots [27], [28]. Numerous tra-
jectory planning algorithms have been developed, including
cubic polynomial, quintic polynomial, cubic spline, parabola,
and other interpolation algorithms [29]. The integral of
squared jerk is used as the objective function in [30],
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focusing only on trajectories generated by a fifth-order
B-spline curve with uncertain motion time. Its efficacy
for other trajectory types remains unconfirmed. In [31],
it combines spline interpolation in Cartesian and joint space
for jerk-continuous, time-optimal trajectory planning and
only considers kinematic constraints. Its effectiveness for
energy optimization is unproven.

Other trajectory planning algorithms, such as the genetic
algorithm [32], neural networks [33], and particle swarm
optimization, have been proposed for optimal trajectory plan-
ning. The probabilistic roadmap method algorithm obtains
the shortest path for SCARA to complete the motion task
in the presence of obstacles [34]. The optimization problem
of hyper-redundant manipulators in 3D workspaces is solved
by using a Genetic Algorithm with multiple populations
[35]. Particle swarm optimization can achieve minimal total
power losses and distance [36]. However, both do not
consider the dynamic constraints. Furthermore, genetic and
neural network algorithms require complex programming
and high computing power, with particle swarm optimization
also necessitating strict constraints and being susceptible to
locally optimal solutions.

In [37], an indirect method for trajectory optimization is
given. It is based on the resolution of the Riccati equation,
which requires a large amount of calculation, and the initial
value of the shooting method is difficult to suppose [38].
Another method called the direct collocation method (DCM)
features simple constraints and fast operation speed. The
method discretizes the corresponding control variables and
state variables according to the time interval distribution.
Both variables are used as optimization variables. The state
and control variables are approximated by piecewise contin-
uous polynomials, which are used to simplify the integral
calculation involved. When integrals and other calculations
are converted into algebraic equations, the computation
time is significantly reduced [39], [40]. Since the motion
tasks of SCARA mainly involve PTP motion, we use the
direct collocation method (DCM) for trajectory optimization,
with the lowest power loss as the optimization objective.
This method considers the system dynamics equations, the
appropriate initial conditions, and the optimization objective.
It solves nonlinear planning problems by discretizing the
time domain. A key contribution of our research is to use
the DCM for DDSCARA and evaluate its impact on power
losses and position accuracy. Besides, we compare the DCM
optimization results of the DDSCARA and SCARA with
reducers. Lastly, this article provides a theoretical analysis
and a model simulation and verifies the results through an
experimental platform.

In this article, Section II establishes the general kinematic
and dynamic models of SCARA. In Section III, the control
system of the DDSCARA is analyzed. Section IV presents
the optimization model, and trajectory optimization of the
DDSCARA is conducted to obtain the optimization results.
Section V describes the experimental platform implemented

FIGURE 1. Schematic diagram of the DDSCARA.

TABLE 1. Denavit-Hartenberg convention parameters of the DDSCARA.
The parameters a, α, d , and θ are the link length, link twist, link offset,
and joint angle, respectively.

to verify the theoretical results. Finally, the conclusions are
given in Section VI.

II. THE KINEMATIC AND DYNAMIC MODEL
A. KINEMATIC MODEL
The kinematic model of SCARA primarily elucidates the
correlation between joint variables and end coordinates in a
Cartesian coordinate system [41]. According to the structure
of the DDSCARA examined in this article (Fig. 1), the
kinematic model and reference frames are established. The
convention of reference frames is the Denavit-Hartenberg
convention (DH), which is commonly adopted in robotics.

Table 1 presents the DH parameters of the DDSCARA,
with L1 and L2 denoting the length of links 1 and 2,
respectively, θ1 and θ2 representing the joint rotation angle,
and h1 and h2 are respectively the height of motors 1 and 2.
Under the DH convention, the homogeneous transformation
matrix that characterizes the position and orientation of
oixiyizi relative to ojxjyjzj can be determined using

j
iT =


cos θi − sin θi 0 xi

sin θi cosαj cos θi cosαj − sinαj yi
sin θi sinαj cos θi sinαj cosαj zi

0 0 0 1

 , (1)

where xi = aj, yi = −di sinαj and zi = di cosαj, i = 1, 2, 3
and j = i− 1.
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FIGURE 2. Equivalent kinematic model of the DDSCARA.

Subsequently, the product of

0
1T =


cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 h1
0 0 0 1

 , (2)

1
2T =


cos θ2 − sin θ2 0 L1
sin θ2 cos θ2 0 0
0 0 1 h2
0 0 0 1

 , (3)

and

2
3T =


1 0 0 L2
0 1 0 0
0 0 1 0
0 0 0 1

 (4)

yields the position and orientation (5) of the end with respect
to the inertial frame o0x0y0z0, which is attached to the base
of motor 1:

0
3T =

0
1T

1
2T

2
3T

=


cos(θ1 + θ2) − sin(θ1 + θ2) 0 x
sin(θ1 + θ2) cos(θ1 + θ2) 0 y

0 0 1 z
0 0 0 1

 , (5)

with

x = L1 cos θ1 + L2 cos(θ1 + θ2) (6)

y = L1 sin θ1 + L2 sin(θ1 + θ2) (7)

z = h1 + h2 (8)

The purpose of the inverse kinematics of SCARA is to
obtain joint variables θ1 and θ2 through the known terminal
coordinate (x, y, z). In this article, SCARA studied does not
move in the z-axis direction, and the equivalent motion model
in the o0x0y0 plane is shown in Fig. 2. We use the algebraic
method to solve the inverse kinematics: θ2 is given by the
cosine law

θ2 = arccos
x2 + y2 − L21 − L22

2L1L2
. (9)

Figure 2 illustrates that two θ2 values, corresponding to two
distinct gestures, can be derived from the same coordinate,
namely θ ′

2 = −θ2. The calculation of θ1 involves variable
substitution, as described by

θ1 = arctan(y, x) − arctan(k2, k1), (10)

where k1 = L1 + L2 cos θ2 and k2 = L2 sin θ2, and the
function arctan(y, x) gives the arc tangent of y

x , taking into
account which quadrant the point (x, y) is in. The function
arctan(k2, k1) is defined similarly.

B. DYNAMIC MODEL
The robot dynamics primarily focuses on investigating
the impact of force or torque exerted on each joint on
the overall motion of the robot. Therefore, the dynamics
equations of robots play a critical role in the system’s design
and optimization of robot control. The link of SCARA is
motivated by the force or torque exerted by the joint. In the
case of the DDSCARA, the motor directly connects links and
loads. Therefore, the coupling increases. The links and loads
add additional inertia that varies with the joint configuration.
Each link in SCARA is supported by the reaction force of
adjacent links and the torque generated by the joint. The
dynamics equation of SCARA is a set of coupled dynamics
equations that specify the joint torques required to achieve
a desired manipulator state, providing insight into how the
motion of joints exerts a disturbing force on other joints.
This article employs the Euler-Lagrange equation to derive
the dynamics equation of SCARA [42]. The Euler-Lagrange
approach is a dynamic method based on energy principles,
which establishes the dynamic model by considering the
system’s kinetic energy and potential energy. As the motion
of the DDSCARA is confined to the horizontal plane, there
is no gravitational potential energy involved. In the modeling,
we regard links and loads that make up the manipulator arm
as rigid bodies, and if we know the position of their center
of mass and moment of inertia, then their mass distribution
characteristics are determined. Finally, the torque required for
the link motion is a function of acceleration, velocity, angle,
and mass distribution.

To obtain the dynamics equation, the first step is deriving
the inertia matrix

M
(
θ1, θ2

)
=
[
M11 M12
M21 M22

]
, (11)

with

M11 = m1L2c1 + m2(L21 + L2c2 + 2L1L2c2 + 2L1L2c2
+ 2L1Lc2cosθ2) + I1 + I2, (12)

M12 = M21 = m2(L2c2 + L1Lc2cosθ2) + I2, (13)

and

M22 = m2L2c2 + I2, (14)

where mi is the mass of link i, Lci is the distance between the
axis of rotation of link i and its center of mass, whereas Ii
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is the moment of inertia of link i with respect to the z-axis
passing through its center of mass, i = 1, 2.
According to the inertia matrix, we can get the elements of

the Christoffel symbol

C111 = C122 = C212 = C222 = 0, (15)

C121 = C211 = C221 = −C112 = h, (16)

with h = −m2L1Lc2 sin θ2.
In themodels, the reduction ratio is denoted byNi, i = 1, 2.

To keep derivations general, we include the reducer in both
DDSCARA and SCARA models, assuming Ni = 1 for the
DDSCARA. The torque produced by the motor at the joint
can be divided into three components: the torque required for
the rotation of the motor and the load (τmi), the torque needed
to overcome friction (τfi), and the disturbance torque arising
from the coupling of the dynamics (τdi). The torque τmi can
be obtained from

τmi = (Ji +
Mii

N 2
i

)q̈i, (17)

where qi is the motor rotation angle and qi = Niθi, Ji is the
moment of inertia of the motor itself, and q̈i is the second
derivative of qi with respect to time, i = 1, 2.
Using the Coulomb and viscous friction model to calculate

the τfi, and considering only the friction at the joints, the
model can be expressed as follows:

τfi = Bviq̇i + Fcisign(q̇i), (18)

where Bvi is the viscous friction coefficient, Fci is the
Coulomb friction coefficient, and q̇i is the first derivative of
qi with respect to time, i = 1, 2.

Finally, according to the Euler-Lagrange equation,
we express the disturbance torque arising from the coupling
of the dynamics of the two rotating joints, denoted as τd1 and
τd2, respectively:

τd1 = M12θ̈2 + (C121 + C211)θ̇1θ̇2 + C221θ̇
2
2 , (19)

τd2 = M21θ̈1 + C112θ̇
2
1 , (20)

where θ̇i is the first derivative of θi with respect to time, and
θ̈i is the second derivative of θi with respect to time, i = 1, 2.

Then we derive output torque of both motors:

τ1 = τm1 + τf1 + τd1

= (J1 +
M11

N 2
1

)N1θ̈1 + Bv1N1θ̇1 + Fc1sign(N1θ̇1)

+
1
N1

(M12θ̈2 + (C121 + C211)θ̇1θ̇2 + C221θ̇
2
2 ), (21)

τ2 = τm2 + τf2 + τd2

= (J2 +
M22

N 2
2

)N2θ̈2 + Bv2N2θ̇2 + Fc2sign(N2θ̇2)

+
1
N2

(M21θ̈1 + C112θ̇
2
1 ). (22)

To gain a more intuitive understanding of the decoupling
effect of the reducer and the strong coupling between the

FIGURE 3. Calculated disturbance torque of axis 1 to axis 0 with different
reducer ratios (N = 20, 100).

FIGURE 4. Calculated disturbance torque of axis 1 to axis 0 in the
DDSCARA (N = 1).

two direct-drive motors in the DDSCARA, a motion task was
devised, which involved keeping axis 0 of SCARA stationary
while allowing axis 1 to rotate 90 degrees within 400 ms.
More precisely, this entailed maintaining θ1 = 0◦ while
θ2 changed from 0 degrees to 90 degrees in Fig. 1, with
both axis 0 and axis 1 adopting the same reduction ratio.
By comparing the reduction ratio of 20 and 100, Fig. 3 shows
that with the increase in reduction ratio, the torque of the axis
0 motor gradually decreases, and the disturbance of axis 1 to
axis 0 gradually diminishes during the motion. Therefore, the
dynamics relationship between axis 0 and axis 1 of SCARA
with reducers is approximately decoupled particularly at high
reduction ratios. For the DDSCARA, it can be seen from
Fig. 4 that to achieve this motion, axis 0 requires a larger and
irregular torque output to maintain θ1 = 0◦, which shows the
strong coupling of the DDSCARA.

III. CONTROL SYSTEM
AN OVERVIEW OF THE OVERALL CONTROL SYSTEM
SCARA is a time-varying, nonlinear, and strongly coupled
system with multiple inputs and outputs [43]. Traditional
single-control methods often struggle to meet the demanding
requirements for both accuracy and speed. Generally, the
proportional-integral-derivative (PID) controller serves as the
fundamental controller of robots due to its high stability

123866 VOLUME 11, 2023



Z. Liu et al.: Direct-Drive Permanent-Magnet Motor SCARA

FIGURE 5. Control system of the DDSCARA.

[44], simple parameter adjustment, and excellent robustness.
Dynamic parameter optimization strategy and compensation
strategy are supplemented, which can realize high-precision
trajectory tracking at certain conditions. The control system
of the DDSCARA is shown in Fig. 5, which adopts a
compound control method of feedback and feedforward.
Specifically, feedback is used to ensure transient stability,
while feedforward is employed to achieve steady-state
nonlinear dynamic compensation. The feedback adopts the
three-loop series control method of position loop, velocity
loop, and current loop. The position loop adopts P controller,
and the velocity loop adopts the combination of real-time
filters and PI controller to address the issues of mechanical
system resonance and external interference. The rotational
speed control strategy is adopted in the current loop to
realize the maximum torque output of the surface-mounted
permanent-magnet synchronous motor, and the space vector
pulse width modulation (SVPWM) is used to improve the
utilization rate of the bus voltage.

Furthermore, we add velocity feedforward and accelera-
tion feedforward into the control system. The acceleration
feedforward control differs from simply multiplying by a
constant coefficient to obtain the current feedforward value
but adopts the decoupling of dynamics to achieve coordinated
control of the two axes, that is, dynamics feedforward
(DFF). Due to the significant coupling between the two
axes, the time-varying joint inertia coupling and the constant
current feedforward may result in large current overshoots.
To address this, we establish the dynamics equation of
the DDSCARA using the Euler-Lagrange Equation for the
decoupling of dynamics and provide the real-time current

FIGURE 6. Model for a compliant joint of SCARA [10].

feedforward (I1FF, I
2
FF) that varies with the posture of the

DDSCARA.

A. RESONANCE
Multiple factors contribute to the resonance of the
DDSCARA, but the primary cause is the compliance of
its components. To better understand the resonance in the
DDSCARA, a model for a compliant joint (Fig. 6) was
established and analyzed [8], [15], [17]. The model analysis
is based on the following assumptions: the reducer is a whole,
all the other components are rigid, and there is no compliance
between them except the transmission compliance between
reducers and loads. Therefore, the transfer function from the
output electromagnetic torque TE of the motor to the position
PM is obtained by

PM(s)
TE(s)

=
N
JTs2

 JLs2 + KCVs+ KS(
(JM+JR)JL

JT

)
s2 + KCVs+ KS

 , (23)
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FIGURE 7. Bode plot of the Bi-Quad filter.

where JT = JM+JR+JL, JM, JR, and JL respectively denote
the moment of inertia of the motor, the reducer, and the load,
KS is the transmission compliance coefficient. It represents
the proportion between the torque generated at the load and
the difference between the reducer and load position. The
parameter KCV is the cross-coupled viscous damping and
represents the proportion between the torque generated at
the load and the difference between the reducer and load
velocity.

B. REAL-TIME FILTER AND DYNAMICS FEEDFORWARD
The control system consists of real-time filters, including
a low-pass filter, a Notch filter, and two Bi-Quad filters
[10]. The parameters of Notch filters and Bi-Quad filters,
the P controller of the position loop, and the PI controller
of velocity and the current loop will change in real-
time according to the frequency, amplitude, and phase of
resonance. For the Bi-Quad filter, its transfer function is as
follows

T (s) =

(
s2 + 2ξZωZs+ ω2

Z

s2 + 2ξPωPs+ ω2
P

)(
ω2
P

ω2
Z

)
, (24)

where ωZ and ωP represent the natural frequency of the zero
and pole, respectively, while ξZ and ξP denote the damping
ratio of the zero and pole, respectively.

As Notch filters can be considered a specific instance of
Bi-Quad filters, and when ωZ = ωP and ξZ = 0, the
analysis of the latter is sufficient. Since resonance points
of the DDSCARA are at specific frequencies, as shown in
Fig. 13, BiQuad filters adopting the form of Notch filters are
more effective in eliminating the resonance. The Bode plot of
the Bi-Quad filter with different damping ratios is shown in
Fig. 7.

To enhance control accuracy, the DFF calculated by joint
angles, velocities, accelerations, structural parameters, and
dynamics model of the DDSCARA are added into the
control system. In addition, unlike velocity feedforward, the
DFF does not affect the gain of the position loop and can
also eliminate overshoot caused by velocity feedforward
and coupling and improve the response speed. Through the
derivation of the dynamics model in Section II, according
to the torque constant K 1

t and K 2
t of the direct-drive motors

1 and 2, the current feedforward can be obtained:

I1FF =
τ1

K 1
t
, I2FF =

τ2

K 2
t
. (25)

IV. TRAJECTORY OPTIMIZATION
The direct collocation method (DCM) is a numerical
approach that addresses continuous dynamic optimization
problems by transforming them into static problems through
time domain discretization and then solves them with corre-
spondingmethods [40]. This method involves discretizing the
control and state variables. To ensure accurate fitting of these
variables in the time domain, interpolation polynomials are
employed. By differentiating the polynomials, we approxi-
mate the differential values of the state variables at discrete
nodes, thereby obtaining the static optimization problem
known as the nonlinear programming (NLP) problem. In con-
trast to the direct shooting method, which applies polynomial
fitting across the entire time domain, the DCM employs
polynomial fitting within individual discrete segments. The
DCM is favored for its computational simplicity and fast
operation speed, making it a widely adopted method.

This article uses Hermite–Simpson collocation to construct
the nonlinear program for the problem. The second-order
dynamics equations of the DDSCARA are derived from (21)
and (22) for the DCM:

θ̈1 =
τ1k2 − τ2

M12
N1

+
M12C112
N1N2

θ̇21 −
k2k3
N1

k1k2 −
M12M21
N1N2

(26)

and

θ̈2 =
τ2k1 − τ1

M21
N2

−
k1C112
N2

θ̇21 +
M21k3
N1N2

k1k2 −
M12M21
N1N2

, (27)

where k1 = (J1 +
M11
N 2
1
)N1, k2 = (J2 +

M22
N 2
2
)N2 and k3 =

(C121 + C211)θ̇1θ̇2 + C221θ̇
2
2 .

It is necessary to represent the system dynamics in first-
order form for all standard trajectory optimization methods,
and it is achieved by including both the minimal coordinates
(θ1 and θ2) and their derivatives in the state. Note that θ̈1 and
θ̈2 are defined in (26) and (27):

x =


θ1
θ2
θ̇1
θ̇2

 , ẋ = f (x, τ1, τ2) =


θ̇1
θ̇2
θ̈1
θ̈2

 . (28)

The optimization objective in this article is to minimize
the power loss for a given motion time. We establish the
following objective function:

Jloss =

∫ tm

0
(i21R1 + i22R2)dt , (29)

where i1 and i2 represent the input currents of motors 1 and 2,
R1 and R2 denote the single-phase resistance of motors
1 and 2, and tm represents the motion time.
The objective function (29) takes the form of quadratic

polynomials, which tend to produce smooth trajectories that
can solve optimization problems faster and more accurately.
Moreover, traditional controllers find it easier to stabilize the
system when dealing with smooth trajectories.
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FIGURE 8. The trajectory profiles generated by the S-curve include jerk
and acceleration curves. The variable tm is the motion time, while αs and
βs are the time proportion of jerk and constant velocity, respectively.

FIGURE 9. Calculated current comparison of optimization and S-curve for
the DDSCARA and SCARA with reducers (N = 100), the axis 0 on the left
and the axis 1 on the right.

The boundary constraints of the motion system are both the
initial points (di1 and di2) and final points (df1 and df2) of the
trajectory. The velocity is zero at the initial and final points,
and the boundary constraints for this system are given by

x|t=0 =


di1
di2
0
0

 and x|t=tm =


df1
df2
0
0

 . (30)

The constraints imposed on the state variables are as follows:
di1 − 211
di2 − 212

−∞

−∞

 ≤ x ≤


di1 + 211
di2 + 212

+∞

+∞

 , (31)

− τmax1 ≤ τ1 ≤ τmax1 and − τmax2 ≤ τ2 ≤ τmax2, (32)

where 11 = |df1 − di1|, 12 = |df2 − di2|, and τmax1 and
τmax2 are the maximum torque output of motors 1 and 2.
To ensure that the solver reaches a fast convergence to the

global optimal solution, trajectory optimization must entail a
well-defined initial guess. A simplified initial guess assumes
linear motion between the initial and final states, with zero
applied torque, which is valid for the problem in this article,
although it fails to satisfy the system dynamics:

xguess|t =


di1
di2
0
0

+
t
tm


11
12
0
0

 , τguess|t = 0. (33)

The subsequent investigation focused on the impact of the
DCM applied to the DDSCARA and SCARA with reducers
(N=100). The designated motion task entailed moving from
point A (0.18 m, 0.1 m) to point B (0.275 m, 0.27 m)
on the plane within 400 ms. Subsequently, the optimized
trajectory was compared with that generated by the S-curve
(Fig. 8) [45].

FIGURE 10. Trajectory comparison of optimization and S-curve for the
DDSCARA and SCARA with reducers.

TABLE 2. Power loss comparison of optimization and S-curve for the
DDSCARA and SCARA with reducers and power loss is calculated by (29).

Figure 9 shows that when the trajectory adopts the S-curve,
the axis 0 current of SCARA with reducers is close to that
of the DDSCARA, while its axis 1 current is somewhat
different from that of the DDSCARA in the second half
of the motion. The reason is the coupling between the two
axes of the DDSCARA. Upon optimization by the DCM, the
current of both axes decreases and is more linear. However,
the current of the DDSCARA is lower than that of SCARA
with reducers, which is more notable in axis 1.

In Fig. 10, we can see that the motion trajectory of SCARA
with reducers after optimization remains almost the same
as that generated by the S-curve (before optimization). This
is why the S-curve has been widely used for SCARA with
reducers and achieves good results in that case. Notably,
for the DDSCARA, this is different. The optimization
of the trajectory through DCM gives a trajectory that is
significantly different from the original S-curve trajectory.
This emphasizes the need to use DCM to optimize the
trajectory of DDSCARAs. As shown in Table 2, the DCM
can also optimize the trajectory of SCARA with reducers
to reduce the power loss, but the optimization effect on the
DDSCARA is more significant.
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FIGURE 11. DDSCARA 3D model.

FIGURE 12. Experimental platform of the DDSCARA.

TABLE 3. Parameters of the experimental platform.

V. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL SETUP
The 3Dmodel of theDDSCARA is established in SolidWorks
(Fig. 11) and imported into MATLAB Simulink for simula-
tion, which provides motions generated by the S-curve and
the DCM. According to the simulation model, the prototype
of the DDSCARA shown in Fig. 12 was designed and
equipped with the servo driver, and the motors used in the
prototype are surface-mounted permanent-magnet machines.
The communication between the computer and the servo
driver adopts the EtherCAT Protocol, with the servo driver
given in [46]. The computer generates motion information

TABLE 4. Electrical performance parameters of the two motors at a
temperature equal to 20℃.

and transmits it to the servo driver. At the same time, encoders
embedded within the motors convey the motion information
of the DDSCARA back to the computer through the servo
drive, forming a closed-loop control. Detailed parameters
of the experimental platform and the two motors are given
in Table 3 and Table 4. Affected by the gravity and loads,
links will deform, which affects the position accuracy of the
DDSCARA. The weight variation of the end load also causes
the change of the moment of inertia of the DDSCARA, then
affects the output torque of the direct drive motor required
by the DDSCARA, and its resonance points will also change,
which will affect the design of the DDSCARA robotic arm.
In addition, the weight variation of the end load also causes
the change of power loss.

B. EXPERIMENTAL RESULTS
Because the resonance frequency, the phase, and the ampli-
tude of the DDSCARA change with its postures, specifically
the variation of θ2, measuring the resonance characteristics at
different θ2 values is necessary. To eliminate the resonance,
appropriate filters are incorporated, and the parameters of
these filters, such as the natural frequency and damping coef-
ficient of the zero and pole, are recorded. Notch and Bi-Quad
filters are added according to the frequency and amplitude
of resonance obtained by the Bode plot, and two Bi-Quad
filters are applied to the resonance with high amplitude to
eliminate it. Under the premise of ensuring the bandwidth and
phase margin, the amplitude is reduced by -15 dB to -25 dB
to ensure stability. Experimental measurement is conducted
to obtain data, which is subsequently used for fitting to
obtain the function between the filter parameters and θ2, then
the real-time filter is obtained. Considering θ2 = 47◦ as
an example, it can be seen from the open-loop Bode plot
(Fig. 13) of the system that there are four resonance points
below 300 Hz, among which the resonance with frequencies
of 73.7 Hz, 20 Hz, and 271.7 Hz exert a significant influence
on the motion system. With the addition of the filters, their
amplitude is all lower than -20 dB, their amplitude above
300 Hz is also lower than -10 dB, and the system can gain
a phase margin of about 35◦.
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FIGURE 13. Measured Bode plot of the DDSCARA axis 0 at θ2 = 47°.

Figure 14 shows that the DFF prompts a remarkable reduc-
tion in position error during motion, approximately ten times
lower than without the DFF. Moreover, the DFF significantly
reduces the current overshoot and almost eliminates it at some
time points. Consequently, the DFF brings the experimental
results closer to the analytical results, indicating that the
DFF achieves a more accurate and precise motion control.
Although the DFF can improve the control accuracy, there
are still errors between the actual motion and simulation.
One source of error comes from the small difference between
design parameters and actual prototype parameters of both
motors and links. Also, it is difficult to establish a completely
accurate dynamics feedforward model. In addition, the
interference of external environment mechanical parameters
and the change in motors’ temperature affect the accuracy of
the dynamics model.

To verify the effectiveness of the optimization method
applied to the DDSCARA, the trajectory generated by the
DCM is compared with that generated by the S-curve.
As shown in Fig. 15, the motion task consists of four PTP
motion segments within the square range of 200 mm ×
200 mm. The motion points are A, B, C, and D, and the
PTP motion duration is tm, with a rest period of 100 ms for
each segment. The other parameters of this motion task are
shown in Table 5. This motion task simulates the assembly
operations typically encountered in industrial applications
involving SCARA.

Because the changing trend of experimental results
obtained by different tm values from 0.3 s and 0.45 s is the

FIGURE 14. Comparison between analytical and experimental results
with and without DFF.

TABLE 5. Motion task parameters.

same, only the position error, velocity, and current figures
when tm is 0.3 s and 0.4 s are shown here. From Fig. 16, the
current for the motion generated by the S-curve is smaller
than that generated by the DCM, and the optimized current
is approximately linear in motion segments. Moreover, the
current fluctuation after optimization is also smaller than that
of the S-curve, which is more noteworthy from 0.5 s to 0.6 s
for the tm = 0.3 s motion. With the increase of tm, the
current decreases, the current fluctuation diminishes, and the
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FIGURE 15. Motion task diagram.

TABLE 6. Axis 0 and 1 position error (MAE), and percentage decrease in
error (MAE) of S-curve compared with optimization.

experimental results are more consistent with the analytical
results.

The velocity results are shown in Fig. 17. Compared with
the S-curve, the velocity maximum for the motion generated
by the DCM is lower, and the experimental results of both
methods are highly consistent with the analytical results.
In motion segments from B to C and D to A, the motion
generated by the S-curve differs from that generated by
the DCM. The two axes of S-curve motion rotate in the
same direction, while the two axes of the DCM motion
have both same and opposite direction rotation. Due to the
strong coupling between the two axes of the DDSCARA,
when two axes rotate in the same direction, axis 0 needs to
generate more torque to counteract the axis 1 effect. However,
the opposite-direction motion leverages the coupling effect,
making the motion more stable with less torque.

Figure 18 and Table 6 show that the position error of
motion generated by the DCM is lower compared with the
S-curve, which is more remarkable on axis 1. For tm = 0.3 s,
the mean absolute error (MAE) of axis 1 position error
after optimizing is reduced by 67.8%, which shows that the
DCM also improves positioning accuracy. The improvement
in accuracy is because the trajectory optimization (DCM)
takes into account the dynamics of the DDSCARA, which
allows motion tasks to be accomplished with lower currents
and more reasonable postures. Furthermore, regardless of

FIGURE 16. DDSCARA’s current of axis 0 and axis 1 for different tm values.

the motion generation methods employed, the position error
of axis 1 is consistently higher than that of axis 0. This
discrepancy can be primarily due to the coupling effect of
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FIGURE 17. DDSCARA’s velocity of axis 0 and axis 1 for different tm
values.

the direct-drive structure. The position error increases as tm
shortens.

FIGURE 18. DDSCARA’s position error of axis 0 and axis 1 for different tm
values.

FIGURE 19. DDSCARA’s trajectories generated by the DCM and S-curve,
tm = 0.4 s.

Figure 19 shows trajectories generated by the DCM and
S-curve, revealing differences. This is because the motion
profiles of each segment generated by the S-curve are
similar according to fixed mathematical algorithms without
considering other factors. However, the DCM considers the
dynamics model of the DDSCARA and takes the minimum
power loss as the objective to generate motion profiles. For
theDCM, even if the distance between two points is the same,
the DDSCARA will have different motion trajectories with
varying postures at the starting and ending points. Finally,
Fig. 20 shows the comparison of power losses. The power
losses are deduced from the measured current and (29).
We find a significant reduction in power loss after applying
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FIGURE 20. DDSCARA’s power loss measurements of motions generated
by the DCM and S-curve for different tm.

the DCM for different tm values. Notably, for tm = 0.3 s, the
power loss is reduced by as much as 50.3%. These results
demonstrate the effectiveness of the DCM in minimizing the
power loss of the DDSCARA.

VI. CONCLUSION
This article introduces the DCM as a trajectory optimiza-
tion approach for the DDSCARA, with the objective of
minimizing power loss. The general kinematic and dynamic
model established applies not only to the DDSCARA but
also to SCARA with reducers. The strong coupling of the
DDSCARA compared with the structure with reducers is
verified. In addition, the model of compliant joins of the
DDSCARA is also provided, the reason for resonance is ana-
lyzed, and adding real-time filters eliminates the resonance
from the level of the motion control system. Decoupling
the DDSCARA’s dynamics is carried out according to the
system dynamics equation to add the DFF to improve
the position control accuracy. The results of experiments
demonstrate that real-time filters eradicate resonance, and
the DFF can diminish the position error by approximately
tenfold, resulting in an enhancement in control accuracy.

The DCM is used to establish the optimized trajectory
of both DDSCARA and SCARA with reducers. Notably,
because of the coupling, the DCM has a much more
significant effect on reducing the DDSCARA power loss
compared with SCARA with reducers. Also, the optimized
trajectory found using DCM differs from the S-curve for
DDSCARA. On the contrary, for SCARA with reducers, the
optimized trajectory found using DCM is not significantly
different than the S-curve. This confirms that the coupling
not only impacts the control of the DDSCARA but also
significantly impacts the optimized trajectory.

For the DDSCARA, motions generated by the S-curve
and the DCM are compared on the experimental platform,
considering different tm values. The application of the DCM
to the DDSCARA trajectory optimization can reduce the axes
0 and 1 position error (MAE) by 52.4% and 67.8%, and the
power loss by 50.3% for the motion task with tm = 0.3 s,
which proves that this optimization method can improve the
performance of the motion system while reducing the power
loss.

In future research, more advanced optimization algorithms
can be used to impose more stringent constraints on the
DDSCARA motion trajectories and the comparison of
different control methods to enhance the reliability, making
them applicable to more complex application scenarios.
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