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ABSTRACT The reliability of the model significantly affects early detection and accurate classification of
electrical faults. In this study, a Long Short Term Memory based fault classification model was developed
for the Power SystemMachine Learning benchmark dataset, focusing on improving reliability by increasing
interpretability. First, novel metrics are introduced to measure model interpretability. These interpretability
metrics are uniquely defined based on the disentanglement of the fault classification factors. Subsequently,
hyperparameter optimization was performed using multi-objective Bayesian Optimization to determine the
optimal model architecture. The objective of optimization is to maximize interpretability and classification
accuracy. The Pareto-optimal solution presents different model architectures with varying accuracy and
interpretability trade-offs. Finally, the manifestation of interpretability in terms of subsequences is studied
using Shapley Additive Explanations. The impact of class representation and architectural parameters on
interpretability was also analyzed. Furthermore, the most accurate model in the Pareto front achieved highly
competitive accuracy for the benchmark data.

INDEX TERMS Artificial intelligence, deep learning, electrical fault detection, hyperparameter
optimization, interpretability, long short term memory, pareto optimization, power grids, power system
reliability, recurrent neural networks, time series analysis.

I. INTRODUCTION
Fault classification is an important aspect of electric grid
operation. It is essential to prevent power outages, ensure grid
resilience, enhance efficiency, enable predictivemaintenance,
and facilitate grid modernization. These efforts support the
transition towards carbon neutrality by maintaining a stable
and reliable electric grid that can effectively accommodate
renewable energy sources, reduce greenhouse gas emissions,
and support sustainable development in the face of climate
change [1]. The sensitive nature of grid operations limits
the accessibility of grid data. The need for well-documented
and real datasets for grid fault classification is an important
limitation of data-driven models for benchmarking their
performance [2]. Recent developments in open-source power
system datasets have provided opportunities to address
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several research gaps in this area [2], [3]. The load, renewable,
and grid data in such datasets are presented as time-series
readings of voltage, current, power, etc. The faults leave
unique signatures on the current and voltage time-series
values. Fault classification involves classifying the nature of
a fault based on time-series electrical readings.

Traditional model-based methods, such as observers or
estimators, typically rely on the development of precise
mathematical models based on the system parameters. These
models were then used to compare the measured values with
the output generated by the model to diagnose faults [4], [5].
However, conventional model-based diagnostic techniques
often fail to achieve competitive results owing to the increas-
ing complexity of electrical and electronic systems. The
rapid evolution of smart sensors and the Internet of Things
(IoT) has led to data-driven methods surpassing model-
based approaches in terms of their performance. In classical
machine learning, these methods often rely on external
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feature-extraction processes to facilitate model learning. For
instance, in [6], the authors employed techniques such as the
Fast Fourier Transform and the ReliefF algorithm to select
the most correlated features. These selected features were
then used as inputs for models such as the Extreme Learning
Machine (ELM) andRandomVector Functional Link (RVFL)
for fault classification. Similarly, in [7], Principal Component
Analysis was employed to reduce dimensionality before
applying a Bayesian model for fault diagnosis.

By contrast, deep learning models can extract features
and perform classification, making them highly effective for
nonlinear mapping. Deng et al. [8] developed a Convolutional
Neural Network (CNN) model based on LeNet-5 for the
localization of traveling wave faults. Liang et al. [9]
introduced an approach using an Adaptive Convolutional
Neural Network (ACNN) to select fault lines within distri-
bution networks. In addition, feature extraction techniques
such as the Short-time Fourier Transform (STFT) have
been combined with CNN classifiers for fault detection
and classification [10], [11]. Hou et al. [12] employed a
Conditional Generative Adversarial Network (CGAN) in a
fault identification method tailored to distribution networks.
Furthermore, Long Short Term Memory (LSTM) was used
for detection of High Impedance Fault (HIF) in solar
Photovoltaic (PV) integrated power system [13] and for fault
detection in a grid-connected Micro-grid (MG) system [14].
Gated Recurrent Unit (GRU) models have been used in fault
detection methods for Ultra High Voltage Direct Current
(UHVDC) systems [15] and photovoltaic arrays [16]. The
fault location in power systems was also identified using a
combination of the attention mechanism and bidirectional
GRU [17]. Alrifaey et al. [18] utilized Wavelet Packet
Transform as a data preprocessing technique in conjunction
with a hybrid LSTM and Stacked Autoencoder approach
for fault detection and classification in photovoltaic systems.
Deep learning methods have also been applied at the device
level for data-driven fault diagnosis using streaming Phasor
Measurement Unit (PMU) data [19], and multihierarchy
embedding matching [20] has been explored for electrical
fault diagnosis. Collectively, these studies underscore the
growing popularity of deep learning approaches in fault
classification.

The lack of interpretability accompanies the success of
deep learning models in improving classification perfor-
mance, as these are black-box models. Several factors
necessitating interpretability include adversarial robustness,
regulatory compliance, and ethical concerns [21], [22]. When
the inference is incomprehensible to users, the credibility
of the model becomes questionable for sensitive operations
such as the electric grid. For a successful grid operation,
the fault classification model must be reliable, and model
interpretability is an important aspect of this domain [23].
There are two different approaches for enhancing the

interpretability of deep learning models. One is to use
post-hoc tools or architectural enhancements to improve

model interpretability. These tools are model-agnostic
methods such as Local Interpretable Model-agnostic Expla-
nations (LIME) and Shapley Additive Explanations (SHAP)
[24], [25]. In [26], Integrated Gradients (IG) were used to
interpret the feature importance of interruptions in a power
distribution network. In [27], LIME was used for transient
stability evaluation in power grids. Some models, such as
attention models, have built-in mechanisms that aid post-
hoc interpretability, and such structural features have been
incorporated for fan fault diagnosis [28] and electricity load
forecasting [29]. In [30], the authors augmented a base linear
regression learner with recurrent neural networks (RNNs)
to improve interpretability for time-series forecasting.
Using class activation maps for power converter fault
diagnosis [23], [31], decoupling position embedding
units [32], time-domain attention [33], and self-organizing
maps for encoding power curves [34] have improved the
interpretability of fault diagnosis. However, the interpretabil-
ity approach explored in these studies has significant
drawbacks. These methods act as a tool that can be used
to interpret the model inference. However, the resulting
explanation might not be meaningful. Identifying the most
impactful input regions or features may not reveal the
domain-related patterns identified by the domain experts.
For example, consider two explanations - ‘all 40 time-
steps are equally important,’ and ‘first 10 time-steps
contribute 50%, the remaining 30 time-steps contribute 50%’.
Both explanations are equivalent to interpretability tools
(attention mechanism, CNN heatmaps, SHAP, LIME, etc.).
However, the latter explanation is more interpretable because
it highlights the most significant input subsequence.

The second approach focuses on aligning model inferences
with concepts and patterns identifiable by human experts.
This approach explicitly addresses the drawbacks of previous
approaches. The focus of this approach, other than inter-
preting the importance of features for inference, is to find
patterns in the time domain, such as time-series shapelets,
patches, and instances [24]. For practical applications, the
identification of such subsequences enhances interpretability.
The key properties of this aspect of interpretability are
differentiated contributions, enhanced explanations in terms
of shapelets or subsequences, and expert alignment. In this
study, interpretability refers to this approach. Neural basis
expansion analysis for interpretable time-series (N-BEATS)
enhances this interpretability approach, but only for fore-
casting problems [35]. Reconstruction loss was also used
for interpretability enhancement, which is data-intensive and
difficult to converge [36], [37]. An interpretability metric
was proposed in [38] to measure the second interpretability
approach for image classification.

In this study, we improved the model interpretability for
electrical fault diagnosis and avoided the problems of the
abovementioned methods (such as the data intensiveness of
representation learning, unknown accuracy-interpretability
trade-off, and shapelet identification). Specifically, we made
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the LSTM model more interpretable for electrical fault
classification. LSTM is an intuitively optimal model for time-
series data because of factors such as maintaining causality
and variable input length, which are unique properties of the
time-series data. To this end, novel interpretability metrics
were defined for the LSTM model. These metrics measure
the ability of the model to identify relevant time-series
patterns, are model-agnostic, and can be extended to any
model such as GRU, CNN, and artificial neural networks. Our
objective was to identify models that scored highly in terms
of classification accuracy and interpretability. We performed
hyperparameter optimization using Bayesian Optimization
(BO) to find the Pareto front of models for the accuracy-
interpretability trade-off. We analyzed these models and
identified the factors that make them more interpretable. To
the best of our knowledge, this is the first work that improves
the interpretability of LSTM (or any RNN) models without
making architectural enhancements, such as attention layers.
The main contributions of this study are as follows.

1) Novel metrics have been proposed to measure the
interpretability of the LSTMmodels. These metrics are
agnostic to the disentangling factors of the fault signals.

2) The architectural properties of the LSTM models
that contributed to maximizing the fault classification
interpretability and accuracy were identified.

3) The manifestation of interpretability metrics in factors
such as class similarity, dissimilarity, and subsequence
length has been studied.

4) The signature subsequences of the different types of
faults that affected the model inference were identified.

The remainder of this paper is organized as follows. The
formal definition of Bayesian Optimization is presented in
Section II. Section III outlines the fundamental operation
of the Long Short-Term Memory network, and Section IV
offers a definition of the introspectability metric and related
background concepts. Section V provides an overview of
related works. Section VI presents novel interpretability met-
rics, associated algorithms, and model searching methods.
Section VII provides details of the experiments conducted.
Section VIII presents the results and analysis along with the
post-result analysis methods, and Section IX concludes the
paper.

II. BAYESIAN OPTIMIZATION
Balancing the pursuit of high accuracy with the imperative
of robust interpretability in model selection constitutes
a multifaceted optimization endeavor involving two pri-
mary goals: accuracy and interpretability. To effectively
address this challenge, we employ Bayesian Optimization
(BO), a resource-efficient technique specifically designed
to optimize these computationally expensive black-box
objectives [39]. BO capitalizes on the integration of prior
assumptions regarding the black-box function and progres-
sively refines these priors by assimilating data samples
collected from the function itself. This iterative procedure
aims to construct a posterior distribution that delivers a more

precise approximation of the function. In our study, the
input to the objective function is the model hyperparameter
choices sampled from the search space, and the output is an
accuracy or interpretability score. Central to this framework
is the surrogate model responsible for approximating the
objective function. BO leverages a statistical surrogate model
to accurately represent the objectives. Moreover, BO relies
on an acquisition function that steers the selection of
sampling points towards regions with a higher potential
for improvement compared to the current best observation.
The choice of the next query point is influenced by the
optimization of this acquisition function, which effectively
balances the trade-off between exploration and exploitation.

Let f1, . . . , fm be the m objective functions to maximize.
The performance space is then m-dimensional. In such a
multi-objective optimization problem, a singular optimal
solution is typically elusive. Instead, the objective is to dis-
cern the collection of optimal solutions, wherein enhancing
one objective invariably comes at the expense of another [40].
This collection of solutions is called Pareto set,Ps. A solution,
x∗ ∈ Ps, is Pareto-optimal if there is no other point x
in the search space such that fi(x∗) ≤ fi(x) for all i and
fi(x∗) < fi(x) for at least one i. The quality of the Pareto front,
Pf , associated with the Pareto set Ps, was measured using the
hypervolumeH(Pf ).

H(Pf ) =
∫
Rm

1H (Pf )(z)dz, (1)

where H (Pf ) = {z ∈ Z | ∃1 ≤ i ≤ |Pf | : r ⪯ z ⪯ Pf (i)},
and 1H (Pf ) is a Dirac delta function which has value 1 when
z ∈ H (Pf ) and 0 otherwise. r is the reference point, ⪯ is
the objective dominance operator, and Pf (i) is the ith solution
in Pf . The hypervolume improvement (HVI) in each BO
iteration is an indication of how close the current estimate
is to the true Pareto front.

HVI(P,Pf ) = H(Pf ∪ P)−H(Pf ). (2)

where P is a set of new points added in the current BO
iteration to the previous estimate of Pareto front Pf .

With access to the Pareto set, decision-makers gain the
flexibility to make choices based on their specific pref-
erences, striking a balance between competing objectives.
In this study, we opt for a Gaussian Process (GP) as the sur-
rogate model for each of the objectives, given its capacity to
achieve competitive modeling performance even with limited
query data. The specific acquisition function employed was
the Noisy Expected HyperVolume Improvement (NEHVI).

III. LONG SHORT TERM MEMORY
Long Short Term Memory (LSTM) is a type of recurrent
neural network (RNN) designed to model sequential data
by capturing long-range dependencies and mitigating the
vanishing gradient problem affecting traditional RNNs [41].
An LSTM cell is the fundamental building block of an LSTM
network and is equippedwith various gates to control the flow
of information.
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The LSTM maintains a cell state (C) that runs along the
entire sequence, allowing it to capture long-term dependen-
cies. The update to the cell state is governed by three gates: the
forget gate (f), the input gate (i), and the output gate (o). The
forget gate determines what information from the cell state
(Ct ) should be discarded or kept. The input gate determines
new information that should be stored in the cell state. The
candidate cell state (C̃t ) is new information to be added to the
cell state. The new cell state is a combination of what was
maintained by the forget gate, what was added by the input
gate, and the candidate cell state.

ft = σ (Wf · [ht−1, xt ]+ bf ), (3)

it = σ (Wi · [ht−1, xt ]+ bi), (4)

C̃t = tanh(WC · [ht−1, xt ]+ bC ), (5)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t , (6)

whereW and b are the corresponding weight matrix and bias
term, ht−1 is the hidden state at the previous time step, xt is the
input at the current time step, σ is the logistic function, and
⊙ is element-wise multiplication operator. The output gate
determines what the next hidden state should be, based on
the cell state.

ot = σ (Wo · [ht−1, xt ]+ bo), (7)

ht = ot ⊙ tanh(Ct ). (8)

Themechanism expressed in these equations allows LSTM
to capture and learn dependencies in sequential data, making
it suitable for tasks such as natural language processing,
speech recognition, and time-series analysis.

IV. INTERPRETABILITY MODELS AND METRICS
In this section, the introspectability metric and other crucial
theoretical concepts are defined, providing essential ground-
work for subsequent sections.

A. INTROSPECTABILITY
Introspectability is a metric used to quantify the inter-
pretability of a model in terms of the degree of disen-
tanglement between class representations within a neural
network M [38]. Let X (c) denote the validation data
belonging to class c, and 8(c,l) denote the activations of layer
l reshaped to a single dimension. The activations of all layers
are concatenated to obtain 8(c). The mean class activations
for class c are

8̄(c)
=

1
N (c)

N (c)∑
i=1

8(c), (9)

where N (c) denotes the number of validation data instances
for class c. The introspectability of modelM is then defined
as

Introspectability(M,X ) =
1(NC
2

) NC∑
c=1

NC∑
k=c+1

D(8̄(c), 8̄(k)),

(10)

where D(·, ·) is the function for obtaining the cosine distance
and NC is the total number of classes in the data. In our study,
we calculated introspectability score only for the encodings.

B. SUBSEQUENCE
Interpreting deep learning models with time-series subse-
quence identification is essential for applications such as
anomaly detection, medical diagnostics, and fraud detec-
tion. Explanations rooted in subsequences pinpoint specific
segments of a time-series that contribute to the model’s
classification decisions [24]. In the context of a time-series
denoted as x = {t1, ..., tm}, a subsequence s = {ti, ..., ti+l−1}
with length of l represents an ordered sequence of values. It is
characterized by the condition 1 ≤ i ≤ m − l + 1, ensuring
that the subsequence lies within the bounds of the original
time-series. This interpretability approach provides valuable
insights into the functioning of deep learning models on time-
series data, thereby enhancing transparency and trust in their
outputs.

C. SHAPLEY ADDITIVE EXPLANATIONS
LSTM is not an interpretable model; therefore, we used
Shapley Additive Explanations (SHAP) to identify the
subsequences. SHAP is based on cooperative game theory
and provides a method to fairly distribute the ‘‘explanatory
power’’ of each feature across different combinations of
features [42].

For a given feature i and a prediction f (x), the SHAP
value (φi) for feature i is computed as the average of the
marginal contributions that feature i makes to all possible
feature subsets.

φi(f ) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |!

[ f (S ∪ {i})− f (S)] ,

(11)

where N represents the set of all features, S is a subset
of N excluding feature i, |S| is the number of features in
subset S, and |N | is the total number of features.
This formula captures the concept of evaluating the

model’s prediction for all possible subsets of features,
including and excluding the feature of interest. It computes
the average of the differences in the model predictions for
these subsets, accounting for all possible combinations.

SHAP values are particularly useful for explaining the
importance of individual features in the context of a specific
prediction, thus providing insight into the model’s decision-
making process.

V. RELATED WORK
To the best of our knowledge, only a few studies have
enhanced the interpretability of electrical time-series data.
The neural basis expansion analysis for interpretable time-
series (N-BEATS) employs a set of basis functions that
can be learned to capture different patterns for time-
series forecasting [35]. These basis functions are akin to
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FIGURE 1. General model architecture and objectives for hyperparameter optimization. The accuracy is obtained after training the
LSTM-encoder-classifier model, and the interpretability score is obtained using this trained classifier. Bayesian Optimization uses validation accuracy
and interpretability score to sample LSTM architecture hyperparameters from the search space.

interpretable components such as trends and seasonality.
This methodology considerably enhances interpretability by
enhancing explanations of domain-related patterns. How-
ever, this method was specifically defined for forecasting.
Interpretable fault diagnosis requires the identification of
key shapelets or subsequences of the electrical signals. The
N-BEATS was not designed for this purpose. In [37], the
authors identified the representative shapelets of a time-
series signal using disentangled representation learning.
Such representative shapelets capture key patterns for time-
series classification and aid in interpreting inferences.
However, representation learning methods are data-intensive
and highly sensitive to hyperparameters. Furthermore, these
representations do not focus on the target task. Some studies
on image-classification tasks have addressed the second
approach of interpretability. In [36], the reconstruction loss
function was augmented with an interpretability aware loss
term to train an autoencoder-based model for anomaly
detection. This forces the latent representation to learn the
attention maps. However, the trade-off between these two
loss terms is unknown, and a regularization coefficient is
empirically defined to represent the trade-off. A neural
architecture search was also utilized to optimize the network
architecture for accuracy and interpretability by disentan-
gling the class representations [38]. A new interpretability
metric called introspectability was defined for this purpose.
The introspectability results were successful in obtaining
classwise disentanglement. However, the transferability of
introspectability to time-series problems has not yet been
tested. In summary, there is a lack of electrical fault diagnosis
interpretability in terms of shapelets and other fault-related
patterns aligned with the domain and no mechanism to
achieve this. The methods available in the aforementioned
studies are not transferable to electrical fault diagnosis.
In addition, there is a lack of understanding regarding

the trade-off between the fault classification accuracy and
interpretability.

VI. PROPOSED METHODOLOGY
This section details the concepts and formulations of
novel interpretability metrics and methods used to obtain
interpretable models. In the proposed method, the hyperpa-
rameters that affect both accuracy and interpretability are
the model architecture. These are the number of layers
and hidden dimensions. Bayesian Optimization (BO) was
used to determine the optimal hyperparameters. Because
there are two objectives to maximize, that is, accuracy and
interpretability (see Fig. 1), we obtain a series of models that
form the Pareto-optimal solution.

A. INTERPRETABILITY
Identifying subsequences or shapelets in the time window is
important for interpreting time-series model inferences [24].
This is particularly significant for fault classification because
of the unique signatures of the different fault types. Inter-
preting the inference through this lens helps improve the
reliability of the model. It has been shown that disentangled
encoding leads to factorization of a time-series sequence
into subsequences [37], but this is a time-consuming task.
The approach presented in our study differs from repre-
sentation learning for reconstructions. Without training the
models for representation learning, our study used surrogate
interpretability metrics to identify models that learn the
disentangled encoding of the input time-series.

The general architecture of the model is shown in Fig. 1.
The input window has all features of the input signal for a
time sequence of length T . The LSTM layers process this
input sequentially and recursively along the time dimension,
thereby producing a single-instance output of the hidden
dimension size. The encoder is a dense layer with a fixed
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output dimension; therefore, all the encoded representations
of the models belong to the same encoding space. A linear
softmax classifier was used to obtain the class scores.

For a more interpretable model, the encoding representa-
tion should be disentangled with respect to the representative
factors [37]. Many metrics are available to measure disentan-
glement, but they are defined by considering known factors
in representation learning [43]. However, these factors are
unknown for fault classification. Hence, we used the classifier
of the model as the arbitrator of the relevant factors rather
than explicit factors. The classifier of any model implicitly
identifies the deciding factors for the different classes. These
factors are not directly accessible from either the encoding or
class scores (encoding traversals for representation learning
are used to visualize the factors; this is outside the scope
of this study). Regardless, we have the advantage that the
factors identified by the classifier are not representative, but
class-identifying. We call these factors Class Identity Factors
(CIFs). When we seek the disentanglement of the encoding
representation through the classifier, we implicitly seek
the disentanglement of class-specific CIF. This makes the
model more interpretable, specifically for fault-classification
tasks. The new interpretability metrics are explained in the
following subsections.

1) CIF-ENCODING (CIF-e)
CIF-e measures CIF disentanglement by measuring how each
encoding dimension impacts CIF. For a disentangled CIF,
the encoded representation dimensions should be modular
and compact [43]. CIF-e was measured using a trained
model, and only the trained classifier layer was used. The
fault classification factors are those learned by the model
classifier. Each factor that the classifier learns corresponds to
the determining factor for a particular class. CIF-e measures
the degree to which a factor occupies the encoding space.
For interpretability, this subspace should be compact for all
the factors. The CIF-e score measures the average size of
the subspace for all the factors. This was measured as the
average number of encoding dimensions that influence a
single CIF. CIF variance was measured using class scores.
For this purpose, all encoding dimensions were kept as
noise/background, and only one dimension was maintained
near the average class value. If the class score varies
significantly (from the noise score), then that dimension
contains part of the CIF representation. In short, an encoding
dimension contains a class-relevant factor if it can pull a noisy
data point into a class representation space by varying the
corresponding dimension value alone. The fewer the number
of dimensions that contain a class-relevant factor, the more
disentangled is the CIF representation.

Fault datasets are typically small and cannot be used
to conduct statistically consistent CIF studies. Therefore,
we generated random encodings based on the distribution
of dataset encodings. Let e = {e1, e2, . . . , eD} denote the
encoding obtained at the output of the encoder for an input

Algorithm 1 CIF-Encoding
Input:Mclassifier , Data
Output: CIF-e score

1: for c← 1 to |C| do
2: initialize dimension_count = 0
3: for d ← 1 to D do
4: generate samples EcdN
5: if c = argmax

k∈C

∑
n∈N

[Mclassifier (Ecdn) = k] then

6: dimension_count = dimension_count + 1
7: end if
8: end for
9: if dimension_count = 0 then
10: class_dimension_countc = D
11: else
12: class_dimension_countc = dimension_count
13: end if
14: end for
15: mean_class_dimension = 1

C

∑
c∈C

class_dimension_countc

16: CIF-e score = 1/mean_class_dimension

time-window, where D is the dimension of the encoding
space and ei is the encoding element at the ith dimension.
When an encoding is sampled from the encoding space, it is
denoted as ecj such that the jth dimension is sampled from the
cluster distribution of class c ∈ C . All other dimensions are
sampled from the entire data distribution, forming the noise
or background for a larger sample size N . A collection of N
samples is denoted as EcjN , and the classifier block of the
model is denoted asMclassifier .

Algorithm 1 explains how the CIF-e score was obtained
from these samples and the trained classifier. When the
classifier assigns a higher score to a particular class,
it signifies the recognition of at least one corresponding CIF.
The dimensions associated with the CIF were identified using
the algorithm. A non-zero dimension_count indicates the
presence of a CIF, which plays a dominant role in one or more
dimensions. When the dimension_count is one, it suggests
that the encodings have a disentangled representation of
the CIF. When dimension_count is greater than one, it sig-
nifies that these non-zero dimensions contain a CIF with
or without duplicated dimensions. This situation can also
arise when multiple dimensions are necessary to represent
the CIF. A lower number of dimensions per CIF is preferable,
making dimension_count a measure of the extent of the
required penalization.Maximum dimension_count represents
the scenario with the highest level of dimension duplication
and entanglement. However, when dimension_count is zero,
it does not imply the absence of CIF because the classifier
identifies the CIF for the corresponding class. Instead,
it indicates that the CIF is distributed across all or some
encoding dimensions, with none of the dimensions distinctly
standing out compared to the others. This represents the
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Algorithm 2 CIF-Class
Input:Mclassifier , Data
Output: CIF-c score

1: generate samples EN
2: for c← 1 to |C| do
3: get Ec = {ek : Mclassifier (ek ) = c}
4: initialize dimension_count = 0
5: for d ← 1 to D do
6: if var(Edc ) < α × var(EdN ) then
7: dimension_count = dimension_count + 1
8: end if
9: end for

10: if dimension_count = 0 then
11: class_dimension_countc = D
12: else
13: class_dimension_countc = dimension_count
14: end if
15: end for
16: mean_class_dimension = 1

C

∑
c∈C

class_dimension_countc

17: CIF-c score = 1/mean_class_dimension

worst-case scenario, representing maximum entanglement
and dilution. To address duplication and dilution effectively,
we assigned a maximum dimension_count ofD in such cases.
CIF-e is designed to remain in the range of [0,1], with a higher
score indicating greater interpretability.

2) CIF-CLASS (CIF-c)
The CIF-c is an alternative method for measuring the
disentanglement of CIF. CIF-e looked at each encoding
dimension individually to determine if it influenced CIF.
However, in CIF-c, we consider the encoding dimensions
of only one class-subspace at a time. First, we collected
randomly generated encodings based on the data distribution.
We then isolated the group of encodings identified by
the classifier as a particular class. Within this group, the
CIF relevant to that class was dominant. We identified
the dimensions with the least variability for the group.
These define the dominant CIF. The dimensions with higher
variability were irrelevant. Fewer dimensions with lower
variability indicate modularity of the class factors and, hence,
a disentangled representation. Algorithm 2 explains the steps
involved in determining the CIF-c score, where EN is the
collection of N samples generated from the entire data
distribution, Ec is the subset of EN whose class is c ∈ C ,
var(EdN )is the variance of the d

th dimension of EN . α defines
the threshold, which determines whether the distribution has
low or high variability. Just like CIF-e, in this context, we also
mitigate maximum entanglement and dilution concerns by
designating a maximum dimension_count of D in these
scenarios. The CIF-c is designed to remain in the range [0,1],
and a higher score indicates greater interpretability.

These twometrics are defined using a classifier-based CIF,
and constitute the main proposition. In addition, we define
three more complementary metrics, independent of the model
classifier. These are defined using only certain properties of
encoding itself. Hence, the factors, on which these metrics are
focused, are abstract and self-contained. Of the three comple-
mentary metrics (elaborated in subsequent sections), the first
two (KL-introspectability and KL-compact) are grounded in
the notion of introspectability, which is defined in Section IV.
We adjusted the similarity measure and incorporated addi-
tional components that represent compactness. The final
metric offers a rough approximation of the disentanglement
based on the covariance among the encodings, serving as a
fundamental benchmark for comparison.

3) KL-INTROSPECTABILITY
Kullback-Leibler-introspectability (KL-introspectability) is a
variant of introspectability, defined in [38]. Introspectability
measures the dissimilarity of disparate classes as the cosine
distance between all the latent representations within the
model. In our study, the cosine distance between classes
was counter-intuitive and did not consider the distribution
of classes. KL-introspectability measures the degree of
dissimilarity between the encodings of different classes as
the Kullback-Leibler (KL) divergence between class clusters.
Let ei denote the encoding of ith data point in the validation
data, and yi be the corresponding output of the model. The
encoding cluster of class c is represented by Ec = {ei ∈
RD
: yi = c} over the validation dataset, where D is the

encoding dimension. The dissimilarity between the two class
distributions is measured using a symmetrical variant of KL
divergence, as shown in (13).

KL(Êc||Êc′ ) =
∑
x

Êc(x) log
Êc(x)

Êc′ (x)
, (12)

KLsym(Êc||Êc′ ) = min(KL(Êc||Êc′ ),KL(Êc′ ||Êc)), (13)

where Êc denotes the distribution that corresponds to Ec.
KL-introspectability was calculated as the mean inter-class
dissimilarity between the encoding clusters of the validation
set.

KL-introspectability =
1(
|C|
2

) |C|∑
c=1

|C|∑
c′=c+1

KLsym(Êc||Êc′ ).

(14)

Because dissimilarity is the desired result, a higher KL-
introspectability indicates a more interpretable model. For
better visualization, log(1 + KL-introspectability) was used
for the experiments and is referred to as KL-introspectability.

4) KL-COMPACT
Compactness is defined as the property that the subset in
the encoding space that represents a factor is small [43].
KL-introspectability ensures class disentanglement, but this
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does not affect compactness. To add compactness, we added
another term to KL-introspectability.

KL-compact = KL-introspectability

−
1
|C|

|C|∑
c=1

KLsym(Êc||ÊN ). (15)

The second term in the above equation penalizes the class
cluster with larger variance. Thus, KL-compact ensures
class disentanglement by ensuring compactness of the factor
clusters. Similar to KL-introspectability logarithm was used
here.

5) COVARIANCE OF ENCODINGS (COVARIANCE-e)
The fundamental concept behind disentanglement is that the
encoding factors are independent. Each independent factor
influencing fault classification should preferably be encoded
by only one of the encoding dimensions for modularity. For
this effect, the covariance between the encoding dimensions,
cov(Edc ,Ed

′

c ), should be minimal for all classes. For class c,

covariancec =
1(
|D|
2

) D∑
d=1

D∑
d ′=d+1

cov(Edc ,Ed
′

c ). (16)

The covariance-e is defined so that a higher score meansmore
interpretability,

covariance-e =
1

1
|C|

∑
c∈C

covariancec
. (17)

B. HYPERPARAMETER OPTIMIZATION
Variational autoencoders are typically used to obtain the
disentangled encoding of data. However, the drawback of
this method is that the trade-off between accuracy and
interpretability is unknown and tuning for an acceptable
balance is not feasible. To avoid this, we use hyperparameter
optimization to find models that form the Pareto front
of the accuracy-interpretability trade-off. We used LSTM
architecture hyperparameters for the optimization. These are
the hidden dimensions and number of LSTM layers. The
Evolutionary Algorithm (EA) has a high sample complexity
and is not suitable when the evaluation process is expensive.
Therefore, multi-objective hyperparameter optimization with
Bayesian Optimization (BO) was used to implement this.
BO is a sample-efficient optimization method that signifi-
cantly reduces the computational resource consumption.
Objective Functions: In our multi-objective optimiza-

tion scenario, we grapple with two conflicting objectives:
accuracy and interpretability. To accommodate this duality,
we establish a Gaussian Process (GP) surrogate model for
each objective. Each GP model is dedicated to representing
an objective function which takes model hyperparameters as
input and produces an accuracy or interpretability score as
output. These surrogate models were trained using available
data points pertinent to their respective objectives.

Acquisition Function: We deployed an acquisition function
for multi-objective optimization: Noisy Expected Hyper-
volume Improvement (NEHVI). This specialized function
guides the selection of the next query point, with the aim of
enhancing the hypervolume.
Optimization Process: Bayesian optimization follows a

sequential procedure for selecting query points by optimizing
the acquisition function. In each iteration, it identifies
the point poised to maximize the hypervolume within the
objective space. Subsequently, this point was evaluated using
both surrogate models to derive objective function values.

VII. EXPERIMENTAL SETUP
A. PSML DATASET
The Power System dataset for Machine Learning benchmark-
ing (PSML) is a unique dataset for ML-based grid operations,
with open access and multiscale time-series data [2]. The
dataset covers three years of minute-level real-world load,
weather, and renewable time-series data across 66 areas
in the United States, as well as one year of minute-level
synchrophasor measurements in three scenarios and over
1000 disturbance cases with millisecond-level synchrophasor
measurements. This dataset is comprehensive and maintains
consistency across various timescales, encompassing both the
transmission and distribution-level dynamics. It encompasses
diverse energy resources and dynamic events, rendering
it exceptionally well suited for implementing machine-
learning-based algorithms.

A schematic of the mechanism used by the authors in [2]
is provided in the Supplementary Material. The authors first
gathered real-world weather and load time-series data. These
datasets were used in conjunction with physical renewable
generation models to generate the solar and wind power
generation profiles. Three distinct time-series datasets were
acquired: load, solar-power, and wind-power datasets. A co-
simulation model was constructed to simulate the combined
transmission and distribution readings. The transmission grid
model was implemented using PSS/E, adapted from the
original PSS/E 23-bus test system. The distribution grid
models are based on an IEEE 13-bus feeder. These models
are linked to the corresponding load buses in the transmission
system model. Solar photovoltaic (PV) and power inverter
models were attached to load buses within each distribution
grid, effectively representing aggregated residential rooftop
solar installations. A series of simulations was conducted
to obtain multiscale measurement data. These included
steady-state power flow simulations under various load
and renewable generation scenarios, and transient dynamic
simulations involving random disturbances. The simula-
tions used an innovative joint transmission and distribution
(T + D) grid platform.
In our research, we focused solely on the occurrence of

faults as events of interest, as illustrated in the Supplementary
Material. The fault classification dataset in PSML consists of
five types of faults: branch fault, branch trip, bus fault, bus
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trip, and generator trip. Branch and bus faults are short-circuit
faults between the conductors and ground faults. Trip-type
faults occur during equipment tripping. These faults were
distributed in 549 instances of time-series sequences, with
439 instances in the training set and 110 in the test set. Each
instance spans 4 s with 91 different voltage, current, and
power readings from various locations in the transmission
system. These were recorded at 240Hz, resulting in 960 time
steps in one instance of the time-series sequence. Because this
is a long sequence, sub-sampling was performed to obtain a
shorter sequence length of 38 time steps for a 4 s duration.

B. SEARCH SPACE
1) LSTM MODEL
The architecture of the LSTM model is shown in Fig. 1. The
search space includes only the architectural hyperparameters
of the LSTM model, as mentioned in the previous section.
The model has an LSTM module (with many layers and
hidden dimensions) followed by an encoding layer. The
encoding layer was a dense layer with linear activation. The
dimensions of the encodings were fixed at 10 for all models
in the search space. This method assumes a maximum of
two encoding dimensions in order to represent each CIF.
The classification layer is also a dense layer with a linear
activation function followed by a softmax operation. The
bounds of the search space were [1, 5] for the number of
LSTM layers and [8, 512] for the hidden dimensions. The
search space had a total of 2525 models.

The following models were also considered in the experi-
ments to validate themodel-agnostic nature of interpretability
metrics.

2) BIDIRECTIONAL LSTM MODEL
The bidirectional LSTM (Bi-LSTM) model processes the
input in both the forward and backward directions of time
sequences. In this model, only the LSTM module shown
in Fig. 1 is replaced with the Bi-LSTM module. All
hyperparameter choices were identical to those of the LSTM
model hyperparameters (as explained in the previous section).
The architecture of the Bi-LSTM model is presented in the
Supplementary Material.

3) CNN-LSTM MODEL
In the CNN-LSTM model, the CNN layers were added
before the LSTM module. The CNN captures short-term
patterns in the time-series data. The output of the CNN
layers was condensed time-series data with explicit short-
term features. The LSTM module can capture the long-term
patterns from these short-term features. TwoCNN layers with
32 and 64 filters (kernel_size=3, stride=1, and no padding)
are used in the CNN module. Further details regarding
the CNN-LSTM model architecture are provided in the the
SupplementaryMaterial. The search space parameters are the
LSTM module hyperparameters. For a fair comparison, all

hyperparameters were kept the same as those in the previous
sections.

4) LSTM-CNN MODEL
In the LSTM-CNN model, CNN layers were added after
the LSTM module. The LSTM module generates a context
vector as a latent-variable vector at each time step. All these
were stacked to form a time-series of context vectors. The
CNN module captures the temporal patterns of the context
vectors. For the CNN module, we used two CNN layers with
32 and 64 filters (kernel_size=3, stride=1, and no padding),
followed by a max-pooling layer (kernel_size=2, stride=1,
and no padding) and a flatten layer. The Supplementary
Material provides further details on the architecture of the
model. All hyperparameters were kept the same as those in
the previous sections.

C. BO HYPERPARAMETERS
We used BOTORCH [44] to implement multi-objective BO.
The model hyperparameters serve as inputs to the objective
functions, generating accuracy or interpretability scores,
thereby striving to optimize both aspects concurrently. We
consider the class imbalance for the accuracy objective by
calculating the balanced accuracy, as done by the authors
in [2]. The macro-averaged mean absolute error was used
to penalize false positives and false negatives. The training
data of PSML were randomly (balanced) split in a 70:30
ratio to obtain the validation set. The model was trained
on this training split for 500 epochs with cross-entropy
loss. In addition to early stopping with the validation set,
a dropout layer was added before the classification layer, with
a probability of 0.2. These provide sufficient regularization
to prevent overfitting during the training phase. Balanced
accuracy of the validation set was used as the accuracy
objective. Each of the metrics mentioned in Section VI and
introspectability [38] scores were used for the interpretability
objective. Experiments were repeated for each of the six
interpretability metrics. For the CIF-c, the value of α was
empirically set to 0.6. The sample size, N , was 2000. The
interpretability scores were obtained for the validation split.
The multi-objective acquisition function used for BO is
Noisy Expected HyperVolume Improvement (NEHVI). The
reference point used for the hypervolume is (0, 0) because
all metrics are defined as positive values and maximization
objectives.

VIII. RESULTS
A hyperparameter search using BO is conducted for each
interpretability metric. Fig. 2 shows the performance of the
proposed methodology during the experiments using LSTM
model. Fig. 2a shows the convergence of the training and
validation set losses during the training phase of one of the
sampled LSTM models. The plot shows that there was no
over-fitting during training. Fig. 2b shows the improvement
in the dominated hypervolume (hypervolume of the Pareto
front) as the search progressed for the CIF-e. BO can escape
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FIGURE 2. Convergence of (a) the train set loss and the validation set loss
during the training phase of the model, indicating stable learning, and
(b) the dominated hypervolume during the BO search progression,
showing the growth of Pareto front.

from local optimum solutions and eventually converge. Fig. 3
shows the LSTM model Pareto front obtained by BO for
each case. The Pareto fronts obtained for the other models
exhibited similar trends, as shown in the Supplementary
Material. The accuracy and interpretability scores reported
in this section were calculated on the PSML test set.
There was a drop in the accuracy for all cases when a
more interpretable model was obtained. The trade-off was
minimal for introspectability score, suggesting a correlation
between introspectability and accuracy. The most accurate
models in all cases had similar accuracy scores; however, the
most interpretable models in the Pareto front had different
accuracy scores. This indicates that different interpretability
metrics have different trade-off dynamics with respect to the
accuracy. Table 1 summarizes the accuracy scores of Pareto
fronts. The BO search found a model with highly competitive
accuracy (77.63%) compared to all previous benchmark
models [2]. The previous sota accuracy was 74.2±2.9% for
the LSTM-FCM model.

To understand the relationship between the interpretability
metrics and the different manifestations of interpretability in
the fault classification data, we examined the correlation of
these metrics with various factors such as the likelihood of
finding subsequences and the similarity of different classes
in the encoding space. The following subsections present
detailed analyses of these factors.

A. ANALYSIS
1) SUBSEQUENCES AND ACCURACY
Identifying relevant subsequences is an essential aspect of
the post-hoc interpretability of time-series models [24]. The
subsequence of a time-series refers to the window of a time-
series with an identifiable pattern. In fault classification, the
subsequences correspond to the unique signatures of different
types of faults. In this section, we test whether a higher score
on the interpretability metric leads to the identification of
more relevant subsequences. We used post-hoc interpretation
with Shapley Additive Explanations (SHAP) [42] to deter-
mine the relevant subsequences. A trained model with one
sample input was required to obtain the SHAP values. The
SHAP values represent the contribution of each input element
to the output of the model. The fault classification problem
has 91 input features and a 4-second time window. This study
finds SHAP values corresponding to only the time dimension
to obtain the time-step contribution of the input time-series
to the model prediction. To implement this, we modified the
codebase of TimeSHAP [45]. The time-step SHAP values
were used to identify regions with high-contribution plateaus.
These plateaus are the windows that contribute themost to the
model inference. The input time steps corresponding to these
plateaus form the subsequences.

For the trainedmodel, subsequences were identified for the
test set of the data. Table 1 shows a summary of the Pareto
front solutions concerning accuracy and subsequences.
The CIF-based metrics exhibited constant trends across
all the models for the subsequences. CIF-e consistently found
the longest subsequence for all models. However, CIF-c had
the highest average length of subsequences. This suggests
that the CIF-e has a larger variability with respect to the
Pareto solutions. The randomness involved in CIF-e leads
to such variability. In contrast, CIF-c does not have much
randomness in the algorithm; hence, there is less variability,
even though the average performance metrics are better
than those of CIF-e. The LSTM model finds the longest
subsequence among all the models. However, the variation
in the longest subsequence among the different models
was minimal, indicating consistency of the CIF-e algorithm.
However, the best average subsequence length is obtained
using the Bi-LSTMmodel. Here, the variation isminimal. For
all models, introspectability was the least effective metric for
finding the subsequences. KL-introspectability was slightly
better at identifying subsequences than introspectability. KL-
compact and covariance-e are less effective than CIF-based
metrics in identifying subsequences but are better than
introspectability-based metrics. In addition, the performance
of a metric changes slightly when the model changes, but
the relative performance compared with the other metrics
remains the same for all models. The LSTM model has the
longest subsequence, whereas the Bi-LSTM model has the
longest average length.

For the majority of the models, the Pareto front for
accuracy-introspectability had the best accuracy score (both
maximum and mean). The results are presented in Table 1.
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FIGURE 3. LSTM pareto solutions obtained for (a) CIF-e, (b) CIF-c, (c) KL-Compact, (d) KL-Introspectability, (e) Covariance-e, and
(f) Introspectability, showing different accuracy-interpretability trade-offs for different Pareto fronts. The Pareto front is shown by
the red line, while the blue dots show the sampled models, and the red dots show the individual models which form the Pareto
solution.

However, introspectability is poor for identifying subse-
quences, as previously explained. From the Pareto front in
Fig. 3, the accuracy-introspectability trade-off is minimal for
the LSTM model. The Supplementary Material shows the
Pareto front for the other models, where this phenomenon can
be observed. This indicates a correlation between inter-class
distance and accuracy. KL-introspectability has a larger
trade-off for accuracy than introspectability, as is evident
from the Pareto front and lower average accuracy. However,

the low average subsequence length suggests that this
score does not consistently indicate interpretability. Because
KL-introspectability reduces the overlap between class
clusters, this result implies that dissimilar class clusters do
not necessarily cause disentanglement of the factors. These
results suggest that class disentanglement, as measured by
these metrics, does not translate into signature subsequences.
The KL-compact metric has a worse mean accuracy score
than the introspectability metric but is slightly better at
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TABLE 1. Summary of Pareto solutions for different interpretability metrics, showing the dominance of CIF-based metrics in enhancing interpretability.
Mean and maximum accuracies of the Pareto solutions for each model, along with the corresponding mean and maximum subsequence lengths, are
reported for each of the interpretability metrics. The highlighted values indicate the best scores for each model.

finding subsequences. Covarance-e, on the other hand, has a
sharper trade-off in the Pareto front, as is evident from its poor
mean accuracy. Although the accuracy trade-off is very high,
it performs better than other non-CIF-based methods in terms
of interpretability. It had the lowest accuracy score among
all the metrics. In summary, introspectability-based metrics
exhibit a poor relationship with interpretability. KL-compact
and covariance-e have a high accuracy trade-off, whereas
CIF-based metrics maintain a better accuracy trade-off and
simultaneously achieve good interpretability.

For the LSTM model, Fig. 4 shows the mean length of the
subsequences identified by the Pareto solution models for the
CIF-e and CIF-c. The mean length varied more uniformly
for CIF-c than CIF-e. This can be attributed to the variability
and randomness of the CIF-e algorithm. The corresponding
plots for the other models are shown in the Supplementary
Material, where the same trend is observed.

To complete the subsequence-based analysis, we deter-
mined the correlation of the interpretability score with the
subsequences of 200 models that were randomly sampled
from the LSTMmodel search space. The results are presented
in Table 2. The interpretability score of the trained model
was obtained from the test data-set, and all the subsequences
identified by the model for the test set were obtained using
the SHAP plateaus, as before. The table shows that CIF-c
has the highest correlation with the mean length of the
subsequences identified by the model, whereas CIF-e has
the highest correlation with the longest subsequence. Again,
this can be attributed to variability in the CIF-e algorithm.
Introspectability had the smallest correlation with both the
mean and longest subsequences. This implies that without
other mechanisms to improve disentanglement, increasing
only the class dissimilarity of encoding dimensions could be
counterproductive for interpretability.
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FIGURE 4. Distribution of mean subsequence length in the LSTM Pareto
front for (a) CIF-e and (b) CIF-c, indicating consistent variation across the
front. The color-coded dots represent the scores of each model in the
Pareto front, as displayed in the corresponding color bar.

TABLE 2. Correlation of different interpretability metrics with maximum
and mean subsequence lengths of the corresponding Pareto front
models, showing a stronger correlation for the CIF-based metrics,
whereas all metrics show at least weak correlation.

Fig. 5 shows some sample subsequences identified by
the most interpretable LSTM model as per CIF-c. For
each fault type, the subsequences were unique and almost
always contained the peak value, except for the branch fault.
However, the subsequence of the branch fault is distinct from
that of the other faults. It can also be observed that the
time step when fault triggering occurs is not included in any
of the subsequences. Instead, distinctive shapelets become

identifiers of subsequences. The less interpretable models did
not lead to plateaus in the SHAP values and the contributions
were uniform for the entire input time window.

2) CLASS SIMILARITY
To visualize the similarity of the fault classification factors
in the encoding dimension, the encoding dimension of ten
was reduced to two using T-distributed Stochastic Neighbor
Embedding (t-SNE). The t-SNE creates a low-dimensional
embedding in two dimensions, where the similarities between
the data points are preserved as much as possible. Fig. 6
shows the t-SNE plot for the most interpretable and accurate
LSTM models from the Pareto solutions of the CIF-c. The
accurate model had more than one cluster for the same
class, and the clusters were separated with clear margins
and no overlap. This indicates that the model implicitly
learns multiple subcategories in the same class. In addition,
class representations are more complex. The class clusters
were evenly and uniformly separated, suggesting that the
characteristics of each class are learned as distinct entities.
This is inherently less interpretable, because no inferences
can be made regarding the relationship between different
classes. No insight into the failure cases can be learned from
this plot, and the occurrences of failures not anticipated in the
application make this an unreliable model.

By contrast, the t-SNE plot of the interpretable model has
overlapping but separable clusters with fuzzy boundaries.
There was a stark dissimilarity between the fault and trip-type
categories. Bus and branch faults form an adjoining cluster
set with a long linear distribution. This suggests that the
model learns the bus and branch faults as variants with similar
properties. Similarly, branch, bus, and generator trips form
adjoining clusters with similar patterns. The model considers
all trip-fault categories to have common characteristics.
Among these, bus trips are similar to branch and generator
trips, whereas the latter are farther clusters. These inferences
are in agreement with the theoretical assumptions regarding
grid faults. The disadvantage of the interpretable model is
the trade-off in accuracy. This is evident from the fuzzy
boundaries between some class clusters, which lead to
more misclassifications. The advantage is that the model is
more reliable and the failure cases can be explained. If the
trade-off is within the acceptable range for the application,
the interpretable model is the best choice.

3) MODEL ARCHITECTURE
The experiments conducted in the previous section described
the hyperparameter search space containing the number of
hidden layers and the hidden layer dimensions. This leads to
models with different interpretabilities and accuracies. Fig. 7
shows how accuracy and interpretability are distributed in
the search space. The figure shows only the CIF-c pattern
for the LSTM model. The accuracy distribution has a clear
pattern, with the cluster for higher accuracy existing in the
region with high hidden dimensions and approximately two
or three hidden layers. A lower number of layers and lower
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FIGURE 5. Sample subsequences identified by the LSTM models for (a) branch fault, (b) branch trip, (c) bus fault, (d) bus trip, and (e) generator trip,
show distinct signature subsequence for each fault type. 38 samples are taken for one time-window of 4 seconds (x-axis), and the voltage values are
normalized (y-axis). The highlighted adjacent points in magenta form the subsequence.

FIGURE 6. t-SNE similarity between the different types of faults for (a) the most interpretable model from the Pareto front of the LSTM models,
where clusters form patterns aligned with fault types, and (b) the most accurate model from the Pareto front of the LSTM models, where
clusters are scattered and without explicit patterns.

hidden dimensions lead to simpler models, and hence, lower
accuracy. The accuracy is relatively low with more hidden
layers, suggesting over-fitting in the region. However, the
trend for interpretability is different. Interpretable models
are rarer than accurate models, and no single clusters exist
for the hidden dimensions. The number of layers is lower
than that of the high-accuracy models, and most models
are clustered around hidden dimensions between 250 and
350, with some scattered on the lower side. This shows
that although simpler LSTM models are more interpretable
than complex ones, minimum complexity is necessary for a
satisfactory interpretation of the inferences.

The clusters of accurate and interpretable models overlap
less, although the most accurate and interpretable mod-
els are farther apart. Thus, a trade-off exists during the
search. This is also evident in Fig. 3. This demonstrates
that interpretability is a property of the architecture of a
model. Choosing an appropriate architecture (even with
the same LSTM modules) can make the model more
reliable for applications. The distributions for the Bi-LSTM,
CNN-LSTM, and LSTM-CNN models are shown in the
Supplementary Material. The trend of generating different
accuracy and interpretability clusters also holds true for these
models.

VOLUME 11, 2023 123701



Biju G. M., G. N. Pillai: Hyperparameter Optimization of LSTM Models

FIGURE 7. Distribution of (a) accuracy and (b) CIF-c score in the search space of the LSTM models, indicating strong clustering for accuracy, and weak
clustering for interpretability, with small overlapping. Each dot represents a sampled model, color-coded based on the accuracy or CIF-c score. The
search space consists of the number of LSTM layers and the corresponding hidden dimension.

FIGURE 8. Evaluation of (a) robustness by varying the input noise level (σ ), illustrating increased performance degradation at higher noise levels,
and (b) scalability by varying the complexity of the input signal, demonstrating good scalability. The mean subsequence length is normalized for
the assessment of scalability.

4) ROBUSTNESS AND SCALABILITY
To test the robustness of the interpretability metrics for the
LSTM model, noise is added to the model input. Gaussian
noise N (0, σ 2), was added to each element of the input
signal with a fixed σ . A BO search is then conducted to
generate the Pareto front for each interpretability metric. For
a fair comparison, only the top 10% of the interpretable
models were chosen from the Pareto front to calculate
the mean subsequence length. This process was repeated
for different values of σ . Fig. 8a shows the variation in
the mean subsequence length against σ for all metrics.
It can be observed that for small noise levels, all the
metrics are resilient. At higher noise levels, CIF-e degrades
rapidly. This can be explained by the high variance of
the algorithm, which makes it highly sensitive to noise.
Although CIF-c exhibits mild degradation at higher noise
levels, it is the most effective metric in that noise range
by a large margin. Covariance-e is the most noise-resilient
and has a performance similar to that of CIF-c at the
highest noise level. Introspectability-based metrics are the

least effective for finding subsequences; hence, degradation
is not pronounced. KL-compact also showed poor resilience
to noise. In summary, the proposed methodology has high
robustness for moderate noise levels; however, for very high
noise levels, there is a mild degradation in the performance.
In addition, the proposed methodology performed better than
the other metrics even at high noise levels.

The scalability is tested using a longer input signal. The
input time-series of the PSML data has 960 time steps. This
was sampled at different rates to obtain the input signals with
different sequence lengths. The input signal length ranged
from 38 to 960 for scalability analysis. We repeated the same
processes as in the robustness test but with different input
signal lengths. The results are shown in Fig. 8b. The mean
subsequence length was normalized for comparison. It can
be observed that the normalized mean subsequence length
is nearly constant for all the input signal lengths, except
for minor fluctuations for the smaller lengths. These results
demonstrate good scalability. This is possible because of the
ability of LSTM to learn long-sequence relationships. This
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ability of LSTM is directly transferred to interpretability
metrics because of the encoder architecture used in the
model, as shown in Fig. 1. Because the encoder dimension
is constant regardless of the input sequence length, the
interpretabilitymetrics are scalable as far as themodel itself is
concerned. The interpretability metrics are scalable because
the LSTM and CNNmodels are scalable in terms of the input
size.

IX. CONCLUSION AND FUTURE WORK
Fault classification for grid operations is a highly sensitive
application, and this study improves the reliability of LSTM
models for this task by improving the interpretability of
the model. To this end, different novel interpretability
metrics were defined. These are unique in defining the
disentanglement factor as a property of the classifier of
the model, which implicitly identifies factors relevant to
fault classification alone. It has been shown that these
factors correspond to the subsequences or shapelets present
in the fault signals. These subsequences are unique to
different fault classes, and interpreting the model inference
in terms of the signature subsequences of various faults
enhances the reliability of the model, even with a trade-
off in accuracy. Based on an acceptable threshold for the
application, the Pareto solution offers models with different
accuracy and interpretability trade-offs. It was also shown
that class relations can be inferred more evidently for
interpretable models when such inferences are not evident in
less-interpretable models. In summary, this study established
a new method to enhance the post-hoc interpretability of
LSTMmodels (as well as other variants and hybrids) for fault
classification problems. This was achieved without incorpo-
rating interpretable mechanisms into the model architecture.
For the future direction of this work, the methodology can
be extended to other models, such as CNN and attention.
The transferability to grid forecasting problems can be tested.
Furthermore, the methodology can be modified to include
constraints, such as latency, model size, and minimum
accuracy.
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