
IEEE RELIABILITY SOCIETY SECTION

Received 25 August 2023, accepted 26 October 2023, date of publication 2 November 2023, date of current version 8 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3329830

Saw Blade Wear Identification Based on Data
Enhancement and Feature Fusion
CHENGCHAO WANG 1, XIANGJIANG WANG1, AND CHAO ZENG2
1College of Mechanical Engineering, University of South China, Hengyang 421001, China
2School of Nuclear Science and Technology, University of South China, Hengyang 421001, China

Corresponding author: Xiangjiang Wang (wangxiangjiang72@163.com)

This work was supported by the Natural Science Foundation of Hunan Province, China, under Grant 2023JJ50131.

ABSTRACT In order to solve the problem of low accuracy of tool wear detection due to the poor quality
of generated data under small sample problems, a deep learning model based on data enhancement and
feature fusion is proposed. Firstly, in order to solve the problem that there is no quality evaluation standard
in the training process of the traditional generative adversarial network (GAN), the K nearest neighbor
algorithm is proposed to test the data generated by the GAN model for the second time. The improved
GAN model can be automatically trained to get the optimal model according to the second test results.
Secondly, in order to enhance the anti-interference effect of the model, a double-path parallel convolutional
neural network (DPCNN) which combines with the characteristics of frequency domain and time-frequency
domain is constructed to analyze the wear data. Furthermore, the hyperparameters of themodel are optimized
by Bayesian optimization algorithm (BOA). Finally, the effectiveness of this method is verified in the saw
blade wear detection experiment. The results show that the performance of this model is better than other
models, and the accuracy rate in the experimental detection reaches 100%.

INDEX TERMS Saw blade wear identification, feature fusion, Bayesian optimization algorithm, double-
path parallel convolution neural network, generative adversarial networks.

I. INTRODUCTION
Since the development of manufacturing, the effective work-
ing process of cutting tools as an important tool has been paid
more and more attention by researchers. Furthermore, with
the continual improvement of the processing environment,
materials, precision and other requirements, tool wear as
the main failure form has been widely studied by scholars.
At present, although a large number of wear monitoring
systems have been established for single-edge, double-edge
or triple-edge cutting tools such as lathe tools [1] or milling
cutters [2], and achieved some progress. However, there is
still a lack of research on wear monitoring of ultra-multi-
edge tools. As a representative of this kind of cutting tool,
the saw blade plays an important role in the cutting process
of materials. Therefore, to ensure the security of its opera-
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tion, a targeted wear monitoring system is established with
necessity.

Current research on tool wear monitoring is mainly based
on optical measurement and machine vision, or sensing tech-
nology and artificial intelligence. Machine vision as one
branch of the whole tech category uses imaging equip-
ment to collect image data to detect tool wear [3]. Such as
Peng et al. [4] collect milling cutter wear pictures through
charge-coupled device cameras, and analyze the images by
gray level co-occurrence matrix, thus establishing a milling
cutter wear detection system. In addition, Bagga et al.
[5] use artificial neural networks to analyze the tool wear
images captured by industrial cameras regularly and estab-
lish a tool wear detection system. These mentioned methods
above are feasible without doubt; but considering that the
imaging equipment is expensive and easily affected by the
environment, such methods based on optical measurement
and machine vision are not suitable for practical produc-
tion. However, the combination of sensing technology and
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artificial intelligence can effectively break through the above
limitations and has beenwildly employed nowadays [6]. Such
as, Zhou et al. [7] build a milling tool wear monitoring system
that combines a kernel extreme learning machine and a cur-
rent sensor. Ying et al. [8] and Ge et al. [9] analyses signals
collected by vibration sensor and realizes wear monitoring
of broach and milling cutter via optimizing support vector
machine. Twardowski et al. [10] compared the performance
of different classification trees in milling cutter wear predic-
tion and built a monitoring model with optional algorithms.
While these approaches combining artificial intelligence
shallow learning models with sensing technology provide a
solution for tool wear prediction, the detection accuracy does
not meet the requirement as expected due to the limited fea-
ture extraction ability of the shallow learning model. To this
end, Dong et al. [11] commit to research the performance of
a deep learning model (backpropagation neural network) in
woodworking milling tool wear identification, and the find-
ing shows that the model works well. Yang et al. [12] build
a self-coding model based on a backpropagation neural net-
work, which indicates that themodel has a better performance
than other models in milling experiments. But even though
this kind of model is able to extract signal depth feature, it is
its poor robustness that cannot be ignored because the model
only takes single signal as input. The study showing that con-
structing prediction model with multi-type signals as input
has a stronger anti-interference capacity [6]. For instance, the
deep learning model with multiple input parameters such as
cutting force, vibration, acoustic emission, etc., performswell
in tool wear prediction [13], [14]. However, in the practical
equipment operation, it is common for the sensors’ installa-
tion to be limited because of insufficient space. Therefore,
Wu et al. [15] integrates these characteristics of vibration
signals, including ‘‘time’’ and ‘‘frequency’’, to realize the
purpose that the wear of cutting tool in computer numerical
control machine can be detected. Likewise, for the milling
wear process, Zheng et al. [16] transform the feature space of
the original signal to build a high-accuracy recognizingmodel
bymeans of empirical mode decomposition, variational mode
decomposition, and Fourier transforms.

These studies show that the tool wear monitoring model
based on the deep learning model and multi-domain feature
fusion gets advantages in high recognition accuracy and anti-
interference ability. However, there is still a problem that
obtaining a large amount of data for deep learning model
training is difficult in practical application. The research in
[17] shows that this problem can be effectively solved by
expanding the data. At present, in mechanical fault diagnosis,
Generative Adversarial Networks (GAN) are widely used to
address the small sample problem owing to its powerful data
generation capability [18]. For example, [19] combines finite
element simulation technology with GANmodel and realizes
the aim, expansion of the cutting force signal of the tool.
Molitor et al. [20] use different types of generative adversarial
networks to enhance data, which improves the accuracy of
tool wear detection by about 18%. In addition, Shah et al. [21]

constructed a singular generative adversarial network, which
expanded the scale diagram of acoustic emission and vibra-
tion signals of tool wear signal. The above data enhancement
method based on the GAN model expands the experimental
data of tool wear, but the authenticity of the extended data
cannot be guaranteed because there is no evaluation standard
for the training performance of the GAN model.

Therefore, according to the above research, this paper con-
structs a saw blade wear detection model, which is based on
data enhancement and feature fusion, to improve the accuracy
of saw blade wear detection and secure the process of the saw
blade-cutting. The training performance of the GAN model
is tested by the k-nearest neighbor algorithm, and the validity
of generated data can be controlled by the test results. At the
same time, a double-path parallel convolution neural network
(DPCNN) is constructed to fuse the multi-domain features
of saw blade wear vibration data to enhance the robustness
of the model. Generally speaking, the main chapters of this
paper are organized as follows: Section II introduces the
requisite theoretical basis of building the model; Section III
builds an optimized model based on the theory mentioned in
Section II; Section IV verifies the advantages of the model
performance through the cutting wear experiment of circular
saw; section V is the conclusion of this paper.

II. THEORETICAL BACKGROUND
A. GENERATIVE ADVERSARIAL NETWORK
The GAN network based on the adversarial game theory, con-
sists of a generator and a discriminator. The training process is
shown in Figure 1. According to the actual data, the discrim-
inator checks the generated data to continuously optimize the
discrimination indexes. The generator constantly improves
the data generation ability to pass the test of the discriminator.
Through the confrontation game, the model finally reaches
the dynamic Nash equilibrium.

FIGURE 1. GAN.

The training loss can be calculated as follows:

min
G
max
D

V (D,G) = Ex∼Pdata(x)
[
logD (x)

]
+ EZ∼Pnoise(Z )

[
log (1 − D (G (z)))

]
(1)

where V (D,G) is the generator loss, V (D,G) is the discrimi-
nator loss, x and z are samples respectively obtained from the
true distribution Pdata and the noise distribution Pnoise. E is
the expectation of the requested type.D(·) is the discriminator
model, G(·) is the generator model.

The generator model obtained by training of GAN has
good data generation ability. This paper refines the model to
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expand the scale of experimental data, as instructed in section
III-A for details.

B. CONVOLUTIONAL NEURAL NETWORK
Convolutional neural network (CNN), as a classic deep learn-
ing model, has been widely used in identifying signals such
as data and images. The basic structure of CNN is shown in
Figure 2. In addition, its main functions are realized by the
convolution layer, pooling layer, and fully connected layer.

FIGURE 2. CNN structure.

a: CONVOLUTION LAYER
Convolutional layers perform inner products between learn-
able convolutional kernels and specific regions of the input
data. By controlling the movement stride, the convolutional
kernels traverse the entire input data to extract signal features.
The output of the convolution layer can be calculated as
follows:

X lj = f

∑
i∈Mj

X l−1
i ∗ ωl

ij + blj

 (2)

where X lj is the l-th characteristic graph output by the j-th
convolution layer, Mj is the data set input by this layer, ωl

ij is
the convolution kernel of this layer which is the weight matrix
corresponding to the input X l−1

i , blj is the corresponding
offset value, f (·) is the activation function, ∗ is convolution
operation.

b: POOLING lAYER
The pooling layer plays a role in downsampling the convolu-
tion featureswith themain features of the data retained. In this
way, the pooling layer can help avoiding the overfitting phe-
nomenon of themodel by reducing the amounts of parameters
and lessening the quantities of feature dimensions. The com-
mon pooling operations are maximum pooling and average
pooling, and the maximum pooling operation is selected in
this paper. The calculation formula is as follows:

akij = max
u∈Dk−1

j

[
xk−1
i (u)

]
(3)

where akij is the feature map of the j-th pooled region corre-
sponding to the upper convolution feature, Dk−1

j is the pool
domain of layer k-1, xk−1

i is the i-th characteristic map output
by the k-th convolution layer, u is the mapping area of the
pooled core in the pooled domain.

c: FULLY CONNECTED LAYER
The function of the fully connected layer is to spread and
connect all the feature graphs and provide the required data
form for the softmax layer (output layer) by integrating and
reducing the dimensions of the extracted features. The calcu-
lation process is given below:

Pj =
exp(Oj)∑K
i=1 exp(Oi)

(4)

where Pj represents the proportion of the output value of the
j-th neuron, Oj is the output value of the j-th neuron and K is
the number of types that the model needs to classify.

C. BAYESIAN OPTIMIZATION ALGORITHM
Bayesian optimization algorithm (BOA) uses the Bayesian
theorem to search for the optimal value of the objective
function. The optimization strategy is to build a proxy model
for the first, then select the optimal interval updating model
according to prior knowledge, and find the optimal solution
to the problem finally. The detailed process is shown in
Figure 3.

FIGURE 3. Bayesian optimization.

As shown above, it is obvious that the surrogate function
and sampling function are the core elements of the BOA
optimization process. BOA updates the optimal range of prior
distribution through the sampling function and approximates
the surrogate function to the target curve. The surrogate func-
tion is as follows:

y = f (x) ∼ Gp[µ (x) , k(x, x ′)] (5)

Actually, the above formula represents Gaussian process
regression. y is the output of the surrogate function under
the prior distribution x, f (x) is the output of the objective
function, µ (x) and k

(
x, x ′

)
respectively represent the mean

function and covariance function of the real process, Gp is a
Gaussian process.

In this paper, the author uses the expected improvement
function to update the prior distribution x. In other words,
the expected improvement function is used as the sampling
function. Calculation process reference formula (6), as shown
at the bottom of the next page. µt (x) and σt (x) are the mean
and standard deviation of the actual distribution, f (x+) is the
optimal value corresponding to the optimal position x+, ε

is the control parameter, 8(·) is a distribution function, and
φ(·) is a probability density function. EI (·) is the expected
improvement function.
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III. ALGORITHM OPTIMIZATION
A. DATA EXPANSION MODEL
For the small sample problem, although the GAN described
in section II-A can be used for data expansion through train-
ing, there are still some problems, there is no performance
evaluation standard in the training process of the traditional
generative adversarial networks. It is impossible to make
the network performance optimal by adjusting the network
parameters accurately and artificially.

For this problem, Xu et al. [22] studied the influence of
different evaluation methods on the training performance of
the GAN network. And the results show that the 1-Nearest
Neighbor test is an effective method to evaluate the training
performance of the GAN network. On this basis, a GAN
model optimized by the k nearest neighbor algorithm (K-
GAN) is constructed to expand the data of saw blade wear
vibration. The process is shown in Figure 4.

FIGURE 4. K-GAN.

K-GAN model tests the generated data and real data by
the K-nearest neighbor algorithm, calculates the Euclidean
distance between each data and other data by using the leave
one out cross-validation method, Select the class with the
highest frequency among the top k nearest types as the data
type. When the K- nearest neighbor recognition rate reaches
50%, it shows that the generated data has the same distribu-
tion as the real data, at this point, the network training stops,
and the optimal model is obtained. The Euclidean distance
calculation formula is given as follows:

D =

√√√√ N∑
i=1

(Xi − Yi)2 (7)

where N is the data dimension, Xi is the discriminated data
and Yi is the training data set, D is the calculated Euclidean
distance.

In this paper, k=11, and the criterion of the K-GAN net-
work is the model score value in the training process. The
calculation process is given below.

C = 1 −

∣∣∣∣∣
∑M

i=1 K (xi)
M

− 0.5

∣∣∣∣∣ (8)

where C is the model score. The formula

∣∣∣∣∑M
i=1 K (xi)
M −0.5

∣∣∣∣
indicates the model fault tolerance rate, which is set to be
less than or equal to 0.01 in this paper, M is the sample size,
K (∗) is the K-nearest neighbor discriminator, and xi is the
discriminant sample.

B. IDENTIFICATION MODEL
1) DOUBLE-PATH PARALLEL CONVOLUTION NEURAL
NETWORK
Due to the complex working environment of a circular
saw, the vibration acceleration signal is easily disturbed by
environmental noise, and because of the continuity of the
vibration signal in the time domain, the time series sig-
nal is often complicated. Therefore, in order to enhance
the anti-interference ability of the recognition model and
improve the recognition accuracy of the model, the author
constructs a double-path parallel convolution neural net-
work which is based on feature fusion of frequency domain
and time-frequency domain. The frequency domain and
time-frequency domain transformations are as follows.

a: FAST FOURIER TRANSFORM
The Fast Fourier Transform is based on the Discrete Fourier
transform (DFT), but it effectively avoids the repeated calcu-
lation of DFT. The DFT calculation is given below.

X (k) =

N−1∑
n=0

x(n)W kn
N (9)

where N is the volume of the discrete signal x(n), WN =

e−j
2π
N , k= 1, 2, 3 . . . . . .N − 1. X (k) is the value obtained

by the DFT of point k. Fast Fourier Transform utilizes the
symmetry and periodicity of the WN term to decompose the
DFT of N points into DFTs of N/2 points, thereby reducing
its complexity. The decomposition process is as follows:

X (k) =

N−1∑
n=0

x(2n)W 2kn
N +W k

N

N−1∑
n=0

x(2n+ 1)W 2kn
N (10)

EI (x) =



(
µt (x) − f

(
x+
)
− ε

)
8

(
µt (x) − f

(
x+
)
− ε

σt (x)

)
+σt (x)φ(

µt (x) − f (x+) − ε

σt (x)
) σt (x) > 0

0 σt (x) = 0

(6)
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FIGURE 5. DPCNN.

The first term on the right part of the equation is the
DFT transform of the even-numbered sequence x(n), and
the second term is the DFT transform of the odd-numbered
sequence.

b: VARIATIONAL MODE DECOMPOSITION
Variational Mode Decomposition decomposes the original
signal into several subsequences of different frequency scales
and relative stability by constructing a variational problem.
This approach effectively mitigates the influence of interfer-
ing signals on the analysis. The constrained variational model
is as follows.

min
{uk }:{ωk }

{∑
k

∥∥∥∂t [(δ (t) + j/π t) ∗ uk (t)] e−jωk t
∥∥∥2
2

}

s.t.
K∑
k=1

uk = f (11)

where K is that number of decomposition subsequences, the
{uk and ωk are the k-th subsequence and its central frequency
respectively, δ (t) is a Dirac function, ∂t stands for deriva-
tive, f is the unknown signal, and j2 = −1.
By introducing the Lagrange multiplication operator into

the above formula, the constrained variational problem is
transformed into an unconstrained variational problem. Cal-
culation process reference formula (12), as shown at the
bottom of the next page. In the formula (12), for reducing
the interference of Gaussian noise, α is added as a secondary
penalty factor and λ is Lagrangian multipliers, f (t) is the
real part of the original signal. By searching the saddle
point of the augmented Lagrange function, the variational
model iteratively optimizes uk , ωk and λ, and finally obtains
{uk and ωk .

The signal is transformed by Fast Fourier Transform
and variational mode decomposition so that the Intrinsic
Mode Function (IMF) and the frequency domain signal,
both of them are with highest energy ratio, are selected
as the inputs of the DPCNN. Then, the two signals are
convolved and pooled twice to extract features. Further-
more, the inner product of the two features is calculated to
obtain the fusion features. Feature fusion is calculated as

follows.

Fuji = F ji · Tf ji (13)

In which Fuji represents the j-th eigenvalues in the i-th feature
matrix of the fusion feature, F ji and Tf

j
i denote the extracted

frequency domain features and time-frequency domain fea-
tures, respectively.

Finally, main features from the fused features are extracted
again through convolution and pooling, and the results are
obtained through the output layer. The structure of the
Double-path Parallel Convolution Neural Network is shown
in Figure 5.

2) BOA IMPROVES DPCNN
As a variant structure of the deep learning algorithm, the
model in this paper exhibits significant sensitivity to network
performance through the adjustment of various hyperparam-
eters. Due to the diversity and wide range of hyperparameter
settings, manual selection becomes challenging. it is difficult
to achieve manual selection. Therefore, this paper optimizes
the important hyperparameters of the DPCNN through BOA.
The types and the optimization range of hyperparameters are
shown in Table 1.

TABLE 1. BOA optimization hyperparameter types.

The optimization process of BOA is shown in Figure 6.
The author divides the data into training sets and test sets,
and takes the test accuracy of the test set as the optimization
objective function.

By setting the maximum number of iterations required for
optimization, BOA is ensured to produce an acceptable value
after each iteration. Upon reaching the maximum iteration
count, the optimal target is selected from all acceptable val-
ues.
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FIGURE 6. Optimization Process.

FIGURE 7. schematic layout of experimental equipment.

IV. EXPERIMENTAL VERIFICATION AND PERFORMANCE
ANALYSIS
Windows 11 system and MATLAB2022b are used to build
the algorithm model in this paper. The hardware facilities are
AMD R7-4800H CPU, Nvidia GTX 1050Ti GPU and 16G
memory.

A. SAW BLADE WEAR EXPERIMENT AND DATA
INTRODUCTION
The experimental equipment for saw blade wear utilizes a
tungsten steel inlaid alloy saw blade, the size of which is
405mm×60T. The saw blade is mounted on a ‘‘YM90L5-
2’’ main spindle motor with a power of 6.5KW/380V. In the
experiment, vibration data is collected by the IEPE vibration
acceleration sensor and Advantech PCI-1710U data acquisi-
tion car. The collected data were saved byMATLAB software
in the desktop host. The schematic layout of the experimental
equipment is shown in Figure 7.

FIGURE 8. Saw blade cutting condition.

FIGURE 9. Experimental condition.

FIGURE 10. Data samples.

FIGURE 11. Fault tolerance rate of the K-GAN model.

The sensor’s frequency response range is from 1 to 10 kHz.
In order to stabilize the installation and reduce the influ-
ence of the vibration from the test bench, the sensor are

L({uk}, {ωk}, λ) = α
∑
k

∥∥∥∂t [(δ (t) + j/π t) ∗ uk (t)] e−jωk t
∥∥∥2
2

+

∥∥∥∥∥f (t) −

∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t) −

∑
k

uk (t)

〉
(12)
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FIGURE 12. The spectrum of Real Data and Fake Data.

securely installed on the rear of the motor through a powerful
magnet. MATLAB is configured with a sampling frequency
of 200 Hz. The cutting edge of the circular saw blade is
polished by an angle grinder andmeasured by a digital vernier
caliper, which provides a measurement accuracy of up to
0.01 mm. Each wear amount and its label are shown in
Table 2.

TABLE 2. Wear value and label of the saw blade.

The wear value in the table is the wearing band of
the tool flank. According to the tool wear standard, the
wear value above 0.1mm is defined first-class wear, above
0.2mm as second-class wear, and above 0.3mm as third-class
wear.

Firstly, a cutting experiment was conducted on the saw
blade under normal conditions. The material being cut is an
aluminum plate with a thickness of 4mm, and its cutting
state is depicted in Figure 8. Due to the small thickness of
the cutting plate, a one-time cutting approach was employed.
The upper surface of the cutting plate is positioned 2mm
away from the center of the saw blade, and the cutting length
produced by the saw blade is 30mm.

Due to the soft cutting material and a limited number of
cutting plates, the saw blade does not experience significant
wear. Therefore, after conducting cutting experiments under
normal conditions, the negligible wear of the saw blade in

TABLE 3. Cutting parameters.

various cutting states has been deliberately ignored. The same
saw blade was subsequently ground three times consecutively
by an angle grinder, with each grinding removing approxi-
mately 0.1mm of material. And vibration acceleration signals
have been collected in turn for the saw blade under these
three levels of wear. The experimental condition is depicted
in Figure 9.

In which the cutting parameters are shown in Table 3.
The vibration acceleration signals have been collected

in the above four states, and so does 50 sets of original
data in each state, resulting in a total of 200 sets of data.
Each data set consists of 2000 sampling points, includ-
ing 200 vibration data under the tool loading condition
with the loading duration 1s. The data sample is shown in
Figure 10.

B. DATA EXPANSION EXPERIMENT AND ANALYSIS
In this section, the author extracts the data to be used as
training data from the original experimental data, specifically
from the tool loading region. These data are expanded after
normalization by using the K-GAN model constructed in
Section III-A. The generator and discriminator structures of
the K-GAN model are shown in Table 4.

The model continuously updates the weights of the gen-
erator and discriminator, and generates data after fully
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FIGURE 13. IMF of real data and fake data.

FIGURE 14. Optimization process.

TABLE 4. The generator and discriminator structures of the K-GAN model.

connection. Each batch of group consists of 200 sets of data,
and the total data dataset comprises 1000 sets. In K-GAN
model training, the change of fault tolerance rate is shown
in Figure 11.

Clearly, the tolerance rate of the K-GAN model shows a
decreasing trend during the training process. After approx-
imately 260 iterations, the tolerance rate of the model drops
below the set threshold of 0.001. In other words, the generated

data matches the distribution of real data at this point, indicat-
ing optimalmodel performance. Following this, a comparison
was made between the generated data and the real data
through Fast Fourier Transform to obtain frequency domain
signals. Additionally, a comparison was conducted between
the IMF obtained from Variational Mode Decomposition,
as shown in Figure 12 and Figure 13.

Upon comparative observation, the frequency distribution
of the generated data in the frequency domain closely resem-
bles that of real data. The trend of IMF is largely consistent,
and the generated data lags slightly in phase and exhibits
amplitude fluctuations. Considering the variations intro-
duced by random data conforming to orthogonal distribution
and the inherent distinctions between actual experimental
data, this divergence falls within an acceptable tolerance
range.

To further illustrate the advantages of the data generated
by the optimized GAN network, The author calculated the
similarity index between the data generated by the two GAN
models and the real data. As shown in Table 5.

According to the criteria, a higher value of Pearson cor-
relation coefficient indicates greater similarity between the
data, while a smaller Euclidean distance indicates higher data
similarity. The data presented in Table 5 demonstrates that,
in all states, the similarity between the data generated by the
optimized GAN model and the real data is higher than before
optimization. Therefore, the comparison results show that the
data generated by the K-GAN model has high similarity with
the real data, which makes the generated data have reliable
classification and recognition function.
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FIGURE 15. Confusion matrix.

C. BOA OPTIMIZATION EXPERIMENT AND MODEL
IDENTIFICATION PERFORMANCE ANALYSIS
In this section, the author employs 800 sets of generated
data as training data and 200 sets of original data as testing
data, and optimizes the model through BOA. As described in
section III-B, channel 1 and channel 2 of the DPCNN model
are mainly composed of two convolution layers and two pool
layers. The fusion features of the model are completed by a
convolution layer and a pooling layer. The BOA optimization
is set with 100 iterations, leading to the acquisition of the
optimal model parameters, as follows.

TABLE 5. Pearson correlation coefficient and Euclidean distance between
generated data and real data.

1) OPTIMIZATION EXPERIMENT
The author uses BOA to optimize the hyperparameter of
the model described in section III-B2, and the optimization
process is shown in Figure 14.

The figure above shows that the observed minimum value
coincides with the estimated minimum value after about
43 iterations. Furthermore, no other minimum values have
been observed during the optimization process, indicating
that the network has found the optimal parameters at this
moment. The optimal parameter values are shown in Table 6.

TABLE 6. Optimal hyperparameters.

2) IDENTIFICATION PERFORMANCE ANALYSIS
The prediction and identification performance of the optimal
model obtained in the previous section is analyzed through
utilizing the training set and test set. Also, the comparison
with other wear prediction models which use the same data
has been conducted. The results are as follows.

a: MODEL PERFORMANCE ANALYSIS
The confusion matrix of the training set and test set in
the optimal network prediction is constructed, as shown in
Figure 15.

Obviously, both the test set and the training set have
achieved high accuracy in model prediction. There are
800 groups in the training set, and all kinds of predictions
have reached 100%. Furthermore, there is no over-fitting
phenomenon in 200 groups of data in the test set, and the
prediction rate of the model for different states also reaches
100%. Therefore, it shows that the optimizedmodel possesses
a strong classification performance.

b: COMPARATIVE ANALYSIS OF PERFORMANCE
In order to further verify the advancements of the model
proposed in this paper, a comparison was made in terms of
prediction accuracy between the proposed model and a CNN
based on self-attention mechanism, as well as the DPCNN.
The comparison result is shown in Figure 16.
The graphic data show that the average prediction accuracy

of CNN based on the attention mechanism is 97.5%, that of
DPCNN is 98.5%, and DPCNN optimized by BOA is 100%.
The above data show that the performance of the model
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FIGURE 16. Model performance comparison.

based on feature fusion is obviously better than that of the
convolutional neural network with single domain input, and
BOA optimization can effectively improve the recognition
accuracy of the model. After BOA optimization, the model
performance is better than the other two networks in four
states of saw blade wear, which shows that the double-path
parallel convolution neural network based on BOA optimiza-
tion can effectively solve the problem of saw blade wear
identification.

V. CONCLUSION
In this paper, a method for saw blade wear state identification
is proposed. According to the three different wear states of
the circular saw blade in the cutting process, a custom-made
experimental setup is developed to observe the effect of the
wear, and the acceleration vibration signals of different wear
degrees have been collected. The signal is analyzed by the
established model. The main conclusions can be drawn as
follows:

(1) To solve the problem of difficult data acquisition of
saw blade wear, a GAN model optimized by the K-nearest
neighbor algorithm is proposed. Experiments on data expan-
sion show that this method can generate signals which has
highly similar to the real data, and can effectively solve the
problem in saw blade wear identification of small samples.

(2) In addition, a Double-path Parallel Convolution Neural
Network is constructed for wear state identification. Fast
Fourier transform and variational modal decomposition are
used to transform the feature space, and the two signals are
fused in the model. The performance of the model is verified
in the prediction of the saw blade wear state. The results
show that compared with other models, the performance of
the model is obviously improved after feature fusion.

(3) For the recognition of saw blade wear state, the recog-
nition accuracy of the model constructed in this study has
reached 100% in 200 groups of data. It provides a reference
for the wear prediction of other types of tools.
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